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We analyze a cost allocation problem associated with the
Star-Star Capacitated Concentrator Location (SSCCL)
problem. The problem is formulated as a cost cooper-
ative game in characteristic function form to be referred
to as the SSCCL game. The characterization and com-
putation of game theoretic solution concepts associated
with this game are investigated. We show that, in gen-
eral, the core of this cooperative game may be empty.
However, we provide a polynomial representation of the
core of the SSCCL game. In case of nonemptiness of the
core we provide an efficient method to find the nucleo-
lus. For the case when the core is empty, we propose the
least weighted z-core as a concept for fair cost allocation
for the SSCCL problem and give its polynomial charac-
terization. Moreover, certain ‘central’ point of the least
weighted e-core is also efficiently characterized.

Keywords: Capacitated Concentrator Location, Cost Al-
location, Game Theory

1. Introduction

An important computer network design problem
is how to connect several remote users (comput-
ers or terminals) to a central site, which could
be a node of a backbone network or a proces-
sing site. This is often accomplished by a well
known design method that uses concentrators
(see for example Mirzaian (1985) and Pirkul
(1987)). Some relatively local sites are con-
nected to a concentrator and the concentrator
is connected via a high speed line or a satel-
lite to the central site. Each concentrator has a
capacity limit on the traffic it can handle. The
total design cost consists of the cost of opening
capacitated concentrators and the cost of com-
munication links used to connect users to con-
centrators. The objective of the design problem

is then to determine the number and location
of concentrators and to connect network nodes
to these concentrators at minimum cost, while
satisfying the capacity constraints.

Central Site

Concentrators _——.,

Users

Fig. 1. Example of a SSCCL design

e

Formally,let G = (N, E) be an underlying con-
nected undirected network with a set of nodes
N and a set of arcs F, and let O be a central
site. Both the set of users and the potential con-
centrators’ sites are represented by nodes in G.
Each user j, j € N has a demand d; for service
that can be produced by concentrators yet to be
constructed. A concentrator can be opened at
node 7, at cost ¢;, which also includes the cost
of linking concentrator ¢ to central site O. Each
user 7 should receive all of its service from a
single neighboring concentrator ¢. There is a
cost ¢(4,j) = ¢ij > 0,(3,7) € E if arc (4, ) is
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used to link user j to a concentrator ¢. The to-
tal demand satisfied by a single concentrator is
limited by capacity U. The objective is to pro-
vide service to all customers at minimum cost.
We will refer to the above optimization prob-
lem as the Star-Star Capacitated Concentrator
Location (SSCCL) problem (for an illustration
see Fig. 1).

With this problem naturally arises the problem
of allocating the cost among customers. There
is an incentive to allocate the cost among users
in a ‘fair’ manner. Namely, we would like to
allocate the cost in such a way that no subset
of users would have incentive to secede and
build their own network. Clearly, breaking up
the network might destroy global optimality of
the cost. Game theory approach to this problem
leads to a definition of cooperative game in char-
acteristic function form with user’s nodes being
players and characteristic function defined on
all subsets (coalitions) of users. The value of
the characteristic function for a certain subset
would be the cost of optimal subnetwork de-
livering service to that subset. We will formu-
late the associated cost allocation problem as a
cost cooperative game in characteristic function
form referred to as the SSCCL-game.

In cooperative game theory several different ap-
proaches for fair cost allocation have been sug-
gested (for a survey of these concepts-see, for
example, Young (1985) and Driessen (1988)).
Some of the suggested concepts are the Shapley
value, the core, the least e-core , the least per
capita e-core, the nucleolus and the nucleolus
per capita. However, note that there is no ap-
parent method for choosing one solution con-
cept over another (see Sharkey (1985)). Also
note that most of these solution concepts suffer
from the fact that the amount of data required
to compute them is enormous. In this paper we
will analyze the core, the nucleolus and the least
weighted e-core of the SSCCL-game.

The SSCCL-game properly generalizes concen-
trator covering game which was studied by (D.
Skorin—Kapov (1993)). His concentrator cover-
ing problem is concerned with the location of
concentrators in already existing local area net-
work. Therein he analyzed some game theoretic
solution concepts like the core, the nucleolus
and the least per capita e-core to allocate the
cost of concentrators, while ignoring the costs
of communication links between users sites and

concentrators. The main objective of this paper
is to extend the analyses to the‘more general
and more realistic design case.

Note, that in general relatively little has been
done on analyses of game theoretic cost alloca-
tion concepts for classes of capacitated network
problems (see for example D. Skorin—Kapov
(1993)). The main concern is that characteriza-
tion of game theoretic concepts often requires
exponential number of constraints and is often
computationally prohibitive. Nevertheless, in
this paper we show that in a content of a SS-
CCL problem, even in quite realistic situations,
computations of the above solutions may be fea-
sible.

2. Definitions and Preliminaries

In order to analyze the cost allocation problem
associated with the SSCCL problem, we need
to introduce the following game theoretic def-
initions and notation. Let N = {1,2,...,n}
be a finite set of players and let ¢ : 2 — R,
with ¢(0) = 0, be a characteristic function de-
fined over subsets of N referred to as coali-
tions. If ¢(IN') designates a cost that has to be
shared by all the players, then the pair (V,¢)
is called a (cost) cooperative game, or sim-
ply a game. For x €¢ R and S C N, let
2(S) = 3 ;e - We can interpret 2(.S) as the
part of total cost paid by the coalition S. A cost
allocation vector z in a game (NN, c) satisfies
z(N) = ¢(N), and the solution theory of coop-
erative games is concerned with the selection of
a reasonable subset of cost allocation vectors.
The characteristic function ¢ is submodular if
c(S)+¢e(T) 2 e(SUT)+ ¢(SNT) for all
S,T C N. If ¢ is submodular (N, ¢) is said to
be convex.

Central to the solution theory of cooperative
games is the concept of solution referred to
as the core of the game. The core of a game
(N, ¢) consists of all vectors z € R” such that
£(S) < ¢(S) forall S C N and 2(N) = ¢(N).
Observe that the core consists of all allocation
vectors x which provide no incentive for any
coalition to secede. In general, the core of a
game may be empty.

For a-real number ¢, the e-core of a game
(N, ¢) consists of all vectors z € R™ such that
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z(S)+e < ¢(S) forall @ # S C N, and
¢(N) = z(N). Clearly for ¢ small enough the
e-core of the game (NN, ¢) is not empty. The
least e-core is the intersection of all nonempty
e-cores. Equivalently, let g be the largest ¢
such that the e-core is not empty, then the least
g-core is the gqg-core.

The nucleolus, introduced by Schmeidler (1969),

is another well known concept of solution. Intu-
itively, the nucleolus is an allocation that makes
the least-well-off coalition as well-off as possi-
ble. We say that coalition S is better-off than
T, relative to an allocation z, if ¢(S) — z(S) >
e(T) — z(T). The quantity e(z,S) = ¢(S) —
x(.9) is called the excess of S relative to . For-
mally, the nucleolus can be presented as follows.
For a game (NN, ¢) and an associated cost allo-
cation vector z, let e(x) be a vector in RE"-2)
whose entries are e(z,S5), § # S C N, ar-
ranged in a nondecreasing order. The nucleolus
is the vector that maximizes e(z) lexicographi-
cally. This means that the value of the smallest
excess is as large as possible and is attained on
as few sets as possible, the next smallest excess
is as large as possible and is attained on as few
sets as possible, etc. In contrast to the core, the
nucleolus always exists. Moreover, it is unique
and it is contained in the core if the core is not
empty. Intuitively, the nucleolus is the center
of the core if the core is nonempty and it is the
‘closest’ point to the core if the core is empty.

Another reasonable approach is to define the
excess of a coalition on a per capita basis:

é(x,8) = |5|( ¢(S) — z(S)), where |S| is the
cardinality of a set S. Let &(x, S) be a vector in
R?"~2, whose entries are &(z,S),0 & S C N,
arranged in a nondecreasing order. The per
capita nucleolus (Grotte (1970)) is the vector
that maximizes é(z) lexicographically.

The cost allocation problem associated with the
SSCCL problem is concerned with the alloca-
tion of the cost incurred for satisfying the user’s
demand for service. Given a SSCCL problem
defined on G = (N, E), for S, S C N, we de-
note by SSCCLg, SSCCL problem on G with
a set of users as well as concentrators potential
sites restricted to S.

SSCCLg problem can be formulated as the fol-
lowing integer linear programming problem.

For all i € § and (4,7) € E, let y; and y;;
be respectively (-1 variables with the follow-
ing interpretation: y; = 1 if a concentrator is
opened at node 7 and zero otherwise and y;; = 1
if user j is serviced by concentrator 7 and zero
otherwise. Let d; be the demand for service at
node j, let ¢; be the cost to open a concentrator
at node ¢ ( which also includes the cost of link-
ing concentrator ¢ to central site O ), let ¢;; be
the cost of link (7, j) and assume that potential
concentrators have capacity U. Then

- HliIlZ CiYi + Z CijVYij

€S 1,jES
subject to:
Z yi;=1, foreveryjes
€S (SSCCLg)
Z diyi; < Uy;, foreveryie S

jeS
Yi;»¥i € {0,1}, foralli € S,and j € S

The first set of constraints ensures that each
node in S is serviced by exactly one neigh-
boring concentrator in S and the second set of
constraints are capacity constraints.

Then, the pair (N, ¢), where ¢ : 2V — Rissuch
that ¢(@) = 0 and for each S C N, ¢(S) is the
minimum objective function value of SSCCLg,
1s a cooperative game in characteristic function
form, to be referred to as the Star-Star Capaci-
tated Concentrator Location (SSCCL) game.

3. The Core of the SSCCL-Game

First we show that the core of the SSCCL
game may be empty. Consider, for exam-
ple, the network G = (N, E) consisting of a
three node ring (Fig. 2) with N = {1, 2,3}
and £ = {(1,2),(2,3),(1,3)}. Assume that
cp =¢ =c¢3 =1,c1p =cy3 = c13 = 0.2,
d1 = dp = d3 = 1 and each potential concen-
trator has a capacity U = 2.
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Fig. 2. Networtk G = (N, E)

Now, one can easily verify that the core con-
straints induced by the two-member coalitions
are:

z1 4 72 < 1.2,
r1+23< 1.2, @)
T2+ 23 < 1.2.
The entire cost is
1+ T2+ 23 = 2.2. (2)
If we sum up inequalities in (1) we get
z1+x2+23< 18 (3)
which contradicts the total cost allocation (2).

Thus, we conclude that the core of the SSCCL
game associated with G is empty.

Consider now a general case of the SSCCL
game. let G = (N, E) be the underlying net-
work with the set of users NV, and assume that
each concentrator can satisfy at most demand
U. Clearly, the exponential number of core
constraints, coupled with the fact that in general
case the computation of ¢(S), S C N isstrongly
NP-complete (Mirzaian and Steiglitz (1981)),
makes the core computations hard. Neverthe-
less, we provide an efficient representation of
the core, which often enables us to test whether
the core of a SSCCL game is empty, and gen-
erate core points (if they exist) in polynomial
time.

Theorem 1. Let %€, = {S!|S! is a subset of N,
such that an optimal solution to SSCCL ¢ uses

a single concentrator opened at node i}l, and
let € = J;en %i- Then the core of a SSCCL

game is given by all cost allocations x € RV,
satisfying:

c(S)—=xz(s) >0, forall S €€ (4)

c¢(N)—z(N)=0. (5)

PrROOF. We will show that all core constraints
excluded from (4) and (5) are redundant. Let S
be a proper subset of N which is not contained
in %, and let F', F' C N, be the set of open fa-
cilities in the optimal solution to SSCCLg. For
each 1 € I, let S; be the subset of users which
are serviced by a facility opened at node 7 in the
optimal solution to SSCCLg. Since $;NS; = 0,
forall 4,5 € F'and 1 # j, we have that S; € %;
for each i € F. Moreover ¢(S) = > ;. ¢(Si),

and z(S5) = > ,cp x(S;). Then, it follows that
forany i € F"
o(S)—x(S)=) _(c(Si)~x(5:))

1=y
>(c(Si)—x(5:))=0.  (6)
Hence, the core constraint induced by S is re-
dundant and the proof is complete. O

Note that the maximum cardinality of every set
in % is bounded with capacity limit /. Depend-
ing on the structure of the underlying network
G, sets §; in €, can often in practice be com-
puted in polynomial time. Moreover, the family
% used to characterize the core is often polyno-
mial in size. We will discuss such cases in the
concluding section of this paper.

4. The Nucleolus of a SSCCL Game

Even if the core of a SSCCL game is not
empty, it may consist of many cost alloca-
tions which are not equally attractive. Con-
sider a simple example of a SSCCL game in
which the underlying network G = (N, F) is
a chain given in Fig. 3. Let N = {1,2,3},
di1 = do = ds = 1 and assume that facility costs
arec; = ¢y = ¢3 = 2,thatlinkcostsarecijp = 0
, ¢23 = 2 and suppose that capacity of each po-
tential concentrator is /' = 2. Itis easy to check
that cost allocations (z1 = 2,22 = 0,23 = 2),
(x} = 1,45 = 1,25 = 2) are both in the core
of the associated game (N, c). However, it is
hard to believe that user 1 would accept the so-
lution, in which he pays 2 and user 2 does not
pay anything, as a fair solution.

Fig. 3. Network G = (N, E)
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For the case when the core of a SSCCL prob-
lem is not empty we will try to determine the
most ‘attractive’ point in the core, namely its
nucleolus.

A method for computing the nucleolus by solv-
ing a sequence of linear programming (LP)
problems was implicitly suggested by Schmei-
dler (1969) and then further studied by Kopelo-
witz (1967), Keane (1969), Charnes and Kor-
tanek (1967 and 1970) and, finally, by Maschler
et. al. (1979). The k" LP problem, LP;, solved
by this method is:

max{e : g; = ¢(S) — z(5),
SeP,j=1,.,k—1e<e(S)—z(9),
k—1
S¢ P, a(N)=c(N)}, (LPy)
j=1

where for j > 1, ¢; and P; are, respectively,
the optimal value and the set of subsets whose
corresponding inequality constraints are satis-
fied as equalities at an optimal solution of LP;.
The nucleolus is obtained at problem LP; if the
optimal solution to LP; is unique. We will re-
fer to this method as the Linear Programming
(LP) procedure for computing the nucleolus. It
is easy to show that SSCCL game is not nec-
essarily convex which implies (Maschler et. al.
(1979)) that the redundant core constraints may
be needed to determine the nucleolus. Nev-
ertheless, when the core of a SSCCL game is
not empty, we show below, that the collection
of constraints %€ used to characterize the core is
sufficient to completely determine the nucleolus
of a SSCCL game.

Theorem 2. Ifthe core of a SSCCL game is not
empty then the nucleolus of a SSCCL game is
completely determined by the collection of core
constraints associated with subsets in €.

PROOF. The proof will follow if we show that
all core constraints induced by subsets not in %’
are redundant in the LP procedure for comput-
ing the nucleolus. Let S be a subset of N which
is not contained in %’. Let F be the set of open
facilities in the optimal solution to SSCCLg and
again for each ¢ € F|, let S; be the set of cus-
tomers serviced by a facility opened at node ¢ in
the optimal solution to SSCCLg. Then by the
same argument as in T.1 ¢(S) = >, pc(S;)

and 2(S5) = >, p #(S;). Further, by nonemp-
tyness of the core,

c(S) — 2(5) = ¢(Si) -

Now if for ), @ C N, LPy) denotes the line-
ar program in the LP procedure for computing
the nucleolus of the SSCCL game in which the
constraint ¢ < ¢(Q) — z(Q) corresponding to
@ has been first satisfied as an equality at the
corresponding optimal value (g, then

EHS;) = C(Sz) — :C(Si), fori e F (8)

z(S;) fori e F. (7)

and
z(S). 9)

Observe that by (7) €45y > £1(S5)s forall: € F,
which 1mp11es that the constraints (8) would be
considered in the LP procedure for computing
nucleolus prior to the constraint (9). Moreover,
SINCE £4(5) = ) ;e €1(S,)> constraints (8) com-
pletely determine the value of the total alloca-
tion to subset S and constraint (9) is redundant
in the above procedure. O

St(S) = C(S) =

The nucleolus is unique and exists even in the
case when the core is empty. However, in this
case, it appears to be difficult to characterize the
nucleolus of the SSCCL game. Instead, in case
of emptyness of the core, we propose the least

weighted e-core as a solution concept for the
SSCCL game.

5. The Least Weighted -Core

For the case when the core of the SSCCL game
(N, c) is empty, we propose the least weighted
g-core as a concept for a fair cost allocation
associated with the SSCCL problem.

For each coalition S, § C N let wg be the
weight associated with S. Then the weighted -
core is a set of cost allocation vectors for which
for all coalitions S5, S C N: ¢(S) — z(S5) >
wge and ¢(N) — z(N) = 0.

The weighted e-core can be interpreted as the
set of ‘attractive’ cost allocations that can not
be improved upon by any coalition S if for-
ming a coalition entails a cost —wge. Clearly,
the weighted weighted e-core is not empty if
e is sufficiently small. Let &' be the largest
e for which the weighted e-core is not empty.
Then the weighted &’-core is the least weighted
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g-core. It appears that ¢’ is particularly interest-
ing when it is negative, i.e. when the core of a
game (N, ¢) is empty.

We will show below that with the suitable choice
of weights the least weighted e-core of a SS-
CCL game can be characterized by our collec-
tion of constraints associated with the family
of coalitions 4. We say that a set of weights
W ={wg | S C N} is additive if for any two
subsets S1, 52 € N such that S1 NS, = 0, we
have wg, + ws, = Ws,uUs,-

Theorem 3. Let W = {wg | S C N} be the
additive set of weights associated with coali-
tions in the partitive set of N. The least weighted
e-core of the SSCCL game (N, c) is character-
ized by the following LP problem:
max{e|(e(S) — z(9)) > wge,
forS € € and() # S C N,

andc(N) =z(N)}. (10)

PROOF. We will prove below that the weighted
g-core constraints corresponding to subsets

which are not in the collection % are redundant.
Let

(i) & =mazx{e|c(S)—z(S) > wge,
Se¥€,0#SCN,andc(N)=2z(N)}
and
(i) " = maz{e | c(S) — z(S) > wge,
Se2V | §£SCN, and ¢(N)=z(N).}
We will show that &’ = &”. Clearly ¢’ > &". It
remains to be shown thate” > ¢’. Let (z, &) be
an optimal solution to (i) and let S be any subset
of N. Let F be the set of open facilities in an
optimal solution of SSCCLg and forz € F, let
S; be the subset of users serviced by a concen-

trator ¢ in that solution. Since, for each ¢ € F,
S; is in ¥, we have:

e(8)=a(5)=) _(e(Si)—=(Si))
iEF
> ngie’:wgaf,
tEF
which implies that ” > &', O

(11)

Note, that for a special case, when the above
weights in T.3 are w; = 1 for all ¢ € NNV, then
the least weighted e-core becomes the least per
capita e-core.

In order to further analyze the least weighted e-
core we introduce, for an arbitrary ¢, the game
(N, ¢.) whose characteristic function ¢, is de-
fined as follows:

_ [ e(S)-wge, ifB#S CN,
CE(S)"{ e(S), if S=N. (12)

Observe that the core of the game (N, ¢.) co-
incides with the weighted e-core of the game
(N, ¢). Lete' be the largest & for which the game
(N, c¢) has a nonempty core. Then the core of a
game (N, ¢./) coincides with the least weighted
e-core of a game (/V,¢). For¢ € N, we can
interpret —w;e’ as the minimal weighted cost
w;e, or cross-subsidy, for which the weighted
g-core is not empty.

A reasonable way of selecting a unique point
from the least weighted e-core is selecting the
nucleolus of the game (N,c.). Under the
assumption that every user has agreed to par-
ticipate in a cross-subsidy with additional cost
—w;e', such a cost allocation would lexico-
graphically maximize minimal excess.

Next, we show that the nucleolus of the game

(N, c.r) can also be characterized by the collec-
tion €.

Theorem 4. The nucleolus of a game (N, c./)
is completely determined by the collection of
core constraints associated with subsets in €.

PROOF. The proof will follow if we show that
all core constraints induced by subsets not in €
are redundant in the LP procedure for comput-
ing the nucleolus.

Let S be a nonempty proper subset of /N which
is not contained in ¥'. Let F' be the set of open
facilities in the optimal solution to SSCCLg.
For each 7 € F, let S; be the subset of cus-
tomers serviced by a facility opened at node i in
the optimal solution to SSCCLg. For § C N,
let e.(z, S) = ¢ (S) — x(S) be the excess of
S relative to z. Since the nucleolus of the game
(N, ) is in the core of (N, ¢./) we have that:

Egl (337 S):cs’(s) _33(5)
=c(S)—z(8)—wge'
= (c(Si)—z(Si)—ws,e)
i€F
> (e(Si)—2 (i) ~ws,e)
=e.(x, S;), foreach i€ F.

(13)
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If, similarly to discussion in T.2, for @ C N,
LPy() denotes the linear program in the LP
procedure for computing the nucleolus of the
game (N, c.) in which the constraint ¢ <
¢ (Q) — z(Q) corresponding to @ has been
first satisfied as an equality at the correspond-
ing optimal value g, then

Et(gi)zc(si)—w(si) — ’LUSZ.EI, forieF
(14)

and

eys)=c(S)—z(5)—wge'. (15)
Clearly, by (13) eys) > eys;) forall i € F,
which implies that the constraints (14) would
be considered in the LP procedure for comput-
ing nucleolus prior to the constraint (15). More-
Over, SINce £48) = Y ;e p £4(S;), constraints (14)
completely determine the value of the total allo-
cation to subset S and constraint (15) is redun-
dant in the above procedure. O

Observe that if w; = 1, for all ¢ € N and if the
nucleolus of (N, c,s) is the unique solution to
the first linear program in the LP procedure for
computing the nucleolus, then the nucleolus of
the game (N, ¢.r) coincides with the nucleolus
per capita of the game (N, ¢).

Remark. With respect to choice of weights
w;, 1 € N, we think that they should be de-
cided upon, on a case by case basis. A reason-
able practical choice could be a set of weights,
w;, 1 € N, such that w; is some additive
function of ¢’s demand d;. A simple natural
choice for ¢ € N might be w; = d;/D, where
D = 3", d; represents the total demand for
service of the entire network.

6. Conclusions and Applications

In T.1 — T.4 we characterized respectively, the
core, the nucleolus, the least weighted e-core
and a certain ‘central point’ of the least weighted
g-core of the SSCCL game with the constraints
corresponding to a family of coalitions 4. A
game theoretic analysis proposed above ad-
dresses the questions of efficiency as well as
fairness. Besides efficient characterization of
the core and the nucleolus, we also suggested
efficient weighted cross-subsidization for cases
when a fair subsidy-free cost allocation does
not exist. Let us now discuss how efficient are

the above characterizations. First let us make
a natural assumption that demands, d;, ¢ € NN,
are such that they, together with concentrator’s
capacity limit U determine some fixed upper
bound k£ on the number of nodes that can be
served by a single concentrator. In such cases
the cardinality of set % is bounded by a poly-
nomial. Moreover, in this case we can com-
pute all sets S; and their characteristic function
values ¢(S;) in polynomial time. In practical
situations underlying network G = (N, E) is
rarely a complete graph and will often posses
some structure. For example our network G
may have bounded degree of each node (number
of adjacent vertices) or G may be even highly
structured like a tree, a ring, series-parallel, par-
tial k-tree etc. Often, recognizing such structure
enables us to explicitly compute ¢(/N). When
the optimal solution ¢(/N') could not be found,
we approximate it with the best known heuristic
solution from the network design problem. In
all such cases the verification of the core exis-
tence, the nucleolus (if the core is not empty) as
well as the least weighted e-core and its ‘central
point’ can be computed in polynomial time.
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