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Combinatorial Explosion
in the Construction of Block Designs”
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The construction of the symmetric block design (v, k, A)
with larger parameters (k > 9) is a huge computational
problem. This article describes one method which im-
proves the computational task of the construction in re-
gard to the computer memory and time requirements.
This method has been described for the construction of
the (71, 21, 6) block design on which operates the Frobe-
nius group of order 21.
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1. Introduction

The central part of discrete mathematics today
is the construction of block designs, as a spe-
cial case of incidence structures. An incidence
structure 9 = (%, %, I) consists of two finite
sets: a point set & and a line set %, on which
the incidence relation I C 27 x % is given. Let
Pc P, x € . We say that P is on x (or that
x is going through P)if (P,z) € I.

A symmetric block design with parameters

(v, k,A) is an incidence structure which con-
sists of v subsets (called blocks or lines) of &
elements (called points) taken from a set of v el-
ements such that any two blocks contain exactly
A elements (Beutelspacher, 1982, Hughes &
Piper,1985). For P € % andz € 8 we denote
all the blocks through the point P as {(P) =
{y € B|(P,y) € I}, and all the points which
are on the line z as (z) = {@ € L|(Q,x) €

I'}. A symmetric block design with parameters
(v, k, \) can be now defined as:

12| = |B| = v, ey
Kz = KP)| =k
foralle € &, P € P, (2)

&) N <] = [KP) N<Q)| = A
forallz,y € &, x #y
and P,Q € #,P # Q. 3)

We call the conditions (3) the consistence con-
ditions.

Construction of such designs with larger param-
eters (k > 9) can usually be done with a com-
puter, but even so, due to an extremely large
number of combinatorial possibilities, certain
additional assumptions have to be used to speed
up the process of construction. The basic as-
sumption is that a certain automorphism group
¢ operates on the design. That leads to the
method of using tactical decomposition for the
construction of orbit structures (Janko, 1986,
Cepulié¢, 1990).

Let ¥ < Aut% be an (incidence preserving)
automorphism group of Z. Then & = UZ; =
UF;% and # = U%; = Ux;¥ are the partitions
of 27 and Z into ¥-orbits, with representatives
P; € & and z; € 9. (Symbol U denote union
of disjoint sets).

We denote the length of particular orbits with
| ;| = w; and |%;| = ;. These two partitions
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define a tactical decomposition of 2.

2. The Orbit Structures

The first step in the construction of symmet-
ric block designs is the construction of orbit
structures. Only those block designs which
have an orbit structure can be fully constructed.
The orbit structure is the matrix (;;) or dually
(M) where p;; = |{z) N Fi|, z € B; and
M;; = |[{P) N %;|, P € 2. It can be proved
(see [3]) that the following holds:

7 i
ng‘ = ZMij =k (5)
i )

[z, 5] = Z#e’j(Mz'j—l) = A(;-1)

(6)
J5, ] o= 3 Mg = N (7
wiMij = (i ®)

In the method of construction of orbit structures
V. Cepuli¢ introduced canonical forms for lines
and designs (see [3]). Using the formula (6)
we construct all possible (lexicographically or-
dered) x; types which belong to the particular
line orbit #; (layer) and satisfy [z, z;] which
we call the inner product. The next step is build-
ing the partial orbit structures Zp , layer by
layer, satisfying (7). This consistence condition
for lines from different layers [z, z;] is called
outer product (see [10], [11], [12]). Each line
must be consistent with all previous lines of the
considered beginning orbit structure. If there
exists some a € Ng(¥) such that Zpa < 2%,
we can ommit such Zp, retaining only those
9p among the isomorphic ones, which are the
first in the sense of the defined precedence (a
denotes the element from the group normalizer
Ng(%) of 4 in the symmetric group S over the
set 2 U Z4). A good convergence of the con-
struction process is obtained in many cases by
eliminating a lot of isomorphic designs (Essert,
1992) in such a way.

Each orbit can be denoted by an orbit mark (the
big number), so the orbit structure can also be
represented by explicitely writing an orbit mark,

as many times as there are points i;; in the par-
ticular point orbit &% In this way we obtain a
line representative with & points.

At this moment we can not distinguish the points
which belong to the same orbit. Therefore, each
point must be supplied with an index. This sec-
ond process of the construction we call indexing.

Example

Suppose that the nonabelian group ¢ of order
21 (the so called Frobenius group) operates on
the design (71,21,6). We denote this group with

In={ppu|p =p=1,p"=p?
The subgroups {p) and () are represented as
permutation groups on the indices for each orbit.
The group operation on each line representative
provides the p-images of each index and so the
p-images for each line.

The action of a subgroup {p) of order 7 of ¥
on 71 points is:

p ={(00)(lo, I, I, I3, 14, Is, I5),
1=1,2,38,4,5,6,7,8,9,10)},
where / (an orbital mark, the big number) de-
notes a particular orbit. Note that there are ten
orbits of length 7 and one of length 1. One orbit

structure, among the 28 constructed, is shown
below:

Po D1 P2 P3 P4 Ps Ps P71 P8 Py Puo
I o 1 34567 8 9 10
bp|O 7 7T 7 0 0 0O O 0 0 O
by |0 4 1 1 3 3 3 3 1 1 1
b |0 1 4 1 0 3 3 3 1 1 1
b |0 3 3 0 3 1 1 1 3 3 3
by |O 3 0 3 0 2 2 2 3 3 3
bs |1 2 2 2 2 1 2 3 0 2 4
bs |1 2 2 2 2 2 3 1 2 4 0
b |1 2 2 2 2 3 1 2 4 0 2
bg O 1 2 3 3 0 4 2 3 1 2
bs /O 1 2 3 3.4 2 0 1 2 3
bo{0 1 2 3 3 2 0 4 2 3 1

The point orbits we denote with p;, line orbits
with b; and the length of orbits with w; . The
orbits of length one are usually denoted with oo
(fixed points), and the others with big numbers.
It is easy to see that the equations (4)—(8) are
satisfied. See also that the line representative,



Mario Essert: How to Overcome the Combinatorial Explosion. . . 11

for example b;, can be represented by the big
numbers as:

1222235556667778910

3. Indexing

The process of setting indices on big points and
lifting an orbit structure by means of a permu-
tation group, so that the consistence conditions
are satisfied, is called indexing.

To obtain a design, all line images must be mu-
tually consistent. The consistence condition
for this inner product, also called “Hamming
length”, is following from (6) as:

H(b;) = (Ipl = 1)(A = £i), ©)
where f; is the number of fixed points of line b;
and |p| is the order of automorphism p.

Two line representatives which belong to differ-
ent orbits with indices which satisfy (9), must
also be mutually consistent. This outer prod-
uct follows from (7) and is often called “Game
(germ. Spiel) product™

Sp(bi, b;) = |pl(A— fiz),  (10)
where f; ; is the number of fixed points which
are common for b; and b;, 7 # j.

‘The first step of the construction is to obtain all
indices for the particular line orbit which satisfy
(9). The second step is to connect successively
the line orbits by means of the condition (10).

4. The Method of Saved Vectors

The problem which arises is that very quickly
the number of correct solutions becomes astro-
nomically large. The mathematical answer to
this combinatorial explosion is the usage of the
automorphisms which normalize our group ¥,
and reduce indices. The computational answer
is to prepare relevant information in the com-
puter memory, before the process of the con-
struction begins.

From the group multiplication table GMT of or-
der DIM, we can construct the new incidence
table I'T, which shows us when two points from
the same orbit are incident in the lifting process.
The C-program (with the variables 7, ¢1 and j)
for this action is:

for(i=0; i<DIM; i++)
for(j=0; j<DIM; j++)
for(ii1=0; i1<DIM; il++)
if (i == GMT[i1][j1) {
IT[i]1[j1=i1;
break;

b

Using this table IT as the argument in the func-
tion HAMM we have constructed for the par-
ticular (x;) N &; = ;, one vector (INCV)
consisting of the numbers of incidences. Obvi-
ously, | #iz| = ws;. If there are t-point orbits,
we also have to construct t vectors for every line
representative. But, since the same p;; usually
appears several times in the same line (and also
in the other line orbits), our generated vectors
can be used for all of them (i.e. for their related
Piz). The C-program for this function is:

void HAMM(Pi,Wi,IT,INCV)
int *Pi, Wi; /#* the set &, and
its length Wix/
/* the table of
incidence */
/* the resulted vector */

int (*IT)[DIM];
int *INCV;

¥Ht il 92 Ay B
for (i1=0; i1<Wi; il++) {
a=Pil[i1];
for (i2=i1+1; i2<Wi; i2++) {
b=Pi[i2];
INCVIIT[b] [al]++;
INCV[IT[a] [b]]++;
) }
} /% hamm */
The investigation of the inner product in this
way is reduced to in summing ¢ vectors with
the condition that in all vector elements (except
null) the sum must be A.

Example

For the cyclic automorphism p of order 7 the
incidence table IT will be:

ITf{o 1 2 3 4 5 o6
0(0 6 5 4 3 2 1
1|1 0 6 5 4 3 2
212 1 0 6 5 4 3
313 2 1 0 6 5 4
414 3 2 1 0 6 5
515 4 3 2 1 0 6
66 5 4 3 2 1 0

For the two indices from the same orbit, for
example, 2 and 6, the incidence will be at 37
and 4%* step (see IT(2,6) and IT(6,2)). For the
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lo 1t 12 14 20 30 41 4 44 59 5
lo 20 23 25 26 39 52 55 bg 61 64
11 1, 14 25 25 2¢ 43 4s 44 5y 6p
1y, 12 14 31 32 34 b3 bs 65 65 T
oo 14 1s 20 25 33 3 43 44 5y 64
co 17 13 29 235 3¢ 35 46 41 51 53
oo 12 1 20 2¢ 35 33 4s 4, by bs
1s 22 24 39 34 36 42 43 4¢ 6y 69
15 24 219 30 31 35 44 4¢ 45 5y 54
le 27 22 3p 32 33 41 4s 43 5 53

Bs 6y 64 6 Tg T2 Tz 8o 99 10g
63 T4 T3 Ts 84 8 92 93 107 10s
To 8 84 8 95 92 9 104 10y 102
73 8 8 8 91 9% 93 104 103 10s
6s 71 T3 T 92 94 10; 10, 104 105

6 66 65 To 84 8 9, 9y 99 93

55 6p T2 Ts B4 8 & 8 10y 10,
6s 65 75 76 80 84 8 99 107 103
53 08s 63 65 8 92 95 10p 10y 10s
To 71 76 T3 8 8 99 92 93 10g

Fig 1

tree indices, for example 2, 3, and 6, the lifting
process will be: 236 — 340 — 451 — 562 —
603 — 014 — 125 which gives the incidence
vector: 0102201, i.e. there are one incidence
in the first and sixth step, and two incidences in
the third and fourth step. It is easy to see that
the HAMM function will give the same answer.
For IT(2,3)=6 — increment the sixth element of
the originally cleaned vector INCV, IT(3,2)=1
—- increment the first element (vectors in the
C language have the null element), IT(2,6)=3
— for the third element, and so on: (6,2)=4,
(3,6)=4, (6,3)=3.

Since these operations are equal for all equal in-
dices, no matter in which orbit they appear, the
idea is to make and store these vectors for all
P, (with different lengths) before the process
of the construction begins.

The analogous operation of the vector genera-
tion (S7V) can be applied for the outer products,
equation (10), using the C-function:

void SPIEL(Pi,Wi,Pj,Wj,IT,SIV)

int *Pi, Wi;

int *Pj, Wj;

int (*IT) [DIM];

int *SIV;
/* outer product for the sets £, from the
i-point orbit of line z and the sets &
from the same i-point orbit of line y *f

10t dd., 9Dy &y b
for (i2=0; i2<Wj; i2++) {
b=Pj[i2];
for (i1=0; i1<Wi; il++) {
a=Pi[i1];
SIVLIT[b] [al]++;

} }* Spiel */

Note that for the outer product the null element
of the summed vector must also be A.

5. The Construction

The first step of the construction is to obtain all
indices which satisfy equation (9) — joining and
summing the saved vectors for all point orbits
of the particular line orbit. The second step is
to apply the group normalizer and centralizer to
the resulted vectors. The third step is to connect
successively vectors of line orbits by means of
condition (10). The result for our example is
(71,21,6) design (Ademaj, Essert, 1992), given
by its line representatives (Fig. 1)

Each orbit could be fully obtained by simple
incrementing modulo 7 for each index in the
block representative.
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