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for a Class of Multidimensional
Assignment Problems
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The assignment problem of matching the elements of two
sets at some cost or to some benefit is well known and can
be solved in polynomial time. However, many applica-
tions, particularly those in remote sensing and computer
vision, require matching elements from more than two
sets at some cost. Such problems are called multidimen-
sional assignment problems and are known to be NP-hard.
For time-critical applications and nontrivial multidimen-
sional assignment problems, fast near-optimal algorithms
are the only alternative. This paper compares three such
algorithms: greedy, limited branch and bound, and La-
grangian relaxation.
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1. Introduction

The central problem in any multitarget/multi-
sensor surveillance system is the data as-
sociation problem of partitioning the obser-
vations into tracks and false alarms [Bar-
Shalom (1978), Bar-Shalom and Fortmann
(1989), Blackman (1992), Morefield (1977),
Reid (1979)]. Current methods for multitar-
get tracking generally fall into two categories:
sequential and deferred logic. Methods for
the former include nearest neighbor, one-to-one
or few-to-one assignments, and all-to-one as-
signments as in the joint probabilistic data as-
sociation (JPDA) [Bar-Shalom and Fortmann
(1989)]. For track maintenance, the nearest
neighbor method is valid in the absence of
clutter and when there is no track contention,
i.e., when there is no chance of misassociation.
Problems involving one-to-one or few-to-one

assignments are generally formulated as (two
dimensional) assignment or multi-assignment
problems for which there are some excellent op-
timal or e-optimal algorithms [Jonker and Vol-
genant (1987), Bertsekas and Castanon (1991)].
This methodology is real-time but can result in
a large number of partial and incorrect assign-
ments, particularly in dense or high contention
scenarios, and thus incorrect track identifica-
tion. The difficulty is that decisions, once made,
are irrevocable, so that there is no mechanism
to correct misassociations. The use of all ob-
servations in a scan (e.g., JPDA) [Bar-Shalom
and Fortmann (1989)] to update a track mod-
erates the misassociation problem and has been
successful for tracking a few targets in dense
clutter.

Deferred logic techniques consider several data
sets or scans of data all at once in making data
association decisions. At one extreme is batch
processing in which all observations (from all
time) are processed together, but this is com-
putationally too intensive for real-time applica-
tions. The other extreme is sequential process-
ing. Deferred logic methods between these two
extremes are of primary interest in this work.
The principal deferred logic method used to
track large numbers of targets in low to mod-
erate clutter is called multiple hypothesis track-
ing (MHT) in which one builds a tree of pos-
sibilities, assigns a likelihood score based on
Bayesian estimation, develops an intricate prun-
ing logic, and then solves the data association
problem by explicit enumeration schemes. The
use of these enumeration schemes to solve this
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NP-hard combinatorial optimization problem in
real-time is inevitably faulty in dense scenarios,
since the time required to solve the problem op-
timally can grow exponentially in the size of the
problem.

Another important aspect in surveillance sys-
tems is the growing use of multisensor data fu-
sion [Bar-Shalom and Fortmann (1989), Bar-
Shalom (1990), Deb, Pattipati, and Bar-Shalom
(1992)] in which one associates reports from
multiple sensors together. Once matched, this
more varied information has the potential to
greatly enhance target identification and state
estimation. The central problem is again that of
data association and the principal method em-
ployed is multiple hypothesis tracking.

The central problem in these multitarget and
multisensor tracking problems is an NP-hard
combinatorial optimization that is formulated
here as a multidimensional assignment prob-
lem. These problems have noisy objective func-
tions due to sensor and model noise, and must
be solved in real-time to the noise level of the
problem. Greedy algorithms are fast but do
not produce solutions of sufficient quality. The
only known method for solving the problem op-
timally is branch and bound, but this method
is much too slow for real-time use. We have
developed [Poore and Rijavec (1993), Rijavec
(1992)] a class of Lagrangian relaxation tech-
niques which solve the problem to the noise
level in real-time. Thus the objective in this
work is to demonstrate the effectiveness and
robustness these algorithms. The performance
of the Lagrangian relaxation algorithm is com-
pared to the performance of a greedy algorithm
and the relaxation-based branch and bound tech-
nique. The model problem used for this demon-
stration is that multiple targets traveling with
constant acceleration in two dimensional space.

This paper is organized as follows: The combi-
natorial optimization problem governing these
data association problems and a simple physical
description of the problem are given first. Then
overviews of the Lagrangian relaxation algo-
rithm, the greedy algorithm, and the branch and
bound procedure are presented, followed by a
section on a selection of results from extensive
numerical studies.

2. The Assignment Problem

The combinatorial optimization problem that
governs the data association problem can be
stated mathematically as

Minimize
M1 My
Z i Z cil“"@N’Zil"'iN
31=0 iy=0
Subject To:
My My
Z Zzil“‘iN =1y U = dywsa 5 Wiy
12=0 iny=0
M Mp_1 My My
IS D D) YRR
11=0 1g_1=075,.1=0 iny=0

for jp=1,..., Mzandk=2,...,N-1

3

Ziiy € {0,1}for all 4q,...,4y,
where cq...q is arbitrarily defined to be zero and
isincluded for notational convenience. The zero
index is used for representation purposes such
as missing data, tracks that initiate after the first
scan, and track terminations. Each cost coef-
ficient is the negative log of a likelihood ratio,
and cost coefficients with exactly one nonzero
index are zero due to a normalization of this
ratio. Here is a simple description of a simple
physical problem that gives rise to this problem.

In tracking, a common surveillance problem is
to estimate the past, current, or future state of
a collection of objects (e.g., airplanes) mov-
ing in three dimensional space from a sequence
of measurements made of the surveillance re-
gion by one or more sensors. The objects will
be called targets. The dynamics of these tar-
gets are generally modeled from physical laws
of motion, but there may noise in the dynam-
ics and certain parameters of the motion may
be unknown. (The dynamics are often mod-
eled as stochastic differential equations.) At
time ¢ = 0 a sensor (or sensors) is turned on
to observe the region. In an ideal situation
measurements are taken at a finite sequence of
times {t}7_ o Where 0 = ¢g < t1 < «++ < tp.
(Due to the finite amount of time required for



A. B. Poore and N. Rijavec: Muiltidimensional Assignment

2T

a sensor to sweep the surveillance region, mea-
surements are generally made asynchronously,
i.e., not at the same time, so that a time tag is
associated with each measurement.) At each
time ¢; the sensor produces a sequence of

measurements Z(k) = {sz}ffg
k

z; is a vector of noise contaminated mea-
surements. The actual type of measurement
varies with the sensor. For example, a two di-
mensional radar measures range and azimuth
; ; kE — k pk\T
of each potential target (2} = (r,07)"), a
three dimensional radar that measures range,
: : k _ (nk gk EN\T
azimuth, and elevation (2’ = (ri 05, 507 ),
a three dimensional radar with Doppler mea-
sures these and the time derivative of range
drk
k _ (-k gk 4k i \T . :
(2 = (ri,, 005 95, )" ), and a two dimen-
sional passive sensor measures the azimuth and

elevation angle (sz == (Gfk, qﬁfk)). Some of the
measurements may be false, and the number of
targets and which measurement emanates from
which target are not known a priori. Given
this description, we finally note that the vari-

able z;,..;, = 1 means that the measurements
{Zilv ..., 2} } belong to a particular target.

The problems then are to determine the number
of targets, which measurements go with which
targets and which are false (i.e., the data associ-
ation problem), and to estimate the state of each
target given a sequence of measurements that
emanate from that target.

where each

3. Lagrangian Relaxation Algorithm

Having described the N-dimensional assign-
ment problem (1), we now turn to a description
of the Lagrangian relaxation algorithm. The
description is organized in three subsections.
Since the scheme is multilevel, the description
of the procedure in the first subsection starts
with an n-dimensional problem, relaxes this
problem to an (n — 1)-dimensional one via a
Lagrangian relaxation, and concludes with a
technique to recover a feasible solution to the
n-dimensional problem. The second subsec-
tion describes the nonsmooth optimization al-
gorithm that is the crucial part of the relaxation
procedure, while the third subsection gives the
summary of the algorithm.

3.1. The Lagrangian relaxed problem and
the recovery procedure.

Let N be an integer such that N > 3 and let
n € {3,...,N}. The n-dimensional assign-
ment problem investigated in this work is

Minimize
Ml My,
o (] ‘s
un(2) = Z e Z Ciyvin iy in
11=0 1n=0
Subiect To:
Mo M
= )
Z”.Zzil'“in = 1, 11 = 1,...,M]_,
=0 in=0

My Mg 1 My Mn,

n s
PR DED DERD DL S )
11=0 i 1=015,1=0 1n=0

for 45 2= Lisss o Mpand § = 2, s i1

My Mﬂ,—l

11=0 ty—1=0
2., €40,1} forall iy, ..., in.

n

- My

To ensure that a feasible solution of (2) always
exists, all variables with exactly one nonzero
index (i.e., variables of the form z. o, o..0 for
iy # 0) will not be preassigned and the cor-
responding cost coefficients are assumed to be
well-defined. In the first subsection, an optimal
solution of the Lagrangian relaxed problem for
(2) will be shown to be obtained from a lower
dimensional assignment problem. The second
subsection develops a recovery procedure.

The Lagrangian Relaxed Assignment Prob-
lem. The n-dimensional assignment problem
(2) has n sets of constraints. A (M + 1)-
dimensional multiplier vector associated with
the k-th constraint set will be denoted by
uf = (uf,uf,... ,uﬁ,fk)T with uf = 0 and
k = 1,...,n. The n-dimensional assignment
problem (2) is relaxed to a (n — 1)-dimensional
assignment problem by incorporating one of the
n sets of constraints into the objective function.
Although any constraint set can be relaxed, the
relaxation of (2) will be based on the relaxation
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of the last set of constraints. The relaxed prob-

lem is
®,(u™) = Minimize ¢, (2", u™)
M My
= Y e Y G
i1=0  in=0
My My M,
+ Zufﬂ{z Z Rty — 1]
in=0 01=0  ip_1=0
Subject To:
M, My
oY =10 =1,..., M,
ip=0  ip=0 (3)
M, M1 My
Z Z Z Z zﬁl =1,
11=0 1 _1=014341=0 1n=0
fOI'ik, = 1,...,Mkandk:2,...,n—1,
Z i, €40,1} for all4q,..., 1.

An optimal (or suboptimal) solution of (3)
can be constructed from that of an (n — 1)-
dimensional assignment problem. To show
this, define for each (i,...,4,—1) an index

Jn = Jn(i1,...,%p—1) and a new cost function
n—1 by
21 1
Fulfignns s4n-1)
= arg min{c}’.; _; Fuf | i,=0,1,..., Mp}
-1
Chtrrint = Chyrin_1jn T Uiy (4)
fOl’(i], it .,in_1) “# (0, - ,0)
Mn
o 0 = me{@ O...0i, T Ui, )
in=0

(If 7, is not unique, choose the smallest such
Jn» SO that j, is uniquely defined.) Using the
cost coefficients defined in this way, the follow-
ing (n — 1)-dimensional assignment problem is
obtained:

®,(u") = Minimize @, (2", u")
= 'Un 1( 'n—l)
Mn 1
- 1
= Z Z C 'En 1 ':’i Tp—1
11=0 fyp—1=0

Subject To:

M My
Zzzt’n-—l =1, 11=1 !M]J
1 tn—1
o B | ()
My M1 Miy
D Y, X Z =1,
1=0  ip_1=04p=0  dp_1=0
forz'k—l wMyand k =2 = 2,
Z Z 7‘11 1 1’
11=0 tn—2=0
in—1=1 vy Mp—1,
n—1 . .
2. €101 for all 41, . o vyl

The next objective is to show that a feasible so-
lution of (5) produces a corresponding feasible
solution of (3) that preserves optimality.

Theorem 1. Letw™~! be a feasible solution to
problem (5) and define w™ by

Wi = WL iy = n(it,. .., inm1)
and(il, cen ,’infl) -‘/—' (O, ¥ .,0)

WPy =0 ifin # fulit, .y int)
and(i],... ,’infl) 7& (0, o .,0)
w0z, = 1 if ¢z, +uf <0
w0z, = 0 if ¢g..g;, + U, >0

(6)

Then w"™ is a feasible solution of the La-

grangian relaxed problem (3) and ¢, (w™, u™) =

g@n(w”_l,u”) — Ei{:o u . If, in addition,
w"~! is optimal for (5), then w™ is an opti-
mal solution of (3) and ®,(u™) = ®,(u") —

My,
Z?Ln:(} U?n-

Problems (2) and (5) differ only in the dimen-
sion (n in(2) and n—1 in(5)). One can thus con-
struct ,,_1,®,_o,...,P5. If n = N, the cost
coefficients are the original costs. If n = N —1,
cost coefficients ¢/~ are functions of the origi-
nal costs and the multipliers «”V. Since cost co-
efficients ¢"~! are computed recursively from
the cost coefficients ¢" and the multipliers u"”
forn < N, cost coefficients ¢™ are functions of
the original costs ¢’V and the multiplier vectors

™1, .., uY. Thus, forn < N the relaxed
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objective function ®,, will be written as %
_ S N N ym=1, k=1,..., Mo

O (u”) = B (u”; ™, u ) e
where u™*1, ..., u’V are treated as parameters Mo
in the formulauon of the problem. Of course., Z =1 l=1,,..,Ms
(I)N('U,N) = ‘I)N(UN; CN). k=0

o 0,1 =0,...

The recovery procedure. The next objective Yt €{0,1}, k=0,..., Mo,
is to explain a recovery procedure, 1.e., given a 1=0,...,Mp. ®

feasible (optimal or suboptimal) solution w™~!
of (5) (or w™ of (3) constructed via Theorem
1), generate a feasible solution 2™ of (2) which
is close to w™~! in a sense to be specified. We
first assume that no variables in (2) are preas-
signed to zero; this assumption will be removed
shortly. The difficulty with the solution w™ is
that it need not satisfy the last or relaxed set
of constraints in (2). The recovery procedure
described here is designed to preserve the 0-
1 character of the solution w™ 1 of (5) as far
as possible: If wj’ 12 _, = 1 and at least one
1, # 0, the corresponding feasible solution z™
of (2) is constructed so that zﬁ i gin = 1 for
some ¢, = 0,1,...,M,. By this reasoning,
variables of the forrn Z(...0;,, can be assigned a

value of one in the recovery problem only if
wi~s = 1. However, variables 2. .05, Will be
treated differently in the recovery procedure in
that they can be assigned 0 or 1 independent of
the value wy (1, This increases the feasible set
of the recovery problem, leading to a potentially

better solution.

Lt {(F, 85,5 585000 My pe an enumeration

of indices of w™ ! (or the first n — 1 in-

dices of w™ constructed in Theorem 1) such
1 K

that w"’}c k. = land Gk - L

12 n—1
(0,...,0). Set (i%,...,42_;) = (0,...,0) for
k = 0 and define
hk;—czk & for 1=0;:e:My
2 nfl
and kIO,...,Mo.
(7

Let Y denote the solution of the two dimen-
sional assignment problem

Minimize
MU M‘n

S hayw

k=0 =0
Subject To :

The recovered feasible solution z™ of (2) cor-
responding to the multiplier «™ is then defined
by

1 if (31, ey 1) = (85, 0y dF_ )
o forsome &k == 0y Mo
T and Ykin =1

0 otherwise.
©)
This recovery procedure is valid as long as all
cost coefficients ¢™ are defined and all zero one
variables in z™ are free to be assigned. Modifi-
cations are necessary for sparse problems; how-
ever, the recovery procedure is still valid if the

cost coefficients ¢ i1 are defined and the

Y 2 -1
zero-one variables 2z} ek gk Ar€ free to be as-

LA |

signed to zero or one for £k = 0,...,Mp and
[ =0,...,M,; otherwise, either the definition
of the cost coefficient h; in (7) may not be valid
or (8) may not have a feasible solution. We next

present a method for dealing with this difficulty.

Observe that if 27} sk g
L] n—1 .
zero, then yy, is also preassigned to zero. If (7)
is not a valid definition for hy;, set hy; = oo and
preassign the corresponding variable yg; = 0
in (8). Now note that a feasible solution of
(8) exists if hgy (kK = 0,...,Mp) and hy
(I = 0,...,M,) are defined and the corre-
sponding zero-one variables yip and yg are
free to be assigned. By an earlier assumption,
the variables z{y .03, are not preassigned for all
in, = 0,...,M,, so that all variables of the
form yq; are free to be assigned; however, some
zero-one variable yio (K = 0,..., Mp) in (8)
may be preassigned to 0. In this case (8) may
not have a feasible solution. To resolve this
problem, each such g is freed and the corre-
sponding cost hyg is redefined to be some large
number. The optimal solution of (8) then exists
and can be computed. If the computed solu-
tion contains a variable yo that was originally

preassigned to 0, then the variable 27 .
Byt n—l

is preassigned to

0
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was also preassigned to zero. In this case the
constraints in the original problem are satisfied
bysettingz” b o= liofm=1,:..,m=1

ik .0
when % £ 0.

3.2. Maximization of the nonsmooth
function &,,(u™)

The next key part of the final algorithm is the
solution of the problem

Maximize {®,(u™; u™!,... uN,cV) :

u™ e RM1}  (10)

The evaluation of ®,,(u"™ ; w1, ..., uN, M)
requires the optimal solution of the correspond-
ing minimization problem (3). This is achieved
whenever n = 3 by solving a two dimen-
sional assignment problem optimally or when
the problem is so small that it can be solved by
branch and bound. However, if n > 3 and due
to real-time needs, (3) is only solved approxi-
mately, so that ®,(u" ; w™,...,u",cY) is

not computed accurately. To resolve this major
difficulty, a new function ¥, (u"), which is a
lower approximation to ®,,(u™), is defined and
is used as a merit function to guide the solution
of (10). We begin with some properties of ®,,.

Theorem 2. Letu™ be any multiplier vector as-
sociated with the last constraint set of (2), let &,
be as defined in (3), let z™ be the recovered fea-
sible solution of (2), and let z™ be an optimal so-
lution of (2). Then, ®,,(u™ ; u™, ... uN,cM)
is piecewise affine, concave and continuous in
u™ and

O (u™ ™, u, ) < (27 < Bala"} .

(11)

As discussed above, the algorlthm yields an up-
per approximation, ®,, to ®,(u™ ; u™!, ...,
u™, ¢™). Unfortunately, ®,, does not satisfy the
inequality in the Theorem 2. (In fact, ®,, can
be either bigger or smaller than v,,(z"), so that
®,, cannot be used as an approximation of ®,, in
the course of the nonsmooth optimization algo-
rithm.) The following definition constructs the
aforementioned function that will be used as a
lower approximation of @, and that will satisfy
the inequalities in Theorem 2.

Definition 1. Letn > 3andleta®, a*,..., 4"
be the multiplier vectors obtained in the course

of the nested relaxation algorithms in solvmg
(5). Let u™ be given. The function ¥y, is de-
fined recursively via

n—1

\Iin(a3,...,u ;u”)
Gulu® 3 w0 ool o)
if (5) is solved optimally
= U, ](—3 jun 2 T ]) (12)

y .

- E s Uy
Note that ¥ is Well—deﬁned since (5) can always
be solved optimally if n = 3.

otherwise,

Although the dependence of ¥,, on @° Jurl
has been made explicit, the dependence on
w1 ... uN has been omitted. (Both ®,, and
v, depend on the cost coefficients ¢™ and the
multipliers ™1 ... 4"V, but ®,, does not de-
pend on @, ..., @"" 1.) The following theorem
establishes the fact that U, is a lower approxi-
mation to ®,,.

Theorem 3. Given Definition 1,

\Dk(_ 3 'ak . ; uk)
<<I)k( uk‘*l,...,uN,cN)

forall k=3,...,n. (13)

Most of the algorithms for non-smooth opti-
mization are based on generalized gradients
called subgradients, given by the following def-
inition.

Definition 2. The set §®,,(u) is called a subd-
ifferential of ®,, at v and is defined by

§®n(u) = {g € RM*1 |
O, (w; ™. ul, M)
— &, (u; u™, L u, Y
< ¢F(w—u) ¥ we RM*1}

A vector g € 6P, (u) is called a subgradient.

If 2™ is an optimal solution of (3) computed dur-

ing evaluation of &, (u™ ; u™1,...,u",cV),

differentiating ®,, with respect to «* yields the
followmg in-th component of a subgradlent g

of B, (0™ ; u™ ..., ul )
9'0=0
Z Zzu e S
tpn—1=0

for n=1,...,M,.
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If 2™ is the unique optimal solution of (3),
60, (u™) = {g}, and ®,, is differentiable at
u™. If the optimal solution is not unique,
then there are finitely many such solutions,
say z"(1),...,2"(S). Given the correspond-
ing subgradients, g',..., g%, the subdifferen-
tial §®(u™) is the convex hull of {g!,... ¢}
[Goffin (1977)]. When n > 3, the algorithms
used in this work only compute high quality
suboptimal solutions of (3), so that (15) is only
an approximation § to the actual subgradient g.

One of the most widely used methods for non-
smooth optimization is the subgradient algo-
rithm [Fisher (1981), Geoffrion (1974), Gof-
fin (1977), Held, Wolfe and Crowder (1974)],
which is the nonsmooth analogue to the steepest
ascent method. Analogous to conjugate gradi-
ent methods for smooth optimization is the class
called “bundle methods” [Lemarechal (1978)].
This includes the space dilation method of Shor
(1985), the conjugate subgradient method of
Wolfe (1975), and the “bundle - trust region”
method due to Schramm and Zowe (1992). We
currently use the conjugate subgradient method.

3.3. Summary of the Lagrangian
relaxation algorithm

Having described each of the algorithm parts,
we now return to the multidimensional assign-
ment (2) and summarize the algorithm in this
subsection. Starting with the /N-dimensional
assignment problem (2), i.e. n = N, the de-
veloped algorithm is recursive in that the N-
dimensional assignment problem is relaxed to a
(N — 1)-dimensional one by incorporating one
set of constraints into the objective function us-
ing a Lagrangian relaxation of this set. Ideally,
this problem is then maximized with respect to
the Lagrange multipliers and the corresponding
solution is used to recover a feasible solution
of the N-dimensional problem. Each (N — 1)-
dimensional problem is then solved in a simi-
lar manner, and the process is repeated until it
reaches the two-dimensional problem, which is
solved by the an algorithm that produces an opti-
mal solution of this two-dimensional problem.
Here we describe one loop in this procedure.
Thus, assume N > 3and letn € {3,...,N}

3.4. The Lagrangian Relaxation Algorithm
for the n-Dimensional Assignment
Problem

To obtain a high quality solution of the n-
dimensional assignment problem (2), construct
a sequence of multipliers {u} }7°, in the course
of maximizing ®,(u") defined in (3) and a
corresponding sequence of feasible solutions

{2} }32, of the n-dimensional problem as fol-
lows:

A. Initialization: Choose an initial approxima-
tion uy. For the n-dimensional assignment
problem (2), set the lower bound of the opti-
mal solution value to ¥,, = —o0, set the best
computed solution value V,, = oo, and the best
solution Z™ = {).

B. Given u}, form the relaxed problem (3) and
the equivalent (n — 1)-dimensional assignment
problem (5). Compute an optimal or good sub-

n—1

optimal solution z; " of (5). Compute the

lower approximation W, (u7) of ®,(u}) as de-
fined in Definition 1.

C. Recover a feasible solution z of the n-
dimensional assignment problem (2) using the
procedure described in first subsection and com-
pute the objective function value vy, (2}) for (2).

D. If T U (ul), set U, = U, (uf). If
Vo > vp(27), set V, = vn(2y) and Z™ = 27.

E. Use a non-smooth optimization technique to
take a step from u} to an updated multiplier
uy, in the solution of

Maximize {®,(u") : u™ € RM~*1}

(W, is used as a merit function in that the ac-
ceptance of an updated u}, , requires ¥p,(u}) <

\IJ” (uzﬂ ))

F. If the termination criteria for the non-smooth
optimization algorithm have not been met, set
k = k + 1 and return to B.

If n > 3, solving the (n — 1)-dimensional
assignment problem (5) to evaluate W, (u})
will require another Lagrangian relaxation algo-
rithm and is likely to be very expensive. Most
line search algorithms assume that evaluating
the subgradient is more expensive than eval-
vating the function, and will make repeated
function evaluations to compute the best step
length. Since the reverse is true in this case,
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the line search is integrated into the algorithm
and the multiplier wu} 41 is .accepted as long as
U (uf) < Up(uy, ) is satisfied.

4. Greedy Algorithms

A simple greedy algorithm for solving (1) can
be summarized as follows:

A. Order the assignment problem variables in
some way. Set all the variables to free.

B. Find the first free variable in the list and set it
to one. Set all the conflicting variables to zero
to keep the constraints satisfied.

C. Repeat step B until no free variables are left.

A common way of ordering the variables of (1)
is by the cost coefficients. The greedy algorithm
thus assigns the variable with the smallest cost
first, and so on. The advantage of the greedy
algorithm is the low computational cost. The
disadvantage is that the computed solution is
often very far from optimal. Since all deci-
sions are purely local (made on the basis of the
cost coefficients alone), the last few variables
remaining free will often have very large costs.
Indeed, if the assignment problem (1) is sparse
(i.e., some variables z;;...;, are preassigned to
0), greedy algorithm will often fail to find a
feasible solution in the sense that the computed
solution will not satisfy the constraints.

Two strategies are employed to address these
shortcomings. First, to assure that a feasible so-
lution will be computed for a sparse problems,
the problem is modified so that all the variables
20...0i,0-.-0 With a single nonzero index are fea-
sible (i.e., not preassigned to 0). If necessary,
such variables (called singleton variables) can
be freed by giving them extremely large costs.
Second, to achieve better solution quality, mul-
tiple instances of greedy algorithm can be run.
The algorithm can be organized in the following
way:

A. Sort the variable list by cost. Split the list
into two parts, the second part containing sin-
gleton variables that have higher costs than any
non-singleton variable. Set the list of excluded
variables to empty. Set the saved solution to
empty.

B. Construct the working list of variables by
concatenating the part one of the variable list,

then the excluded list and then the part two of
the variable list.

C. Use the greedy algorithm on the working list
of variables.

D. If the computed solution is better that the
saved solution, save it.

E. Move some variables from the part one of the
main variable list to the excluded list, according
to some criterion.

F. Repeat the steps B-E a predefined number of
times, or until all the variables have been moved
to the excluded list.

The idea behind this algorithm is to produce as
many different solutions as possible, in hopes
that the best one will be close to optimal. To
achieve this goal, the variables that are removed
to the excluded list must be part of the cur-
rent solution, otherwise their removal has no
effect. A good strategy is to exclude a prede-
fined number of solution variables with small-
est coefficients. The variables on the excluded
list are considered before the trailing singleton
variables (second part of the main variable list),
since the trailing singletons are expensive and
are added just to construct a feasible solution.

5. Limited Branch and Bound Algorithm

The branch and bound algorithm [Breu and
Brudet (1974), Nemhauser and Wolsey (1988),
Rijavec (1992)] is the only known algorithm for
solving the multidimensional assignment prob-
lem optimally. For problems of any size, how-
ever, this algorithm is impractical, since the
time required for computing the optimal solu-
tion grows exponentially with the size of the
problem. The purpose of this section is to
give a brief description pf a limited branch and
bound algorithm, a suboptimal version of the
full branch and bound, based on the Lagrangian
relaxation.

The limited branch and bound algorithm con-
structs a sequence of subproblems from the orig-
inal problem (1). Each subproblem has one or
more variables from (1) preassigned to 0 or 1,
but is otherwise identical to (1). The preas-
signed variables are called branching variables.
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Each subproblem is then solved using the La-
grangian relaxation algorithm [Poore and Ri-
javec (1993), Rijavec (1992)]. The relaxation
algorithm returns a feasible suboptimal solution
to the subproblem and also the lower bound on
the optimal solution. The branch and bound
algorithm is organized as follows:

A. Push the original assignment problem (1)
onto the problem stack. Set the best solution
value to co.

B. Take the top subproblem from the problem
stack and solve it using the Lagrangian relax-
ation algorithm. If the computed lower bound
on the optimal solution is bigger than the best
solution value found so far, go to E.

C. If the computed solution is better than the
best solution found so far, save the solution and
record the solution value as the new best solu-
tion. If the lower bound is equal to the solution
value, the optimal solution along this branch has
been found: go to E.

D. Pick a non-singleton variable in the solution
with the highest cost coefficient. Preassign this
variable to one and push the subproblem onto
the top of the stack. Next, preassign this vari-
able to zero and push the subproblem back onto
the stack.

E. Repeat steps B-D until either no more sub-
problems remain on the stack or predetermined
number of subproblems have been solved.

Step D is the branching step. Preassigning to
zero the variable with the largest cost from the
solution not only guarantees a new subprob-
lem with a different solution than the current
subproblem, but also offers the best hope of im-
provement. So that the algorithm remains valid,
a problem with the branching variable set to 1
must also be constructed, but the problems are
put onto the stack in such order that the problem
containing the zero branch is considered first.

Step C is the bounding step. Preassigning a
variable to either O or 1 reduces the feasible re-
gion and increases the lower bound. Thus, if
the computed lower bound for some subprob-
lem is bigger than the value of the best solution
computed so far, no matter which variables are
further preassigned to either O or 1, the optimal
solution of all the subproblems obtained from
the current subproblem will have optimal solu-
tion that is worse than the current best solution.

The current subproblem can be discarded since
further branching will not yield a better solution.

If the above algorithm runs until the stack is
empty, an optimal solution of (1) is produced.
This approach is similar in spirit to the highly
successful work of Held and Karp (1970,1971)
on the traveling salesman problem.

To control the execution time, the algorithm
is normally terminated after a set number of
branches have been taken. Since the zero branch
is always considered before the one branch, the
algorithm is guaranteed to produce as many dif-
ferent solutions as possible.

6. Numerical Studies

This section will give a comparison of the three
different assignment algorithms on a six di-
mensional assignment problem arising from the
tracking problems. Two studies will be pre-
sented. For the first one hundred (100) random
sparse problems were generated, with M < 11
(k =1,...,6)and with the average of 150 fea-
sible variables. It should be noted that such
problems are considered small since the La-
grangian relaxation algorithm has been used
successfully on problems with as many as a
quarter of a million feasible variables. How-
ever, small problems allowed the studies to be
conducted over wider range of the algorithm
parameters.

The results of the first study are presented in
the first two tables with the objective function
values and solution times for 27 test runs for the
different algorithms and parameters. The first
column identifies the algorithm and parameters
that were used to obtain the result, while the
second column lists the result. The algorithms
are defined as follows:

G_<cycles>_<excluded>: Greedy algorithm,
where <cycles> represents the number of times
a simple greedy algorithm has been run, while
<excluded> is the number of variables that
were added to the excluded list each time. For
example, G_1_0 represents a single run of the
simple greedy algorithm with no excluded vari-
ables.

B_<branches>: Branch and bound algorithm,
where <branches> is the maximum number of
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branches that were taken (i.e., the maximum
number of subproblems that were solved).

L_<steps>: Lagrangian relaxation algorithm.
<steps>> is the number of steps taken in the non-
smooth maximization loop that lies in the core
of the relaxation algorithm [Poore and Rijavec
(1993), Rijavec (1992)]. Since the relaxation al-
gorithm employed within the branch and bound
took four steps, .4 is the same algorithm as
B.1.

Table 1 presents the objective function values
computed by each run. The values are sorted in
each column, and columns are sorted from left
to right.

algorithm v algorithm v algorithm v
B.50  |515.10 L4 521.30 || G_10_1 |573.91
B20  1515.58 || G_60_1 |566.50 || G_103 |580.95
B_10 |518.80 || G.60_.10 |566.74 || G511 |581.86
B> 518.88 || G603 |567.23 || G106 [584.20
L.10  [519.57 || G606 {567.56 || G_10_10 |584.22
L_100 |519.89 || G301 {569.94 || G.53 |[584.23
LS50 |519.91 || G.30.10 |571.53 || G510 ([588.86
L25 (51991 || G306 (57234 | G506 |588.84
B2 520.58 || G.30.3 |572.88 G110 |590.56

Table 1: Sorted solution values

It is obvious that the Lagrangian relaxation
based algorithms (B and L) give significantly
better values than the greedy algorithms, and
that it is more beneficial to take several branches
in the branch and bound than do a large num-
ber of nonsmooth optimization steps. The best
computed functional value is within 2.35% of
the optimal solution, since the best average
lower bound that could be found using the relax-
ation algorithm was 503.01. This performance,
however comes at some computational cost. Ta-
ble 2 shows the total solution time in seconds
for each test run, again sorted by columns. The
times were obtained on an IBM RS/6000-550
workstation.

Table 2 shows that limited branch and bound is
also by far the most expensive algorithm, taking
up to 0.6 seconds. The shortest times achieved
by greedy algorithms are less than 0.005 sec-
onds, and show in the tables as zero. How-
ever, the current implementation of the branch
and bound is inefficient. Every time a branch

algorithm | ¢ algorithm | ¢ algorithm | ¢t
G.10 (000 || G30.1 |0.01 L10 |0.03
G511 (000 || G303 (0.01 B2 0.06
G553 [0.00 || G306 |0.01 L25 ]0.09
G506 (000 || G30.10 |0.01 L50  0.09
G510 |0.00 L.4 0.02 BS 0.10
G101 |0.00 || G601 |0.02 || L.100 |0.12
G103 (0.00 || G603 |0.02 B_10  |0.17

G_10.10 (0.00 || G606 |0.02 B20 030
G_10.6 (0.01 || G_60_10 |0.02 B30 |0.60

Table 2: Sorted total solution times in seconds

is taken, the resulting assignment problem is
solved from scratch, including the preprocess-
ing, data structure setup, etc. Given a sufficient
programming effort, the branch and bound and
the relaxation algorithms could be tightly inte-
grated, yielding significant speedups. To some
extent, the relaxation algorithm itself could also
be coded in a more efficient manner. In contrast,
greedy algorithms are relatively simple and it is
unlikely that the better coding could result in
much shorter execution times.

Study of Table 2 shows that the fastest relaxation
algorithm takes no more time than some greedy
algorithms, yet it can be seen in Table 1 that its
solution is far superior. Our conclusion is that
the best algorithms for the construction of real-
time and near-optimal solutions of the noisy
multidimensional assignment problems (1) are
based on Lagrangian relaxation [Poore and Ri-
javec (1993), Rijavec (1992)]. Itis possible that
improvements in the various components of this
method as described the third section will sig-
nificantly improve these relaxation based algo-
rithms.

The second study consists of a selection of
results from extensive parametric studies that
were done in the course of testing the La-
grangian relaxation algorithm. The studies were
run on a variety of tracking problems, with 100
targets and various levels of measurement er-
rors, probability of detection and false alarms.
For comparison purposes, the problems were
also solved using the simple greedy algorithm
(G-1.0) and the branch and bound algorithm
with 10 branches (B_10). The Lagrangian re-
laxation algorithm was run with 4 steps in the
non smooth optimization loop (L_4). The full
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report on the results of these parametric stud-
ies exceeds the scope of this paper and can be
obtained by contacting the authors. Table 3 rep-
resents a small selection of results designed to
illustrate the algorithm behavior on large prob-
lems.

The results in Table 3 were obtained from four
scenarios with varying amount of measurement
errors. These were six scan track initiation
problems, yielding six dimensional assignment
problems. Since the tracking problems were
constructed using a simulator, the true solution
was known, in the sense of knowing which ob-
servations were generated by each target and
which represented false alarms. This true solu-
tion could also be scored, yielding the column
“true” in Table 3.

As before, the numbers in Table 3 represent an
average over 100 randomly generated problems.
The column “size” gives the number of variables
in the problem. For each algorithm, the solu-
tion time, the computed solution value and the
solution quality are given. Solution quality rep-
resents the percentage of the targets that were
correctly identified by the algorithm.

The problems represented in Table 3 are medium
in size and difficulty, but considerably larger
than the problems analyzed in Tables 1 and 2.
It can be seen that the solutions for the relax-
ation and branch and bound produced identi-
cal answers, i.e., no better solution was found
within 10 branches. The greedy algorithm is
far less competitive than on the smaller prob-
lems. While the greedy algorithm is slightly
faster than the Lagrangian relaxation, the solu-
tion is markedly worse. The greedy algorithm
requires sorting, which increases the computa-
tional effort for larger problems.

Comparing the computed values with the true
value, it can be seen that the Lagrangian relax-
ation consistently computes solutions that are

in a sense more probable than the true solutions
(true solution is not the optimal solution due
to the effects of the measurement errors). This
means that there is no sense in trying to com-
pute even better solutions (e.g., by taking more
steps), since the solution of the tracking prob-
lem might not be any better. Greedy algorithm,
on the other hand, obtains solutions that have
value considerably larger than the true values.
The effects can be seen in the only true mea-
sure of the solution quality - percentage of the
correctly identified targets.

Table 3 shows that for larger problems, the
greedy algorithm can not provide the necessary
solution quality, while the Lagrangian relax-
ation solves the problems to below the noise
level. It remains to discuss the issue of real
time requirements. In many common tracking
applications based on the radar, each problem
must be solved in 6-12 seconds, the amount of
time it takes the radar to complete a full sweep
of the space. While all the algorithms in Table
3 could be called “real time” for such problems,
normally only a fraction of the time can be de-
voted to solving the data association problems.
Problem formulation, solution post-processing,
track updates and input/output require most of
the resources. Times of both Lagrangian relax-
ation and greedy algorithms are fast enough that
solving the data association problems becomes
only a minor part of the total computational ef-
fort required to solve the whole tracking prob-
lem.

7. Concluding Remarks

The central problem in multitarget tracking and
multisensor data fusion is the data association

Problem Relaxation Branch & Bound Greedy
scenario | size | true i v |quality || ¢ v |quality || ¢ v |quality
1 5378 |1168 ||0.16 {1160 | 100 [|4.18 |1160 | 100 ||0.14 |1612 | 96
2 7348 |1173 ||0.24 |1143 | 100 ||5.81 |1143 | 100 |[0.20 {1584 | 95
3 7547 1145 {|0.24 {1136 | 100 ||5.78 |1136 | 100 ||0.20 {1598 | 94
4 11896 | 1145 ||0.37 |1118 | 99 8.75 (1118 | 99 0.35 |1564 | 93

Table 3: Algorithm comparisen for a medium size problem
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problem that has been posed here as a mul-
tidimensional assignment problem. This NP-
hard combinatorial optimization problem occu-
pies such a central place in these areas that the
need for fast algorithms will continue for some
time in the future. Air traffic control, robot vi-
sion, and pattern recognition are but a few of
the potential applications.
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