Journal of Computing and Information Technology - CIT 2, 1994, 1, 39-50 39

A Dataflow Graphical Language
for Database Applications

Bogdan D. Czejdo and Ralph P. Tucci

Department of Mathematics and Computer Science, Loyola University, New Orleans, U.S.A.

In this paper we discuss a graphical language for infor-
mation retrieval and processing. A lot of recent activity
has occurred in the area of improving access to database
systems. However, current results are restricted to simple
interfacing of database systems. We propose a graphical
language for specifying complex applications.

1. Introduction

There have been various attempts to design in-
terfaces for database systems such that complex
and ad hoc requests can be specified by pic-
tures. A variety of interactive graphical spec-
ification languages have been described in the
literature [Y. VASSILIOU, M. JARKE 1984] [J.
LARSON 1986] [N. C. SHU 1986]. Many of
these languages are based on semantic mod-
els such as the Entity-Relationship (ER) model
[Z. Q. ZHANG, A. O. MENDELZON 1983] [R.
ELMASRI, J. LARSON 1985] [B. CZEIDO, et al.
1991]. These languages can provide valuable
assistance in formulating database queries and
updates. The proposed solutions were very re-
strictive, however, and did not have the compu-
tational power of a general-purpose program-
ming language.

In this paper we propose to extend graphical
database languages to accommodate more com-
plex queries. As a result of our extensions, such
queries can be completely specified by pictures.

We have used an Object-Relationship (OR)
model [D. W. EMBLEY, et al. 1992] for graphi-
cal query specification [B. CZEIDO, et al. 1991].
The paper is based on results described in [B.
CzeiDO, R. P. Tucct 1992] and in [B. CZEIDO,
R. P. Tucct 1993]. A major goal of this paper
is to graphically specify information retrieval

which involves set operations, computations on
sets, and recursively defined views involving
sets. We provide a formal definition of such
graphical queries.

2. An Informal Description of the OR
Model

We use a semantic data model called the
Object-Relationship (OR) model [D. W. EM-
BLEY, et al. 1992], which is based on the Entity-
Relationship (ER) model. The OR model views
the world as consisting of objects and relation-
ships among those objects. Objects and rela-
tionships are classified into object sets and re-
lationship sets respectively. The OR model dif-
fers from the original ER model in that it treats
attributes as objects, and because it allows a
richer set of relationship types among the ob-
jects. Figure 1 shows an OR model diagram
which describes part of an information system
for a company.

An object exists in the real world and is dis-
tinguished from other objects. An object set is
a set of objects that have some common prop-
erties. For example, in Figure 1, the object
set EMPLOYEE contains all employees in the
company.

A relationship is a meaningful connection
among objects. A collection of relationships
pertaining to the same object sets can consti-
tute a relationship set. For example, in Figure
1, the relationship set HAS_SALARY connects
the object sets EMPLOYEE and SALARY.

40 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

SSN EMPLOYEE

HAS_SALARY SALARY

Fig. 1. An OR Model Representing a Partial Information System for a Company

3. A Formal Description of the OR Model

In this section we present a formal model that
defines both a schema for the OR model and
a graphical representation of the schema. The
formal model is a pair (O, R) where O is a set of
object sets and R is a set of relationship sets. An
object set is a pair consisting of a set of objects
and an object set descriptor. An object set de-
scriptor is a pair (NAME, DOMAIN) described
as follows:

(1) NAME is the name of the object set.

(2) DOMAIN is the domain of each object in
the set.

We represent an object set graphically by a rect-
angle containing the NAME of the object set.

A relationship set is a pair consisting of a set of
relationships and a relationship set descriptor.
A relationship set descriptor is a pair (NAME,
SET_OF_OBJECT_SETS)described as follows:

(1) NAME is the name of the relationship set.

(2) SET_OF_OBIJECT_SETS is the set of object
sets which participate in the relationship set.
We assume that a relationship set relates two
or more object sets. (These object sets need

not be distinct; if they are not distinct, then the
relationship set is recursive.)

We represent an relationship set graphically by a
diamond containing the NAME of the relation-
ship set. The diamond is connected to the boxes
representing the object sets which participate in
the relationship set.

As an example, consider the diagram in Figure
1. The object set descriptor for EMPLOYEE
is (EMPLOYEE, string) and for SALARY is
(SALARY, integer), and the relationship set de-
scriptor for HAS_SALARY is (HAS_SALARY,
{EMPLOYEE, SALARY}).

4. An Informal Description of some
Simple Graphical Queries

We now show how to extend the OR model
of the previous sections to allow us to construct
simple graphical queries. The idea is that object
sets represent data and relationship sets repre-
sent operators which aet on the data.

Suppose, for example, that our EMPLOYEE
object set described in Figure 1 contains identi-
fiers for employees such as ', F», and F3. The
object set SALARY contains two data items,
namely 40,000 and 45,000. The relationship

Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . . 41

set HAS_SALARY relates all elements in EM-
PLOYEE with the elements in SALARY, for
example, (Fy, 45,000) (E,, 45,000) and (Es,
40,000).

In order to retrieve and update the data we need
to traverse the graph. We start the traversal at
some nodes which we refer to as root nodes,
and we end the traversal when we reach certain
nodes which we refer to as leaf nodes. Graphi-
cally we identify a root node by shading it and
we identify a leaf node by using bold characters.
For example, in Figure 2, EMPLOYEE is a root
node and SALARY is a leaf node.

EMPLOYEE HAS_SALARY SALARY

= Ef

—>

Fig. 2. A Graphical Query to Get the Salary of
Employee E1

The arrow under the relationship set HAS-
_SALARY denotes the order of traversal. For
example, in Figure 2, we are interested in going
from EMPLOYEE to SALARY, and therefore
we specify this direction by the arrow.

The selection condition can be added below any
object set. For example, in Figure 2, we are in-
terested only in employee E1, and therefore we
restrict the object set EMPLOYEE to only one
object.

The root node, the selection, the direction, and
the leaf node together specify an unambiguous
traversal of the data in this database; this traver-
sal gives us access to all pertinent data.

5. A Formal Description of Graphical
Queries

In this section we formally present some exten-
sions to the OR model that allows us to specify
queries graphically. The formal model for the
graph of a query is a pair (O, R) where O is a
set of object sets and R is a set of relationship
sets. An object set is a pair consisting of a set

of object instances and an object set descrip-
tor. An object set descriptor is a triple (NAME,
DOMAIN, TYPE) described as follows:

(1) NAME is the name of the object set.

(2) DOMAIN is the domain of each object in
the set.

(3) TYPE is a set of descriptors for the object
set. It can contain the following values:

(a) ROOT if the object set contains the input to
a query.

(b) LEAF if the object set contains the output to
a query.

(c) GROUPED if the computation is performed
separately for each object in the object set.

(d) SELECTION CONDITION

We represent an object set graphically by a rect-
angle containing the NAME of the object set.
A ROOT object set is shaded as in Figure 2.
A LEAF object set is denoted with bold char-
acters. A GROUPED object set is denoted by
attaching the word GROUPED to the box rep-
resenting the object set. A SELECTION CON-
DITION is indicated in a box attached to the
rectangle representing the object set. For most
of the operations, the ordering is unimportant.
In those cases when ordering is important, we
assume that there is some ordering among the
objects in an object set.

A relationship set is a pair consisting of a
set of relationships and a relationship set de-
scriptor. A relafionship set descriptor is
a 6-tuple (NAME, SET_OF_OBJECT_SETS,
TYPE, VIEW, SET_OF_OUTPUT_OBJECT
SETS, PRIORITY), where NAME and SET
OF_OBJECT _SETS are defined as for relation-
ship sets in the original OR model. The TYPE is
either PRIMITIVE DATABASE, PRIMITIVE
COMPUTATIONAL, or NON-PRIMITIVE.
The VIEW is either the empty set, for a prim-
itive relationship set, or a subset of the for-
mal model for a non-primitive relationship set.
The SET_OF OUTPUT_OBJECT_SETS is a set
consisting of the object sets in which values are
returned by either a database operation or a com-
putation. The PRIORITY is a positive integer
indicating the order in which the relationship set
is applied. If there is no priority, then relation-
ships are applied concurrently. A relationship
set is denoted graphically as in the original OR

42 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

model. The set of output object sets is denoted
graphically by one or more arrows next to the
relationship set; these arrows point to the output
object sets.

6. Primitive Relationship Sets to
Represent Computations

In order to retrieve and process information, we
need both stored (primitive) database relation-
ships and relationship sets which represent com-
putations. We now list and describe primitive
relationship sets which represent computations.
An operator is primitive if it is in the following
table.

TYPE VALUES
Arithmetic + — */COMPUTE_SQUARE
COMPUTE_SQUARE_ROOT
Relational <<=>>==<>
Logical AND, OR, NOT
Aggregation SUM, COUNT
List HAS_FIRST_ELEMENT,
HAS_ELEMENT,
HAS_ONE_ELEMENT,
HAS_TAIL,
IS_APPENDED_TO,
IS_.CONCATENATED
Set UNION, INTERSECTION

Any other operator is non-primitive. We will see
in the next section how to build a non-primitive
operator out of primitive operators.

Each of the primitive operators above can be
represented as a relationship set. If an op-
erator is binary, then it is represented by a
ternary relationship set as in Figure 3 (a), which
represents the formula RESULT := BINARY
OPERATOR (FIRST OPERAND, SECOND
OPERAND). There are two cases of each bi-
nary operation. The first case occurs when the
FIRST OPERAND contains a single value and
the SECOND OPERAND contains a set of val-
ues. In this case, a single value is repetitively
used in the computation. The second case oc-
curs when both FIRST OPERAND and SEC-
OND OPERAND contain sets of values. In this
case, the operation is performed on pairs of el-
ements from each object set. To simplify the
discussion, we will use the same symbol for the
operator in both cases; the exact meaning of the
symbol will be clear from the context.

FIRST
OPERAND

BINARY
OPERATOR

RESULT

SECOND
OPERAND

Fig. 3 (a). A Primitive Ternary Relationship Set
Representing a Binary Operator

UNARY

OPERAND OPERATOR

RESULT

Fig. 3 (b). A Primitive Binary Relationship Set
Representing a Unary Operator

If an operator is unary, then it is represented by a
binary relationship set as in Figure 3 (b), which
represents the formula RESULT := UNARY
OPERATOR (OPERAND).

For example, the formula C := A + B can be
represented graphically by taking Figure 3 (a)
and substituting A for FIRST OPERAND, B
for SECOND OPERAND, C for RESULT, and
+ for BINARY OPERATOR. This action would
result in having the triple (A, B, A + B) added
to the relationship set “+”.

7. Combining Primitive Relationships

We say that a simple graph is a graph which
contains

(1) a single primitive relationship set together
with a direction and all related object sets;

(2) one or more roots;
(3) one or more leaves.

Two graphs GG and GG are connected by identi-
fying one or more object sets from Gy with one
or more object sets from (5. Connecting two
graphs allows us to combine two given queries
to specify a more complicated query. For exam-
ple, suppose we wish to represent the computa-
tion X := A + B + C. Using the diagram in Figure
3 (a) twice we represent the sums TEMP; := A
+ B and TEMP; := C + D. Then we identify
TEMP; with D and rename TEMP; as X to get

Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . . 43

TEMP 1

—

Fig. 4. A Graphical Query to Compute X := A + B 4+ C and Define a New Relationship Set

the graph in Figure 4. We require the user to
specify that A, B, and C are roots and that X is a
leaf. The resulting graph represents the desired
computation.

8. Traversal and Synchronization of
Query Graphs

We traverse a query graph by traversing all paths
which start at a root and terminate in a leaf. We
assume for the moment that any graph can be
redrawn as a directed acyclic graph, and we will
discuss traversal of graphs with cycles later. The
traversal is performed for all object sets in the
roots. If there is more than one root, then we
can start at all roots and traverse paths from
different roots simultaneously, until the paths
intersect, at which point synchronization is re-
quired. We assume that each relationship set

—

NUMBER_OF AVERAGE
ITEMS ITEM

Fig. 5. A Graphical Query to Compute Average

waits for incoming data, and this serves as a
synchronization mechanism.

Many queries involve synchronization of two or
more object sets at a time. The average is a good
example of such a computation. Figure 5 shows
a graphical query for such a computation.

The root can be any set of numerical values.
First we compute the NUMBER_OF_ITEMS
by applying the computational relationship set
COUNT. In parallel we compute the SUM_OF _-
ITEMS using the SUM operator. Next, we
divide the value in SUM_OF_ITEMS by the
value in NUMBER _OF_ITEMS. There is a need
to synchronize these operations in such a way
that division is applied only when SUM_OF _-
ITEMS and NUMBER _OF _ITEMS are already
computed.

9. Defining Non-primitive Relationship
Sets

The way to define a non-primitive relationship
set (view) is to draw a graph to represent a query.
As for any other query, this graph consists of a
root (or roots), leaves, and relationships. The
SET_OF_OBIJECT_SETS of the newly defined
relationship set should be equal to the union
of all roots and leaves of the defining view.
The TYPE of this relationship set is NON-
PRIMITIVE. The VIEW is the graphical query.
The SET_OF_OUTPUT_OBJECT_SETS of the
newly defined relationship set should be equal
to the set of all leaves of the defining view.

For example, we can define a non-primitive rela-
tionship set EMPLOYEE HAS_SSN_AND_SAL
which links directly an employee’s SSN and

44 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

SALARY, as shown in Figure 6 (a). The defini-
tion of this relationship set is given in Figure 6
(b). This definition gives us the ability to spec-
ify queries simply, such as the query to retrieve
all SALARY’s of EMPLOYEES with a valid
SSN.

EMP_HAS
SSN_AND

SAL

88N SALARY

—>

Fi&/(ﬁ (a). A Query to Retrieve Employee’s Salary
hich Uses a Non- primitive Relationship Set
EMP_HAS SSN_AND_SAL

Defining non-primitive relationships allows us
to enforce modularity in our graphical queries.
Hence, the language we are describing is struc-
tured. Having shown how to specify operators
by using relationship sets, we will use the terms
“operator” and “relationship set” interchange-
ably throughout the rest of the paper.

10. Explicitly Recursive Graphical
Queries

In information processing the need arises for
recursion. As an example, let us consider the
object set EMPLOYEE containing the elements
E1, E» and Fs.

The relationship set SUPERVISES consists of
the following pairs

(Er, En)
(B2, E3)

and the relationship set HAS_SALARY consists
of the pairs

(B, 45,000)
(B, 45,000)
(53, 40, 000).

As an example of a recursive graphical query,
let us consider the diagram in Figure 7 to get all
the salaries of the given employees and those
under their supervision.

When the definition of a relationship set in-
cludes the relationship set itself, we say that the
query containing the relationship set is explic-
itly recursive. Figure 7 represents an explicitly
recursive query.

SuB
EMPLOYEE HAS_SALARY SALARY

i

Fig. 7 (a). A Graphical Query to Get All Salaries of
Given Employees and Those Under Their Supervision

For Figure 7, the traversal starts from the ob-
ject set EMPLOYEE. Then all connected rela-
tionship sets are considered. The relationship
set HAS_SAL places the salary of the given
employee into the object set EMP_SALARY.
The traversal of this path cannot continue un-
til all input object sets for the relationship set
UNION are available. The relationship set SU-
PERVISES places all subordinate employees
into SUB_LEMPLOYEES, and the relationship
set SUB_HAS_SALARY places all their salaries
into SUB_SALARY. Finally, the union of the
values in SUB_SALARY and EMP_SALARY
is computed and placed into SALARY.

88N EMPLCYEE

HAS_SALARY SALARY

—

e

Fig. 6 (b). A Graphical Query to Define the Relationship Set EMP_HAS_SSN_AND_SAL

Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . . 45

SuB

EMPLOYEE SUB_EMPLOYEE HAS_SALARY SUB_SALARY
i — SALARY
EMP_SALARY UNION
.—.—’ —b

Fig. 7 (b). A Graphical Query Defining a Non-primitive Relationship Set SUB_HAS SALARY

11. Implicitly Recursive Graphical
Queries

A recursive relationship set is a relationship set
which relates an object set with itself. When we
use such a relationship set in a query graph, we
call the query implicitly recursive.

The traversal rules do not change if we have
a program graph with recursive relationships.
Suppose an object set O is related recursively to
itself, and suppose that the object subset O; in
O is to be processed. The traversal of the graph
starts with O1, and eventually a new object sub-
set O of O is reached, where the objects in O3
are related to objects in O;. The traversal then
continues with ;. Hence, if an object set is
related recursively with itself, we simply relate
objects in the same object set and apply traversal
recursively for them also.

As an example, let us consider an object set
EMPLOYEE from Figure 1 related to itself by
the relationship set SUPERVISES. We can con-
struct a graphical program equivalent to that
discussed in previous section, as shown in Fig-

EMPLOYEE HAS_SALARY SALARY

—_—

Fig. 8. A Graphical Program to Get all the Salaries of a
%iven Employee and Those Under His Supervision

ure 8, to get all the salaries of given employee
and those under his supervision.

Let us assume that we have the data from pre-
vious section. The traversal starts from the
component £ of EMPLOYEE. Then all con-
nected relationship sets are considered. The re-
lationship HAS_SALARY places a single object
45,000 into the object set SALARY. The object
set SALARY is the last component of the path.
The relationship SUPERVISES places a single
object F» into the object set EMPLOYEE. Then
the traversal is invoked recursively for this new
object. As a result, again all connected rela-
tionship sets are considered. The relationship
HAS_SALARY inserts the object 45,000 into
the object set EMPLOYEE. Applying the rela-
tionship SUPERVISES places the object E3 into
EMPLOYEE. Then the traversal is invoked re-
cursively for this new object. As a result, again
all connected relationship sets are considered.
The relationship HAS_SALARY inserts the ob-
ject 40,000 into the object set EMPLOYEE. Ap-
plying the relationship SUPERVISES returns
no objects; therefore, the traversal halts with
the three objects 45,000, 45,000, and 40,000
placed into the output object set.

12. Examples of Recursive Programs
for N!

Let us compare two methods of defining a pro-
gram to compute N!. Figure 9 (a) contains such
a graphical program.

The first definition of a relationship FACTO-
RIAL to compute N! can be given using explicit
recursion, as shown in Figure 9 (b).

46 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

N FACTORIAL NI

e

Fig. 9 (a). A Graphical Program to Compute N!

i

(N-1}!

Fig. 9 (b). The Definition of the Relationship
FACTORIAL Using Explicit Recursion

This diagram includes four object sets N, N-1,
(N-1)!, and N!, each of which has the set of pos-
itive integers as domain, and three relationship
sets DECREMENT _BY_1, FACTORIAL and *.
We assume that the relationship set DECRE-
MENT_BY_1 is defined in such a way that it
returns the value of N decreased by 1, but only
for N>1. In case N = 1, no value would be
placed into N-1, and this terminates the recur-
sion. The relationship FACTORIAL computes
the factorial of N—1. Finally, N is multiplied by
the value in (N-1)! In case (N-1)! contains no
elements, the relationship * returns the value of
N in N!

A second way to define the relationship FACTO-
RIAL is to use implicit recursion. This method

requires a recursive relationship, as shown in
Figure 9 (c).

N DECREMENT_BY_ 1 T

IS_FACTOR_OF l

Fig. 9 (c). The Definition of the Relationship
FACTORIAL Using Implicit Recursion

The traversal of the diagram is performed as
follows. Let us assume the root N contains one
element, say 3. The traversal starts from the el-
ement 3 of N. The relationship IS FACTOR_OF
inserts the object 3 into the object set N!I. This
is the last component of the path, so this part
of the traversal is complete. As a result of ap-
plying the relationship DECREMENT BY_1, a
single object 2 is placed into the object set N.
Then the traversal is invoked recursively for this
new object. As a result, again all connected re-
lationship sets are considered. The relationship
set IS_ FACTOR_OF inserts the object 6 into the
object set N!. The relationship set DECRE-
MENT_BY_1 places the object 1 into N. Then
the traversal is invoked recursively for this new
object. As a result, again all connected relation-
ship sets are considered and the relationship set
IS FACTOR_OF inserts the object 6 into the
object set N!. The relationship set DECRE-
MENT_BY_1 returns no value, as we assumed
before. Hence the traversal is complete, and N!
contains the single value 6.

13. Examples of Recursive Programs for
Quicksort

As another example, let us present two graphical
programs to implement QUICKSORT. These
programs are in Figures 10 (a) — (d).

Figure 10 (a) contains a single non-primitive
operator which takes a list as input, sorts the list
using QUICKSORT, and returns a sorted list.

Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . . 47

SORTED

ust LIST

i

Fig. 10 (a). QUICKSORT

Figure 10 (b) contains the first definition of
QUICKSORT using explicit recursion. This
figure contains three new non-primitive op-
erators, IS LEFT LIST, IS_ RIGHT_LIST, and
IS_PIVOT. This part of the program takes the
original list as input. The list is partitioned

EIST

l IS LEFT LIST

LEFTLIST

|

SORTED
LEFTLIST

IS RIGHT LIST i

RIGHT LIST

o> |

SORTED
RIGHT LIST

PIVOT

1S
i CONCATENATED,

SORTED
LIST

Fig. 10 (b). Definition of the QUICKSORT Relationship
Set Using Explicit Recursion

S
LIST 1 ELEMENT

as in the standard QUICKSORT algorithm us-
ing IS_LEFT_LIST and IS_RIGHT_LIST. Then
QUICKSORT is applied recursively to both sub-
lists, and the resulting sorted lists are concate-
nated together with the pivot value. We assume
that the relationship IS_PIVOT returns the list
containing the first element of the original list. If
the input list is a singleton, then IS_LEFT_LIST
and IS_RIGHT_LIST both return the empty set.
In this way we make sure that the output lists in
LEFT_LIST and RIGHT_LIST are smaller than
the input list, so that the algorithm is sure to
terminate.

Figure 10 (c) contains a definition of the non-
primitive relationship set, IS_ LEFT_LIST. First,
the initial element of the list is placed into
PIVOT, and all the remaining elements of the
list are placed into ELEMENT by the relation-
ship HAS_TAIL_ELEMENT; this relationship
was constructed by combining the two primitive
relationships HAS_TAIL and HAS_ELEMENT.
Then the elements of the original list are com-
pared to PIVOT, and those elements which are
less than or equal to PIVOT are concatenated
to the list in LEFT_LIST by the relationship
LESSER_IS APPENDED; this relationship was
constructed by combining the two primitive re-
lationships < and IS_.APPENDED_TO. There-
fore, LEFT_LIST contains the list consisting of
all elements which are less than or equal to the

pivot element, except for the pivot element it-
self.

Similarly, we can define the non-primitive oper-
ator IS_LRIGHT _LIST by replacing LESSER _IS-
_APPENDED by GREATER_IS APPENDED.
The list in RIGHT_LIST contains all elements
which are strictly larger than the pivot.

To show how this program works, let us assume
that LIST contains one element, say (23 5 1
6). The traversal starts from the original list.

e

LESSER_IS
APPENDED

LEFT LIST

—

—

Fig. 10 (c¢). Definition of the IS_.LEFT_LIST Relationship Set

48 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

Then all connected relationship sets are con-
sidered. The relationship IS_LEFT_LIST re-
turns the list (1) in LEFT_LIST. Then QUICK-
SORT is applied again, yielding the same
list (1) in SORTED_LEFT_LIST. The relation-
ship set IS_PIVOT returns the list (2). The
relationship IS_RIGHT_LIST returns the list
(3 5 6) in RIGHT_LIST. Then QUICKSORT
is applied again, yielding the sorted list (3
5 6) in SORTED_LEFT_LIST. Finally, the
lists (1), (2), and (3 5 6) are concatenated
and placed into SORTED_LIST. We assume
that that SORTED_LEFT_LIST, PIVOT, and
RIGHT_LIST are concatenated from left to
right. We can also implement QUICKSORT
using implicit recursion. In this case we need
to assign priorities to relationship sets to guar-
antee the order of execution. Figure 10 (d) con-
tains the definition of QUICKSORT contain-
ing two recursive relationships, IS _LEFT_LIST,
and IS_RIGHT_LIST. This program takes the
original list as input. If the list has one el-
ement, then it is appended to the sorted list
in SORTED_LIST; otherwise, the list is parti-
tioned, as in the standard QUICKSORT algo-
rithm, into a left list and a right list, each of
which is sorted recursively.

To show how this program works, let us assume
that LIST contains one element, say (23 5 1
6). The traversal starts from the original list.
Then all connected relationship sets are consid-
ered in the order specified by the priorities. The

relationship IS_.LEFT_LIST is applied first, re-
turning the list (1). All connected relationship
sets for the list (1) are considered, and (1) is
appended to SORTED_LIST. Then the list (2),
consisting of the pivot of the original list, is
processed. Again, the list (2) is concatenated
to the list (1) in SORTED_LIST, yielding (1
2). Now the relationship IS RIGHT_LIST is
applied to the original list, returning the list (3
5 6). The traversal begins again with this new
list. The relationship IS_.LEFT_LIST returns the
empty list. The list (3), consisting of the pivot
of the current list, is then appended to the list in
SORTED_LIST, yielding (1 2 3). The graph is
then traversed again for the remaining list (5 6),
etc.

14. Merging Database and Computa-
tional Relationships

The semantics of database and computational
relationships are identical. Therefore they can
be merged freely in order to define proper ap-
plications. For example, let us consider a query
to compute the standard deviation for salaries
for all employees.

Before we compute the standard deviation, we
need to be able to compute the average. The
graphical query to compute average is shown in
Figure 5.

1

T IS LEFT LIST

; T

PIVOT

IS_APPENDED
TO

SORTED LIST

Fig. 10 (d). Definition of the QUICKSORT Relationship Set Using Implicit Recursion

Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . . 49

¥

EMPLOYEE HAS_SALARY

SALARY

SALARY
MINUS
AVERAGE

COMPUTE
AVERAGE

COMPUTE
SQUARE

AVERAGE
SALARY

(SALARY
MINUS AVERAGE)
SQUARED

COMPUTE
AVERAGE

VARIANCE

COMPUTE
SQUARE
ROOT

STANDARD
DEVIATION

Fig. 11. A Graphical Query to Compute the Standard Deviation of Salaries of All Employees

We compute the average of salaries all em-
ployees and store this value in object set AV-
ERAGE SALARY. Then we subtract the single
value in AVERAGE SALARY from each salary
in SALARY, giving us the values in SALARY
MINUS AVERAGE. Next we square each of the
values in SALARY MINUS AVERAGE, giving
us the values in (SALARY MINUS AVERAGE)
SQUARED. We compute the average of these
values to get the value in VARIANCE, and we
finally take the square root of the value in VARI-
ANCE to get the value in STANDARD DEVI-
ATION. The graphical query is shown in Figure
11.

EMPLOYEE
(GROWPED)

SALARY

15. Grouping Operations

The grouping operations are very important in
traditional database systems. They allow the
user to perform queries for individual objects
and relate the result with the individual object.
For example, let us consider the query to com-
pute, for each employee, the average salary for
himself and all of his subordinates. The query
shown in Figure 12 performs this task.

Please note that if we do not group the objects
in the employee set, we would obtain the single
average value.

AVERAGE
SALARY

—b

Fig. 12. A Graphical Query to Compute, for cach Employee, the Average Salary for All Subordinates

50 Bogdan D. Czejdo and Ralph P. Tucci: A Dataflow Graphical Language . . .

16. Rapid Prototyping Tools

Computer-Aided Software Engineering (CASE)
tools have been developed in the last few years
to assist in creating large-scale, complex sys-
tems and software [M. M. TANIK, R. T. YEH
1989]. The use of such tools can dramatically
improve software quality, reduce system costs
and improve productivity of software engineers.

The methods described in the previous sections
allow us to design new rapid prototyping tools to
specify unambiguously the details of the prob-
lems to be solved in a graphical way. In the first
phase, the semantic model such as shown in
Figure 1 can be designed using standard CASE
tools. In the second phase, the root and leaf
nodes are selected, and the direction of traver-
sal is specified. The resulting graphical query
is flexible enough to support both database and
complex computational operations.

Summary

In this paper we have discussed a method for ac-
cessing database systems based on visual spec-
ification. We have proposed an interface based
on an Object-Relationship (OR) model. Using
such an interface, the user specifies graphical
queries by manipulating OR schema diagrams
displayed on the terminal screen. The graphical
programming interface provides a convenient
and dynamically changing frame of reference.
Immediate feedback is provided whenever an
operator is invalid in the current context.

The proposed visual language is based on data
set operations and includes computational rela-
tionships and recursion. The language can be
naturally implemented as a concurrent system.
These features allow for a significant increase in
the expressive power and speed of execution of
the proposed graphical language in comparison
to other database query languages.

References

B. CzEmpo, R. P. Tucct and D. W. EMBLEY (1991)
Graphical Specification of Recursive Queries. In
Advances in Computing and Information —
1CCI'91, Lecture Notes in Computer Science 497
(sc F. Dehne, F. Fiala, W. W. Koczkodaj, Ed.),
pp. 207-218, Springer-Verlag, Berlin.

B.Czemmo , R. P. Tuccr (1992) Using an Object-
Relationship Model for Rapid Prototyping. In Pro-
ceedings of the 1992 Symposium on Applied Com-
puting, pp. 299-307, ACM Press, New York.

B. Czeipo, R. P. Tuccr (1993) A Graphical Language
for Information Systems. In Proceedings of
the 15th International Conference on Information
Technology Interfaces, Pula, Croatia.

R.ELMASRI and J. LARSON (1985) A Graphical Query
Facility for ER Databases. In Proceedings of the
4th International Conference on ER Approach,
Chicago, IL.

D. W. EMBLEY , B. D. KURTZ, S. N. WOODFIELD (1992)
Object-Oriented Systems Analysis: A Model-
Driven Approach. Yourdon Press Computing Se-
ries, Prentice Hall, Englewood Cliffs, New Jersey.

J. LARSON (1986) Visual Languages for Database Users.
In Visual Languages (S. CHANG, T. ICHIKAWA, P.
A LIGOMENIDES, Ed.), Plenum Press, New York.

N. C. SHU (1986) Visual Programming Languages: a
Perspective and Dimensional Analysis. In Vi-
sual Languages (S. CHANG, T. ICHIKAWA, P. A.
LIGOMENIDES, Ed.), Plenum Press, New York.

VASSILIOU and M. JARKE (1984) Query Languages - a
Taxonomy. In Human Factors and Interactive
Computer Systems (Y. VAssILIOU, Ed.), Ablex,
Norwood, 1984.

M. M. TANIK and R. T. YEH (1989) Rapid Prototyping
in Software Development. Computer, May, 1989.

Z.Q.ZHANG and A. O. MENDELZON (1983) A Graph-
ical Query Language for ER Databases. In ER
Approach to Software Engineering (S. DavIS, Ed.),
North Holland, Amsterdam.

Received: October, 1993
Accepted. January, 1994

Contact address:

Bogdan D. Czejdo

Department of Mathematical Sciences
Loyola University

New Orleans, LA 70118, U.S.A.
Telephone U.S.A. (504) 865-2663

‘ Fax (504) 865-3347
E-mail: bumsbdc@music.loyno.edu

BoGDAN D. CzEIDO is a Professor in the Department of Mathemat-
ics and Computer Science at Loyola University in New Orleans. He
received the M.S. and the Ph.D. dggree from Warsaw Technical Uni-
versity in 1972 and 1975, respectively. His research interests include
database systems, knowledge based systems and visual languages. He
has published more than 50 technical papers in these areas. He is a
member of the ACM and the [EEE.

RALPH P. TuCCI is currently an Associate Professor and Chair of the
Department of Mathematics and Computer Science at Loyola Univer-
sity in New Orleans, He received a Master’s Degree in Mathematics in
1972 and a Ph.D. degree in Mathematics in 1976 from the University of
Wisconsin at Milwaukee. He also received a Master’s Degree in Com-
puter Science in 1985 from Tulane University. His research interests
include abstract algebra and visual languages.

