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Software maintenance has emerged as a major effort
within many software organizations. In this paper we
review the facts on software maintenance, its unavoid-
ability and associated cost. We analyze three primary
types of maintenance, and search for a means of increas-
ing software maintenance efficiency. We examine fac-
tors affecting a system’s maintainability and see that sig-
nificant improvements can be achieved by emphasizing
preventative maintenance. A framework for implement-
ing a preventative maintenance program based on the
re-engincering of individual subroutines within a system
is suggested. The suggested framework proposes criteria
for selecting candidate subroutines whose reengineering
will yield a high return on investment. The framework
gives considerations for reengineering these candidates
subroutine and discusses post-coding activities. Finally,
we will briefly examine some potential areas for further
study.
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1. Introduction

When the software development team com-
pletes the creation process and gives birth to a
new program, the work is far from complete. In
fact, the long, challenging, and expensive work
of maintenance begins. This process may last
only a few years and involve only the program-
mers who originally developed the system. Yet,
the process frequently goes on for many years
and can involve several generations of program-
mers. Due to their uniqueness or importance
to the organization, we keep many systems in
service for many years beyond their expected
life spans. These systems require high levels
of maintenance to meet changing circumstances
that they were not originally designed to handle.

As an example of the magnitude of the problem,
Weinman [WEI91] states that, “software inven-
tory worldwide comprises more that 100 billion
lines of working source code, with Cobol mak-
ing up more than 80% of that. Conservative esti-
mates of the cumulative cost of producing those
systems is $2 trillion.” Osborne and Chikofsky
concisely explain why much of our software is
difficult to maintain as follows:

Much of the software we depend on today is on
average 10 to 15 years old. Even when these
programs were created using the best design and
coding techniques known at the time, they were
written when program size and storage space
were the principal concerns. They were then mi-
grated to new platforms, adjusted for changes in
machine and operating-system technology, and
enhanced to meet new user needs — all without
regard to overall architecture [OSB90].

As a starting point in attempting to control the
software maintenance process, we will examine
software maintenance, its unavoidability and as-
sociated cost. We will examine then three pri-
mary types of maintenance and some ways we
can attempt to improve these areas. Follow-
ing that, we will attempt to find a means of
increasing overall efficiency through a frame-
work for preventative maintenance. Finally, we
will close with an examination of possible areas
for future research.



52 Hossein Saiedian and James Henderson: Improving Software Maintenance Efficiency

2. Software Maintenance

What is software maintenance? It is the act of
taking a software product that is being used by a
customer, and keeping it working satisfactorily
[GLA92, pp. 181]. With a system of significant
size, used for a significant period of time, in a
changing environment, we cannot avoid mainte-
nance. We cannot expect to avoid maintenance
by applying the lash to the developers and stat-
ing, “We will have error free software!” Even if
they could produce error free software, a highly
questionable prospect, that would not free us
of maintenance. At some point, the users will
want another option or report, or we will have
to upgrade to a mew computing environment
and ‘voila’ — here again we have maintenance.
Glass [GLA92, pp. 181-182] cites two reasons
why we cannot avoid maintenance:

1. It is regrettably true that we simply don’t
know how to produce error free software.

2. Software change (not error correction) is
the major component of software maintenance.
That change often comes about because the cus-
tomers of a software product have new vistas
opened for them at product delivery, and come
to understand new software capabilities they
would like to have that they had not envisioned
before. Therefore, the majority of software
maintenance comes about not because someone
did something wrong, but because someone did
something right. :

Many researchers have examined these issues
and made significant contributions to this field.
Lehman and Belady [LEH85] addressed this

problem and came up with five laws relevant
to software evolution. See Figure 1.

We can see several reasons why maintenance is
essentially unavoidable in any significant sys-
tem. Thus, this yields an important problem
when we look at the cost and effort involved.
Parikh [PAR87] had the following comments
relevant to cost:

e Results of a survey of 149 MVS installations
with programming staffs ranging from 25-800
programmers indicated that maintenance repre-
sented from 55 to 95% of their work load.

e Estimates that $30B is spent each year on
maintenance ($10B in the US) with 50% of most
companies’ DP budgets going to maintenance
and that 50-80% of the time of an estimated
1M programmers or programming managers is
spent on maintenance.

e An MIT study which indicates that for every
$1 allocated for a new development project, $9
will be spent on maintenance for the life cycle
of the project.

Pressman further states, “If nothing is done to
improve our maintenance approach, many com-
panies will spend close to 80 percent of their
software budget on maintenance by the mid—
1990s” [PRE92, pp. 667]. In fact, as Glass
[GLLA92, pp. 183] points out, “In some organi-
zations, there remains no new software devel-
opment. All work is maintenance.”

We have seen that maintenance is essentially
unavoidable and is a significant organizational
expense. Now we will examine three traditional
types of maintenance and look for means of op-
timization within them.

invariant for each system release.

in each release is approximately constant.

1. The law of continuing change: A program that is used in a real-world environment necessarily
must change or become progressively less useful in that environment.

2. The law of increasing complexity: As an evolving program changes, its structure tends to become
more complex. Extra resources must be devoted to preserving and simplifying the structure.

3. The law of large program evolution: Program evolution is a self-regulating process. System at-
tributes such as size, time between releases, and the number of reported errors are approximately

4. The law of organizational stability: Over a program’s lifetime, its rate of development is approxi-
mately constant and independent of the resources devoted to system development.

5. Thelaw of conservation of familiarity: Over the lifetime of a system, the incremental system change

Fig. 1. Lehman and Belady’s Five Law of Software Evolution
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3. Traditional Approaches to Maintenance

There are three types of software maintenance
commonly identified: corrective, adaptive, and
perfective. Corrective maintenance is the cor-
rection of software errors. Adaptive mainte-

“nance is the changing of the software enabling it
to handle new computing environments, which
is often necessary since so many software sys-
tems are maintained for so long. Perfective
maintenance is the changing of the system to
provide the user with additional capabilities.
Lientz and Swanson found that approximately
65% of maintenance was perfective, 18% adap-
tive, and 17% corrective [LIE80]. There are
things that we can do to ease our maintenance
in each of these areas.

To limit our corrective maintenance we need to
1mplement a defined process for software test-
ing and configuration management. A thorough
testing procedure including unit, integration,
and system testing can help to limit the num-
ber of errors introduced into the software. This
is especially true if we use carefully considered
and thorough test plans at each level and make
maximum use of regression test sets containing
standardized tests that should be run after any
system modifications. Configuration manage-
ment also can help to limit our corrective main-
tenance by acting as a central point for control-
ling software change. With configuration man-
agement, we ensure that only thoroughly tested
modules are allowed into the system and that
the correct versions of each module are used at
each step in the procedure.

One of the best ways we can reduce our adaptive
maintenance is by using standard language con-
structs as much as possible in our software so
that the constructs we use will still be supported
in a changing environment. When we cannot
use standard language constructs, we should
try to separate all non-standard constructs and
version-dependent data into an interface mod-
ule. This interface module should then be the
target of most of our maintenance when chang-
ing environments.

Perfective maintenance is user-driven so we
have less ability to limit our exposure to it, but
there are things we can do to anticipate it and
to make it as efficient as possible. When devel-
oping or when doing perfective maintenance,

we need to try to fully understand the user’s
needs. We must elicit, as much as possible, all
the capabilities the user needs and may need
in the future. If possible, we can include then
these capabilities or design such a system that
adding those capabilities in the future will be
relatively painless. Additionally, a careful anal-
ysis, representation, and validation of the users’
requirements will ensure that we are using our
time efficiently. We cannot afford to waste our
time working on non-existent problems while
ignoring the real problems because we failed to
understand fully what the user needed.

As discussed, there are things that we can do to
optimize our maintenance activities within each
of three common types of maintenance. But, is
there anything we can do to improve the effi-
ciency of our overall maintenance ? We’ll do
some of those nice things in the future when we
can, but we’re already stuck with this system
— what can we do to improve our maintenance
now?

4. Preventative Maintenance

Perhaps the most significant thing we can do for
our software now is to realize that we should be
doing something in addition to the required cor-
rective, adaptive, and perfective maintenance.
This additional task is a preventative mainte-
nance. Pressman defines preventative mainte-
nance as the activity that occurs when software
is changed to improve future maintainability or
reliability, or to provide a better basis for fu-
ture enhancements [PRE92, p 664]. Under this
broad definition, we can include such things
as: restructuring, reverse engineering, and re-
engineering.

One feature of these efforts that makes them
harder to justify is that our traditional users are
not the direct beneficiaries of this effort. We
directly benefit, as does our organization and
those that come after us. We will rarely give
any form of preventative maintenance a higher
priority than the user-related maintenance, but
we might form a working group dedicated to
these efforts while other groups perform the
user-related maintenance.
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4.1. Restructuring

Restructuring is the transformation of a soft-
ware system from one representation form to
another, usually at the same relative abstrac-
tion level, while preserving the subject system’s
external behavior (functionality and semantics)
[CHI90]. This technique is a realization that
those who came before us probably didn’t apply
many of the structured programming concepts
that we might today and that the system might
be easier for us to maintain if it adhered more
fully to those concepts.

With little understanding of a system or sub-
routine, we can still make significant alterations
to its structure with some degree of certainty
that we haven’t changed its functionality. For
example, we can convert loops created with
GOTOs to modern REPEAT-UNTIL or DO-
WHILE loops or change a long series of IFs to a
CASE statement. With a deeper understanding
of the meaning of the system or a subroutine,
our changes can go deeper. We can change the
type of data being handled or change the modu-
larity of a system or subsystem to reflect better
the system’s overall functionality.

Some degree of restructuring can significantly
reduce the time it takes for a new programmer to
understand a given piece of software. This be-
comes particularly significant if we restructure
the software at our leisure, but later program-
mers are trying to understand it to meet a critical
deadline.

4.2. Reverse Engineering

Reverse engineering is the process of analyzing
a subject system to identify the system’s com-
ponents and their interrelationships and create
representations of the system in another form at
a higher level of abstraction [CHI90]. This gen-
erally involves examining a working software
system to capture its underlying design and re-
quirements. However, it can be performed at
any stage in the life-cycle to ensure that the
abstraction we derive from a phase matches
the output from an earlier phase (e.g., reverse
engineering from our design to requirements
should yield something resembling our origi-
nal requirements). In a reverse engineering ef-
fort, we are not changing the system, we are
simply trying to gain a better understanding

of it. Chikofsky and Cross [CHI90] suggest
that six key objectives of reverse engineering
are to: cope with complexity, generate alter-
nate views, recover lost information, detect side
effects, synthesize higher abstractions, and fa-
cilitate reuse.

4.3. Re-engineering

Chikofsky and Cross [CHI90] describe re-en-
gineering as follows: “Re-engineering, also
known as both renovation and reclamation, is
the examination and alteration of a subject sys-
tem to reconstitute it in a new form and the
subsequent implementation of the new form.
Re-engineering generally includes some form
of reverse engineering, to achieve a more ab-
stract description, followed by some form of
forward engineering or restructuring.”

When re-engineering, we generally don’t change
what the system does — we simply change how
it does it. To do this properly, we must truly un-
derstand what the software is doing, and why,
before we begin, hence the typical reverse engi-
neering or analysis step.

5. Maintainability Factors

Software maintainability is the ease with which
a software system can be corrected when er-
rors or deficiencies are discovered and can be
expanded or contracted to satisfy new require-
ments [McC92]. We must examine the factors
thatimpact the maintainability of a piece of soft-
ware before deriving a framework for preventa-
tive maintenance. The presence of some factors
will make a body of code easier to maintain,
while other factors will make it more difficult to
maintain. Then, our preventative maintenance
framework will attempt to enhance the positive
factors and eliminate or mitigate the negative
factors.

A major portion of a systems maintainability
is related to its understandability. We can de-
fine understandability as the ease with which
one can decipher the function of a program and
the way in which that function is performed by
examining the code and its associated documen-
tation. McClure [McC92, pp.20-21] found that
software maintainers spend approximately 47%
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of their time in trying to gain an understand-
ing of the software. Obviously, if maintainers
spend that much of their time attempting to un-
derstand, then any improvement in understand-
ability will yield a significant savings in time.

A significant component of maintainability is
the level of documentation. Documentation can
be non-existent, sparse, adequate, or volumi-
nous. Additionally, it can be correct, incorrect,
or correct but out of date. Ofttimes incorrect
documentation can be worse than no documen-
tation at all. If a programmer takes incorrect
documentation at its word, it could give a faulty
understanding of what a program does or how it
does it, leading to potentially dangerous coding
eITorS.

As we would expect, module size and complex-
ity are significant factors in program maintain-
ability. Gremillion [GRE84], Lientz and Swan-
son [LIE80], and several others have found high
correlations between module size and complex-
ity and the number of errors present. The com-
plexity of a module can be measured in var-
ious ways including simply counting lines of
code, McCabe’s Cyclomatic Complexity, and
Halstead’s Effort [NAV86]. Each metric mea-
sures different combinations of factors such as
module size, number of control constructs, or
number of variables. No metric has achieved
universal acceptance, but any measure can give
some insight if applied to a representative sam-
ple of modules. As Chapin [CHAS3] states,
“good ovidence exists that increases in com-
plexity in application software go hand in hand
with increases in the cost of maintenance and
declines in the morale and productivity of pro-
grammers and analysts.”

Language can be a factor in the maintainability
of a module in two ways. First, the language
that the software is written in may introduce
some limitations or possibilities and will have a
significant impact on the availability of skilled
programmers. The second consideration in lan-
guage use is to what degree programmers will
be limited to standard language features. Some
compiler-specific features may add flexibility
or strength, but they can be a significant nega-
tive when trying to port the system to another
environment that is not supported by the same
compiler.

Consistency, or adherence to standards, can also
be a factor in maintainability. Consistency of

coding style implies that the program contains
uniform notation, terminology, and symbology
that comply with corporate naming conventions
and standards [McC92]. Brooks [BROS8Z, pp.
42] refers to consistency as conceptual integrity
and calls it “the most important consideration
in system design.” A consistent subroutine lay-
out, for instance, will make it much easier to
find relevant comments, find variable declara-
tions, follow logic flow, etc.

Finally, the use of the simplest, most straight-
forward logic can affect maintainability. There
are those among us who delight in obscure or
arcane logic over any other. We should try
to specify logic paths in the simplest possible
terms even if this doesn’t use the fewest possi-
ble lines of code.

We have looked at several factors that can af-
fect the maintainability of our software, many
of them related to its understandability. Now,
keeping these factors in mind, we can attempt to
express a framework for our preventative main-
tenance. Houtz and Miller [HOUS83] cite the
following goals for a program to improve soft-
ware:

e Improve software maintenance and control

e Reduce delays in responding to users’ needs.
e Improve software quality.

e Increase programmer productivity.

e Decrease software maintenance costs.

e Institutionalize processes.

e Change software from a reactive to proactive
state.

e Extend the software’s life.

o Put the organization in a position to take ad-
vantage of new and emerging technology.

The decision to undertake a program for preven-
tative maintenance should not be taken lightly,
but should also not be avoided. Britcher [BRI90]
states that “without a well-defined rationale and
plan, re-engineering could at best be too ex-
pensive, and at worst the wrong thing to do.”
Osborne and Chikofsky [OSB90] suggest that
“we must have a continuing concern for fu-
ture system maintainability, better support for
the people who manage software systems, and
a change-management discipline.” Eliot and
Weinman [ELW91] sum up this difficult deci-
sion this way, “making significant changes in
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old systems is frightening proposition, but re-
engineering can help avoid the even more daunt-
ing destruction wrought by applications that are
nearing the end of their useful life.”

6. Selecting A Framework for Preventa-
tive Maintenance

Having decided to undertake a preventative main-
tenance program, we still must decide upon
our approach and the details thereof. We have
a choice of three primary approaches: com-
pletely re-engineering the entire system as a
unit, restructuring individual subroutines, or re-
engineering individual subroutines on a priority
basis. This is pictorially shown in Figure

The first approach is perhaps an optimal solu-
tion for many systems. If reverse engineering
techniques are properly applied, we should de-
rive first a complete set of system requirements
and specifications and a thoroughly analyzed
design approach. Then, we will forward engi-
neer from these documents to a modern, struc-
tured system. Eliot [ELI91] states that to do
this we would, “identify all of the changes that
must take place, make the changes in as much
an off-line mode as possible, and then make the
entire shift all at once.” The end result should
be a system that is well documented, easy to
maintain, and has a high degree of conceptual
integrity. Yet, a large percentage of today’s sys-
tems are of such a size that this effort would
be truly monumental and thus expensive and
difficult to get management approval for. Ad-
ditionally, since we are making a large shift all
at once, this approach generally entails a higher
risk. Houtz and Miller [HOU83] maintain that,
“because of the large amount of software that
exists in most ADP organizations, most soft-
ware can’t be improved in one lump sum.”

The second approach, restructuring, is perhaps
at the opposite end of the spectrum from the first
in terms of risk and size of undertaking. In re-
structuring, we can make significant alterations
in a subroutine’s structure with some degree of
certainty that we haven’t changed its functional-
ity even if we don’t fully understand it. The risk
involved is thus quite low and the project can be
performed piecemeal, giving some immediate
results. The final product won’t necessarily in-
clude updated system requirements, specifica-
tions, and design information, or significantly

change the modularity of the system. However,
the result should be a group of subroutines that
are at least marginally easier to understand and
maintain.

The third approach, re-engineering individual
subroutines on a priority basis, is in many ways
a hybrid of the previous two. It is “less risky
[ELI91]” than re-engineering the system as a
whole, yet will yield some of the same informa-
tion, though at a lower level. It is quite similar
to restructuring, but taken a step farther. We
think that this approach holds the highest cost-
benefit ratio of the three for most systems. This
is based on the famous 80/20 rule, which in our
case holds that 20% of the subroutines should
contain 80% of the problems. Therefore, sig-
nificantly improving a relatively small percent-
age of the subroutines will yield considerable
improvements in overall productivity. We pro-
pose a framework for preventative maintenance
based on this approach. Many of the consid-
erations in this frame work would be equally
applicable to a restructuring approach.

If your system is small or your organization is
such that a significant effort can be devoted to
re-engineering, then perhaps re-engineering the
system as a whole would be the best approach.
This might especially be true if your organiza-
tion has previous experience in re-engineering
since you will be aware of potential problems
and understand the returns.

If your organization would like to realize some
improvement in maintainability, but can’t af-
ford the higher effort involved in re-engineering,
then perhaps restructuring would be the pre-
ferred approach. This might also be true if your
organization is hesitant to accept even a fairly
low level of risk or if a large percentage of your
personnel have low experience levels.

7. A Proposed Framework for Preventa-
tive Maintenance -

In this approach, we will select individual sub-
routines that we believe are likely candidates to
benefit from re-engineering based on a set of
criteria. We use reverse engineering techniques
on the subroutine level to create functional de-
scriptions for these individual subroutines. We
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Fig. 2. Selecting a Preventive Maintenance Framework



58 Hossein Saiedian and James Henderson: Improving Software Maintenance Efficiency

e Inefficient

Selecting Candidates for Re-engineering

e Undergoing considerable madification
e Maintenance intensive

e Beyond a self-imposed size

e Beyond a self-imposed complexity limit
e Contain unreachable or unused code

¢ Contain inaccurate or out of date comments
e Written for obsolete hardware
e Otherwise difficult to maintain

Fig. 3. Re-engineering Factors

then attempt design recovery for each subrou-
tine which “must reproduce all of the informa-
tion required for a person to understand fully
what a program does, how it does it, why it does
it, and so forth [BIG89, pp. 36].” Further, we
examine the logical decomposition of these sub-
routines, their parents, children, and siblings.
We will have the understanding to make real
changes in modularity, if necessary, and greater
changes in the underlying code structure. When
we have completed the re-engineering of this
group of subroutines, we will then carefully
validate them and select a new set of candidate
routines.

This approach won’t yield soon the secamlessly
integrated and consistent package that an all-
out approach might, but we will be able to show
progress in a much shorter period of time. It
also has the benefit of being easier for reluctant
organizations to accept because the minimum
required effort is much smaller. We can do as
little as one subroutine at a time or as many
as one, or more, subroutines per programmer.
Ultimately this approach can mate in with a
system approach by providing functional de-
scriptions and design information which will be
very valuable in constructing overall system re-
quirements and design information. Houtz and
Miller [HOUS83] state that this type of piece-
meal approach has four basic advantages in that
it:

e minimizes uncertainty and risk by maximizing
the utilization of testable components.

e preserves the value of past software invest-
ment as much as possible.

e cnables the project to be broken into small,
manageable pieces with an operational system
at each phase; and

e is iterative in nature, which allows for the
tasks performed to be repeated in an orderly,
incremental fashion with constant achievement,
growth, and feedback, until the overall objec-
tives of the project are met.

7.1. Selecting Candidates for
Re-engineering

As depicted in Figure 3, there are many fac-
tors to be considered when selecting candidate
subroutines for re-engineering.

Perhaps a good place to start is by consider-
ing those subroutines that are already being
significantly modified for user-related mainte-
nance. McClure [McC92, pp. 29] states that
those components that require a major enhance-
ment should be among the top candidates for re-
engineering. One main advantage of selecting
such routines is that we are going to be forced to
investigate them thoroughly anyway in order to
complete the work request. Additionally, since
they are already being ‘significantly changed,
and thus will have to be strongly tested, our
re-engineering changes don’t necessarily add a
significant additional load of testing.

One frequently cited criteria [McC92, pp. 29],
[SNE91, pp. 170-171] is the selection of those
subroutines that are maintenance-intensive, be-
ing changed an inordinate number of times
within a set period of time. These subroutines
tend to exemplify the 80/20 rule. Changes made
in these subroutines are likely to give us the
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greatest return since we will either be reducing
the problems in these subroutines or simplify-
ing them for the next time we do have to deal
with them.

An additional method is to select those subrou-
tines that exceed a set limit for lines of code.
This limit will be dependent on your program-
ming language, type of application, and local
standards. No specific number has been found
to be particularly meaningful as a limit, but you
should set some limit reasonable for your soft-
ware. Then, any subroutines that exceed this
limit should be investigated because they might
not be reasonably modularized. Gremillion
[GRES84], Lientz and Swanson [LIE80], among
others, have noted a strong correlation between
program size and complexity and number of er-
rors present. Thus, if we work on those that
should have the highest concentration of errors,
we will likely enjoy the swiftest reduction of
errors.

Similarly to size, we can examine any subrou-
tine that exceeds a set limit for any selected
measure of code complexity. Again, no mea-
sure of complexity is universally accepted, but
if you select some measure that seems repre-
sentative for your software and apply it across
a wide range of your subroutines — the results
should be somewhat telling. Any subroutine
exceeding this limit should be examined.

We may also wish to examine those subroutines
that contain unreachable or unused code, per-
haps retained from now unnecessary options.
This is significant because your ‘unreachable
code’ may not indeed be unreachable, which
could lead to severe problems. Also, there is

a significant correlation between size and num-
ber of errors [GRE84, LIE80], so any additional
code can hide additional bugs.

One criteria that borders on perfective mainte-
nance is to select subroutines that perform time-
intensive operations using inefficient methods.
Re-engineering these subroutines will allow us
to carefully examine our methodologies and
modifying these subroutines will produce ben-
efits for both our customers and ourselves.

Clearly, the level and quality of documentation
have an impact on the ease of maintenance.
Therefore we may wish to examine those sub-
routines that have inaccurate or out-of-date doc-
umentation. As stated previously, inaccurate
documentation can be worse than none at all
since it can deceive programmers as to what
is really going on. Out-of-date documenta-
tion might, for example, reference obsolete ta-
ble sizes which could deceive programmers as
to the maximum subscript values. Problems
in documentation may not require or justify a
full-scale re-engineering of a subroutine, but it
is worth examining these subroutines since the
documentation may be inaccurate because the
subroutine is difficult to comprehend.

Sneed [SNE91, pp. 170-171] and McClure
[McC92, pp. 29] both cite subroutine being
written for a previous generation of hardware
as a possible criteria for re-engineering a sub-
routine. These subroutines may use method-
ologies that simply didn’t port well, may fail
to take advantage of significant system capabil-
ities, and may have been written before some
useful capabilities existed. Instead, they might
use rather obscure methods for achieving the

e Explain odd constructs
e Simplify complex tests

e Eliminate unused code
e |solate duplicate code

e Converts comments to standardize format

e Use meaningful identifier names
e Add additional error-checking
¢ Use standard language constructs

e Constantly expand test plan
e Don’'t unquestioningly discard old subroutines

Fig. 4. Subroutine Re-engineering Considerations



60 Hossein Saiedian and James Henderson: Improving Software Maintenance Efficiency

same end that will in turn be difficult to main-
tain. One example of this might be old Fortran
subroutines with character data stored in real or
integer variables and thus manipulated.

Finally, we may wish to examine those sub-
routines that, for any combination of reasons,
are exceedingly difficult to accurately maintain.
There will be some subroutines which may not
exhibit any of the previous criteria specifically,
but which are, nevertheless, difficult to main-
tain. This could be for any combination of fac-
tors and will depend on a programmer’s judg-
ment to identify.

Once we select subroutines based on these cri-
teria, there are certain things we should do be-
fore we actually start modifying the code. We
should first reverse engineer the subroutine so
that we can ensure that we fully understand its
functional requirements. This will then help us
to prepare a careful test plan to determine if our
modified subroutine still performs its intended
function(s), and no other. Finally, we need to
generate a new subroutine design and ensure
that it will lead to a subroutine that properly
performs the functional requirements.

7.2. Considerations While Re-engineering

When we are actually ready to modify the code,
there are many things we should consider as
shown in Figure 4.

Among them are several things relative to com-
ments. First, convert comments to a standard-
ized format. This standardization can give us
that conceptual integrity [BRO82, pp. 42] and
allow for easier comprehension and thus easier
maintenance. Next, validate existing comments
for accuracy and completeness. Recalling the
large percentage of programmer’s time spent
on understanding the software (close to 50%)
[McC92, pp. 20-21] — the importance of this
is easy to visualize.

In particular, add additional explanation of any
odd constructs or methods including an expla-
nation of why things weren’t done in a more
straightforward way. If things are done, for
some good reason, in an odd way, you should
pass this reasoning on to the next programmer or
they may simply change it to the more straight-
forward method. If you did indeed have good
reasons for not doing it this way in the first place,

this could have serious consequences. An ex-
ample of this could be using a slower sort be-
cause you need a certain type of stability more
than you need optimization.

We can increase system clarity if we simplify
complex conditional tests and use parentheses
to clarify order of operations. Many languages
have slightly different orders of precedence for
logical and mathematical operations. Thus, it
can be easy for another programmer to mis-
understand what a complex statement is really
doing, leading to a complete misunderstanding
of a major construct.

Additionally, we should use meaningful vari-
able names [LEW91, pp. 342]. This is helpful
in that it saves another programmer the effort
of referring to a data dictionary (assuming such
exists) to understand the meaning of a variable.
It is also much easier to catch a typo if itisina
variable name that is actually a word rather than
in some meaningless combination of letters.

For the sake of robustness, we should add addi-
tional error checking to further verify user input
[PRE92, pp. 680]. It is not at all uncommon,
and generally not wise, to assume that the users
of a system will only enter valid and reason-
able values. If the previous programmers made
this assumption, add additional error checking
to make your system more robust and reliable.

Replace non-standard constructs with standard
constructs where possible. This goes back to
the fact that standard constructs are much more
likely to port easily when changing environ-
ments. Likewise, standard constructs are more
likely to be familiar to new programmers.

One consideration often overlooked is the reuse.
Consider whether the subroutine is generic and
reliable enough to be placed in a reuse library.
As Lewis states [LEWO91, pp. 348], “the best
unit, procedure, function, or whole program is
one that you do not need to write.” This could
save someone else from re-inventing the same
wheel. If the subroutine as a whole is not us-
able in this fashion, portions of it or some of its
algorithmic design might be.

Due to the correlation between size and num-
ber of errors [GRE84,LIE80], we can reduce
the number of bug hiding places by carefully
eliminating code that is no longer used or that is
unreachable. Of course, we need to be quite sure
that it is indeed no longer used (and is unlikely
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to be used in the future) or unreachable (and
shouldn’t be reachable). Rather than actually
deleting the code, we may want to investigate
its value for reuse.

Similarly, look for sections of code that are du-
plicated elsewhere. If the same, or very similar,
code is used in several places, that heightens the
chances that one of those places might not be
updated when all should be and introduces addi-
tional places for bugs to hide. Code of this sort
might be worth separating into a more generic
subroutine to add to your reuse library.

In the interests of thorough testing, we should
add elements to our test plan as we think of them
to ensure as thorough a test as possible. Any
subroutine that has been re-engineered should
receive thorough testing before being put into
the production environment. We don’t want to
forget about an important test by delaying in
writing it down.

Finally, don’t throw away unquestioningly the
old subroutine and rewrite it from scratch
[PRE92, pp. 680]. You probably have a large
amount of time and money invested in your
current software so try to reuse concepts, de-
signs, and code when possible. However, start-
ing from scratch may be the best approach at
times.

As shown in Figure 5, our work is far from
complete when we finish the re-engineering of a
subroutine. We must ensure that all related doc-
umentation (e.g., user’s manual, maintenance
manual, etc.) is up-to-date and reflects any
changes made to the system.

We should update any design representations to
reflect the new subroutine design. Perhaps most
importantly, the programmer must conduct ex-
tensive unit-level testing according to his test
plan and note and correct any errors found. This
must then be followed by a careful integration
and system-level testing that would preferably

be conducted by an independent group of testers
or configuration managers.

This proposal is just one method for conduct-
ing preventative maintenance, various other ap-
proaches could be used successfully. This ap-
proach should yield significant improvements
in maintainability while guarding against the in-
troduction of errors. Any other approach should
cautiously balance benefits against risks and en-
sure that proper controls are in place.

7.3. The Promise of Preventative
Maintenance

These preventative maintenance techniques start
with the assumption that our existing software is
indeed valuable but that, over time, our system
hasn’t been maintained up to today’s standards.
These techniques are varying approaches to the
problem of improving the maintainability of our
system. If used wisely, they should enable us
to maintain our system in a way that we are
more responsive to the customer and that the
system is more reliable. They are a rejection, to
some degree, of the old adage, “if it ain’t broke
— don’t fix it.” Software doesn’t degrade over
time as hardware does, but it can get farther out
of line with our maintenance standards and thus
degrade our ability to maintain it.

8. Conclusions and Further Research

We have seen that to retain its usefulness, soft-
ware must change, and does. We have also seen
that much of the software that we maintain today
was written a significant number of years ago
and that much of it didn’t follow the software
engineering standards of today. Therefore, our
software may be quite difficult to maintain and
programmers may require a sizable amount of
time to simply decipher its purpose and logic
before even beginning to maintain it. We have
looked at some ways to optimize three standard

1. Update all related system documentations

2. Update all related design information

3. Conduct thorough unit, integration and system tests
4. Examine and record lesson learned

Fig. 5. Post Subroutine Re-engineering Tasks
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types of maintenance to ease future maintenance
and ensure greater reliability.

Finally, we suggested the need for some com-
bination of preventative maintenance methods
to improve the long term maintainability of our
system and examined a framework for piece-
meal re-engineering. We are often caught in a
vicious cycle of scrambling to get a basic com-
prehension of a piece of software so that we
may make the minimum changes necessary to
meet the priority needs of the user.

To break this cycle, we must undertake pre-
ventative maintenance. By using preventative
maintenance techniques, we can put our soft-
ware in a more comprehensible form. A more
comprehensible form should enable our pro-
grammers to understand it more rapidly (and
fully), thus allowing them to maintain it more
quickly and more reliably. Grady [GRAS7]
sums it up well, “because we cannot economi-
cally replace all our old software, we must find
better ways to manage needed changes. Un-
til we do, software maintenance will continue
to represent a large investment — and software
quality will not improve.”

8.1. Areas for Future Research

Significant research has been done, and contin-
ues to be done, in software maintenance. One
important area that will continue to be stud-
ied is the improvement of automated tools for
software maintenance and analysis. Better au-
tomated tools may be able to generate much of
the system documentation from the source code
or restructure the source code to a programmer-
defined standard.

Many aspects of a programmer’s skill and train-
ing warrant additional attention. A greater un-
derstanding of how software maintainers do
their work and what motivates them may en-
able managers to get a closer match between
prospective employees and open positions. But-
ler and Corbi [BUTS89] reference the fact that
while software engineering is taught in a vast
majority of Computer Science departments, al-
most none offer courses in things like “soft-
ware renewal,” “program comprehension,” or
“enhancement programming.” Research into
the necessity of specific training in such areas,
and the best way to enhance skills in these areas,

could lead to a generation of programmers much

_more adapt at software maintenance activities.

Finally, a more thorough analysis of large num-
ber of existing software systems will enable a
better understanding of the challenges faced in
software maintenance. This could provide valu-
able information such as the average system age,
size, complexity, and frequency of change.
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