Journal of Computing and Information Technology - CIT 1, 1993, 4, 303-307

Book Reviews

303

E. F. Wolstenholme, S. Henderson and
A. Gavine

The Evaluation of Management
Information Systems:
A Dynamic and Holistic Approach

Wiley, Chichester, 1993, pp. iv+242, ISBN 0-
471-93090-3

This book has two characteristics that makes
it rather unusual. First, it presents a close
connection of two radically different method-
ologies and approaches: management informa-
tion systems (MIS) and system dynamics (SD).
MIS methodology includes various computer-
assisted methods that enable control of infor-
mation flow and analysis of information with
the goal to present it to managers in such a way
to enable proper management of systems re-
sources. SD, on the other hand, is a method that
enables quasi-continuous modelling and simu-
lation of complex dynamic systems with feed-
back.

Secondly, the book is written by authors com-
ing from both academic and professional orga-
nizations. The first author, Professor Eric Wol-
stenholme, is a well-know academician whose
previous textbook System Enquiry: A System
Dynamics Approach (Wiley, 1990) is one of the
best and richest texts written in the SD field so
far. Simon Henderson and Allan Gavine are, on
the other hand, specialists working in the De-
fence Research Agency in UK. Such mixture of
authors has led to a proposal of problem solution
which is both theoretically grounded and eval-
uated on real complex problems, a combination
which occurs rather rarely.

A central problem tackled by the book is a MIS
evaluation problem. Although MIS is one of the
computer methodologies that had attracted ex-
tremely high investments, the field of MIS eval-
uation is not very advanced: MIS assessment is

actually not included in the most MIS develop-
ment methodologies. And when it is included,
it typically supports a low-level function evalu-
ation. Such evaluation is, however, not able to
tackle the strategic role of MIS tending to cover
strategic needs of the organization.

This book demonstrates how SD brought novel
perspectives to MIS validation. It enables de-
velopment of the SD model of an organization
even before MIS is implemented, and only after
that MIS is included in the organization model.
The model is a strategic one, and takes into
account MIS effects on the organization pro-
cesses. This enables validation of MIS on a
strategic level, taking into account performance
of the organization as a whole.

The first chapter of the book presents an
overview of MIS, in which key features of MIS
are described as well as problems with it. Chap-
ter 2 presents a review of the methodology of
MIS development and evaluation. The authors
point out the tendency of MIS to concentrate on
solving details, which too often leads to eval-
uation on a rather low level. Instead of only
assessing the ability of MIS to process infor-
mation, MIS should be assessed according to
how it affects the organization which is using
it. Chapter 3 presents the overview of SD, and
describes qualitative and quantitative aspects of
SD as well as simulation with SD.

Chapter 4 describes the evaluation approach
called BISEM (Bradford Information System
Evaluation Methodology) proposed by the au-
thors for more appropriate MIS evaluation.
BISEM tends to assess strategic aspects of MIS
through its holistic effects on the whole orga-
nization rather than on its parts. The basic
idea of BISEM approach is to build a model
of the organization capable to assess the effect
of managerial policies on overall performance
of the organization. In the first modelling stage
a strategic SD model of the organization is built,



304

Book Reviews- CIT 1, 1993, 4, 303-307

while in the second stage the model incorporates
expected changes in its physical resources and
information flows appearing as a consequence
of MIS installation. The same scenarios and
performance measures are used in both mod-
elling stages.

Chapters 5-7 present two comprehensive mili-
tary case studies at different stages of their life
cycles. The first case study evaluates the impact
of MIS on a military logistic organization. The
SD model was built using the DYSMAP/386
simulation language. The proposed MIS was a
distributed database system serving corps, divi-
sions and brigade levels. The BISEM approach
was capable to suggest improved operational
procedures and policies for stocking ammuni-
tion. The second stage evaluated the effects of
implementing MIS on a military battlefield op-
eration. Modelling of this rather unstructured
problem was done using the STELLA simula-
tion language. The SD model enabled under-
standing the dynamic of the situation modelied,
and thus helped in evaluating the proposed MIS.

Finally, Chapter 8 presents an evaluation of
the BISEM methodology itself, and gives some
guidance for its application.

This book presents a novel approach to MIS
evaluation. It offers a strategic evaluation ap-
proach and enables formulation of an organiza-
tional model including its feedback processes
and dynamics of its behaviour. This was pos-
sible due to a happy marriage of SD and MIS
approaches.

The book has an outstanding balance of theoreti-
cal background and comprehensive case studies
which fully demonstrate the characteristics and
potential of the new MIS evaluation approach.
It is well written and full of relevant informa-
tion. Because of using two radically different
methodologies in concordance, this book re-
quires a considerable effort for comprehension.
The book is a valuable tool both for practitioners
and students in information systems and man-
agement oriented disciplines.

Vlatko Cerié

University of Zagreb
Faculty of Economics
Zagreb, Croatia

Grady Booch

Object-Oriented Analysis and
Design with Applications,
2nd Edition

The Benjamin/Cummings Publishing Co., Inc.,
Redwood City, CA, 1994, pp. x+589 (ISBN 0-
8053-5340-2)

Grady Booch has been an object-oriented anal-
ysis and design advocate for some time. He’s
written books such as Software Engineering
with Ada, Software Components with Ada, and
-Object-Oriented Design (OOD) with Applica-
tions. The first two are Object-Based (OB),
the third is primarily Object-Oriented (OO), but
all use OB and OO notations and methodolo-
gies. Over the past several years many OB
and OO methodologies have been proposed.
Even though G. Booch appears as a pioneer
OO methodologist, there are still diverse opin-
ions and definitions of many terms within this
dynamic topic. His current notation is often re-
ferred to as simply the “Booch” method. The
first edition of Object-Oriented Design with Ap-
plication traced the path of OO design method-
ology into the mainstream of industrial-strength
software development. In his second edition,
G. Booch draws upon the earlier results to offer
a more unified notation through numerous ex-
amples, now implemented exclusively in C++.

The author claims that this book provides practi-
cal guidance to the construction of OO software
systems, in particular those that fully satisfy re-
quirements and which are delivered on time,
within the given budget. This approach, rather
than trying to prove conceptual theorems, en-
sues a more pragmatical course. The book is
divided into three major sections (concepts, the
method, and applications), augmented with an
appendix on OO programming languages, the
glossary, classified bibliography, and the index.

The first section (Concepts) embodies four
chapters, and examines the complexity of soft-
ware, and how this complexity manifests itself.
A way of bringing an order to this chaos is
by the invention of common abstractions and



Book Reviews- CIT 1, 1993, 4, 303-307

305

mechanisms of similarity. To exhibit an or-
ganised complexity, the author introduces in
the first chapter “the canonical form of a com-
plex system”. This is an orthogonal view to
classes and objects. The canonical form gives
the most clear conception of a system archi-
tecture by identifying relations among classes
as an “is_a” hierarchical structure, and rela-
tions among grouped objects as a hierarchical
“part_of” structure. The view takes into account
that the class structure and the object structure
are not completely independent, rather, each
object represents a specific instance of some
class. This view shows an inherent redundancy
of a system. To overcome the fundamental
limitations of the human capacity for dealing
with complexity, the author suggests an object-
oriented (instead of an algorithmic top-down),
decomposition of a system in question, resulting
with an “object model” abstraction.

The second chapter presents an evolution of
the object model. The author chronologically
follows the generations of programming lan-
guages, ending with the topology of OB and OO
programming languages. Because the object
model derives from many (disparate) sources,
a clarification of terminology is offered. These
parts of the book are often cited as “Booch con-
ceptions”. The focal point in every concept
definition embraces collections of objects, each
of which represents an instance of some class.
These classes are members of a hierarchy of
classes, united via inheritance. With the intro-
duction of elements of the object model, the
author illustrates the concept of abstraction by
utilising C++ language formalism (a very brief
exposure to C++ is given in the appendix). The
reader can follow the usual material on class
derivation with private, protected and public
members, and its instantiation in a concrete ob-
ject. The given examples illustrate the process
of encapsulation, separating the contractual in-
terface from the abstraction and its implemen-
tation. In addition, the concepts of modularity,
hierarchical ranking, and typing are thoroughly
discussed. With the unavoidable proliferation
of multi-processing systems, the author empha-
sizes the concurrency and persistence property
of objects.

Chapter 3 encompasses a detailed study of the
nature of classes, objects and their relationship.
To craft an object model, the software designer

must develop certain skills that help in recog-
nising what is and what isn’t an object. The
definition of the state of an object is given, aug-
mented with C++ declarations. The meaning
of the object behaviour, as a function of the
state, is explained, together with various kinds
of operations (some of them expressed as meth-
ods). Other properties of an object (identity and
life span) are demonstrated. Since objects do
collaborate with one another, there are various
kinds of relationships among them. Two sets
of object hierarchies are of particular interest:
links and aggregation. Since the concepts of
a class and object are tightly interwoven, the
author goes into the details of class construc-
tion. I regard this chapter as a core of QOO
programming, since classes and objects are not
independent static entities, but rather highly dy-
namically interrelated components of the object
model. It takes a great skill and care to de-
fine generalisation/specialisation, whole/part,
and associational relationship through hierar-
chy of classes, their interfaces and implemen-
tations. Single and multiple inheritance are
discussed, with associated concepts like vir-
tual functions, polymorphism, typing, proce-
dure invoking (methods), aggregation, instanti-
ation, and metaclass. Throughout the process of
building classes and objects, one is faced with
metrics of quality. The author gives some hints
on choosing operations, relationships, and im-
plementations during the design phase of high
quality classes and objects.

The last chapter of the first section is devoted
to knowledge ordering through classification.
Clearly, there is no simple rule for identifying
classes and objects. Since a project design is
a compromise of many factors, there is no sin-
gle solution either. The difficulty of classifi-
cation lies in its subjective measure of com-
plexity. Different observers will classify the
same objects in different ways. Classical cat-
egorization will try to find common properties
that define a category. Conceptual clustering
first formulates the concept and then tries to
classify the entities. For the situations where
these approaches are inadequate, one may try
the prototype theory, where an object belongs
to a class if it resembles the prototype in a sig-
nificant way. Finding classes and objects that
form the vocabulary of the problem domain, is
an OO analysis activity. The type of categoriza-
tion (classical, conceptual, prototypical) highly



306

Book Reviews- CIT 1, 1993, 4, 303-307

influences the analysis. The Concepts section
of the book is concluded with discussion on key
abstractions that give boundaries to the problem
domain.

The second section (The Method), encompass-
ing Chapters 5, 6, 7, presents a methodology
for the development of complex systems based
on the object model. Chapter 5 introduces a
graphic notation for the OO analysis and design.
A notation is a vehicle for capturing the reason-
ing on the behaviour and architecture of a sys-
tem. The presented notation is largely language
independent, and exhibit multiple views. The
differences between logical and physical mod-
els, as well as between static versus dynamic se-
mantics, are explained. The existence of classes
and their relationship is shown by the class dia-
gram and the icon metaphor. All notionsregard-
ing the object model, and presented in the Con-
cepts section, are mapped into a set of graphic
icons. A basic notation set (“Booch Lite”) is ex-
panded to cover more advanced concepts like:
parameterized classes, metaclasses, class utili-
ties, nesting, export control, properties, physi-
cal containment, roles and keys, constraints, and
attributed associations and notes. A graphical
form is expanded by non-graphical specifica-
tions. The dynamics of the model is captured
in state transition diagrams, expanded with the
semantics of statecharts. However, even more
additional views are introduced through inter-
action, module, and process diagrams.

Chapter 6 examines the incremental, iterative,
process of OO analysis and design. Follow-
ing the first principles of a successful project
development, the author provides a description
of micro and macro developing processes. The
micro process captures the daily activities of
a programmer. [t involves the identification
of classes and objects, together with their se-
mantics and relationships. The milestones and
measures are clearly stated. The implemen-
tation phase is performed as late as possible.
The macro process serves as the controlling
framework for the micro process, and character-
izes the concern of the team technical manage-
ment. This process follows traditional phases:
conceptualization, analysis, design, evolution,
maintenance. Again, through milestones and
measures, validation criteria are established.

The pragmatics of OO development are exam-
ined in Chapter 7. No matter how sophisticated

the development method is, one cannot ignore
the practical aspects of a system design. In
this context, the author urges for strong leader-
ship, and stresses the following activities: risk
management (micro process is inherently unsta-
ble), task planning (weekly team meetings), and
walkthroughs (project reviews). The OO design
approach calls for careful staffing of various
development roles (project manager, analysts,
reuse engineer, quality assurance (QA), inte-
gration manager, documenter, toolsmith, and
system administrator). The interactive and in-
cremental process of OO development results in
releasing of multiple prototypes, hence release
and code reuse management are needed. In
complying with QA requirements, many tradi-
tional measures of quality are also applicable to
OO0 systems. The documentation of a system’s
architecture should include: the high-level ar-
chitecture, key abstractions and mechanisms,
and scenarios that illustrate the behaviour of
the system. OO development calls for a set of
tools with a richer semantics than traditional
(graphics-based editor, class browser, class li-
brarian, incremental compiler, sophisticated de-
bugger, etc.).

The third section, encircling 5 chapters, presents
a collection of five examples from diverse prob-
lem domains, to illustrate how the object model
scales up to a complex application. The de-
velopment of a software cannot follow the
cookbook style prescriptions, hence incremen-
tal approach is emphasized. The sets of ap-
plications embody data acquisition (weather
monitoring station), foundation class library
(domain-neutral collection of classes), client-
server computing (inventory tracking), artifi-
cial intelligence (cryptoanalysis), and command
and control (traffic management). The author
doesn’t present the complete implementation of
any problem, rather, he focuses on the analysis
and design phase, with enough material to indi-
cate mapping from abstraction to implementa-
tion.

The book is packed with supplemental material.
The appendix presents a brief overview of OO
programming languages. A glossary of com-
mon terms and an extensive classified bibliogra-
phy (structured into eleven domain sections) are
included. Cover pages provide a quick refer-
ence to the notation and process of OO devel-
opment method.



Book Reviews- CIT 1, 1993, 4, 303-307

307

In summary, this is one of a few books that
are fundamental to the complete OO analysis
and design domain. I found it informational,
inspiring, and interesting. It covers a lot of
ground that could be arranged in many differ-
ent ways. Current structure and contents would
best match the interest of a computer profes-
sional with proficiency in programming (most
likely in C, and some familiarity with C++),
who would like to employ the “object model”.
Those programmers who are knowledgeable in
C++, should have already mastered the basics of
OO analysis and design. The presented material
span vertically over several levels of granular-
ity, covering topics not equally appealing and
essential to both programmers and managers. 1
found my preferred pages in Chapter 3, present-
ing beautifully the three- dimensional universe

of discourse (objects, classes, and their rela-
tionship). An unrestrained recommendation of
the book for undergraduate or graduate courses
would need an expanded chapter on C++ placed
after Chapter 1, to serve as the common com-
munication coherency. Finally, I consider the
book as a necessity for every computer profes-
sional, and in particularly software developer.
It should not be placed on his/hers bookshelf,
but rather on the desk.

Nikola Bogunovié
Electronics Laboratory

R. Boskovié Institute
Zagreb, Croatia



