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Pattern recognition is an important branch of computer
vision and intelligent robotics. This paper explores lo-
cal curve theory for different pattern recognition appli-
cations: recognition of good handwritten symbols (Fig
1), analysis of the hierarchical structure of 2-D patterns
and simple 3-D object recognition. In the case of 2-D
patterns, our technique is compared with a recent related
method based on generalized Hough transforms and it is
found that it is more robust with respect to complex image
outlines.

1. Introduction

An understanding of the properties of curves
and surfaces based on differential geometry can
be used as an aid to visualization and recogni-
tion of simple image patterns. In the past, ge-
ometry has been applied to different aspects of
computer graphics and image processing. How-
ever, the simplest application of differential ge-
ometry is the study of curves and surfaces in
both local and global views. 2D-patterns and
3D-objects are always discerned by the human
observer in terms of their geometric character-
istics. For example, a triangle is perceived as
the end points of three lines linked with each

~

Fig. 1. We claim that these two handwritten triangles
are well defined, because their differential structures
have a weak likeness.

other. This implies that it must have three an-
gles. Therefore if a pattern has three vertices,
one may claim that it is a triangle (Fig 1).

A closed regular curve defines the shape of an
image, resembling a silhouette (Fig 2). Thus
a simple pattern can be determined by means
of its silhouette. The problem then reverts to
silhouette recognition by the description of its
outline.

Fig. 2. Image of A Silhouette of A

Before the theoretical discussion, it is of some
interest to note a related phenomenon that oc-
curs in daily life. When a vehicle travels along
a closed path with constant speed, the driver can
determine the shape of the path. For example,
he would feel a constant centripetal force if it
is a circle, or he could determine that it is an
S shape if he arrives back at the starting point
after experiencing a centripetal force changing
direction four times (Fig 3), from side to side. In
the case of a 3-D spatial orbit, this concept can
clearly be extended to 3-D object recognition.

The paper proceeds as follows: In the next sec-
tion, we introduce the mathematical underpin-
nings of 2:D recognition. This formalism is
also used for 3-D recognition. Section 3 illus-
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Fig. 3. * marks the points at which centripetal force
changes direction.

trates how the method recognizes handwritten
symbols with results of implementation. In sec-
tion 4, we discuss the generalized Hough Trans-
forms and related difficulties in distinguishing
very complex image outlines. Section 5 ex-
tends the formalism to 3-D object recognition.
3-D object recognition is generally more com-
plex than 2-D methods. The proposed method
attempts to link common characteristics of the
2D and 3D recognition problems. However, the
paper focuses mainly on 2D methods. The final
section presents our conclusions.

2. A Geometric Property of the Image
Set

2.1 Image Outline

The boundary of an image pattern is a simple
closed curve f(t) = (x(t), y(¢)), called the im-
age outline. Thus, f is a closed curve of period ¢
with f(p1) = f(py) if and only if p; — p2 = ng
for all integers n and ¢ is the smallest posi-
tive number with this property. The function
f: [p1,p1 + q) — R?is an embedding. In fact,
the curve is an immersion; that is, it satisfies
f'(¢) = df/dt # 0,Vt € [p1,p1 + q]-

To tackle the problem of different image sizes
and scales a reparameterization of a curve is nec-
essary. For an image outline «, the arc—length
function s : [p1,p1 +q] = R,

)= | " o )

1
is a diffeomorphism s : [p1,p1 + ¢] — [0, 5],
where S is the length of a. (A differentiable
map ¥ : M — N is a diffeomorphism if there
is a differentiable map ® : N — M such that
®o¥ = Jand Vod = I, where [ is an identity).

for0<t<gq

Thus the image outline f = a~! is parameter-
ized by arc length of «, so s = / g‘d.’w
0 dw
for s € [0, S]. By the fundamental theorem of
calculus, we have
d )

B df‘d B df‘at _
Ll P

that is,
df

ds
Thus the velocity vector field df/ds is a unit
vector field along the outline, as it T, where T
is the unit vector in the direction of the velocity
vector.

A curve f : (a,b) — R? is unit speed if
|df/dt| = 1. Foraunitspeed curve f = f(t), the
arclength ist —ty. Above ¢y was chosen to be 0
(so that s = ¢t) and we can write f as a function
of s. Any regular curve can be reparameterized
and this does not change the geometric prop-
erty of a curve since each image outline can be
expressed in terms of a unit speed curve. Its
tangent vector field is a geometric property.

Theorem. Letf : (a,b) — R? be regular curve
and let g : (c,d) — (a,b) be a reparameteri-
zation. Defineh = fog. Ifty = g(rg), the
tangent vector field T of £ at ty and the tangent
vector field S of h at v satisfy S = +T.

Proof.
S

(dh/dr)/(|dh/dr])

= (df/dt)(dg/dr)/(|dE/dt||dg/dr])
=T+ (#1) = £T.

Ifdg/dr > 0, it means that particles are moving
along the image curve in the same direction; if
dg/dr < 0, they move in opposite directions.

2.2 Interpretation of the Image Set

Curvature defined as k(s) = |T’(s)| in a unit
speed curve f(s) measures the amount of cur-
vature. Thus if two image outlines are similar,
their rates of directional change of tangent field
must be similar as well. This can be determined
from the principal normal vector field. (Note:
Stein and Medioni (1992) reported their method
of structural indexing. This is similar to our
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method, besed on the utilization of geometric
features of the image outline. The basic dif-
ference is that structural indexing looks for the
change of angle between neighboring segments,
not a complete image outline).

Definition. The principal normal vector field to
a unit speed curve f(s) is the unit vector field
N(s) = T'(s)/k(s). The binormal vector field
tof(s)isB(s) = T(s)xN(s). The torsion of f'is
the real-valued function 7(s) = —B/(s) - N(s).

Since the image outline is immersed in a plane,
7(s) = 0. Suppose there are two outlines f;
and f;. Note that the outlines may be differ-
ent sizes, but they must be reparameterized.
Let £(s) be a real-valued function describing
a threshold for a group of similar images; in
some cases &(s) could be a constant function.
Thus the images belong to the same group if
IN1(s) — Na(s)| < e(s). However, the for-
mula only considers a point, not the neighbor-
hood of a point on the outline. So let § be a
real constant. Two images are similar to each
other if, for each s, there exists s, such that
IN1(s1) — Na(s2)] < e(s) and |s1 — s3] < §
where s1, s belong to the domains of two out-
lines f; and f,, respectively.

In Fig 4, suppose &(s) is a constant. Clearly,
this is incorrect if [Ni(s) — Na(s)| < &(s) at
point s = p and s = ¢. Therefore £(s) should
be defined as:

g1, ifse(p—46,p+96),

e(s) =4 e, ifse(qg—=6,q+46),

€3, otherwise,
where 6, 21, &7 and &3 are real constants.
These values form a set of thresholds for tak-

ing a decision about whether an image outline
matches the symbol “V”.

Fig. 4. It is obvious that [N;(s) — Na(s)| < constant,
except in the neighborhoods of points p and q.

Alternatively, analysis of the local minima and
maxima on z(s) and y(s), £ = (z(s),y(s)),
yields the number of convex segments (Fig 5).
This can be done using f'(s) and f’(s). A con-
vex segment is a finite curve such that it lies
on one side of each tangent line. Convex seg-
ments provide no information about directional
change along a curve, and thus it is necessary
to note the position of each convex segment on
f(s). This follows a similar principle to the
above and simplifies implementation.

Apart from the rate of change of the tangent
vector, a global property of curves that also in-
volves local curves is related to the derivative
of curvature. A vertex of a curve is a point such
that &'(s) = 0. Clearly a circle has no vertices.
However, a non—circular ellipse has exactly four
vertices, these being the points where « has a
local maximum or minimum (Spivak 1979).

Recognition of a simple handwritten “A” is con-
sidered in Fig 6. An image outline vertex is
defined as a point s such that x(s) > ¢ and
k'(s) < ¢, where k(s) is the curvature of the
outline (the definition differs from Spivak 1979)
and ¢ is a threshold value for the determination
of a vertex. Clearly, an “A” has 5 outline ver-
tices. Each segment curve of the “A” between

=<

Fig. 5. Convex segments provide partial information about the image outline.
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Fig. 6. Samples of a handwritten “A”. Symbol * indicates the outline vertices.

two vertices has to be reparameterized by s such
that the length is 1 unit. The aim is to standard-
ize all segments of the image outline of “A”
so that corresponding segments can be com-
pared. Note that the unit lengths of segments
within a single shape cannot be compared. Our
main concern is with differential structure. Af-
terwards, the whole image outline is reparam-
eterized again by the total unit length, and the
problem reverts to the one in Fig 4, i. e. to find
the threshold function (s) for a group of letters
“A”. Note that £(s), § and ¢ can be found by
recursive training on a set of similar primitives.

2 3 Hierarchical Structure of 2-D Patterns

Differential structure provides partial, but cru-
cial, information about handwritten letters. For
complete characterization of the letters, the
length ratios and coordinate frames must be
considered. We define the curve segment as
a partition of the image outline between two
neighboring vertices. Thus the length ratio is
given by the length of a curve segment divided
by the length of the longest curve segment. This
idea applied to a group having similar differen-
tial structure can further classify the group into
subgroups.

The primitives “H” and “I” have the same prop-
erties in differential structure. The distinctions
between them are length ratio and their orienta-
tion in the coordinate frame. If the referenced
coordinate frame is rotated, the number of local
extrema on both z(t) and y(t) [image outline
f(t) = (z(t),y(?))] changes. It appears that
f(t) is dependent on the coordinate and it is
useful to the classification of pattern orienta-
tion, such as “6” and “9” or “X” and “+”. Fig. 7
shows the hierarchical structure of patterns. The

hierarchical structure provides the main infor-
mation for pattern recognition.

3. Implementation and Results

This section discuses the above idea for digi-
tal implementation. Fig 8 shows three scanned
handwritten symbols with 150 dots per inch
(DPI) resolution. ~ The video images (16
gray levels) are segmented using the correla-
tion thresholding method (Brink 1989), and
enhanced by removing noise (Gonzalez and
Woods 1992). After the preprocessing, the pic-
tures have only two values (black and white)
and each picture has only one image primitive.
Our discussion begins with given such image
primitives. (Note: For convenience in later dis-
cussion, the left image of Fig 8 is named boy!,
the middle named boy2, the right named boy3).

Fig. 7. Hierarchical Structure of Patterns
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Fig. 8. Three handwritten boys

3.1 Contour Tracing

An image outline is a description of an ob-
ject’s boundary; e. g. a series of black points
on the boundary of a white object against a
black background. The algorithm can be found
in Stallings’ paper (1977). Keeping the black
region (object) on the right hand side, we pro-
ceed tracing along the outline of an object from
point to point, turning left after encountering a
while point and right after a black point. This
is depicted in Fig 9. Fig 10 shows the result of
detecting the boundary of boylI.

3.2 Digital Differential Calculus

The digital image outline then is f(t;) =
(z(t;),y(t;)), where ¢; is an integer. Then the
numerical formulas for normalized first and sec-
ond derivative of the function f(¢;) are given by:

O O—-0 O0*0 0 0O
aed e Bew o
34—. E B B :—’D
I—P: HE ®B O O O

Fig. 9. Contour Tracing

Note that the vector (z'(t;), ¥/(¢;)) is a unit vec-
tor.

3.3 Reparameterization and Error

The method of reparameterization is to use
r'(t;) = 0and y (t%) = 0 (or in terms of d1g1tdl
calculation —§ < z'(¢;) < 46, —6 < y'(t;) <

+6) so that corner points can be found to ad-
just the parameter of each segment between two
neigbouring convex points or corner points. The

Fig. 10. Detecting the image outline of boy!

:L',(ti) — ( 't+1) ( )
V(@ (tie1) — (ti-1))* + (y(Ein1) — y(ti-1))?
104 — Y(tiv1) — y(ti-1)
it V(@ (tie1) — z(ti-1))? + (y(tie1) — y(ti-1))?
x(tiv1) — z(t:) B wlt;) — m(ti-1)
(1) = V(i) — 2(t:))* + (y( z+1) y(t:))? V(&) — 2(tim1))* + (y(t:) — y(ti-1))?
" tirt) — o(tic)\2 | (y(tin) — y(tii1))2
\/ D) (M)
y(tin) — y(t:) B y(ti) — y(ti-1)
J (k) = V(@ (tin) — 2(t:))* + (y(¢ m) y(t@-))2 V() — z(ti—1))® + (y(t:) — y(ti-1))?
1 \/(CE( i+1) 1))2+ (y(tm) = y(ti—l))z
2
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11.a: leoyl(si} — Nboyz(si” = E(Si) 11.b: |Nb0y1(3i) - Nbcy3(3i)| — E(Si)

Fig. 11. Point comparison

convex points correspond to curvature # 0. De-  ence between two unit vectors so the vertical
tecting the corner points is still a problem (Teh  exis shows the error value which is between 0
and Chin 1989) (Rattarangsi and Chin 1992), and 2. The horizontal axis gives points along
although in our examples the corner points are  the image outline appropriately scaled (about
obvious with respect to the scale. 2000 points). It appears that some error values

. are quite high due to the legs and arms of the
higs iz and Slbyshows images boys having different angles. As men-
|Nboy1(si) — Nboy2(s:)| = €(s:) tioned before, setting different error values for

these regions is necessary.

and
Nboy1 (i) — Nooya(s:)] = e(s1). Using the concept of neighborhood,
Note that the etror is obtained from the differ- mjin{\Nboyl (8:) — Nboy2(55)|} = e(s4)
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12.a: min{[Nooy1(s:) — Nboy2(8:)[} = &(s:) 12.b: min{[Neoy1 (s:) — Nooy3(8:)|} = £(4)

Fig. 12. Neighborhood comparison
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and
1'[]5111{|Nboy1(3i) — Nooy3(s;)[} = e(s:)

where s; € (s;_s,8;45). We obtain better re-
sults as shown in Fig 12a and 12b.

In order to classify the patterns of the three boys,
we can set the ¢ functions in accordance with
[Nboy1 (i) — Nanyboy (8:)| + &, where § is a small
value corresponding to the change in the arms
or legs of a boy. For example, to distinguish
boy3 with arms raising from boyl and boy2
with arms not raising, ¢ function should be set
as [Npoy1 (i) — Nboy2(8;)| + 6. If a boy has only
one arm, so that its number of convex points is
different to that of a boy with two arms, this pri-
mary information filters out disabled boys (i. €. a
leg orarm). Considered with general techniques
of pattern recognition, distinguishing different
image patterns is easier than grouping similar
patterns.

Our method was applied to a practical appli-
cation of the automated vote counting prob-
lem with emphasis on the application of pat-
tern recognition. We successfully identified
simple vote markings such as crosses (“X” and
“+7), ticks, circles, rectangles and asterisks (Lui
1992). Fig 13 illustrates two different samples
of ballot sheets.

4. Related Work: Generalized Hough
Transform

A shape matching technique based on the
straight line Hough transform has been de-
scribed by Pao et al (1992). Conceptually, each
point in @ — p space corresponds to a line that
is tangent to the curve. A second transform,
which is a signature of the shape, is computed by
measuring the perpendicular distances between
pairs of parallel tangent lines. To recognize a
test object, it is only necessary to compute a 1-D
correlation of the signature with the normalized
reference signature.

In contrast with the above method, our method
is concerned completely with geometric feature
extraction. It is proved that a continuous closed,
smooth curve is indeed uniquely characterized
by its complete set of tangents (Pao et al 1992).
This, in turn, is a problem of understanding the
set of tangents. We have presented it as the
interpretation of geometric properties.

The Hough transform method has the same ad-
vantages as ours, such as position, orientation
and scale independence. Another advantage of
the Hough transform approach is the use of cor-
relation for recognition based on 1D vectors in-
stead of 2D templates. In our method, the corre-
lation of k() can be used to describe the match-
ing. However, it is better to use the ¢ function

Fig. 13. Examples of ballot papers (scanned image)
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because the image outlines have been standard-
ized in rough. Furthermore, the ¢ function can
highlight some critical sections for recognition.

Since each point in  — p space corresponds to
a line that is tangential to the curve, the Hough
transform method will suffer difficulties when
the image has many shape outline vertices or
high curvature. Many overlapping lines will
result in the § — p space, possibly affecting the
correlation test for recognition of the object (Fig
14). With the method described in this paper,
more vertices simply provide detailed informa-
tion and thus it works well since a computer pro-
gram can detect the outline vertices efficiently.

Fig. 14. The outline of an asterisk image contains many
outline vertices, which result in more curves after
Hough Transformation.

One major disadvantage of this method is recog-
nition of a bad handwritten pattern. The prob-
lem is obviously that bad handwritten patterns
change geometric shape locally, but the global
structure would be the same. Part of our on-
going research is to use differential topology
(Brocker and Janich 1982) to understand the
structure of patterns.

5. Mummy Method

This section shows the linkage of the previous
2D method with 3D object recognition. The
simplest method for identification of a 3-D ob-
ject exploits its three orthogonal profile views:
front view, side view and back view. Each view
becomes a 2-D pattern recognition problem sim-
ilar to those above. However, given a 3-D ob-
ject, how do we define the “front view”? (Note:
once the front view is known, the top and side

can be determined by their orthogonal relation-
ships). This problem is crucial since the front
view of an object should be comparable with
the corresponding view of any other object, al-
though in certain cases, especially complicated
objects, a single significant angle of view can
decisively identify the object, for example the
front view of a human shape. One possible
choice of front view is that view which has
maximum area enclosed by its profile bound-
ary outline.

People used to think that the earth was flat.
Later, through observation and calculation, they
determined that the earth was round. Similarly,
general relativity pointed out that the univer-
sal space was neither flat nor 3—dimensional,
but curved and 4—dimensional. The problem
of object recognition parallels these examples.
Curve theory applied to 2-D pattern recognition
can be extended to 3-D cases. Object recogni-
tion can be formulated in terms of recognizing
a long, helix-like curve around an object’s sur-
face (like wrapping a mummy). In this section,
we propose the “mummy method” whereby a
finite curve encapsulates the 3-D shape.

The mummy method can be thought of as us-
ing a long line wrapped spirally round an ob-
ject. Thus, the line looks like a helix (Fig
15). An object is a 2-D manifold M 4mbed-
ding in R>. Let f : R — R? such that
f(t) = (x(t),y(t),ht) € M, where A > 0.
This is called a right helix. (If h < 0 it would
be a left helix).

Fig. 15. A helix-like curve around an object’s surface,
like wrapping a mummy, can provide sufficient
information about the object.

The starting point for wrapping an object
should be chosen at one end of the longest
axis through the object. Set the longest axis
as z axis. Thus a starting point will be a
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(x(t),y(t),0). £(t) is found by contour trac-
ing at each constant level of z—axis. Each
contour tracing of f(x(t),y(t),h), where h
is constant from O to the length L of an ob-
ject along z—axis, is different from 2-D since
the data is sparse. We make an assump-
tion that the mext point (z(tn+1),y(tn+1), h)
is the nearest point of (z(t),y(t),h) and it
is not the same as previous detected pointed,
i . (2(tne1), Y(tnar), B) & {(@(tn), yltn), h),
(2(tn=1); ¥(tn-1), h)s...}. Once it finishes a
circular route, h will increase to another layer
until it reaches the final value of the longest axis
z. Although the discrete version of f(s) being
{£(s0),£(s1), ..., f(sn)} = {(z(to),y(t0),0),
( ( ) ( ) ) "'3(m(tlo)ﬂy(tlo)so)a

( ( ) ( ) ),...,(x(th),y(th),l),...,
(z(41,),y(t,.), L)} could not be easily visual-
ized as a helix-like curve, it in fact is a high—
looped helix. Note f(s) is a finite curve. Dif-
ferent helix curves can be compared with each
other if we reparameterize the h(s) of f(s) ina
unit.

Once f(s) is found, the problem is similar to
the previous sections. In Fig 16, we plot the re-
sulting reparameterized curves z(s) against for
a sphere and a cylinder, respectively. The two
curves clearly reflect the geometric shapes of
the sphere and the cylinder. Most importantly,
f(s) is not dependent on any coordinates.

Although the mummy method is appealing as
it is a simple way to analyze an object, the ap-

-

L
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400 600 800 1000 1200

16.a: Curve z(s) on sphere

proach must have three dimensional image data.
Besel and McKay (1992) propose a general pur-
pose method for registration of 3-D shapes in-
cluding free—form curves and surfaces. Their
free—form shape matching method is very use-
ful as a part of our method.

6. Conclusions

An image file consists of discrete data. A the-
ory based on the assumption of continuity may
yield an incorrect result. This happens mostly in
the theory of image processing, such as Fourier
transformation, gradient operations and the like.
Certainly it can be solved by numerical analysis;
however, it complicates the whole implementa-
tion.

We have indicated some conclusions and limita-
tions in the'previous sections. The future work
regarding this approach is twofold. Firstly, the
combination of the geometric properties and dif-
ferential topological structure of bad handwrit-
ten image primitives is our main current interest.
One can write a letter in diverse ways; however,
the differential topological structure of a set of
“A”s is preserved.

Secondly, the mummy method could be ex-
tended to the recognition of complex objects.

T

5H

AU

o 200 400 600 800 1000

16.b: Curve z(s) on cylinder

Fig. 16. Both curves reflect the geometric shapes of the sphere and the cylinder.

1200
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It is important to notice that, (Seibert and Wax-
man, 1992), the popular approach of 3-D recog-
nition system based on the imagery is to hypoth-
esize an object using view information. It then
generates the object’s expected appearance in
order to test the degree of matching. We would
like to combine the idea of the mummy method
and the knowledge—based model to develop our
method from 2-D views.
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