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In this paper the digital system simulation program pack-
age ATLAS (Advanced Tools and Languages for micro-
processor Architecture Simulation) is described. Differ-
ent software modules, parts of ATLAS are developed:
COMPAS — COnfigurable MicroProcessor Architecture
Simulator, CONAS — CONfigurable ASsembler, ADEL
— Assembler DEscription Language, COMDEL — COM-
ponent DEscription Language and SYSDEL — SYStem
DEscription Language. The simulator COMPAS and its
implementation are explained in more details. The digital
component description language features are given.

1. Introduction

The process of designing digital components
and systems always has the same goal - achiev-
ing good characteristics of a system irrespective
of its intended use. It means: high speed, high
accuracy, high efficiency, high reliability, low
price etc. The designer’s scope of interestis lim-
ited to some of these characteristics, influenced
by technology, architecture of components and
architecture of the system. The designer can
only choose one of the existing technologies, but
the designer’s knowledge and skills will have
great impact concerning the architecture. For
success on market, it is not enough to offer a
good product, but also to offer it before other
manufacturers. Different tools are used by de-
signers to decrease design time and expenses.

The great complexity of digital systems and the
behaviour dependent on events in its environ-
ment make behaviour prediction almost impos-
sible. Analytical solution of these problems can
be far too complex and, on the other hand, pro-
totyping is expensive and inflexible. A widely

accepted and compromise method is simula-
tion. Simulation allows great modelling flex-
ibility and later changes are easy to make. An
experiment may be repeated numbers of times
with the same or different parameters. Accuracy
depends on how detailed model is made and,
naturally, on the possibilities of the simulator
itself. The main disadvantage is low simulation
speed.

Many digital system architecture simulators
have been developed. The architecture is de-
scribed through special hardware description
languages (HDL) which are also developed
in great number (AYLOR et al. 86). Except
for simulation, HDLs are used for other pur-
poses: documentation, fault simulation, syn-
thesis etc. HDLs are adapted for different pur-
poses and their advantages and disadvantages
descend from this fact. For example, ISPS sup-
ports a wide range of applications (BARBACCI
81), VHDL is simulation-oriented (LIPSETT et
al. 86) etc. Some general purpose languages
like Flat Concurrent Prolog (DOTAN et al. 90)
can be used as HDLs. Today, VHDL is impos-
ing itself as a standard (LIPSETT et al. 86).

The hardware can be described in two opposite
ways: the structural description and the behav-
ioral description (AYLOR et al. 86). Different
HDLs can support only one approach or both
of them or all levels between them. The scope
of hardware can also be described on different
levels — from the transistor level to the system-
level. Many HDLs often-allow a simultaneous
description on different levels.
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The main requirements on simulators are:

— simple usage from the user’s point of view,
— great flexibility in hardware description,

- high simulation speed.

Simple usage means that the HDL should be
readable, understandable etc. The simulator
should have a user-friendly interface (windows,
icons, graphical result representation etc.).

Flexibility is mostly dependent on the HDL and
means that different levels of description should
be allowed, together with the precise timing de-
tails, the user-defined data types etc. (AYLOR
et al. 86) (KOSMAN et al. 85). Additionally, the
language must enable new approaches in hard-
ware design.

Simulation speed is very important, especially
today, when hardware complexity constantly
grows. Besides it is usually necessary to per-
form the simulation several times in order to
balance different values in the system so that
better performance is achieved.

Unfortunately, writing simulators is trade-off.
For example, if we want a detailed description
itis not possible to have a high simulation speed,
nor a simple HDL.

One of the problems in the processor design
is the selection of instruction set, registers and
communication protocol of that processor. In
designing other kinds of components, or the
whole system, different elements will be rel-
evant. Since the processor is the central and
the most important component in the system, it
must be designed very carefully.

Our intention was to concentrate on the proces-
sor simulation. Because processor is the most
complex component, other components can be
simulated automatically. The simulator is imag-
ined as an auxiliary tool for designing digital
system and its components, especially in the
first stages of development and logical model
testing. Performance measurement and system
study are also supported. Designing special
purpose processors is very specific. The prob-
lem solving algorithm must be effectively im-
plemented in the microprocessor’s architecture.
This leads to unconventional solutions suitable
for only one problem. Simulation could be of
great help in that kind of design.

The conception and design of the simulator,
together with the definition of the HDL were

guided by our requirements and by the class of
problems that we want to solve.

Impractical hardware description on the gate-
level, due to the growing hardware complexity,
was noticed long ago (ARMSTRONG et al. 80).
Regardless of that fact, almost all HDLs allow
the gate-level description. That is, of course,
justified, because the internal fault simulation
or the hardware synthesis demand the gate de-
scription level. For processor behaviour sim-
ulation, and that was our need, the description
level is set to the definition of registers, pins and
component’s behaviour. The universal concep-
tion of connecting the components by buses is
chosen as the basic model of the digital system.

Timing description and signal modelling do not
need to be precise, like in the gate-level simu-
lation (D’ABREU 85). In the extreme case, that
kind of description is not necessary.

Two main methods are considered in the devel-
opment of the simulator: the compiler-driven
and the event-driven method. The latter is in
use in more recent simulators. Arguments pro
and con those methods are usually given for the
gate-level simulation, because both methods are
developed for it. For the processor-level simula-
tion many of these arguments are not applicable.
The main advantage of the event-driven tech-
nique is the evaluation of only active elements.
In the gate-level model, the activity is about
10-15 percent (D’ABREU 85). The elements in
the processor-level model have a different na-
ture. Although activity could be the same as
in the gate-level model, the inactive processor-
level elements consume less time than active
ones. The compiler-driven methods use very
simple and fast simulation engine because fixed
delay or zero delay is assumed. Regression in
speed descends from evaluating all the elements
in the model. The other deficiency is unsuitable
modelling for the asynchronous design.

Following our requirements we have developed
a method which contains some new elements
together with the elements of both compiler-
driven and event-driven technique. Similarly
to compiler-driven simulation, all the compo-
nents in the system are evaluated. For zero
delay case, an operation similar to scheduling
in event-driven simulation is performed. Inac-
tive components enter the so-called wait state,
and become active again when particular event
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on the bus occurs, or after specific time interval
elapses.

One of the most important requirements on sim-
ulators, and its bottleneck, is the simulation
speed. The speed could be increased in dif-
ferent ways — through software by different
implementation of algorithms or by using bet-
ter ones, or through hardware by using faster
machines. Some authors have proposed that
holding by some rules during the modelling
could significantly contribute to the simulation
speed (MICZO et al. 87). Another authors have
proposed compiling techniques which will pro-
duce an architecture-specific simulator, based
upon the HDL description. A step beyond is
the inclusion of the program (which we want to
execute on the model) in the compiling process.
This results in not only an architecture- specific
but also a program-specific simulator (SIEGELL
et al. 87). For really complex systems, today,
the only acceptable solution lies in the use of
special purpose computers called hardware ac-
celerators. They could achieve speed-up im-
provements of about 10,000 times over software
simulators. In our simulator, a part of speed-up
is accomplished by a chosen level of description
which reduces the number of components for
the description of the whole system from several
millions to just a few of them. The speed-up,
naturally, does not have the same proportion,
because the components in the processor-level
model are much more complicated than in the
gate-level model.

ATLAS — Advanced Tools and Lan-
guages for microprocessor Architecture
Simulation

The program package ATLAS is developed,
with concern to the requests stated in the pre-
vious section. ATLAS is designed as a set of
software tools, mainly oriented toward the sim-
ulation (see Fig. 1). ATLAS is developed in the
C programming language on the UNIX operat-
ing system. The simulator COMPAS and the
assembler CONAS are developed as ATLAS’s
tools. In the future, we plan to add some new
tools to ATLAS (e.g. performance analysing
tools).

CONAS (CONfigurable ASsembler) will be de-
scribed briefly in this passage. CONAS is a
meta-assembler and its configuration is defined

by a special file written in ADEL (Assembler
DEscription Language). ADEL file contains a
mnemonic language description, together with
the description of its translation in the machine
code. Inputs to CONAS are ADEL file and
source code which must be written according
to the rules set in the ADEL file. Outputs from
CONAS are print version of the source code and
the absolute machine code. Machine code may
be directly loaded into the COMPAS simulator.

COMPAS — COnfigurable MicroProcessor
Architecture Simulator

COMPAS is digital system simulator on the
processor-level, the memory level and other
high complex components’ levels. As it is
mentioned before, the conception of connect-
ing components by buses has been chosen.
Each type of component is described with the
COMDEL file (COMponent DEscription Lan-
guage). COMDEL is a high level procedural
language without concurrent facilities. The

~ concurrent execution is achieved on the sys-

tem level. The system is described with the
SYSDEL file (SYStem Description Language).
SYSDEL describes the connections between the
components in form of a net-list. Thisis the only
part of the description which contains structural
data. The components are interconnected with
the buses transferring data or signals.

There exist two versions of ATLAS — one for
simple text-terminals and another for X Win-
dow System. Both versions have the same
basic facilities, but due to the different work-
ing environment each version has some specific
abilities. For example, in the text version it is
possible to use both COMPAS and UNIX com-
mands, and the other tools are executed like
UNIX commands. So, operating with the simu-
lator is similar to working with the UNIX shell.
In the X11 version it is possible to run several
ATLAS tools at the same time. Also, most of
the COMPAS commands from the text version
are still available, except those that are in con-
tradiction with the GUI. Of course, in the X11
version all commands are intended to be given
through menus, pop-up windows, buttons etc.
X11 version has some additional possibilities
(related to displaying of the model state dur-
ing simulation) that are impossible in the text
version.
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Fig. 1. Program package ATLAS
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COMPAS is divided in the shell, used for com-
munication with the user, COMDEL and SYS-
DEL analyzers, and the simulator itself (Fig.
2). The simulator consists of the simulation en-
gine and the subroutines for the execution of
the COMDEL statements. In fact, the simula-
tion is performed by the interpretation of the
COMDEL statements. Since the COMDEL
statements describe the component behaviour,
it would be necessary to analyze each state-
ment before its interpretation. This proce-
dure could reduce simulation speed, since the
COMDEL statement level is very high. To
avoid such problems during COMDEL analy-
ses, each COMDEL statement is translated into
one or more low level instructions (LLI). There-
fore, COMDEL analysis is performed only once
— when the model description is being loaded
in the simulator. LLIs perform simple actions
like take/put value from some location, condi-
tion evaluation, unconditional jump etc. LLlIs
are adapted for simulation engine so that the
interpretation of LLIs can be direct and fast.

Although in a real system all its parts work
in parallel, the simulation is performed on a
uniprocessor computer. For that reason, all ac-
tions defined as concurrent are executed sequen-
tially. To simulate parallelism, we make time
discretisation: the smallest time unit is a quar-
ter of clock period. We have called this time
unit bus cycle (BC). At first sight, such discreti-
sation seems to be insufficient, but in practice,
for given description level, different commer-
cial microprocessors are described with great
accuracy.

The simulation engine takes care of pseudo-
parallel simulation. Each component has its
own behavioral description as the array of LLIs.
The pseudo-parallel simulation is accomplished
through the interpretation of LLIs for every
component in every BC. The order of interpre-
tation inside BC is expected to be random, the-
oretically. For convenience and higher speed
this order is fixed and identical with the order of

declaration of the particular components in the
SYSDEL file.

The interpretation of one BC is performed in a
number of steps:

1) All LLIs for all components are interpreted
for the current BC.

2) Only the components in so-called wait
state are evaluated in the second step. The
component enters the wait state by executing
COMDEL’s wait statement equivalent in LLI.
The component leaves the wait state when con-
dition (e.g. change on bus etc.) connected to
the COMDEL’s wait statement is fulfilled. The
second step determines which components will
stay in the wait state, and which will leave it.
For the components that leave the wait state, the
remaining LLIs (if any) for the current BC are
interpreted.

3) In the last step different flags are inspected.
These flags signal the occurrence of error, the
simulation interrupt request etc. The data in the
bus descriptors are updated as well as the data
connected with the statistic collection and time
measurement. After this step the whole proce-
dure (from step 1 to 3) is repeated for the next
BC.

2. Data organization

All data about components, registers, variables,
pins, buses, and other data necessary for the
simulation are stored in separate data structures.
Because the number and values of these data
are not known in advance, all data are stored in
linked lists. The elements of the lists are de-
scriptors and different information (e.g. name,
state, width in bits etc.) are stored in it. Each
component, register etc. has its own descrip-
tor. During the simulation, data fetching from
lists is not performed by using any kind of list
search. Because data fetch is a very frequent op-
eration, lot of simulation time would be spent
on searching. To avoid that, pointers are used so
that data could be fetched directly. The values
of pointers (addresses) are determined during
the COMDEL and SYSDEL analyses.

COMDEL — COMponent DEscription
Language

Each type of component that we use in the
system (the model) must be described with a
COMDEL file. COMDEL file is composed of
several blocks: definition of registers, defini-
tion of variables, definition of pins, initialization
procedure, user-defined procedures and run pro-
cedure. Formal syntax of COMDEL is given in
the APPENDIX.
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The register and variable definition blocks have
the similar meaning as the definition of global
variables in general purpose programming lan-
guages. The registers are intended for the de-
scription of data containers and buffers in a com-
ponent, e.g. user-accessible registers of the pro-
cessor, memory locations etc. The auxiliary lo-
cations like the internal registers, the temporary
containers, the counters and the other locations
that are used just for the description of a compo-
nent rather than being its part, should be defined
as variables. The COMDEL segment from ex-
ample 1 shows possible register and variable
definition blocks for some hypothetic proces-
SOfr.

The pin definition block is used for the compo-
nent interface definition. The pins are used in
the SYSDEL file to connect the components on
buses. In the example 2 pin definition for the

registers {

hypothetic processor from the first example is
illustrated.

Previously described blocks are declarative and
others are executable. The component initial-
ization is described in the initialization proce-
dure (the so-called init block). The init block
will be executed when we give the init command
from the COMPAS shell. The actions defined
in the init block can be viewed as the compo-
nent behaviour in the moment when power is
connected to it. Typical init actions are: putting
initial values in registers and variables, discon-
necting or taking control over buses etc. The
init block for the component from first two ex-
amples is shown in example 3.

The run procedure is the main block in COMDEL.
When run command is given from COMPAS
shell, simulation begins via interpretation of run

/*** Register names ADR, DATA, PC ... are arbitrary ***/
ADR [ 41 /.16./, // array of four 16-bit address registers
DATA [ 8 ] /.32./, // array of eight 32-bit data registers
PC [ wlB // 16-bit program counter
SP Lal6 // l6-bit stack pointer
STAT J+ P75 // 7-bit status register (flags)

'y

variables {

AR /.16./, DR /.32./, // internal address (AR), data (DR)

IR, 7432/, // and instruction (IR) register
counter_1 /.16./, // auxiliary counter
temporary /.32./; // temporary storage
}
Example 1. Register and variable blocks for hypothetic processor
pins {
/*** "Data" buses *%%/
D /.32./, // 32-bit data bus
: B Lwlbed // 16-bit address bus
/*** Signal lines (buses) *%*%/
AS, // address strobe
DTACK, // data transfer acknowledge
INT, // interrupt request
INTACK; // interrupt acknowledge
}

Example 2. Pin block for hypothetic processor
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//***%% Put 0 in DATA & ADR register arrays.

let counter 1 = 0;
while ( counter 1 !== 8 ) {
let DATA [ counter 1 ] =

0
let ADR [ counter 1 /.0..1
inc ( counter 1, counter 1
}
//**%%x% Initialize PC, SP & STAT
let PC = 0;
let SP = 65535;
let STAT = 0;

//*%*%% Put buses D, A, DTACK & INT in HIGH IMPEDANCE

disable D,A,DTACK,INT;

//**x*%%* Put buses AS & INTACK in the inactive (low or 0) state

let AS = 0;
let INTACK = 0:

Example 3. Possible init block for hypothetic processor

blocks in all components present in the sys-
tem. Hence, statements in run block describe
the component behaviour. For the component
description, besides run block, user-defined pro-
cedures can be used. The procedure execution
can be called from the run block or other proce-
dures. The example 4 describes the typical run
block of some processor.

Procedures have the same form as init or run
block. The example for a procedure will be the
description of a memory read bus protocol for
the hypothetical processor from the previous ex-
amples. A simplified bus protocol is described
in figure 3.

The processor controls the buses A and AS and
the memory controls DTACK and D. All sig-
nals are active in the high level. The normal
memory read cycle takes two clock periods (TO
and T1). For slow memories, wait states (Twait)
may be inserted between TO and T1. The buses

run {
forever {
call fetch_instr;
call exec_instr;
call chk_int;

TO Twait T1 TO

clock -_\ / \_ \_..
A — —

as LM S
p {0

Fig. 3. Bus protocol for example 5

are approached via the pins connected to them.
In this example the pins and the buses are given
the same names for convenience and simplicity.
On the clock’s falling edge the address is put

// call subroutine for instruction fetching
// call subroutine for instruction executing
// call subroutine for interrupt checking

Example 4. Typical run block for hypothetic processor
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on address bus A from internal address register
AR. One BC later, the processor signalises to
memory that the address on A is stable. This is
accomplished by putting the signal AS in high
level. The memory’s task is to put the data on
the data bus D and to signalize the valid data
on D with the DTACK signal. The processor
checks the DTACK signal on every next falling
clock edge. If DTACK is inactive (low) Twait
states are inserted. Otherwise, the current clock
period is T1 and the data from D bus are loaded
in the internal data register DR. On clock’s ris-
ing edge in T1, the signal AS is deactivated
and the next memory read/write cycle can start.
The procedure for the described memory read
bus protocol is given in the example 5.

About 80 statements and arithmetical-logical
functions (ALF) are available for use in exe-
cutable blocks. COMDEL has usual control
flow statements (if, if-else, switch, while etc.)
which allow a great freedom in component be-
haviour description. Another type of statements
are the synchronization statements. They are
used for internal and external synchronization
of components. Some special statements con-
nected with the simulation flow control are im-
plemented, and also the statements used for
trace mod execution, using breakpoints and col-
lecting statistical data.

ALFs simulate the behaviour of ALU. Arith-
metical functions (e.g. add, sub, neg, dec, inc
etc.), logical functions (e.g. and, or, xor, not
etc.) and shifting and data testing (test and par-
ity) functions are implemented. If we want so,
ALF can have influence on predefined flags (e.g.

read mem {
on ( fall( clock ) );
let A = AR;
on ( low( clock ) );:
let AS = 1;

carry, overflow, sign etc.). These flags are de-
fined in each component and can be used for
describing the user-defined flags.

SYSDEL — SYStem DEscription
Language

After describing the components with COMDEL
files, we can describe the system with the SYS-
DEL file. In SYSDEL we can determine the
clock frequency. At least one component must
be declared and name is associated with each
one of them. Each component has also its type
which is determined with the COMDEL file
name. The last part of SYSDEL is used for
bus definition and for connecting components
on buses. Because the SYSDEL file is relatively
simple, the complete example is given (exam-
ple 6). Formal syntax of SYSDEL is given in
APPENDIX.

Suppose that the hypothetical processor from
previous examples is described in the COMDEL
file “processor.cdl” and that there are two more
files describing the memory unit and the i/o unit.
In SYSDEL we refer to COMDEL files in order
to determine the type for each component and
the instantiation of each component is accom-
plished by defining its name (p, io, m1 and m2
in this example). In bus definition we give the
name and the net-list to each particular bus in the
system. Bus names (A, D, DTACK, int, iack)
and widths ( /.32./ and /.16./ ) definitions are
the same as pins definitions in COMDEL. The
net-list is given in the form “component_name .
pin_name”. For example, on the signal bus iack,

// wait for falling edge of clock

// wait for stable low level of clock

// on every falling clock edge check if DTACK is active (high level)

wait ( fall( clock )

on ( low( clock ) );
let DR = D;

on ( rise( clock ) );
let AS = 0;

and DTACK == 1=

// wait for stable low level of clock
// read data from D bus into DR
// wait for rising edge of clock

Example 5. Procedure for memory read bus protocol
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SYSDEL (SYStem DEscription
Language ) file

internal system description
frequency = 4 MHz; |
clock clock clock
components { 4 MHz
"proc.cdl" =p ;
"mem.cdl" = m; p m
8, D
—_— data |{ >ld
bus { g8, A
D/.8./=p.data, m.d; adr < 7 > a
A [.8./=p.adr, m.a; ’
RW =p.orw, m.rw; - } RW -
)
COMDEL (COMponent DEscription
Language) file internal component description
—— file "proc.cdl" —— component p
registers {
Al4], B8, A1)
e BITIITIT]
) :
pins { LLIs 8
data /8., adr /8., | =t data |77
w, .
: ; 8
: i ate 77>
)
1 1
run { —| clock W fe————e—
)
COMDEL file internal component description
file "mem.cdl" — ———component m
registers { register array mem
mem [3] /.8./; —l
mem [ 1]
pins { mem [2] :
d/8/,al8/
v, |  LL L A
: 8
} : s Ko
run:{ —\lr— clock W *—ﬁl‘_‘__'
y :

Fig. 4. Connection between SYSDEL and COMDEL
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frequency = 50 MHz;

components {

"processor.cdl" = p; // Definition of component named p.
// It's type is described in COMDEL
// file "processor.cdl"

"i o unit.cdl" allol

"memory.cdl”

Definition of components ml and m2.

// Both of them have the same type.

}
bus {
D /.32./ = p.D, ml.DATA, m2.DATA, io.d;
A /.16./ = p.A, ml.ADR, m2.ADR, io.a;
adrstrb = p.AS, ml.ADRSTR, m2 .ADRSTR, io.as:;
DTACK = p.DTACK, ml.DATA VALID, m2.DATA VALID, io.dtack;
int = p.INT, io.int;
iack = p.INTACK, io.intack;
s

Example 6. SYSDEL file for simple digital system.

p component’s pin INTACK and io component’s
pin intack are connected.

Two rules must be respected in net list defini-
tion:

1) The pin and the bus which are connected to-
gether must have the same type (either data or
signal) and the same width in bits.

2) Each pin must be connected to exactly one
bus.

The meaning of SYSDEL and COMDEL files
and their internal representation in the simulator
is shown in the figure 4.

3. Different levels and possibilities in
component and system description

Before modelling we must decide how pre-
cisely and accurately model behaviour should
represent the real (or hypothetical) system. We
must also decide which aspect of the system
behaviour is relevant to our requirements. For
example, if we want to simulate a processor on
the machine code execution level, it is not nec-
essary to describe DMA and interrupt response.
For a more accurate description, more effort in
creating COMDEL files should be invested and
the simulation speed will decrease. Sometimes

it is possible to avoid the use of buses and more
than one component. The normal approach is to
define several components connected by a bus,
but nothing can stop us to define only one com-
ponent without pins. It is also possible to define
several autonomous components and leave them
unconnected. Whole computer behaviour may
be defined on only one component (e.g. micro-
processor, memory, i/o units etc.) and particular
circuits (e.g. ALU, register, control unit etc.) as
well.

The basic limits are the result of the chosen high
description level. This level disables efficient
description on lower levels (gate-level), accu-
rate timing description (rise and fall times etc.).
Another limitation is the maximal width of reg-
isters, variables, pins and buses set currently
on 32 bits, because of the state of the available
computers today. This will be changed in the
future. However, in the moment this limita-
tion can be solved, e.g. by defining two 20-bit
registers instead of one 40-bit register.

The number of components, buses, registers,
etc. is not restricted because the data about them
are stored in lists whose elements are dynami-
cally allocated during COMDEL and SYSDEL
analysis. Therefore, these numbers are limited
only by the computer memory. The same kind
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of limitation is related to the size of register ar-
rays. A translation of one COMDEL procedure
into LLI cannot exceed 32 K due to the use of
16 bit relative jumps inside one procedure in
LLIs. This limits the COMDEL procedure size
to approximately 16 K. For modelling compo-
nent behaviour this is not a real limit because
the number of procedures in COMDEL file is
not restricted.

During COMPAS implementation we tried to
get simulation speed as high as possible, al-
though the interpretation is a limiting factor. A
part of speed-up is gained by the high descrip-
tion level. Additional speed-up is accomplished
by using three slightly different simulation en-
gines. Which one will perform the simulation
is automatically decided according to the re-
quested simulation type. The bad influence
of interpretation is reduced with partial anal-
ysis, translation and optimization of COMDEL
statements. Besides, pointers are intensively
used instead of searching or indexed table data
access. The simulator performance measure-
ment for simple system (Z80, memory, i/0 unit,
4 MHz, no interrupt requests) gives simulation
ratio of approximately 500 to 1. The simulation
was run on SUN SPARC station 2 computer
and measurement was made by using UNIX’s
time facility. Another important times — simu-
lator initialization, loading system description,
model initialization — for such simple system
could be neglected (about 1 second each).

4. Conclusion

ATLAS fulfils its main purpose — to serve as
a tool in the first stages of component and sys-
tem design. Although great freedom in model
description is given, limitations stem from the
high description level. Because of the great
complexity in today’s components structures,
description is almost purely behavioral. Be-
sides its main purpose, there is another one.
ATLAS is used in education, hence simulation
is very practical for introducing students to basic
microprocessor architectures. Principles of mi-
croprocessor behaviour can be easily explained
on a simplified microprocessor model prepared
by teaching staff.

ATLAS should not be viewed as the final prod-
uct. Different improvements are possible, espe-
cially in COMDEL and SYSDEL, simulation

speed etc. Therefore, the simulator COMPAS
and the whole program package ATLAS are the
first implementation and a good foundation for
further development and extensions.
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Appendix

Formal syntax of COMDEL and SYSDEL is given in BNF. Braces are elements of the languages
and also of the BNF notation. To avoid ambiguity we enclosed braces in double quotes ("" and "")
when they are a part of COMDEL and SYSDEL. Because of the limited space, syntax of COMDEL

is not complete — some minor details are omitted. In the syntax description we use following
symbols:

LETTER - any letter (capital or small) of the English alphabet or underscore _.

DIGIT - any digit from 0 to 9, including capital and small letters a, b,... f and x. Letter x means
“don’t care” in xdecode and xswitch statements.

CHAR - any printable character from ASCII set, except double quote ".

<name> ::= LETTER <{ LETTER | DIGIT }

<quantity> ::= DIGIT { DIGIT }

<number> ::= <base> <sign> <quantity>

<base> ::= <empty> % <base identifier>

<base identifier> ::=b | B | o | O | d | D|h | H| x| X
<sign> ::= <empty> | + | -

<string> ::= " { CHAR } "

<COMDEL program> ::= <registers block> <variables block> <pins block>
<init block> { <procedure block> } <run block>

<registers block> ::= registers "{" <registers definition> "}"
<variables block> ::= variables "{" <registers definition> "}"
<registers definition> ::= <register> { , <register> } ;
<register> ::= <name> <array size> / . <quantity>
<array size> ::= <empty> | [ <quantity> ]

<pins block> ::= pins "{" <pins definition> "}"

<pins definition> ::= <pin> { , <pin> } ;

<pin> ::= <name> | <name> /. <quantity> . /

<init block> ::= <empty> | init <statement block>
<procedure block> ::= <name> <statement block>
<run block> ::= run <statement block>

<statement block> ::= "{" { <statement> } "}"

<statement> ::= <statement block> | <assignment> | <decision>
<loop> | <simulation control> | <io> |
<synchronization> | <al function> |

Il

call <name>; | return;
<assignment> ::= let <location> = <value> ;
<assignment> ::= letf <location> = <value> ;

<assignment> swap <location> , <location> ;
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<assignment> ::= disable ; | disable <name> { , <name> } ;

<decision> ::= if ( <condition> ) <statement> <else>

<else> ::= <empty> | else <statement>
<decision> ::= <multi-branch> ( <value> )

"{" { <case> } <default> "}"
<multi-branch> ::= switch | xswitch | decode | xdecode
<case> ::= <number> : <statement>

<default> ::= <empty> | default : <statement>

<loop> ::= while ( <condition> ) <statement>
<loop> ::= do <statement> while ( <condition> ) ;
<loop> ::= forever <statement>

<gsimulation control> ::= shell ;

<simulation control> ::= exit ;

<simulation control> ::= brkpt <value> ;
<simulation control> ::= count ;

<simulation control> ::= timer on ; | timer off ;

e se

<simulation control>
<trace number> ::= 1

= trace . <trace number> ;
2 | 3|4|5|6]| 7|8

<io> = waitkey ;
<io> = read ( <base> <location> ) ;
<read base> ::=b | B | o |0 | d|D| h|H
<io> ::= print ( <print data> { , <print data> } ) ;
<print data> ::= <string> | / | % <quantity> . <print base> <value>
<print base> ::t=b | B | o |0 | u | U| s | s|
h | 8B | &2 | X ]| | L

<synchronization>
<synchronization>
<synchronization>
<delay unit> ::= s

= on ( <signal operator> ( clock ) );
wait ( <condition> );

= delay <quantity> <delay unit> ;

ms | us | ns | ps | bec

<al function> ::= <al 1> ( <value> ) ;

<al function> ::= <al 2> ( <value> , <location> ) ;
<al function> ::= <al 3> ( <value> , <value> , <location> ) ;
<al 1> ::= test | parity

<al 2> ::= inc | incf | dec | decf | neg | negf |
not | notf

<al 3> ::= add | addf | addc | addcf | sub | subf | subc | subcf |
and | andf | or | orf | xor | xorf |
nand | nandf | nor | norf | nxor | nxorf |
shiftl0 | shiftro0 shiftl0f | shiftroOf

|
| |
shiftll | shiftrl | shiftllf | shiftrlf |
shiftlh | shiftrh | shiftlhf | shiftrhf |
shiftll | shiftrl | shiftllf | shiftrlf |
shiftlx | shiftrx | shiftlxf | shiftrxf
<location> ::= <name> <offset> <bits>
<offset> ::= <empty> | [ <simple value> ]
/ . <simple value> . /
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<bits> ::= / . <simple value> .. <simple value> . /
<value> ::= <sign extension> <simple value>
<sign extension> ::= empty | ( signed ) | ( unsigned )
<simple value> ::= <location> | <number>
<condition> ::= ( <condition> ) | <expression> |

{ not } <condition>
<condition> ::= <condition> <logic operator> <condition>
<expression> ::= <signal operator> ( <name> )
<expression> ::= <value> <relational operator> <value>
<logic operator> ::= and | or | xor | nand | nor | nxor
<signal operator> ::= rise | fall | high | low | edge | change | stable
<relational operator> ::= < | > | <= >= = | 1=

<< | >> | <L = | > = | == | ==

<SYSDEL program> :

<frequency block> :
<frequency unit> :

frequency
kHz | MHz

<components component

lr{l‘

t:= <string>

<component> <name> {
<bus block> ::= empty |
<bus> ::= <bus name>
<bus name> :
<pin list> :

bus "{"
<pin list> ;
<name> | <name> /
<name> . <name> { ,
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