Journal of Computing and Information Technology - CIT 1, 1993, 3, 199-203

199

A Binary Search Algorithm
for the Bottleneck Problem
of Distinct Representatives

D. Magos

Department of Informatics, Athens University of Economics and Business, Athens, Greece

Binary Search is considered to be one of the most effec-
tive and easy-to-use searching techniques. In the current
work, an algorithm for the Bottleneck problem of Dis-
tinct Representatives based on binary search is presented.
Application of the algorithm to the general 0—1 Minimax
problem is straightforward. Computational experience
including instances with up to 160000 variables is re-
ported.

Keywords: Binary Search, Minimax problem, Distinct
Representatives, Bottleneck Matching.

1. Introduction

Given m sets 51, 52, .., S, not necessarily dis-
tinct, a collection A = (a1,az,..,an) With
a; € S, a; # aj, Vi # j, is called a Sys-
tem of Distinct Representatives (SDR). We say
that a; is the representative of the set 5;. Let
S = (Ji=1m8; and |S| = n, where |S| de-
notes the cardinality of S. Then we refer to
each element of S through the index i, ¢ € I,
I = {1,..,,n}. Accordingly, we refer to the set
S; through the index j, j € J, J = {1,..,m}.
Obviously, it is necessary that m < n for an
SDR to exist. A necessary and sufficient condi-
tion on the existence of an SDR is given by P.
Hall’s theorem (HALL (1935)). Suppose that
each i € §; represents the set S; at a given
cost ¢;;. The Bottleneck SDR (BSDR) problem
deals with finding the SDR with the cost of the
most expensive representative being as small
as possible. The problem can be expressed in
integer programming format by using a binary
variable x;; which takes the value of 1 if ele-
ment ¢ represents the set S; and 0 otherwise, as

follows:
(BSDR) min z Sk
Cij%ij < Z,
Z zi; = 1, Ve,
1€5;
Z Ty <1, Viel,
JEQ;
Tig = {0: 1}9

where Q; = {j € J | i € S;}.

Alternatively, BSDR can be stated as the Bottle-
neck Weighted Matching problem on a bipartite
graph G(X,Y, E). Let (X,Y) be a bipartition
of G where vertices of X correspond to the sets
S; and vertices of Y to the elements of S. An
edge e;; (e;; € E) connects a set-vertex S; to
an element-vertex ¢ if the element belongs to
the set. A weight is associated with every edge
of the graph. Find the maximum matching (if
one exists) with the property that the maximum
weight of all edges participating in the solution
is minimized.

A real-life application results from having n
operators available to carry out m jobs. Each
operator can perform only a specified number
of jobs. It takes c¢;; time units for operator j
to perform job ¢. It is required to assign the
operators to jobs, possibly with some operators
left unassigned, so that the completion time for
all jobs is minimized.

200

D. Magos: A Binary Search Algorithm For The Bottleneck Problem. . .- CIT 1, 1993, 3, 199-203

BSDR can be reduced to the bottleneck assign-
ment problem by adding n — m dummy vertices
to set X so that the number of vertices on both
sets (X,Y) are equal. Each dummy node is
connected to all nodes of set ¥ through edges
with zero weight.

BSDR can be solved either by an algorithm for
the bottleneck assignment problem (MARTELLO
and TOTH (1987)) or by a general purpose min-
imax algorithm (GARFINKEL and NEMHAUSER
(1972), JORGENSEN and POWEL (1987)). In
the current work, we present an algorithm for
BSDR which can be easily extended to the gen-
eral minimax problem. In the following sec-
tions we describe the algorithm and some mod-
ifications that may have a great impact on the
performance. Computational experience is in-
cluded.

2. The algorithm

Binary search is widely used for effectively
searching a sorted set of data. The same princi-
ple can be applied for finding the optimum of a
minimax problem. We consider an upper (2V)
and a lower (227) bound on the value of the so-
lution. At each iteration the gap between 2V
and 28 is decreased by a factor of 2. A thresh-
old value 2T H is calculated equal to the average
value of the upper and lower bound. For each
(4,7) with ¢;; > 2TH the corresponding Tij is
set to zero. A feasible solution is sought through
the remaining set of variables. If such a solution
exists then zU® is updated. Otherwise, if no
feasible solution exists, all previously deleted
edges are re-established and 2P is set to 27 7.
The next iteration starts by re-calculating z7 7,
The algorithm terminates when ZHB = L8,
At termination zUP is the value of the opti-
mum. An initial value for zU® can be obtained
by finding a feasible solution for the problem
with all variables free. Alternatively, an initial
upper bound is given by:

(1) VB = max{c;;, Viel,jeJ}.

An initial lower bound value is:

(2) #IB = max{miin{cij}, Vit

The algorithm in mock Pascal format is listed
next. Textin { } is commentary.

Binary Minimax Algorithm
Initialize;
While (2V2 — 228 > 1) do
begin

Attempt to find a feasible solution;
If solution feasible then
begin
{z* : the value of the feasible solution}
ZU B e 2+
If ((zVB — 2LB) > 1) then
begin
IH (ZUB T zLB)/2;
If(cij > ZTH) then xi; = 05

end
end
else {if no feasible solution exists}
begin
B o FER
If ((2Y8 — 21) > 1) then
begin
ZTH = (ZUB i ZLB)/Q;
If((cij £ ZTH) and (mij = O))
then set x;; free;
end

end {end if then else}
end {end while}

Example

Consider the sets 81 = {1,2,3,4}, 5 = {1,
2,3,4}, S5 = {2,3,5}, Sa = {2,3,4,5},
Ss = {1,4,5}. The corresponding cost co-
efficients are given in Table 1. Elements cor-
respond to rows (¢ index) and sets to columns
(j index). If element ¢ cannot represent set S
then ¢;7 = oo. This is so when either ¢ ¢ S; or
when at an iteration variable x;; is set to zero
due to the test ¢;; > 2TM At each iteration the

solution is illustrated in terms of cells marked
with ().

Iteration 1

Initial bounds according to (1) and (2) are
VB = 12, 2B = 4. A feasible solution is
zi; = 1, Vi = j.

D. Magos: A Binary Search Algorithm For The Bottleneck Problem. . .- CIT 1, 1993, 3, 199-203

201

Table 1
= 6 00 00 6
6 I 3 6 00
5 10* 5 00
9 2 00 6* 7
o0 00 12 2 9%

The new values are: z* = 10 — 2V8 = 10,
2LB — 4. Therefore zTH = 7.

Iteration 2
Table 2
00 o0 6*
3* 6 00
5* 4 00 5 00
00 2% 0o 6 T
00 00 ee) 2" 00

2 =6= U8 =6,21F =4 — ;TH =35,

Iteration 3
Table 3
3 e’ 00 o0 oC
00 o's) 3 oo (o]
5 4 lo'e) 5] os]
oo 2 00 oc 00
00 00 00 2 o's)

Set S5 (last column) cannot be represented by
any element at the current iteration. The prob-
lem is infeasible since no element can represent
set Ss. The lower bound is updated: z/'? = 5.
The algorithm terminates since 2V 58 — zLB = 1.
The value of the optimum is 6.

At each iteration a feasible solution is pro-
duced (if one exists) by the hungarian method

(BONDY, MURTY (1976)). The proposed algo-
rithm is polynomial since both finding a feasi-
ble solution (by using the hungarian method)
and binary search are polynomial. To prove
that, we recall the definitions of X, E when stat-
ing BSDR as the Bottleneck Weighted Match-
ing problem. The complexity of the hungar-
ian method is O(|X| - |E|) (PAPADIMITRIOU
and STEIGLITZ (1982)) and of binary search is
O(log; | E|) (SEDGEWICK (1990)).

The algorithm is implemented under the as-
sumption of integer costs. In the case that
real costs are used 1 must be replaced by a
tolerance ¢ (1 > ¢ > 0) in the condition
(288 = &) 5 9,

3. Modifications and Variations

The algorithm proposed can be employed to
solve other Minimax problems as well. In the
light of this generalization several modifications
can be made, their success depending on the
structure the problem solved each time.

Employing Heuristics

At each iteration, instead of finding just a fea-
sible solution a heuristic can be employed so
as to find a “good” feasible solution (V7). If
heuristic rules are employed, it is expected that
the time spent at each iteration to increase. This
can be outweighed by a decrease in the num-
ber of iterations if sharp bounds are produced.
In our implementation we have used the greedy
notion: at the process of forming a feasible so-
lution always select first the free variable with
the smaller c;;.

Reducing the number of iterations

The disadvantage of binary search is that it
spends several iterations with the gap between
2YB and 2P being really small. This can be
overcome by establishing a critical value for the
gap. If the gap is smaller than this value and
several sequential iterations have not produced
a feasible solution our belief that 2V ? is the op-
timum grows. Then, instead of setting z7H =
(2VB1+21B) /2 weset 2TH = ;UB_1, Ifanin-
feasible solution is produced then z28 = zTH
and the algorithm terminates immediately. The
above mechanism is implemented in terms of

202

D. Magos: A Binary Search Algorithm For The Bottleneck Problem. . .- CIT 1, 1993, 3, 199-203

Table 4
Average CPU times

iy 50 100 150 200 250 300 350 400
50 0.08 | 0067 | 0.072 | 0.097 | 0.121 | 0.130 | 0.152 | 0.176
100 0227 | 0.158 | 0.186 | 0231 | 0268 | 0302 | 0332
150 0435 | 0315 | 0343 | 0400 | 0462 | 0.502
200 0.691 | 0496 | 0547 | 0630 | 0.676
250 1.027 | 0711 | 0752 | 0.842
300 1352 | 0993 | 1.072
350 1722 | 1.293
400 2.093

percentages. Let m be a number between 0 and
1. Bach time the algorithm fails to find a feasible
solution p is calculated:

p= (ZUB _ ZLB)/ZUB.

Then p is compared to 7. If p < 7 then set
2TH = zUB _ 1. 1 can be thought of as a mea-
sure of our belief that the current solution is the
optimum or that the optimum value is close to
the current upper bound. Two strategies can be
used with respect to the values of 7: either use
a constant value through every iteration or use a
sequence of values. We have implemented the
first option.

The idea of prematurely attempting to terminate
the search can also be implemented by using a
divisor § when computing the value of X (i.e.
ZTH = (ZUB 4 2LB)/6). Note that 27H isa
decreasing function of §.

Proposition § takes values in the interval

(VP +5P) (278 -1), (VB-+EP) (55 1))

Proof.

THGUB 1 — (VBB /6<2VP —1
— (ZUB —I-zLB)/(zUB _ 1) <6

B 1< TH — B 1< (VB +218) /6
— §< (VB + 2B /(P + 1) m

One can set high or low values on 4, within

these bounds, according to his (hers) belief on

the optimality of the current solution. In the
case of binary search § = 2.

4. Computational Considerations

A set of 288 problems with m sets and n ele-
ments (m = 50, 100, 150, . . ,400, n = 50, 100,
150,. . .,400 and m < n) was produced with the
following characteristics. Eight problems were
produced for each combination of m and n with
the number of variables at each problem being
m x n (i.e. each set contains all the elements).
Therefore the size of the problems solved ranges
from 2500 to 160000 variables (400 sets and
400 elements). The costs were integers sam-
pled from a uniform distribution in the interval
[1,1e + 06]. The algorithm was implemented
in C and run on a VAX 6320 under ULTRIX-32
(vs 4.2). All arithmetic was carried out with
“long” integers. Table 4 displays the average
CPU times in seconds for each combination of
m and n.

Results show that the algorithm can be used for
real time applications involving a great number
of variables. Table 4 shows that even big in-
stances (160 000 variables) are solved in a few
seconds.

The number of iterations is limited by the com-
plexity of binary search (O(logzk)), where k
is the number of elements through which the
search is carried out). In our case the elements
are the variables of the problem (or the edges of
the bipartite graph). Therefore for the problem
set used the number of iterations is logy m x n.
This leads to 11.28 (log>2500) iterations for
small problems (50 sets, 50 elements) and to
17.28 (log>160 000) iterations for big instances
(400 sets, 400 elements). These bounds stand
for the worst case. In practice we noticed that no

D. Magos: A Binary Search Algorithm For The Bottleneck Problem. . .- CIT 1, 1993, 3, 199-203

203

problem needed more than 12 iterations. This is
aresult of the greedy rule which allowed “good”
feasible solutions to be found and of the prema-
ture termination of the search through parameter
7. After some experimentation we have found
that a good value for 7 is 0.35. This is the value
used in our implementation.

It is important to note that for the same num-
ber of sets, say m, an increase in the number
of elements (therefore in the number of vari-
ables) does not necessarily cause an increase in
CPU time. For instance the average time for
solving the eight problems with m = 200 and
n = 2001s 0.691 secs. Increasing n to 250 leads
to a decrease of CPU time to 0.496. Then the
time increases gradually following the increase
in the number of elements (n). The same obser-
vation stands for every value of m tested. This
behaviour can be explained by the fact that as
the number of elements increases, the task of
producing a feasible solution at each iteration
becomes easier because more elements can rep-
resent the same number of sets. The results of
this effect gradually disappear as the number of
elements increases beyond a certain limit.

D. MaGos graduated from the Athens University of Economics and
Business in 1987 (B.Sc. on Computers Science and Statistics). He
continued his studies at the LSE (department of Operational Research)
where he received his M.Sc. in 1988. He is currently working on
his Ph.D. thesis at the Athens University of Economics. His main in-
terests lie in the fields of mathematical programming, combinatorial
optimization and optimization algorithms.

References

J. A. BonDy, U. 8. R. MURTY (1976) Graph Theory with
Applications, Macmillan.

R. S. GARFINKEL, G. L. NEMHAUSER (1972) Integer
Programming, John Wiley & Sons.

P. HALL (1935) On representatives of subsets. Journal
London Mathematical Monthly 63, 26-30.

C. JORGENSEN, S. POWEL (1987) Solving 0—1 minimax

problems. Journal of Operational Research Soci-
ety 38, 6, 515-522.

S. MARTELLO, P. TOTH (1987) Linear assignment prob-
lems. In Surveys in combinatorial optimization (S.
MARTELLO, G. LAPORTE, M. MINOUX, C. RIBEIRO
eds), Annals of Discrete Mathematics 31, 259-282.

C. H. PAPADIMITRIOU, K. STEIGLITZ (1982) Combinator-
ial Optimization, Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs, New Jersey.

R. SEDGEWICK (1990) Algorithms in C, Addison & Wes-
ley.

Received: March, 1993
Accepted: November, 1993

Contact address:

D. Magos

Department of Informatics

Athens University of Economics and Business
76 Patission Str, 104 34 Athens, Greece

Tel: 01-8225 268

E-mail: nnk@aueb.ariadne-t.gr

