Journal of Computing and Information Technology - CIT 1, 1993, 2, 99-110 99

Parallel

Iterative Algorithms
for Solving Path Problems

Robert Manger

Department of Mathematics, University of Zagreb,

Path problems are a family of optimization and enume-
ration problems involving the determination of paths in
directed graphs. In this paper few parallel iterative al-
gorithms for solving path problems are developed. Mo-
re precisely, the considered algorithms are parallelized
counterparts of the classical iterative methods, such as
Jacobi or Gauss-Seidel. The underlying model of com-
putation is a tightly coupled multiprocessor. It is shown
that the algorithms obtain the required solution after a
finite number of iterations. For each algorithm, the com-
putational complexity of a single iteration is estimated,
and an upper bound for the number of iterations is esta-
blished. -On the basis of these results the algorithms are
compared.

Introduction

Path problems are a family of related problems
involving the determination of paths in a di-
rected graph. The best-known example is the
shortest path problem, stated as follows: in a
graph whose arcs are given lengths determine a
shortest path between two nodes (the path length
is obtained by summing the corresponding arc
lengths). A similar problem is to find a most
reliable path between two nodes (where arc re-
liabilities are given, and the path reliability is
defined as the product of the arc reliabilities).
In addition to these optimization problems, so-
me enumeration problems are also encountered,
e.g. listing all paths from one node to another.
A number of additional examples can be found
in (Carre 1979, Manger 1990, Rote 1990).

There are many ways how to solve path pro-
blems. The “algebraic” approach tries to find
a general formulation for the whole family of

problems, by introducing a suitable abstract al-

~ gebraic structure. Solving a particular problem

is then reduced to computing in an appropriate
concrete instance of the structure. Path prob-
lems are generally solved by algorithms that are
applicable to any instance of the structure.

Few variants of the algebraic approach have be-
en proposed (Carre 1979, Kung et al. 1987, Rote
1990, Zimmermann 1981), which differ in-the-
ir definition of the structure. A good tradeoff
between elegance and generality has been obta-
ined in (Carre 1979), by introducing a structure
whose instances are called “path algebras”. The
theory from (Carre 1979) relies heavily on es-
tablishing an analogy between path problems
and standard linear algebra. Consequently, al-
gorithms for solving path problems have been
derived as counterparts of the well known met-
hods for solving linear systems.

The aim of this paper is to develop general pa-
rallel iterative algorithms for solving path pro-
blems. In fact, the paper will deal with paral-
lel versions of certain general sequential algo-
rithms from (Carre 1979), which are in turn co-
unterparts of classical iterative methods, such
as Jacobi or Gauss-Seidel. As the model of
parallel computing, a tightly coupled multipro-
cessor will be used (Quinn 1987). For each of
the described algorithms, it will be shown that
the algorithm obtains the required solution after
a finite number of iterations. Also, the compu-
tational complexity of a single iteration will be
estimated, and an upper bound for the number
of iterations will be established.

100

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

The paper is organized as follows. First, so-
me preliminaries and definitions are listed, re-
garding path algebras and parallel computing.
Then comes an explanation how path algebras
are used to formulate and solve path problems.
The next section describes an obvious paralle-
lization of the Jacobi method. It is, however,
more difficult to parallelize the Gauss-Seidel
method, which seems to be inherently sequen-
tial. Yet, in the farther three sections three al-
gorithms are developed, which can be regarded
as parallel versions of the Gauss-Seidel met-
hod. The final section gives some concluding
remarks.

Definitions and Preliminaries

In the first part of this section we list some defi-
nitions and results from (Carre 1979). We start
by defining a path algebra, as a set P equipped
with two binary operations V and o which have
the following properties.

e The operation V is idempotent, commuta-
tive, and associative.

e The operation o is associative, left-distri-
butive over V, and right-distributive over
V.

e There exist a zero element ¢ € P and a
unitelemente € P such thatforalla € P:
OVd = a, 008 =0 =0d09,608=0=
aoe.

Two concrete examples of the structure will be
given in the next section. Additional examp-
les can be found in (Carre 1979, Manger 1990,
Rote 1990). For a,b € P, the elements a \V b
and a o b are respectively called the join and the
product of a and b.

We further consider matrices and vectors over a
path algebra P. Let M,,(P) denote the set of all
n X n matrices whose entries belong to P. Simi-
larly, let V,,(P) be the set of all vectors of length
n whose elements belong to P. We define the
join and the product for matrices and vectors, by
analogy with the sum and the product in ordi-
nary linear algebra. For instance, given two ma-
trices A, B € M,(P), A = lai;], B = [bi;], we
put AVB = [aij \/bij], AoB = [szl ik Obkj]-

It is easy to check that M, (P) with these opera-
tions is itself a path algebra. The zero element
of My (P) is the matrix ® whose all entries are
¢. The unit element of M, (P) is the matrix E
whose diagonal entries are e and all other ent-
ries are ¢». We also introduce the zero vector of
Vn(P): it is the vector whose all elements are

Next, let us consider an ordering of a path al-
gebra P. Let < denote a binary relation on P
defined as follows. For a,b € P: a < b if
aV b = b. Itis easy to show that < is indeed
an ordering of P, and that the zero element ¢ is
the least element of P with respect to <. Also,
forall a,b € P: aVb = aandaVb > b
Finally, both operations V and o are isotone for
=. The ordering < can be extended to M, (P)
and V,,(P).

Now we list some conventions that must be ta-
ken into account when interpreting expressions
over a path algebra P. If the order of operations
is not explicitly regulated by parentheses, then
o takes the precedence over V. Compound joins
of the form \/,_ ¢ a; are assumed to be ¢ if the
index set .S is empty.

Further, we introduce the class of stable mat-
rices over a path algebra P. The powers of a
matrix A € M,(P) are defined by: A° = E,
Al = A, A2 = Ao A, ..., AF = AF-10 4
(k = 2,3,...). The matrix A is said to
be stable if for some non-negative integer g,

1 0A Vq+1 AF. The least ¢ with this pro-

perty is called the stability index of A. The join
A* = \/1_, A* is called the strong closure of
A, and the similar expression A = A* 0 A =
Ao A* = Vqul AF is called the weak closure
of A. The matrix A is said to be nilpotent if for

some positive 1nteger g, A7 = ®. Obviously, a
nilpotent matrix is always stable.

Finally, let us consider a vector equation over a
path algebra P of the following form:

y = Aoy Vb. (1)

Here, y € V,(P) is the unknown, while A €
My (P) and b € V,,(P) are specified, A being
stable. It can easily be checked that the equati-
on (1) has a least solution (with respect to =),
which can be expressed as y = A* o b. Mo-
reover, if A is nilpotent, theny = A* obisa
unique solution of (1).

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

101

In the remaining part of this section we expla-
in our model of parallel computing. We assu-
me that a tightly coupled multiprocessor (Qu-
inn 1987) stands at our disposal, i.e. a compu-
ter built of many processors sharing a common
memory. The processors are working asynchro-
nously. Each processor can perform any com-
putational operation with data of any type. In
order to do so, a processor must first read the
operands from the memory, then compute the
result, and finally write the result back into the
memory.

Concurrent reads and writes of the same data
item are allowed. Possible conflicts are resol-
ved through the serialization principle (Gottlieb
et al. 1983), which states that the effect of con-
flicting reads and writes is the same as if they
occured in some (unspecified) sequential order.
Note that the serialization principle introduces
a dose of non-determinism in our model.

In order to enable comparison amongst various
methods for computing in a path algebra P, we
introduce the concept of computational comp-
lexity. This is the performance time of a given
algorithm, under the assumption that one com-
putational operation with elements of P (i.e. V,
o, equality test) takes one unit of time and all ot-
her operations take no time. Also, it is assumed
that all parallel for loops are optimally schedu-
led (so that the required performance time of the
algorithm is minimised). Only non-preemptive
schedules (Quinn 1987) are valid.

Solving Path Problems

It has been demonstrated (Carre 1979, Manger
1990, Rote 1990) that various path problems,
posed on a directed graph G with n nodes, can
be reduced to computing the strong or weak
closure of a stable matrix A € M, (P) over a
suitable path algebra P. We are going to illus-
trate this idea by two examples.

node 2 0.9

0.7

0.1

node 1 node 4

Figure 1: A directed graph G with arc labels given

Let us consider the graph G in Figure 1. Let us
interpret the arc labels as “lengths”. Then we
may want to solve the shortest distance prob-
lem, i.e. we may want to determine the length
of a shortest path connecting any pair of nodes.
In this case, the corresponding matrix A and the
resulting strong and weak closures A* and A,
respectively, are given by

oo 05 04 017
. 03 oo 09 oo
oo oo oo 0.7

o0 oo 0.2 oo]

[0 05 0.3 0.17
A = 03 0 06 04
co oo 0 07

oo oo 02 0 |

(0.8 0.5 0.3 0.17
A= 03 08 06 04
© oo 0.9 0.7

[co oo 0.2 0.9]

The (¢, 7)-th entry of A is the length of the arc
connecting the ¢-th and the j-th node in G. The
(i,7)-th entry of both A* and A is the length
of a shortest path between the i-th and the j-th
node. The difference between A* and A is as
follows. A* assumes the existence of a trivial
zero-length path (having no arcs), which con-
nects any node to itself. ﬂ, on the other hand,
takes into account only non-trivial paths. In all
matrices above, symbols co denote that the cor-
responding arcs/paths do not exist. P is here
the set of real numbers extended with oo; the
role of the operation V takes the standard mi-
nimum, and o is the conventional summation.
The ordering < is in fact the standard >.

Let us again consider the same graph G in Fi-
gure 1, but now interpret the arc labels as “re-
liabilities”. Suppose that we want to solve the
maximum reliability problem, i.e. we want to
determine the reliability of a most reliable path
connecting any pair of nodes. Then the suitab-
le matrix A and the corresponding closures A*

and A are given by

0 05 04 01
03 0 09 O
0 0 0 0.7
0 0 02 O

A=

102

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

-1 05 045 0.315
A* 03 1 09 063
0 0 ! 0.7
0 0 0.2 1

[0.15 0.5 045 0.315
1-103 015 09 063
=l o o0 014 07

0 0 02 014

The meaning of any matrix entry is similar as
before. P is now the set of real numbers falling
into the range [0, 1], with the standard maximum
serving as V and the standard multiplication as
o. The ordering < now conforms with <.

In order to solve path problems, we consider
algorithms that evaluate (some or all) elements

of A* or A, where A € M,,(P) is a stable ma-
trix, and P is an unspecified (usually arbitrary)
path algebra. Thus our algorithms in principle
solve an “abstract” path problem. Direct eva-
luation of the whole closure matrix according
to its definition would be tedious. More effi-
cient algorithms are based on the idea that the
needed entries can be obtained indirectly, by
solving suitably chosen equations. For instan-
ce, the equation (1) with an appropriate vector
b can be used to compute any column of A* and

A respectively.

The algorithms for solving path problems con-
sidered in this paper are in fact algorithms that
compute the least solution of the equation (1) in
an arbitrary path algebra.

The Jacobi Algorithm

The equation (1) has the form that suggests ite-
rating as a suitable method of solving. An initial

vector y@ € V,,(P) is chosen, and the sequence
-of vectors

y® = Aoy*Dvb (k=1,2,..) (2
is computed. We hope that after a finite number
of iterations the least solution of (1) will be rea-
ched; i.e. for some kg and any k > kg, y(’“) will
be equal to A* o b. The elements of y*) do not

-depend one onto another, so they can be compu-

ted in parallel. Using these ideas, the following
simple Jacobi-like algorithm is obtained.

Algorithm 1
(* P is any path algebra. m processors

are available. Input: a stable matrix

A = [ai;] € My(P), and two vectors

b = [bi] and yO = [y9] both € V,,(P). x)
k e .

repeat
s :=true (x s is a Boolean variable x) ;
E=ka41:
foralli € {1,2,...,n} do in parallel

begin
k n k—
y 1= (Vi aigop D) v by
(7* sequentially x) ;
if y £ 4% then
s := false
end

until 5 = rrue
(Output: the vector [ygk)]. %)

Note that Algorithm 1 includes the sequential
Jacobi method (Carre 1979) as a special case
(when m = 1). The sequence of vectors y*)
(k = 1,2,...) depends on the input data, but
not on m. Therefore the number of iterations in
the parallel case is the same as in the sequential
case, but the time needed for one iteration is ho-
pefully shorter. The properties of Algorithm 1
are summarized in the next theorem.

Theorem 1 Let the vector y©) in Algorithm 1
be chosen so that y© < A* o b (for instance
v = zero vector or yO = b). Then Algo-
rithm 1 correctly computes the least solution of
the equation (1). If q is the stability index of A,
then the number of iterations (i.e. the number of
steps of the repeat . . . until loop) is not greater
than q + 2. Specially for YO = b, the num-
ber of iterations is not greater than q + 1. The

computational complexity of a single iteration
is [n/m] (2n + 1)

Proof. By iterating (2) we get
y®P =A%y v (BEvAVA?Y...vA*1)ob.
(3)

Hence, by the definition of the stability index,
y(k):Akoy(O)VA*obtA*ob ifk>q+ 1.
(4)

The imposed condition y® < A*ob implies
that

Akoy(o)jAkoA*ob
= (AR v ARV AM2 v Yob
< A*ob.

R. Manger: Paralle! lterative Algorithms - CIT 1, 1993, 2, 99-110

103

Combining the inequality above and (3) we ob-
tain

y® < A*obV (EVAVA%V...vA*1)ob
< A*ob v A*ob = A*ob. (5)

From (4) and (5) if follows that y*) = A*ob if
k > g + 1. Hence the algorithm stops after at
most ¢ + 2 iterations, and it correctly computes
the least solution of the equation (1).

The sharper bound on the number of iterations
for y(© = b is obtained from (3), by noting that
in this case

y® = (EvAvAZv...vA* TV AR ob
= A*ob ifk>gq.

In accordance with the definition of computatio-
nal complexity, the time needed to compute any

ygk) is exactly (2n + 1). The optimal schedule
obviously assigns [n/m] steps to one proce-
ssor. Hence the computational complexity of
one iteration is [n/m](2n + 1). O

Theorem 1 establishes a relationship between
the total execution time of Algorithm 1 and the
stability index g of the matrix A. So an inte-
resting question arises: how big could ¢ really
be? According to (Carre 1979), ¢ can be visu-
alized as the maximum order (number of arcs)
of a path which still contributes to the solution
of the corresponding path problem. For the ma-
jority of problems (including shortest distance
and maximum reliability), only those paths that
have no cycles are relevant. Thus g usually can
not be greater than n — 1. Moreover, if our
graph has some special structure, g can even be
considerably smaller than n — 1. This is for in-
stance true for layered graphs, where the order
of a path is proportional to the number of layers,
not the total number of nodes.

A Non-Deterministic Gauss-Seidel
Algorithm

Algorithm 1 computes an element ygk) of the
k-th vector by using only the elements ygk_l) of
the (k — 1)-st vector. Suppose that at the mo-
ment of evaluating ygk) some ygk) are already

available. Then we could substitute those ygk)

in the expression for ygk), in place of the corre-

sponding ygk_l). This substitution is intuitively
acceptable, for we hope that in this way we wo-
uld reduce the number of iterations required.

By Gauss-Seidel algorithms we mean modifica-
tions of Algorithm 1, where ygk) depends on so-

me yg-k). In this section we consider the simplest
of such modifications, which is based on using a
single vector y in place of y® (k = 0,1,2,...).

Algorithm 2
(x P is any path algebra. m processors
are available. Input: a stable matrix
A = [aij] € My (P), avector b = [b;] € V,(P),
and another vector y = [y;] € Vp(P)
—i.e. its initial value. x)
repeat
s :=true (x s is a Boolean variable) ;
foralli € {1,2,...,n} do in parallel
begin
i = (V- aijoy;) V by
(x sequentially *) ;
if §; # y; then

begin
Yi =i,
s := false
end

end
until s = frue
(% Output: the final value of the vector [y;]. *)

The values y;, computed by Algorithm 2 in a
particular iteration, are not uniquely determi-
ned. They depend, for instance, on the schedule
assigning the steps of the parallel for loop to the
available processors. But in spite of this non-
determinism, the correct result will be obtained,
as guaranteed by the following theorem.

Theorem 2 Let the chosen initial value of the
vector y in Algorithm 2 be the zero vector or b.
Then Algorithm 2 correctly computes the least
solution of the equation (1). Also, the number
of iterations required by Algorithm 2 is not gre-
ater than the number required by Algorithm 1
(for the same input data). The computational
complexity of a single iteration in Algorithm 2
is [n/m](2n + 1).

104

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

Proof. The computational complexity of one
iteration is estimated analogously as in the pro-
of of Theorem 1.

In order to prove the remaining claims, it is
necessary to compare the performance of Algo-
rithms 2 and 1. We consider one execution of
Algorithm 2 for the given input data using the
given number of processors. Also, we consi-
der the execution of Algorithm 1 for the same
input data (the number of processors is irrele-
vant). We introduce the following notation for
=0, L 25 ; v

y® = [ygk)] ... the vector obtained in the k-th
iteration of Algorithm 1,

i(k) = [y“fk)] ... the value of the vector y in
Algorithm 2, immediately after the k-th
iteration.

It will be shown that
¥y <P <a*ob (k=0,1,2,...).

Theorem 1 guarantees the existence of an in-
teger kg, such that y®) = A* o b for & > ko.
Supposing that the inequality above is valid, it
follows that for k > ko also 3 = A* o b.
Hence Algorithm 2 terminates, and obtains the
correct least solution of the equation (1). Also,

the number of iterations is not greater than for
Algorithm 1.

Let us write A* o b = [(A* o b);]. It is left to
be shown that the inequality

P 2gP <@ er)y (6)
indeed holds for all ¢ = 1,2,...,n, k =
0,1,... The proof is carried out by double mat-
hematical induction: on k and on the fictio-
us time instant when Algorithm 2 updates y;
(according:to the serialization principle). The
induction on k is the “outer” induction, and the

induction on time is the “inner” (nested) induc-
tion.

The outer induction basis: it is obvious that
y =5 < b; < (A%b); (i=1,2,...,n)

since in both algorithms we use the same initial
vector which is equal to the zero vector or b.

3

The outer induction hypothesis: for some
value of &,

y& D < ¢ < (4%ob); (i=1,2,..., n).

The outer induction step is proved by the in-
ner induction. Suppose that tgk) 5 tgc) Lok
t%a) (1 £ v(k) < n) are all distinct instants
when the updatings of variables y; in the k-th
iteration take place.

The inner induction basis: let y; be any varia-

ble being updated at the instant t(lk). The proce-
ssor performing the updating must previously
compute the new value for y; which depends
on all y;. Prior to any computational operati-
on, the processor must fetch the corresponding
operands. Hence the values of all y, are read

before tgk), so they have not yet been updated.
Consequently,

7 = (\n/ aijo@k*l)) Vb, (7)
=1

Combining the outer induction hypothesis with
(7) we obtain

i = (Vg) v
j=1

= ... Algorithm 1 ... = yfk), (8)

and also

n < (\T/“z'jO(A*ob)j) v bi
j=1

= ((AoA* Vv E)ob); = (A*ob);. (9)

From (8) and (9) it follows that the required
inequality (6) is valid for all ¢ such that y; is
updated at the instant tgk).

The inner induction hypothesis: forall i such
that y; is updated before t&’“?,

y? <GP < (4* o).

The inner induction step: let y; be any vari-

able which is updated at the instant £). The
processor performing the updating must previ-
ously compute the new value for y; which de-
pends on all y;. Prior to any computational
operation, the processor must fetch the corres-
ponding operands. Some of the fetched y; have
already been updated in the k-th iteration, and
some have not. Let S; be the set of indices j
such that y; has been updated, and let .S, be the

R. Manger: Parallel Iterative Algorithms - CIT 1, 1993, 2, 99-110

105

set of j such that y; has not been updated. Then

@gk) — (\/aij Oﬂgk)) V(\/a,,;j ogg-k_l)) V b;.
JES] JES

(10)

Since all y; are read before tg“), the inner in-

duction hypothesis can be applied to @?“) (for

J € 51). The outer induction hypothesis can be

applied to 7"~ (for j € S5). Combining the

J
inner and outer induction hypothesis with (10)

we obtain

i = (V az‘joygk))v(V az‘joygk_l)) V b;.
JES] JES,
(11)
Itis evident from (3) that y*®) > y(:=1 jf y©) —
zero vector or y = b. Combining this inequ-
ality with (11) we get

Tt
7® (\/aijoyg 1))\/

JESY
\/(\/ aijoy§k—l)) Vb;
JES:
= ... Algorithm1 ... = 4® (12)

Also by applying the inner and outer induction
hypothesis to (10) we obtain

7 < (V aio (4 ob);) v
JES]
V(v a?;jo(/-l*ob)j) Vb,
JES2
= ((AoA*VE)ob);=(A*ob);. (13)
From (12) and (13) it follows that the requi-

red inequality (6) holds for all 4 such that y; is

updated at the instant ¢%*),

This completes the proof of the theorem. O

A Deterministic Gauss-Seidel Algorithm

If a small number of processors (m << n) is
available, then in Algorithm 1 the same proce-
ssor computes more elements ygk) of the vector
y®). Imagine that y® is split into < m seg-
ments which are approximately equal in length.
By modifying Algorithm 1 we can achieve that
one processor computes exactly one of those

segments, i.e. a sequence of consecutive ele-
ments ygk). When evaluating the expression for
the next ygk), the processor can use all the pre-
viously computed y;rk) from the same segment,
and substitute them in place of the correspon-
ding yj(.k_l). We obtain the following modifi-

cation which as well belongs to the family of
Gauss-Seidel algorithms.

Algorithm 3 ;
(x P is any path algebra. m processors
are available. Input: a stable matrix
A = [ai;] € My,(P), and two vectors

b = [b;] and y© = [y§0)] both € Vy,(P). x)
k:=0;

3

L:=[n/m] (*length of a segment %) ;

m = [n/l] (* number of segments < mek) S

repeat
s :=true (x sis a Boolean variable) ;
k=k+1;

forallr € {1,2,...,m} do in parallel
for i := (r — 1) + 1 to min{rl,n} do
begin
r—1){ -
v = (Vi agoy* D)y

(Vizr—1y141 % °y§"°)) ¥
(Vi asjoy) v b,
(* sequentially *) ;
if yz(k) 2 ygk_l) then
8 := false
end
until s = true

(* Output: the vector [ygk)]. *)

Note that Algorithm 3 is “deterministic”, i.e.

the computed sequence of vectors y(®) (k =
1,2,...) is uniquely determined by the input
data and by the number of processors availab-
le. The advantage in respect to Algorithm 2 is
less communication with the common memory.

Namely, all yi(k) from the same segment of the

vector y*) can temporarily be kept in local re-
gisters, until the whole segment is computed.
Additional characteristics of Algorithm 3 are
listed in the next theorem.

Theorem 3 Let the chosen vector yO in Algo-
rithm 3 be the zero vector or b. Then Algo-
rithm 3 correctly computes the least solution
of the equation (1). Also, the number of ite-
rations required by Algorithm 3 is not greater

106

R. Manger: Parallel lterative Algorithms - CIT 11,1993, 2, 99-110

than the number required by Algorithm 1 (for
the same input data). The computational com-
plexity of a single iteration in Algorithm 3 is
[n/m](2n +1).

Proof. Similar as for Theorem 2. O

We stress that the sequence of vectors y*)
(k = 1,2,...) really depends on the number of
processors m. For m = 1, Algorithm 3 beco-
mes the usual sequential Gauss-Seidel method
(Carre 1979). For m = n, Algorithm 3 does
the same as Algorithm 1, i.e. it turns into the
parallel Jacobi algorithm. With the increase of
m, the number of iterations probably also in-
creases, but the time needed for one iteration
decreases.

In the remainder of this section we observe so-
me properties of the sequential algorithm which
are going to be applied in the next section. The
results are summarized in the following lemma.

Lemma 1 The sequential Gauss-Seidel method
(i.e. Algorithm 3 for m = 1) is considered. Let
the vector YO be the zero vector or b. Let us
introduce the following notation:

k
w® = (\/ arj o 1) Vb,
j=r
(r=1,2,...,m,k=0,1,2,...),
r—1
k
2 = \/ a,_..joyg-)
j=1

(r:1,2,...,n,k=0,1,2,...).
Then
k k—1
1y = 4D
(i=1,2,...,n,k=1,2,...),

n
2.0® = w0 v \/ ayjoy®
j=r

(o 2= 1B s v B Ly,

r—1
3. 49 = 25Dy \/ ayyoy®
=1

(7'21,2,...’?’],,;{::1’2,___)‘

Proof. First we prove 1. The matrix A can be
expressed as A = LV U where L € My(P)

is strictly lower triangular and U € M,(P) is
upper triangular. Consequently,

¥® = Loy® v Uoy® Dy
(k=1,2,...). (14)

The strictly lower triangular matrix L is nilpo-
tent (i.e. L™ = @), and therefore also stable.
According to the previously cited results, (14)
has a unique solution

y(k) = L*oon(k_l) v L*ob
(k=1,2,...). (15)
By iterating (15) we obtain
y® = (L¥oU)foy® v (BV (L*oU)V
VL*oU)2V.. . V(L*oU)* 1oL ob
T . (16)
If y© = zero vector, then (16) can be written as
y®) = yE=Dy(L*oU) oL ob
(k=1,2,...).
Similarly, for y@ = b, (16) becomes
y® = y&E=D v (L*o)r 1o
o(LVI*V..)obV (L*U)*ob
(k=1,2...).
Hence in both cases, y® = y*=D (k=1,2,...).

Nextwe prove 2. For1 <r <nandk > 1we
compute:

n
w,(fc‘l)\/ \/ arj Oygk) —

j=r
= (\”/ arjo(ygk_l) v yg-k))) V by
= ..J._claiml
L]
= (V aTjoyg.k)) Vb, = w®.
j=r

Claim 3 is proved similarly. O

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

107

Another Deterministic Gauss-Seidel
Algorithm

Lemma 1 reveals an extraordinary idea how to
parallelize the sequential Gauss-Seidel method.
Let us consider the k-th iteration of the met-
hod. Instead of trying to compute the elements

ygk) in parallel, we could compute the values

w® and zg.k) in parallel, using the formulas 2

and 3 from Lemma 1. Then any ygk) can be
computed in just one additional operation, as
yi(k) == 'wgk_l) v zgk). We obtain Algorithm 4,
whose correctness is guaranteed by Theorem 4.

Algorithm 4
(x P is any path algebra. m processors
are available. Input: a stable matrix
A=la;;]€e My (P), a vector b=[b;|€Vy,,(P),
and another vector y = [y;] € V,(P)
—Le. its initial value. *)

o] 3= b

(2] := zero vector ;

fori:=1tondo

forallr € {1,2,...,n} do in parallel

if r < then
Wp 1= Wy V Apr;OY;
else
Zp 1= Zp V 0pi0Y; 5
repeat

s :=true (* s is a Boolean variable x) ;
for; :=1tondo
begin
yii=wp V2
if §; # vy; then
begin
Yi'=Yis
s = false ;
forallr € {1,2,...,n} do
in parallel ‘
if r <1 then
Wy 1= Wy V GriOY;
else
Zr 1= Zp V QpiOY;
end
end
until s = true
(x Qutput: the final value of the vector [y;].)

Theorem 4 Let the chosen initial value of the
vector 'y in Algorithm 4 be the zero vector or b.
Then Algorithm 4 correctly computes the least

solution of the equation (1). Also, the number of
iterations required by Algorithm 4 is not greater
than the number required by Algorithm 3 (for
the same input data using any number of pro-
cessors). The worst-case computational com-
plexity of a single iteration in Algorithm 4 is
2n([n/m] +1).

Proof. The performance of Algorithm 4 is com-
pared with the performance of the sequenti-
al Gauss-Seidel method (i.e. Algorithm 3 for
m = 1). We consider the execution of Al-
gorithm 4 for the given input data using the
given number of processors. Also, we consi-
der the execution of the sequential Gauss-Seidel
method for the same input data. Let y;, w;,
z; (4 = 1,2,...,n) be the variables in Algo-
rithm 4, and let ygk), wgk), zgk) =120 0
k = 0,1,2...) be the values in the sequential
Gauss-Seidel method (using the notation intro-
duced in Lemma 1). Then the following equa-
lities hold.

e At the beginning of the k-th iteration of

Algorithm 4,
wy = w2z = z,(.k_l) (F =1,2coyB)s

e At the moment of computing y; (1 < ¢ <
n) during the k-th iteration of Algorithm 4,

k—1 k k
wi = w5 = (5 5 =).
e At the end of the k-th iteration of Algo-
rithm 4,
we =w®, 2z, =20 (r =1,2,...,n).

These equalities are easily checked by mathe-
matical induction. Indeed, during the k-th ite-
ration of Algorithm 4, the variables w, and z,
(r =1,2;...,n) are gradually updated, so that
the final result corresponds to formulas 2 and 3
from Lemma 1. At the moment of computing
v;, the value of z; has already been fully updated
(so z; is already equal to zgk)), and the updating
of w; has not yet started (so w; is still equal to
(k=1)
w;)

To be true, in the case when ygk) = ygk_l) Al-
gorithm 4 skips the updating phase depending
on yi(k). In spite of that, the previous equalities

108

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99—110

hold, i.e. all values are the same as if the upda-
tings had been performed. Indeed, in this case

we may write for wl® (r <9)

wf.k)z ... Lemmal. ..

n
= wf.k_l) vV v awjoygc)

j=r

m
— (v arjoygk_l)) V brV

j=r

j#i

! (\/ “w'°y§k)) '
J=r
J# :
V ario(yF v y®)

= ...since the operation V is idempotent. .

n
— (\/ arjoygc_l)) VbV

=

j#i

mn
Y (v arjoygk)) Vv a,.ioy%(k_l)
J=r
ji
m
= w0y \/ aryoy®.
j=r
J#i
A similar deduction is applicable to 2 (F > 4)
We conclude that Algorithm 4 does the same as

the sequential Gauss-Seidel method. By Theo-
rem 3 it follows that Algorithm 4 is correct.

To prove the claim about the number of iterati-
ons, it is necessary to compare the performance
of Algorithms 4 and 3. We consider the exe-
cution of Algorithm 4 for the given input data
using the given number of processors. Also,
we consider the execution of Algorithm 3 for
the same input data, using the number of pro-
cessors which is not necessarily the same as in
Algorithm 4. Our intention is to show that

(y*) in Algorithm 3) <
= (y in Algorithm 4 after
the k-th iteration)
<A%ob (k=0,1,2,..)).

From this point, the reasoning is similar to the
proof of Theorem 2. A double mathematical

induction is used. Also, claim 1 from Lemma 1
is required.

Finally, we estimate the computational comp-
lexity of one iteration. The optimal schedule
for the nested for loop obviously assigns [n/m]
steps to one processor. Therefore the time nee-
ded to execute the whole nested loop is 2[n /m/].
The computing of ¥; and the comparison of #;
with y; increase this time by 2. Since the ou-
ter for loop is sequential, the complexity of the
whole iteration could be n times greater. It is
easy to check that this worst case can be achie-
ved. O

The vector y computed by Algorithm 4 during
the k-th iteration is uniquely determined by the
input data, so it does not depend on the number
of available processors. In this sense, Algo-

* rithm 4 is even more “deterministic” than Algo-

rithm 3.

Note that among the considered parallel Gauss-
Seidel algorithms, only Algorithm 4 completely
follows the sequential Gauss-Seidel method (i.e.
after the k-th iteration the same vector y is obta-
ined as by the sequential method). That’s why
Algorithm 4 requires a smaller number of ite-
rations than Algorithm 3. On the other hand,
the computational complexity of one iteration
in Algorithm 4 is somewhat greater than in the
remaining parallel algorithms. However, for
m << n the difference is negligible, especially
as an upper bound is used which is perhaps too
pessimistic. Therefore we believe that Algo-
rithm 4 is at least as fast as Algorithm 3, if not
even faster.

Concluding Remarks

The parallelizing techniques used in this paper
have also appeared in the context of standard
linear algebra. Therefore our algorithms for
solving path problems can be viewed as being
analogous to some numerical iterative methods.
The counterparts of Algorithms 1, 2, and 3 are
found for instance in (Barlow and Evans 1982,
Bertsekas and Tsitsiklis 1989, Konrad and Wal-
lach 1977, Ortega and Voigt 1985, Quinn 1987).
The idea used in Algorithm 4 originates from
(Konrad and Wallach 1977), but our algorithm
is simpler and more elegant than its counter-
patt, due to special properties of a path algeb-
ra. Theorems 1-4 are substantially different

R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99-110

109

from the corresponding results of numerical li-
near algebra, because they start from different
assumptions and rely on properties of a diffe-
rent algebraic structure. As distinguished from
numerical algorithms which are approximative,
our algorithms give the exact solution after a
finite number of iterations.

In addition to this paper, there are many others
that also deal with parallel solution of path pro-
blems. Some of them are (Deo et al. 1980, Dey
and Srimani 1989, Gayraud and Authie 1992,
Kung et al. 1987, Sinha et al. 1986, Takaoka
1989). Further references can be found in (Bert-

sekas and Tsitsiklis 1989, McHugh 1990, Quinn

1987). However, nearly all of those other pa-
pers treat only one particular problem, usually
the shortest path problem. Thanks to the used
algebraic approach, our results are more gene-
ral, i.e. they can be applied to a wide variety
of problems, not only shortest paths. Another
characteristic of the other papers is that they
mostly concentrate on the “all pairs” variant of
the considered problem, and consequently they
use algorithms which can be described as co-
unterparts of Gaussian elimination. This paper
studies the “single destination” (or “single so-
urce”) variant, and it applies iteration. To be
precise, there are few works that tackle to so-
me extent parallel iterative algorithms for the
shortest path problem, e.g. (Deo et al. 1980,
Bertsekas and Tsitsiklis 1989). But still, none
of them, for instance, employs the same idea as
our Algorithm 4 to parallelize the Gauss-Seidel
type of iteration.

Our future plan is to implement the described al-
gorithms on the 4-processor machine HP Apollo
DN10000. The main purpose of this implemen-
tation would be to experimentally compare and
rank Algorithms 2, 3 and 4. We do not ex-
pect any substantial difficulties. Namely, the
only form of parallelism encountered are rela-
tively simple parallel for loops, which can be
scheduled optimally or nearly optimally by dy-
namic scheduling (Manger 1993). Serializable
concurrent access to the common memory can
be emulated by the use of semaphores (Quinn
1987), which is quite acceptable when the num-
ber of processors is small.

We believe that our parallel algorithms are sui-
table in the same situations as the correspon-
ding sequential algorithms (Carre 1979), i.e.
when “single destination” problems are solved

on sparse graphs. The algorithms can be imp-
lemented so as to exploit sparsity. For instance,
a graph can be represented by lists of arcs ema-
nating from a particular node.

References

R. H. BARLOW, D. J. EVANS (1982) Parallel algorithms for
the iterative solution to linear systems. Computer
Journal, 25, 56-60.

D. P. BERTSEKAS, J. N. TSITSIKLIS (1989) Parallel and
Distributed Computation - Numerical Methods.
Prentice-Hall, Englewood Cliffs NIJ.

B. CARRE (1979) Graphs and Networks. Oxford Uni-
versity Press, Oxford.

N. DEO ET AL. (1980) Two parallel algorithms for shor-
test path problems. In Proceedings of the 1980
International Conference on Parallel Processing,
August, pp. 244-253. IEEE, New York.

S. DEY, P. K. SRIMANI (1989) Fast parallel algorithm for
all-pairs shortest path problem and its VLSI imp-
lementation. IEE Proceedings, 136-E, 85-89.

T. GAYRAUD, G. AUTHIE (1992) A parallel algorithm for
the all pairs shortest path problem. In Parallel
Computing 91 (D. J. Evans, G. R. Joubert, H. Li-
ddell, Eds.), pp. 107-114. Advances in Parallel
Computing 4, North-Holland, Amsterdam.

A. GOTTLIEB ET AL. (1983) The NYU ultracomputer -
designing an MIMD shared memory parallel com-

puter. IEEE Transactions on Computers, C-32,
175-189.

V. KONRAD, Y. WALLACH (1977) Iterative solution of li-
near equations on a parallel processor system. [E-
EE Transactions on Computers, C-26, 838-847.

S-Y. KUNG ET AL. (1987) Optimal systolic design for the
transitive closure and the shortest path problems.
IEEE Transactions on Computers, C-36, 603-614.

R. MANGER (1990) New examples of the path algebra
and corresponding graph theoretic path problems.
In Proceedings of the VII Conference on Applied
Mathematics, Osijek, Croatia, September 1989 (R.
Scitovski, Ed.), pp. 119-128. University of Osijek,
Croatia.

R. MANGER (1993) Implementing parallel “for” loops
on multiprocessors. In Proceedings of the 15th
InrernarionavaOnference ITl, Pula, Croatia, Ju-
ne 1993, (V. Ceri¢, V. Dobri¢, Eds.), pp. 491-496.
University Computing Centre, Zagreb, Croatia.

J. A. MCHUGH (1990) Algorithmic Graph Theory. Pren-
tice-Hall, Englewood Cliffs NJ.

J. M. ORTEGA, R. G. VOIGT (1985) Solution of partial dif-
ferential equations on vector and parallel
computers. SIAM Review, 27, 149-239.

110 R. Manger: Parallel lterative Algorithms - CIT 1, 1993, 2, 99—110

M. J. QUINN (1987) Designing Efficient Algorithms for
Parallel Computers. McGraw-Hill, New York.

G. ROTE (1990) Path problems in graphs. Computing
Supplement, 7, 155-189.

B. P. SINHA ET AL. (1986) A parallel algorithm to com-
pute the shortest paths and diameter of a graph and
its VLSI implementation. IEEE Transactions on
Computers, C-35, 1000-1004.

T. TAKAOKA (1989) An efficient parallel algorithm for
the all pairs shortest path problem. In Graph-
Theoretic Concepts in Computer Science (I. Van
Leeuwen, Ed.), pp. 276-287. Lecture Notes in
Computer Science 344, Springer Verlag, Berlin.

U. ZIMMERMANN (1981) Linear and Combinatorial Op-
timization in Ordered Algebraic Structures. An-
nals of Discrete Mathematics 10, North-Holland,

Amsterdam.

Received: November 1992
Accepted: August 1993
Contact address.:
Robert Manger received the BSc (1979), MSc (1982), and PhD (1990) . Robert Manger
degrees in mathematics, all from the University of Zagreb. For mo- Prirodoslovno-matematidki fakultet
re than ten years he worked in industry, and in this way he obtained Bijenitka cesta 30

practical experience in programming, computing, and designing infor- :
mation systems. Dr Manger is presently a lecturer in the Department of 41000 Zagreb, Croatia
Mathematics at the University of Zagreb. His current research interests Phone: +385 41 432-459/119

include parallel algorithms and neural networks. E-mail: manger@math.hr

