Journal of Computing and Information Technology - CIT 1, 1993, 2, 111-121 111

A Syntactic Method
for Enforcing Semantic

Database Integrity

Constraints

Robert R. Goldberg !, Jacob Shapiro ?, Jerry Waxman '

Department of Computer Science, Queens College of CUNY, Flushing, USA
2Department of Statistics and Computer Information Systems, Baruch College of CUNY, New

York, USA

An automata theoretic framework is proposed which allows
for a syntactic treatment of semantic properties of relational
databases.The semantic integrity of a database is defined in
terms of predicates on its attributes. These predicates are
shown to determine the specification of a finite state
automata which detects, in time proportional to the length
of the input, whether the semantic integrity of the database
has been violated. In addition, this approach leads to efficient
techniques for dealing with the problems of consistency,
equivalence and redundancy of integrity constraints. These
concepts are defined and algorithms for their determination
are described.

1. Introduction

An area of primary concern in database systems
design is that of maintaining the integrity of the
data stored in the database. The integrity prob-
lem has many facets ranging from data entry
verification to the maintenance of concurrently
usable files [9]. One of the most important con-
cerns in data integrity is that of maintaining
semantic integrity of database records.

The term semantic integrity is generally taken to
mean that the principles or rules underlying the
relationships between the data items in the
database are not violated. Figure 1 illustrates part
of a typical database record containing employee
information.

Among the various semantic relations that might
obtain are:

1. Emp-Sal < Man-Sal

2. Man-Sal < $75,000

3. If Emp-No. > 1000 Then
Emp-Sal < $35,000

A slightly more complex example might be the
following :

If Field_10 contains code "a" and Field_150

contains a "b", then Field_225 may only
contain

entries from the set {0,1,2}.

Database records can often contain hundreds of
fields. The list of integrity constraints can be very
long, and their complexity can be quite great.

Semantic integrity may be applied on many levels
in a database system. Constraints may apply to
individual ficlds or between the fields of a record.
There may be intra-record constraints or con-
straints that apply globally to the set of all data-

~ base records in a given data file. In addition, there

may be constraints connecting records across the
tables comprising the complete database system.

EMP-NAME IR EMP-SAL EMP-ID MAN-SAL
Employee’s Name Eﬁlﬁllg)g{ree’s Employee’s Salary | Manager’s ID Manager’s Salary

Figure 1: A Database Record Containing Some Employee Information

112

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

This paper will deal with the first of these levels:
enforcing constraints on individual fields or be-
tween the fields of a record. We provide a method
for automatically transforming potentially com-
plex constraints between the fields of a record to
a finite state automata which will enforce the
semantic integrity based on the syntactic struc-
ture of incoming records (transactions) that are
used to update the database. The focus of the
method will be to provide a real-time filter to
guarantee that data passed to the database con-
forms to proscribed semantic constraints.

Aside from automatic real-time constraint enfor-
cement, this approach has additional benefits as
well. In particular, it will allow for

1) automatic constraint consistency checking,

2) the ability to test for the equivalence of al-
ternate constraint formulations, and

3) automatic constraint redundancy checking.

Typically, constraints are defined on and between
the fields by a series of relational equations. One
obvious desideratum for constraint specification
is that of constraint consistency; that is, the set of
constraints should not be mutually contradictory.
However, when the number of fields is large, the
relationships between them can be quite com-
plex. The standard approach to constraint satis-
faction checking is to simply translate the con-
straint set into a sequence of "if-then-else" state-
ments in a program [9,11]. If the set of constraints
is complicated it is quite likely that inconsisten-
cies, if they exist, can be overlooked. The ap-
proach presented in this paper will allow for the
automatic detection of inconsistent constraints.

Under current practice, redundant constraint
specification is not easy to detect. Redundant
constraints present two problems in database sys-
tems. First, they degrade program efficiency be-
cause equivalent conditions are being checked
multiple times. Second, they may severely com-
promise integrity checking, in general. If a set of
constraints is, in fact, redundant, a situation oc-
curs in which some conditionmay be derived in
more than one way. Changing some of the con-
ditions could leave the constraint set either in-
consistent or produce a situation with undesirable
implications. This becomes all the more prob-
lematic when constraints can change dynamically
as is the case with modern database systems.

In addition, constraint sets which look quite dif-
ferent might in fact define the same set of update
records for a given database. The ability to test
for equality of different formulations of con-
straints for a given record might be important in
some contexts. The language-automata theoretic
framework proposed in this paper provides a sim-
ple and effective method for testing equivalence
of sets of constraints.

In the next section we introduce a predicate lan-
guage defined over database attributes. Section
3 reviews regular sets and finite state automata
(£s.a.) and section 4 shows how the predicate lan-
guage is related to f.s.a. In addition, we show how
these automata can be used to enforce the in-
tegrity constraints imposed by the predicates. In
section 5, the notions of consistency, equivalence
and redundancy of a constraint set are framed in
automata-theoretic terms and algorithms for
detecting these conditions are described.

2. Predicates over Database Attributes

We start with a brief review of the relevant con-
cepts from database theory, and describe the
notation which will be used below. For a full treat-
ment of the appropriate notions see, for example,
Ullman [15] or Elmasri et al [6].

A relation schema R denoted by R(A;, A, ...,
A,) is a set of attributes R = {A4, ..., A;}. Each
attribute A; is the name used to denote some
domain D in the relation schema R. D is called
the domain of A; and is denoted by dom(A;). A
relation instance of the relation schema R(A} A,
.y Ay), denoted by r(R), is a set of n-tuples r =
{ti, to, ..., tn}. Each n-tuple t is an ordered list of
nvaluest = <1, v,, ..., v,>, where each value vi,
1=<i=n, is an element of dom(A;), or is a special
value null. Notice that r(R) is a subset of the car-
tesian product of the domains that define R :

1(R) € dom(A;) X dom(Ay) X ... X dom(A,).

For simplicity of notation we will often refer to
dom(A;) by A;, and tor(R) by R. From the context
of the discussion it will be clear when we refer to
the name of the attribute A, or to the domain of
A;, dom(A,). Similarly, this will be apparent with
1(R) and R. For example, when we say cardinality
of A;, we mean |dom (A))|.

Robert R, Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121 113

The set of predicates which will be used to define
the semantic integrity constraints for a given
tuple may be defined formally as follows :
constants:A;, ..., A, - symbols corresponding
to attributes of R;

K, ..., Ky - symbols representing all
possible values of elements in

U dom(4));

i=1

null - symbol indicating that the value
in the attribute is omitted.

binary predicates: , =
logical predicates: V (or’), = (’not’).

A basic predicate is of the following form: XaY
where

a is one of the binary predicates above;
X = A, for some 1<i<n;

Y = A, for some 1<j<nor, Y = K, where K| is
a constant corresponding to a value in dom(A;).

"A general predicate in the language is defined
recursively as follows:
1. A basic predicate is a predicate;

2. If P is a predicate then —P is a predicate;

3. If P, P, are two predicates then P;VP, is a
predicate.

This recursion will only be applied a finite amount

of times.

Note that the predicates as just defined allow for
very natural and important integrity constraints
to be formulated.

Examples:

Integrity Constraint Predicate Statement
1. The values of attribute
A, are limited to b e s
the values in the set J,-\=/1(A1_KJ)

{KLKZ, ae -,Km}.

2. The values of at-
tributes A; are between
100 and 200
(i.e. 100=A;=200)

((Ai<200) V (Aj =
200)) A = (Aj <100)

3. If attribute A; has N 3
value K then (Ag is (A1=K1 = ([(A2=K2)

either equal to K; or V (A2=K3)] A A3 =
to K3) and Aj is null null

Notice that in the predicate statements we used
symbols A and -. These are just shorthand and
are represented as AAB = —(-Av-B),
A->B=-AVB. One may, of course, introduce
higher level predicates defined in terms of basic
predicates. For example, one may wish to intro-
duce the predicate "element of" denoted by "€"
to correspond to the predicate of example 1 a-
bove. All such definitions, however, must be for-
mulated in terms of some set of elementary predi-
cates and should be considered as a "macro" nota-
tion for them.

The set of predicates defined above can require
considerable cost for integrity checking. A data-
base administrator or programmer may specify
predicates of arbitrary complexity in the number
of terms, and, while a preprocessor might be
employed to convert the predicates into either
disjunctive or conjunctive normal forms, the cost
of checking the predicate may grow exponentially
in the number of terms. Clever rearranging of the
terms for testing a composite predicate might
resultin faster integrity checking. However, when
the predicates contain many terms and refer to
many fields, this optimal rearrangement may be
far from obvious.

An alternate formulation of predicates as describ-
ing structured rules for the formation of strings
of a type 3 regular language is now presented.
The advantage of this formulation is that it will
allow for the automatic generation of a validity
checking scheme that will operate in time propor-
tional to the number of attributes.

3. Regular Sets and Finite State
Automata

For the sake of completeness, the reader is re-
minded of basic definitions and results from for-
mal language and automata theory which are im-
portant in formulating our method for integrity
checking. For a detailed treatment see Hopcroft
and Ullman [10]. First we define the concept of
a regular set.

Definition :

A regular set over an alphabet X is a set of strings
constructed from X as follows :

Base Case : @, {A}, Z are regular sets.

114

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

Recursive Step :
a) If A,, A, are regular sets, then A;UA; is
regular.

b) If A;, A, are regular sets, then A, Ay s
regular where A;-A; = {uv|uEA;&VEA,}.

Al means A concatenated with itself 7 times.
A=A A=A

c) If A is regular, then A* is regular. The
Kleene Star operator, *, is defined in terms of

union and concatenation by A* = |J Al

i=0
Closure : The recursion step may be applied any
finite number of times [14].

Lemma. Every finite set of strings is regular.

Proof. Each individual string may be formed by
the concatenation of its underlying individual
symbols. A string is then represented by the set
that contains it, and hence is regular. Therefore,
a finite set of strings may be formed by the union
of the sets of the individual strings, and is there-
fore also regular. O
Regular sets may be used to naturally express the
set of tuples that forms the valid insertions to a
database. The cartesian product of the attributes

x Ai may be viewed as a set of all concatenations

of the form a,a,...a, where a;EA;, which may be
ordered without loss of generality. Therefore,
every tuple can be represented by an unique
string. Also notice that each attribute A is a finite

set of strings and hence is regular. Therefore,

XA

¥ Qi s also regular. In particular, any subset of

X Ai is finite and by the previous lemma, any set
of relations is also regular.

Definition :

A finite state automata is a quintuple M = (Z, -

Q,3,S,,F) where £ is a finite set of input symbols,

Q is a set of states, 0: ZxQ->Q is the next state

function, S,EQ is the start state, and FCQ is the

set of final states.

A finite-state automata is a mathematical abstrac-

tion of "machines" or processes and is charac-

terized by the following three properties:

(1) The automata may be said to be in one of a
finite number of states at a particular time.
Some subset (usually non-empty) of these
states is denoted as the set of final states.

(2) The state of the automata at time ti+1 is a
function of just the state of and the input to
the automata at time t;.

(3) Some subset of the set of states is called the
final state set, and if, when the machine has
processed the last input, it transfers to a final
state, it is said to have "accepted” the input
string.

A classic result, Kleene’s Theorem, relates
regular sets with finite-state automata (f.s.a.). By
Kleene’s Theorem, for each regular set L, there
exists a finite-state automata M; such that the set
of strings for which My enters a final state is
precisely L. Moreover, the standard proof of this
correspondence is constructive; that is, an algo-
rithm exists that, when given a generator for a
regular set L will produce a finite-state automata
accepting L [10].

Kleene’s Theorem has important implications of
the above discussion to the problem of constraint
enforcement. We will demonstrate below how to
construct a machine M simulating each P, the set
of integrity constraints. The acceptance of a
string by M will indicate that the associated tuple
is valid.

4. Predicates and Finite State Automata

Consider a relation R over n attributes, R(A;, Ay,
., A,). We assume that R is a finite set of tuples.
Let the integrity constraints defined on R be
given by the finite set of predicates P = {P; ...
Py}. That subset of R satisfying P is, of course,
also finite. Hence by the above discussion, the
set of valid tuples in R constitutes a regular lan-
guage.

It should be noted that the standard proof of the
fact that a finite set is accepted by some f.s.a. in-
volves a construction which essentially assigns a
list of states to each element of an accepted string
in the set [5]. If the set is large, this process is
extremely impractical.

We will now present an alternative scheme which
will allow for the machine description to be read
off directly from the predicate. We will first show
how to associate a machine with each basic predi-
cate and then how to construct a machine for
general predicates.

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121 115

Basic Predicates

Case 1:
P is a predicate of the form
P: AjaK

This denotes that subset of R whose i entry A,
stands in relation « to the constant K.

Let UA =‘lleAi. Consider a fsa. M = (T,

Q,0,A;, T,) where = = UA and Q = (ALA} ...
oo ALTE,Ty).

Note that the input set is the union of all the valid
attribute values names up to and including those
from A;. There are two additional states Tg and
Ty which are used to indicate success (Ts) and
failure (Tg).

Leta (K) = {x | x€A;andxa K}. Leta, b, and
¢z denote generic elements of UA, a(K), and UA-
a(K) respectively.

We may define machine M as follows:

a (K), M enters state Ts, which is a final state (by
(2)) and stays there (by (4)). If the value of A, is
¢z & o (K), then M enters state Tr (by (3)) and
stays there (by (5)).

Notice that this description of M is not in the
standard form defined in the previous section.
The basic difference lies with the elements a, b,
and c;, since they represent generic elements of
their respective sets. The definition of § is also
not in standard form. Each rule should be
replaced by a set of rules, one for each element
represented by the respective symbol a, b, and
¢z Rule (1), for example, would be replace by
|UA| rules.

In a practical algorithm this rewriting need not
be done, since we need not check the input sym-
bol except for the i" input. Thus, we may effec-
tively check the predicate P: A; @ K. The time
required to test a given element of R for mem-
bership in Ry, for this P, is therefore proportional
to n, since each element in attribute A; for j=i

Figure 2: Finite State Automata for Single Predicate of the Form P: Aj a K.

1. 8(A} a) = AL, 1=j=i
2. 5(A1{, b,) =Ts
3.8(AL cz) = Ty
4. 80T a) = Ty
5.8(Tg, a) = T

It is easy to show that M will accept precisely that
subset of R for which A; a K. Since the only criti-
cal element for P is the value of attribute A, when
the i" input is encounteted, if it is an element of

will just be scanned and A; will be evaluated by a
function call that takes some bounded time.

In addition, the rules as written would not require
that each R; be checked to see if the input value
were an element of A;. This is not required by the
predicate A; @ K and the rules allow any symbol
in fields other than A;. In practice, however, the
list of predicates defining the integrity of a given
record type would include predicates to guaran-
tee that the j™ input is of a type valid for the j®
field.

116 Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

Case 2: M= (% Q6 A, Ty

P is a predicate of the form where:

Pie 2=UA/ / .

Assume, without loss of generality, that i<j. For i .(Al’AZ:--Ai:A(L,M)aTs,TFL 1<L= [A5];
each x €A, let a(x) denote that subset of A, i=sM=j-1

whose elements stand in relation « to x. Then, S: , I _

a(x) = {y|yEA, and xay}. The key to creating a 1. 6(Alwa) = Alpyr; 1=M=i-2
machine for the predicate term P: A; a A, is to 2. 8(Ahix) = Al 1sL= | A
establish, after the i inp}lt, an |Ai_| -way branch. 3. 4(A/(LM),a) = A/(LMH)S 1=Msj-1,
Each of the branches will be testing for a par- 1=L<|A| ’

ticular x; EA; and so the results of the previous / _ _
discussion apply. As above let a «UA; x; €A, be = a(A/(LJ'i)’Y) =Ts y€a(x); 1sL=|Ajl
defined as above. 5. 0(Aljipy) = Tp yEa(xy); 1=L=| A

Let machine M be as follows: 6. (Tga) = Ts

Figure 3: Finite State Automata for Predicate Form P: Aja Aj.

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

117

As defined, M will accept all and only those tuples
for which A; a A;. In the set Q, Al generically
represents a set of [A;] * (j-i) states. Specifically,
there are | A;| states of the form A/y ;) each cor-
responding to a partlcular x EA;. The chain of
states leading from Ay) to Ay ;) represents a
copy of the machine which accepts strings satis-
fying the predicate A; a x;. Consider a tuple in R
for which A; a A, is satisfied. The first i-1 entries
of the tuple cause the machine to go from Aljto
A/; (by rule 1). At A; and depending on x EA;, M
enters Al 1y (by rule 2) and further mputs cause
it to transverse the states A(m) Ay (by
rule 3). At A/q;; any y such that yEa(x) will
cause M to enter Tg (by rule 4). Therefore, if
A; a A is satisfied, M enters a final state and
cycles there (by rule 6). If, however, A; a Aj is
not satisfied, then at A’y ;, y will not be an ele-
ment of a(x;) and hence M will enter Tr (by rule
5). Tg is a trap state (by rule 7) and hence M halts
and the tuple is rejected.

For predicate terms of the form A; a K, the num-
ber of nodes needed for machine M is i+2. For
predicate terms of the form A; o A;, the number
of nodes needed for machine M is i+(j-i)* | A
+2 and the number of input symbols is, as before,
| UA|. Likewise, this number may be reduced and
still maintain the linearity of the integrity check-
ing by introducing generic elements representing
certain classes of inputs in a way analogous to the
machine for A; a K (figure 2); we let a represent
any symbol in UA, and b and ¢ represent generic
symbols in a(x;) and UA-a(x) respectively for
1<i<|A;|. This represents in practice a sig-
nificant decrease in size as compared with UA.

Generic elements allow for the input domain of
each attribute to be handled efficiently. Consider
some large set A;. If a transition were stored in
the state able for each element, the size of this
table could be prohibitive, although clearly the
search time for the transition would be constant.
In many applications, the domains of each at-
tribute are quite tractable. The reason for this is
that there are many application areas in which
the domain is in fact small; moreover, even in
those instances when the domain appears to be
large (for example in a SALARY domain), many
times the items of interest are ranges of that
domain. For example, consider when the SALA-
RY is under 10,000, between 10,000 and 50,000,
and, over 50,000. Also, notice that as the number

of generic elements, or categories rises, the com-
plexity for obtaining the correct transition be-
tween one state and the next increases. In fact,
this is directly related to the number of con-
straints. However, as the linear record of length
n is input, only n transitions are necessary to get
from the start to the final (and possibly accepting)
state. If the size of the domain of the attribute is
tractable, the time to ascertain the subsequent
state is constant, based on the initial construction
of the transition matrix. If not, then in worse case
a tree search of subsets of the resultant attribute
domains (after the constraints have been imple-
mented and the machine minimized [10]) would
be necessary to ascertain the state that the cur-
rent transition should take. This however would
only add a log(constraints) factor to each of the
transitions that have large number of such
domain subsets. We are still better off than with
a possible exponential number of states.

General Predicates

We have demonstrated how individual predicate
terms defining an integrity constraint for a given
relation schema may be converted to the descrip-
tion of a fs.a. which accepts only those strings
from Ax...xA, satisfying the particular term.
What about combinations of such terms? While
a predicate may be an arbitrarily complex com-
bination of terms, the construction of a machine
for accepting them is not conceptually difficult
since the only connectives that may be used in
constructing predicates from terms are boolean
connectives. The proof of the following theorem
shows how this may be done.

Theorem. Any Boolean combination of predicate
terms determines a regular language.

Proof. Formally, let ¢; and a;, be predicate terms
on schema R. Since both ; and «, determine
finite subsets of tuples from r(R), and hence are
regular, by definition the union of them also is a
regular language. Moreover, algorithmic techni-
ques exist which, when given machines cor-
responding to &; and a,, will produce a machine
recognizing @,V a;, a3 Aa; and a [14]. The ideas
involved are straightforward. If M, and M, are
machines corresponding to a; and a; respective-
ly, then L(M,,) U L(M,,) may be recognized by
a non-deterministic finite-state machine, by ad-

118

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

ding a new starting state with nondeterministic
transitions to the starting states of M., and M,,

(figure 4). If M, accepts all tuples corresponding

states as well. Since the essential cost will be in
the union of machines to recognize «; and a,,
each negation does not add states and neither

7

u
4o !

(1)
: /
Machine 1

\

Machine 2

Figure 4 : Joining two finite state machines with a A. This is accomplished by adding
nondeterministic (A, free) transitions between nodes.

to the predicate a then Mg, which is equivalent
to M, except with Ts and T interchanged, will
.accept a (figure 5). Finally, since a;Nea, is
equivalent to ;| Ja,, and ;- is equivalent to
—ayVa,, the previous results apply and their
machine representations may be constructed as
above.

O
If M, and M, are machines for predicates ¢, and
@y respectively, then a machine for a;Va, re-
quires at most |Qny, | +[Qum,|-2 states since only
one trap and final state are needed. If M; recog-
nizes a;, then M, which recognizes a;, requires
|Qu, | states, since only one interchange of the
trap and final states is needed. For the predicate
a;Nay, one needs at most |Qpy|+|Qp,|-2

does the final one. Predicates of arbitrary com-
plexity may thus be implemented and their cost
of implementation as measured by the number of
states necessary for their construction may be
iteratively obtained. The machine thus obtained
is in fact nondeterministic. Standard approaches
for transforming to a minimal deterministic finite
state machines could in worst case produce an
intermediate machine of high memory require-
ments. However, this would only be applicable if
the conglomerate nondeterministic machine was
minimized at the end of joining together all of
the constraints. The approach presented here
iteratively obtains a minimal deterministic finite
state machine, as each constraint is added. Con-
sequently, no exponential costs of intermediate
machine constructions are incurred during the
minimization process.

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121 119

@

o ©

Machine 1

o

-

N,

@
:

Machine 2

-

Figure 5 : The language of machine 2 is
the complement of that the language
of machine 1. This is accomplished by simply
switching the designation of success (final)
and failure states.

5. Consistency, Equality,
and Redundancy

The automata theoretic perspective allows for
the simple derivation of consistency, equality and
redundancy of constraint sets. We start with the
definition of satisfaction.

Definition:

Let t = <vy, ..., v,> be a tuple in R where
v;Edom(A;), 1=<i=n. Let P be a basic predicate;
then P has one of the following four forms:

1A = A;
2] By <
DA <K
4H A=K

We say that t satisfies P if for each of the forms
above the following holds respectively:

v, =v;

2)vi <v;

3) v; < K;

4) vi = K, where KEdom(Aj) corresponding to a
specific constant K.

Satisfaction for general predicates is defined in

the obvious way. If t satisfies P then t does not
satisty —P.

If t satisfies at least one of P, , P,, then t satisfies
P,VP..

The above definition may be generalized to a set
of predicates in the following way :

Definition:

Given arelation R, and aset P = { Py, ..., P, }
of predicates we say that R satisfies P if for every
tuple t in R and every P; in P, t satisfies P;.

We can now define consistency, equivalency and
redundancy.

Definition:

A set P of predicates is consistent if there exists
a relation R such that R satisfies P.

Two sets of predicates P; and P; are equivalent
if for every R, R satisfies P, iff R satisfies P,.

A set of predicates P is redundant if there exists
a proper subset P; of P such that P; equivalent
to P.

The next two theorem shows how the consistency
of a set of predicates may be determined.

Theorem. Let P be a predicate and Mp its cor-
responding finite state automata. P is consistent
iff L(Mp)=&.

Proof. Assume P is consistent. By definition there
exists a nonempty relation R s.t. R satisfies P. It
follows from the previous definition that if R
satisfies P then RCIL(M,) and hence L.(Mp) is not
empty.

Similarly, if L(M;) #@, consider some element a
€L(M,). Since there is a one-to-one correspon-
dence between tuples in A;XA,... XA, and ac-
cepting strings (and hence elements of L(Mp)),
define R to be a relation consisting of the tuple
t corresponding to a. Then R satisfies P and hence
P is consistent.

O

120

Robert R. Goldberg et al.: Semantic Database Integrity.- CIT 1, 1993, 2, 111—121

This theorem allows for predicate consistency
checking because of the following result.

Theorem. Let M be a fs.a. Then the predicate
L(M)=¢ is decidable.

Proof. See Sudkamp [14] for an algorithmically
constructive proof.

O

The above framework may be utilized to check
for equivalence of alternate constraint sets. This
is the result of the next theorem.

Theorem. Let P, and P, be sets of predicates and
Mp, and Mp, be their corresponding fs.a. P is
equivalent to P, iff L(Mp,)=1(Mp,).

Proof. Assume P; and P, are equivalent. First
show that L(Mp)CL(). Let a EL(Mp,) and R the

relation consisting of its corresponding tuple.
Then, R satisfies P; and hence R satisfies P,.
Therefore, a, the corresponding string, is a mem-
ber of L(Mp,). Similarly, we can show that

L(Mp,)SL(Mp,), and therefore, are equal.

Now assume L(Mp)=L(Mp,). Let R be arelation
corresponding to some subset S of L(Mp,). Then
R satisfies P,. But, S is a subset of L{(Mp,). Hence,

R satisfies P,. Therefore, P; and P, are equiva-
lent. O

Since predicate equivalence implies language
equivalence we may now implement an algorithm
to test for predicate equivalence based on the fol-
lowing theorem.

Theorem. Let M; and M, be two fs.a and L(M;)
and L(M;) be their corresponding languages.
Then, L(M,) = L(M,) iff

L = (L(M;) N L(My)) U (L(MY)) N L(M,))

is empty.

Proof. If L(M;) = L(M,), then the-intersection
of a language and its complement is empty, and
thus, L is empty.

Now assume that

L = (L(M;) N L(M,)) U (L(My)) N L(M,))

is empty.

The proof that L(M;) = L(M,) is by contradic-
tion. If €L(M;)-L(M,), then a€L(M;)N
L(M,)) Therefore, the antisymmetric union is
nonempty. Similarly, for aEL(M,))NL(M;). 0O

The above antisymmetric difference can be as-
sociated with a f.s.a. as discussed above. Hence,
by the algorithm to test for emptiness of a fs.a
we may test for equivalence of constraint sets.

Finally, the technique above allows for a
straightforward determination of redundancy in
a constraint set. Let P = {P, ... P} be a set of
constraint predicates. The following algorithm
will test this given set P for redundancy and
produce a nonredundant subset of P.

{Begin Algorithm REDUN}
1. Redundant := false;
2. For P,€P do

Peurr := P;

Begin
Let Q = PCURR & {Pl} .

If Pcygr is equivalent to Q,
then PCURR = Q

End;

3

3. If Pcurr # P then Redundant := frue.
{End of Algorithm REDUN}

Notice that in step 2 the equivalency of Pcygr
and Q is computed using the results of the two
previous theorems. The correctness of the above
algorithm is proven in the following theorem.

Theorem. At the termination of the algorithm
REDUN the variable Prygg contains a non-
redundant subset of P which is equivalent to P.

Proof. Denote by Pyt the set Peygg at the ter-
mination of the algorithm REDUN. It is clear
that Pexrr is equivalent to P because every time
Pcurn 1s reset to a new value Q in step 2, this Q
is equivalent to Peygrg.

To show that Pgyr is nonredundant assume the
opposite is true. Then, there exists a proper sub-
set PexrrCPpxr such that Plegr is equivalent to
PEXIT- Let P1EPEX['I_P[EXIT Notice that
PexirCPcurr and PrxrCQ for all iterations of
step 2. Hence, P,EPygg for all iterations. Since
P;EP, at some iteration of step 2, we have Q :=
Pcurr-{P;}. For this Q we also have Py rCQCP.
But, Prxrr is equivalent to Poyrg and hence
equivalent to P and Q. Therefore, at this iteration
Pcurr s reset to Q, which does not contain P,
But, this contradicts the fact that Pryyr contains
P; since nowhere in the algorithm do we add ele-
ments to PCURR-

Robert R. Goidberg et al.; Semantic Database Integrity.- CIT 1, 1993, 2, 111—121 121

6. Conclusion

This paper describes a way to translate semantic
requirements for database integrity into the syn-
tactic language of regular expressions. This, in
turn, provides a way to associate a finite state
automata to the sets of predicates defining the
integrity constraints. These machines allow for
the real time processing of database update
records in many important application areas. A
tuple of size n can now be processed in O(n) time.
In addition, this approach leads to efficient tech-
niques for dealing with the problems of consis-
tency, equivalence and redundancy of integrity
constraints.

References

1. A. V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques and Tools, Addison-
Wesley:Reading, Mass, 1988.

2. 8. Baase, Computer Algorithms: Design and Analysis,
Addison-Wesley:Reading, Mass, 1988.

3. E. F. Codd, "Relational Completeness of Data Base
Sublanguages,” Courant Computer Science
Symposia b, in Data Base Systems, Prentice
Hall, 1971.

4. E. E Codd, The Relational Model for Database
Management : Version 2, Addison Wesley,
Pennsylvania, 1950.

Robert R. Goldberg is Assistant Professor at Queens College. He
received his Ph.D. in Computer Science from New York University.
His research interests are in Computer Theory and Computer
Vision.

Jacob Shapiro is Associate Professor at Baruch College. He
received his Ph.D. in Mathematics from UC-Berkeley. His research
interests are Databases, Networks and Algebraic Systems.

Jerry Waxman is Associate Professor at Queens College. He
received his Ph.D. in Computer Science from New York University.
His research interests are Neiworks, Computer Theory, Voice
Recognition and Computer Education.

5. P J. Denning, J.B. Dennis and J.E. Qualitz,
Machines, Languages, and Computation,
Prentice Hall, New Jersey, 1978.

6. R. Eimasri and S.B. Navathe, Fundamentals of
Database Systems, Benjamin/Cumming
Publishing Company, Inc., 1989.

7. K. P. Eswaran ef al, "The Notions of Consistency
and Predicate Locks in a Database System,"
Communications of the ACM, Volume 19,
Number 11, November, 1976.

8. G. Gardarin and P. Valduriez, Relational Databases
and Knowledge Bases, Addison Wesley, Pen-
nsylvania, 1989.

9. M. M. Hammer, "A Framework for Data Base
Semantic Integrity,"” MIT Laboratory for
Computer Science, Cambridge, Mass., 1976.

10. J. E Hopcroft and J.D. Ullman, Formal Languages
and their Relation to Automata, Addison-Wes-
ley, Pennsylvania, 1979.

11. J. G. Hughes, Database Technology : A Software
Engineering Approach, Prentice Hall Interna-
tional Series in Computer Science, New Jer-
sey, 1988.

12. K. Parsaye, M. Chignell, S. Khoshafian, and H.
Wong, Intelligent Databases, J. Wiley & Sons
Inc., 1986.

13. Y. C. Sagiv, Optimization of Queries in Relational
Databases, UMI Research Press, 1981.

14. T. Sudkamp, Languages and Machines, Addison-
Wesley, 1989.

15. J. D. Ullman, Principles of Database and
Knowledge-based Systems, Vol. 1, Computer
Science Press, Maryland, 1988.

Received: December, 1992
Accepted: August, 1993

Contact address:

Robert R. Goldberg

Department of Computer Science
Queens College of CUNY

65 - 30 Kissena Bivd.

Flushing, New York 11367-0904
Email: goldberg@qcunix.acc.qc.edu

