Journal of Computing and Information Technology - CIT 1, 1993, 1, 1-13 1

Computer

Simulation Modelling

Using Hypercard

Grace Au' and Ray J. Paul®

1Department of Business Information Systems,

The Hong Kong University of Science & Technology, Hong Kong
2Department of Computer Science, Brunel University, UK.

Discrete event simulation modelling mimics a real world
problem numerically in order that real world alternatives can
be tested and evaluated. Such problems are often ill-defined,
since their complexity is usually the source of the problem
itself. There is a need, in such cases, for a flexible method of
model specification. This paper addresses the issue of provid-
ing a rapidly adaptable environment for such modelling, so
that the computer model can pe easily, safely and quickly
updated to meet current problem understanding. In par-
ticular, diagrammatic methods for expressing the model are
discussed, and their implementation using HyperCard
described. The research system developed is called Hyper-
Sim. Such a prototyping system enables rapid model develop-
ment using either graphical or textual editing or both. This is
illustrated using a popular simulation example. It is suggested
that HyperSim should act as a front end to a complete simula-
tion environment, and proposals to that end are outlined.

Introduction

Simulation model specification is one of the most
important stages of the modelling process. Whilst
computer based simulation modelling has a rela-
tively extensive past, compared to the use of com-
puters, there is a variety of proposed specification
methods. Ceric and Paul (1992), for example, list
fourteen such methods, with research still on-
going into what makes a good or poor method.
Since model development is a function of speci-
fication, and some specifications are often under
continuous review, it would appear that one char-
acteristic desirable of a specification system is
that it should be flexible to use. This paper de-
scribes a HyperCard implementation based on
the graphical method known as activity cycle
diagrams. HyperCard was sclected because of its
potential to offer a rich and robust environment
for a flexible specification system.

This research work centres around a formal mod-
el description known as an Activity Cycle Diagram
(ACD). An ACD represents, in a concise clear
form, the flow of control within a simulation mod-
el. Since ACDs have proved to be a reasonable,
if not comprehensive, method of describing the
formal logic of the simulation model, we have de-
veloped an ACD based diagramming system
called MacACD, described by Au & Paul (1993).
It was found that the merits of ACDs diminish as
the complexity of the model logic increases (see
El Sheikh et.al. (1987) for example). An ideal
simulation system would allow the user to com-
bine graphical and textual specification of the
model. This paper describes the results of re-
search into such a flexible simulation specifica-
tion environment using HyperCard on the Apple
Macintosh.

In the next section, a brief description of the type
of simulation modelling that this research is
focused on is outlined. A definition and descrip-
tion of activity cycle diagrams is then discussed.
The main section of the paper describes how re-
search into a flexible graphical/textual based
specification systems has been pursued by build-
ing a particular application. This application is
called HyperSim, developed from HyperCard on
the Apple Macintosh computer. An example of
the way in which HyperSim achieves its task is
illustrated in the appendix using the ubiquitous
simulation example of a pub or bar. The detailed
description of the example enables the reader to
see the power and flexibility of HyperCard for
development of such graphical/textual systems.

2 Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13

The penultimate section of the paper discusses
the advantages the Macintosh HyperCard ap-
proach provides for this particular form of re-
search. The paper concludes with the lessons
learned from this research and discusses future
research into graphical model specification and
methods of achieving it.

Discrete Event Simulation
modelling

Computer Simulation involves the careful plan-
ning of a model of a real world environment or
system of interest. A computer is used as a means
to develop an artificial or hypothetical model
which imitates the systems behaviour when sub-
ject to a variety of operating policies. The com-
puter model incorporates as many details as
necessary to provide a realistic representation of
the real world system. The computerised model
allows the user to perform a variety of experi-
ments, say, by changing certain conditions in the
system, or by using different combinations of
resources, or by applying different operating
policies. In general, the computerised model acts
as a vehicle for experimentation, often in a trial-
and-error way, to demonstrate the likely effects
of various conditions and policies. The results of
the analysis may then be used to provide assis-
tance for man-agement decisions.

A model based on a discrete system (as opposed
to a continuous system) changes at specific points
in time and is only concerned with state changes
at these events. In this research, we are only con-
cerned with discrete system modelling. Continu-
ous systems are usually represented by differen-
tial equations or some equivalent approximation,
and consequently they have an entirely different
mode of solution.

In the modelling process, the formulation of the
problem and the definition of the model logic can
be specified by means of a flowchart, or an ACD
(Pidd, 1992), or using special symbols as in GPSS
(Shriber, 1991). The model specification can be
translated into a text file via an interactive simula-
tion program generator (ISPG). The program
generator, making use of this data file, writes the
simulation program using some software subsys-
tems (Crookes et. al., 1986; Paul & Chew, 1987).
This model, under the control of the analyst, is
then ready to be run and output produced. Visual

screens of the model can be created to represent
the dynamics of the system during a visual simula-
tion run (Bell 1991). The output can be used to
determine correctness of the model logic, and of
the computer program. Representational graph-
ics (Bell and O’Keefe, 1987), for example his-
tograms and time series, are often produced to
emulate the simulation model output dynamical-
ly.

It has been an ideal since the 1970’s to provide
systems within which a problem owner would be
able to build and use a model without the inter-
vention of a specialist, or with the specialist
having only light involvement (Crookes, 1992).
Nevertheless, simulation is an ongoing process.
Real world systems always involve participation
from different groups of interests. Since the prob-
lem is user-defined, the end product is very much
a compromise for these groups. Poor communica-
tions and different opinions between different
groups often make the definition process more
complicated. This fact is further emphasised in
Paul (1992). There is therefore a need for flexible
and easy-to-use systems for building prototypes
in order to accelerate the model definition stage.

Simulation is often regarded as a decision-aiding
tool. A less established role that today’s simula-
tion modelling plays is its power of helping the
problem owner and the specialist to understand
the problem and the system more thoroughly. It
also helps to narrow the communication gaps be-
tween different parties of interests who are in-
volved in the system since they are given a chance
to understand what other components of the sys-
tem do. Because of the complexity of the defini-
tion stage, a flexible specification system is neces-
sary for allowing efficient updating of data in the
model. It is the purpose of the research described
in this paper to achieve such a flexible specifica-
tion system.

This research is based upon the simulation en-
vironment as described by Balmer and Paul
(1986) and Paul (1992). Figure 1 shows an over-
view of this environment.

The gap between an understanding of the model
purpose by the problem-owner and the specialist
is a common obstacle to a successful use of a
simulation model. An attempt to bridge this gap
is proposed by introducing Artificial Intelligence
(AI) systems to aid the analyst in formulating the
problem and experimenting with the model with

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1-13 3

Interactive Simulation Program Generator (ISPG)

'
Data file

Prablem
formulator

Analyst
Customer ~~

of model logic
Software
subsystems
Simulation
Model
Graphics
v
Output
Qutput
analyser

Figure 1: CASM’s View of a Simulation Environment

the customer. This enables model development
in small, easily checked stages, model correction
in the light of program output, and determination
of the running conditions and the run lengths of
the simulation model. The main benefit is that
the customer can also participate in the modelling
process.

Graphics have historically been seen as a tool for
emulating the simulation model output dynami-
cally. However, graphics might be used in con-
junction with a problem formulator. By means of
a graphics screen, the problem can be described
and thereby formulated, with the rest of the sys-
tem driven as before. The simulation model
would run the screen dynamically over time, with
interrupt-and-amend capabilities. With graphics
editing, the process of development, correction
and obtaining model confidence is greatly en-
hanced. The use of graphics enables the end-user
to see what is going on in the system and to
respond to it dynamically, rather than to oc-
casional events as presented by the analyst. In the
following section, we will discuss a diagramming
technique that is commonly used in formulating
simulation models.

Activity Cycle Diagrams (ACD)

An activity cycle diagram (ACD) provides the
means of describing the logic of a simulation
model. It is a way of modelling the interactions
of system objects and is particularly useful for sys-
tems with a strong queuing structure. The
graphics represent the model in terms of the life
cycles of the entities or objects it comprises.
ACDs consist of activities (rectangles), queues
(circles) and life cycles of entities (using arrows).
A summary of the symbols used in an ACD is
shown in figure 2.

An Example of ACD : The Pub

A simple pub or bar can be seén to comprise of
the entities : customers, glasses, barmaids and a
door. The way the entities behave in the pub can
be represented by the ACD in figure 3. From this
model logic, plus the duration of each activity, a
program can be constructed and then run to simu-
late the behaviour of the pub over time.
Parameters, such as the number of entities, may
be varied. The behaviour and output of the model
can then be compared to find, say, the maximum
number of barmaids needed to maximise

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13

Summary of the symbols used in an Activity Cycle

Diagram

An Entity is any component of the model which can be imagined to retain its identity
through time. Entities are either idle in queues, or active, engaged with other entities
in time consuming activities. Their life cycle is represented by arrows.

An Activity usually involves the cooperation of different classes of entity. It is
represented by a rectangle. The duration of an activity can be determined in advance,
usually by sampling from a probability distribution for stochastic models.

A Queue involves no cooperation between different classes of entity and is a state in
which the entity waits for something to happen. The queuing time cannot be determined
in advance as it depends on the conditions for the next activity to start.

A queue is represent by a circle in an ACD. A Source/Sink queue, where a temporary
entity is created and destroyed, is represented by two overtapping circles.

Figure 2: Summary of the symbols used in an ACD

DOOR

ARRIVE
Negexp(10)

T

CUSTOMER

outside

wait

Normal(6,1)
POUR

i N

\
\

ready

desire > 0

desire =
Uniform(5,8)

DRINK
A

GLASS

\7_ .h"‘l‘h
\\ . (i Ir
clean e
-

\\
A BARMAID) i

Y

Figure 3: An Activity Cycle Diagram of the Pub

throughput. More extensive descriptions of
ACDs are given in Pidd (1992) and Szyman-
kiewicz et. al. (1988).

Hypercard & Hypersim

This section gives an introduction to HyperCard
and HyperTalk (Apple, 1988; Shafer, 1988). An
overview of the simulation system, HyperSim,
and its system architecture are also described.

HyperCard and HyperTalk

HyperCard is a user-friendly object-ori-ented ap-
plication generator and viewer. It may be de-
scribed as an information organiser and its main
benefits are power and simplicity. Written for the
Macintosh and utilising its famous bit-mapped
graphics capabilities, HyperCard organises data
and activities around logical “Card Stacks”. A
card can contain textual, numeric and graphical
data and also instructions (scripts) written in

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13 5

HyperCard associated programming language -
HyperTalk.

The fundamental concept of HyperCard is that
each card in the same stack has similar structure
and functions. Each card can contain card but-
tons, card fields and at least one background
which can also contain background buttons or
fields which are common to all cards in the stack.
Programming HyperCard can be achieved by
writing scripts in the object-like language Hyper-
Talk. Objects that exist in HyperTalk are stacks,
cards, backgrounds, buttons and fields; each of
which can send and receive “messages”. A script
is associated with an object enabling it to respond
in a specific manner to a message, depending on
the instructions given by the user.

An Overview of HyperSim

HyperSim is a system which was built so as to
allow constant redefinition of the model
specification by text, graphics, or a mixture of
both. Whichever method of input is used, both a
graphical and a textual specification are held by
the system. These descriptions are structured into
a number of stacks. These stacks contain infor-
mation concerning for example, the model en-
tities or objects, the activities they engage in, the
queues they rest in whilst waiting for an activity
start, the assignment of entity attributes repre-
senting numerical, textual or logical charac-
teristics of the entities, and icons used for visual
display of the entities. HyperSim contains a stack
which allows the user to specify the simulation
model by drawing an activity cycle diagram. Each
object in the diagram is linked with a specification
card which the user can access by clicking on the
object. Moreover, HyperSim allows the user to
generate a simulation program based on a three-
phase modelling structure from the specification
given by the user. This program can then be
modified, linked with the simulation library
(called MacSim.Lib on the Macintosh) and run
under Turbo Pascal on the Mac.

HyperSim contains a set of conventional buttons
which are local to the system, appearing in dif-
ferent stacks. A summary of the name of the but-
tons is shown in figure 4.

A B @ X

‘New ‘Delete ‘New Delete ‘Gotoleon'
Entity’ Entity" Activity® Activity’ button
button button button button

 [&E]

The “New Entity” and the “Delete Entity” but-
tons are used for creating and deleting an entity
type respectively. The “New Activity” and the
“Delete Activity” button are used for creating
and deleting an activity respectively. Other com-
mon buttons include the “GotoACD” button
which takes the user to the ACD stack, the
“Gotolcon” button which takes the user to the
Icon stack, the “Help” button which takes the
user to the “Reference” stack and the “Home”
button which takes the user to the Home stack.
These common buttons contribute to the flexibili-
ty of the HyperSim system, i.e. the user can do
anything - create new data or edit old data of the
model - at any time during the specification of
the model.

System Architecture of HyperSim

HyperSim is made up of nine stacks. A summary
of each of the stacks is given in this section. The
relationship between these stacks is shown in fig-
ure 5.

1. Reference Stack is a tutorial stack designed to
help the user to understand some of the basic
principles of computer simulation modelling and
to use the HyperSim system. The user can choose
a topic he wants to view by clicking on the cor-
responding button.

2. Model Stack is the heart of the specification
system which allows the user to create new
models and edit old models. The user should go
to this stack first and select a model that he would
like to work on. There is a table showing the
names of the entities, activities and queues the
model possesses. The user can go to any entity,
activity or queue by clicking at its name in the
table. This stack also allows the user to go to the
Icon stack and the ACD stack. The Code stack
can only be accessed via this stack.

3. ACD Stack contains a graphical description of
the model. The simulation model can be specified
by means of an activity cycle diagram in this stack.
An ACD card is automatically created by the sys-

[Code

'GotoCode’ ‘Help'
button button

‘Home*
button

‘Goto ACD"
button

Figure 4: A Summary of the Buttons inside HyperSim

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1-13

Reference stack
a global siack that
can be accessed by
all stacks
‘ icon stack
Code stack each entity card is
each model card related 1o an icon in
has an associated s Entity stack h one of the icon
el 8
code card each model has one B ch model card cordt
unigue model card can have one or
ACD stack more entity cards Aftribute stack
each model card / \ each entity card
has an associated e can have one or
ACD card « . more attribute
Activity stack 1 cards

each model card T
can have one or
more activity cards

Queue stack
each model card

can have one or
more queue cards

Figure 5: Relationships between different stacks in HyperSim

tem whenever a new model is created. There is
an iconic menu in this stack which helps the user
to develop an ACD for the model and to input
the data for the entities, activities and queues.
Each object that is created on the screen has a
card associated with it.

4. Entity Stack contains information about each
entity type defined by the user - the name, the
number, attributes involved, whether it has a
source queue (for temporary entities) or a com-
mon queue (for facility entities), the queues in-
volved, and the activities involved. It also shows
the life cycle of the entity type and allows the user
to add in any conditional paths during its life
cycle. When a new model is created, a System en-
tity is automatically created for the model. This
system entity is a device for enabling the user to
specify attributes for the system. These are global
counters or variables that might be used
throughout the model.

5. Icon Stack contains cards of icons and allows
the user to create new or to edit old icons. An
icon can be selected for an entity by clicking the
“Select Icon” button and then by clicking
anywhere inside a chosen icon rectangle. Once
an icon is chosen for an entity, the icon will ap-

pear in the right hand corner of the correspond-
ing entity card in the Entity stack.

6. Activity Stack contains information about each
activity defined by the user - the name, the for-
mula for the activity duration, the entities in-
volved and the assignments involved in the ac-
tivity.

7. Queue Stack contains information about each
queue automated by HyperSim - the name, the
entity type that it belongs to, the number of en-
tities in the queue, the assignment of any at-
tributes, and histograms that are recorded in the
queue.

8. Attribute Stack contains information about
each attribute defined by the user - the name, the
entity type that it belongs to, the assignments of
the attribute, and information about the his-
tograms that are recorded for the attribute.

9. Code Stack allows the user to generate a three-
phase simulation program from the specification
of the model. The user can modify the generated
program which is shown on the screen. The pro-
gram can be exported as a text file by using the
“Export” button. The “Turbo” button takes the
user to the Turbo Pascal application where the
program can be run when linked with the simula-
tion library unit MacSim.Lib on the Macintosh.

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13 7

Using HyperSim

HyperSim is a flexible visual interactive modelling
system which allows the user to enter at any place
to carry out any task. The appendix gives an ex-
ample of how to use this system using the above
Pub or bar example. The order of steps listed in
the appendix is not the only way of specifying a
model. The system allows the user to specify the
model according to his own logical way of think-

ing.

Lessons Learned from Hypersim

This section outlines the lessons learned from
using HyperSim in simulation modelling.

Advantages

HyperSim achieves its user-friendliness by mak-
ing use of the Apple Macintosh WIMP (windows,
icons, mouse and pull-down menu) interface and
consistent authoring tools across different stacks.
The use of bit-mapped graphics allows a marriage
of graphics and text, and the ability to manipulate
both on the same display. This gives tremendous
flexibility in how that text is presented, in terms
of size, style, and font design, and in mixing text
with graphics. In addition, any of these elements
can be changed and redisplayed on the screen
countless times.

HyperSim supports the use of icons. Using icons
is an ideal way of representing an entity on the
screen. Because of its high resolution, the move-
ment of the entity can be very smooth and well-
presented. Applications which allow a visual
simulation to be run on the screen are more ap-
propriately developed in this type of environ-
ment.

HyperCard has always been well recognised as a
powerful organiser tool. The idea behind Hyper-
Card is simple - to allow the user to develop useful
applications easily by creating buttons and fields
in backgrounds or cards. HyperCard suggests a
new way of file management. Instead of organis-
ing data in files, cards which contain similar in-
formation are grouped together in a stack.
Moreover, stacks can be linked together so that
large applications can be easily developed.

Mobility between stacks is facilitated by using
buttons and fields. Different stacks can be linked

together to allow easy access for the user just by
a click of the button. New stacks can be con-
tinuously added to the application without exten-
sive alterations to the rest of the stacks in the
system. This allows large applications to be
developed very easily. Good graphics facilities al-
lows pictures to be drawn at a reasonable speed.
The developer can make use of the graphics
facilities available in HyperCard and is not re-
quired to write a set of graphical routines. Hyper-
Talk programming is simple and easy to learn. Its
object-oriented nature allows the user to develop
applications and prototypes quickly.

Disadvantages

The main disadvantage of using HyperCard in
developing applications like HyperSim is a delay -
when data is being updated between stacks. For
such a system to be efficient, large amounts of
memory space are required. A danger in develop-
ing applications using HyperCard is a tendency
to create too many buttons on the screen which
might become traps for the user. Therefore, a set
of conventional buttons should be adapted
throughout the design of the system, i.e. buttons
that perform the same function should have the
same appearance sO as to avoid confusion and
misunderstanding. HyperTalk programming is
simple but it is easy to lose control. In order to
maintain flexibility and mobility between dif-
ferent stacks, one has to keep track of global vari-
ables manually. Moreover, it does not support
dynamic memory allocation, i.e. pointers or hand-
les. For large models, code generation is relatively
slower than program generators written in high-
level languages like Pascal or C. HyperTalk is not
an ideal programming language for building a
simulation library that can be used as an inter-
preter. In order to use HyperSim as an inter-
preter for running a simulation model, we have
to develop the simulation routines in a high level
language and link these with HyperSim as exter-
nal functions. The external functions can then be
called from within the HyperSim application
during a simulation run.

Future Research

Simulation models require extensive runs to
determine the result of what is essentially a
stochastic experiment. HyperCard can not pro-
vide the speed of execution required for such ex-
periments. Hence, HyperSim is used as the basis
for an automatic simulation program generator.

8 Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13

This generated HyperSim simulation program
can be run in conjunction with the simulation
library MacSim.Lib using Turbo Pascal on the
Macintosh. Such a generated problem enables
the desirable rapid processing of a simulation ex-
periment. Storing, browsing and searching the
contents of the output from a simulation model
is laborious using current methods. Therefore, it
is planned to return the experimental results to
HyperSim to gain the advantage of a HyperText
system for these purposes.

Conclusions

This paper has demonstrated two main points.
The first concerns the ability to produce a flexible
simulation model specification using the diagram-
ming method of activity cycle diagrams. The sec-
ond concerns the user of Hypercard in develop-
ing such simulation systems. Simulation graphics
is an important part of simulation modelling, as
can be seen with the fast growing popularity of
Visual Interactive Modelling techniques (Bell &
O’Keefe, 1987; Bell, 1991; Paul, 1989). Diagram-
ming is a form of language which can provide for
clear thinking and for human communication. In-
teractive diagramming on a computer screen has
the advantages of speeding up the process greatly
and enforcing standards. In particular, the ability
to rapidly modify the model to represent the
latest understanding of the problem enables the
analyst to remain in touch with the customer. The
computer system can apply many logic checks
during creation. It can automate the documenta-
tion process. The computer system enforces dis-
cipline and permits cross-checking and validity
checks that human beings do not apply consis-
tently. Such a graphical interface can be used as
the front end to an automatic program generator
(Paul and Chew, 1987), and thereby a simulation
modelling environment can be created. The
reader is referred to Paul (1992) and to Au (1990)
for examples of how this can be achieved.

The HyperSim application has demonstrated the
power of modern graphical/textual based inter-
faces, as provided by the Apple Macintosh, for
inputting graphical specifications for simulation
models. Further work in this area has been un-
dertaken (Au, 1990) and current research is look-
ing at better diagramming techniques for
specification. The aim is to produce a graphical
interface that enables the analyst to formulate a
clients problem with the client. This would be
more than a specification system, which would be
a sub-component of the analyst-client system.

Such a graphical interface would have the ver-
satility to enable, in a non-technical way, the
problem to be described in the users terms. This
would form the basis for the 5pec1f1cat10n to be
written in simulation terms.

References

APPLE Computer Inc. (1988), HyperCard Script
Language Guide. Addison Wesley, USA.

AU G. (1990), A Graphics Driven Approach to Dis-
crete Event Simulation. Unpublished Ph.D.
Thesis, University of London, England.

AU G. and PAUL R.J. (1993). Graphical Simulation
Model Specification using Activity Cycle
Diagrams. Under revision for Computers and
Industrial Engineering .

BALMER D.W. and PAUL R.J. (1986), CASM - The
Right Environment for Simulation. Journal of
the Operational Research Society 37 : 5, 443-
452.

BELL PC. (1991), Visual Interactive Modelling :
“The Past, the Present, and the Prospects.”
European Journal of Operational Research
54 : 3, 274-286.

BELL P.C. and OKEEFE R.M. (1987), Visual Inter-
active Simulation - History, Recent Develop-
ments, and Major Issues. Simulation 49 : 3,
109-116.

CERIC V. and PAUL RJJ. (1992), Diagrammatic Rep-
resentations of the Conceptual Simulation
Model for Discrete Event Systems. Mathe-
matics and Computers in Simulation, Vol.34,
Nos.3-4, pp.317-324.

CROOKES J.G. (1992), “Simulation in 1991 - Ten
Years On”, European Journal of Operational
Research vol. 57 : 3, 305-308.

CROOKES J.G., BALMER D.W.,, CHEW S.T and
PAUL R.J. (1986), A Three Phase Simulation
Systems written in Pascal. Journal of the
Operational Research Society 37 : 6, 603-618.

EL SHEIKH A.AR., PAUL R.J., HARDING A.S,,
BALMER D.W. (1987), A Microcomputer-
Based Simulation Study of a Port. Journal of
the Operational Research Society 38 : 8, 673-
681.

HOLDER R.D. and GITTINS R.P. (1989), The Ef-
fects of Warship and Replenishment Ship At-
trition on War Arsenal Requirements. Journal
of the Operational Research Society 40 : 2, 155-
166.

PAUL R.J. (1989), Visual Simulation : Seeing is
Believing. In Impacts of Recent Computer Ad-
vances on Operations Research, Publications
in Operations Research series Vol.9 (R.Shar-

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 19383, 1, 1—13 9

da, B.L.Golden, E.Wasil, O.Balci, and
W.Stewart, Eds.) North-Holland, New York.
422-432,

PAUL R.J. (1992), The Computer Aided Simulation
Modeling Environment: An Overview. In the
Proceedings of the 1992 Winter Simulation
Conference . (J.J. Swain and D. Gainsman,
Eds.). (13-16 December 1992, Arlington, Vir-
ginia). Society for Computer Simulation, San
Diego.

PAUL R.J. and CHEW S.T. (1987), Simulation
Modelling using an Interactive Simulation

Program Generator. Journal of the Operation-
al Research Society 38 : 8, 735-752.

PAUL R.J. and DOUKIDIS G.I. (1986), Further
Developments in the Use of Artificial Intel-
ligence Techniques which Formulate Simula-

tion Problems. Journal of the Operational Re-
search Society 37 : 8, 787-810.

PIDD M. (1992), Computer Simulation in Manage-

ment Science, 3rd edn.,, John Wiley,
‘Chichester.
SHAFER D. (1988), HyperTalk Programming.

Hayden Books.

SHRIBER T J. (1991), An Introduction to Simula-
tion Using GPSS/H, John Wiley, New York.

SZYMANKIEWICZ J., MCDONALD J. and
TURNER K. (1988), Solving Business
Problems by Simulation. 2nd edn., McGraw-
Hill, London.

WILLIAMS TM,, GITTINS R.P. and BURKE D.M.
(1989), Replenishment at Sea. Journal of the
Operational Research Society 40 : 10, 881-887.

APPENDIX

The first stack that the user should go to is the
Model stack (figure 6) where a new model can
be created or an existing model can be selected.

B Br & & @ &

Figure 6: The New Model Card for the Pub

Creating a New Model

A new model can be created by clicking at the
“N” button on the left-hand corner of the card.
After the user types in the model name, a new
model card will be added to the Model stack.
Moreover, an ACD card in the ACD stack and a
system entity card in the Entity stack will be auto-
matically generated for the new model. An exist-

ing model can be opened by clicking the “O” but-
ton and then selecting a model by clicking at the
name of the model in the model list table. The
“D” button is used for deleting an existing model.

Creating Entities

An entity type can be created anywhere in the
system by using the “New Entity” button. A new
card in the Entity stack will be created where the
user can enter any relevant information about the
entity type. Figure 7 shows the Entity card when
the entity type “Customer” is created.

2soucaapewa:[fore] pwnem:[2] 0
Faolity Gueus : [Fone] tember: [=

+—3— || Activitias Invelved |Order| Mn Max!

ENTITY : | Cust omer

Atribmtas Lifs Cynin of Entity

Quevas Invelved

Pub | "

Figure 7. Creating an Entity type
“Customer” in the Pub Model

10 Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13

In the Entity stack, the user can create attributes
(see the following section Creating and Assigning
Attributes), select an icon or create a source/sink
or facility queue for an entity type in the Entity
stack.

Since “Customer” is a temporary entity in the Pub
model, we can create a source/sink queue for this
entity type. Figure 8 shows the source/sink queue
for the entity type “Customer”. Similarly, a facil-
ity queue can be created for a facility entity, for
example, “Door”.

e TR Type: [Sores |
QUEVE:{outside | Enlly:[Custorer] o g e
From :

To:

N-lhr.

Cell Hidlh, Base Value :
Cuii Midth, Bass Valus :|__
Intarval, Ain, Rax ;

QLength :
HISTOGRAMS LLEL) S
Tina Serfes | ...

Allibul e Index Conditien Assignment

Creating Activities

An activity can be created anywhere in the system
by using the “New Activity” button. A new card
in the Activity Stack will be created where the
user can enter any relevant information about the
new activity. Figure 10 shows an example of the
activity card. Only if the user creates an activity
in the ACD stack will HyperSim go back to the
ACD stack after an activity is created. This
enables the user to draw the ACD before enter-
ing information for an activity.

Show Astivities butten ¢

| ACTMIY {frrive |

Figure 8: The Source/Sink queue “outside” for en-
tity “Customer”

The top-right rectangle in an entity card is
reserved for placing an icon in the Entity stack
from the Icon stack. By clicking once anywhere
inside the rectangle (the “Select Icon” button),
HyperSim will take the user to the icon library -
the Icon stack. The user can either create a new
icon or edit an existing icon in any one of the 135
rectangles in an icon card. Figure 9 shows the en-
tity card for “Customer” after an icon is created.

2 Semrss Omems : [outsids] Putem: (2] [
Faclity Quesa : [Hone &-H:]-
Lifs Cysla of Entity —0O—_ || hetivitias |

ENTIY :| Customer

H Bl

AMirtbutes

Quevas invelved
outside

Pub]

Figure 9: The Entity Card “Customer” after an icon
is selected

Altribsls Index

i T
*Assioning Attribute’ button

Figure 10: An Activity Card

The formula for the activity time can be entered
in the “Duration” field. If the user clicks at the
word “Duration”, a table containing all the avail-
able distribution formulae will appear. The user
can select any one of them by clicking at its ap-
propriate line in the table and then enter the re-
quired parameters. Attributes can be evaluated
in the Activity stack (see the section Creating and
Assigning Attributes below).

Drawing Life Cycles of Entities

HyperSim offers the user three ways of specifying
the model logic. Firstly, by entering the life cycle
of individual entity types in the Entity stack.
Secondly, by selecting entity types that are in-
volved in an activity in the Activity stack, and
finally by drawing an activity cycle diagram in the
ACD stack. Queues are automated in the first
and the last method whereas in the second
method, the user has to enter the names of the
queues manually. Future development of Hyper-
Sim is working towards total flexibility among
these three methods of specification, i.e. allowing
the user to specify a model by any combination

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1=13 11

of the three methods described. Meanwhile, any
one method used to define the model logic will
automatically update the corresponding informa-
tion in different stacks.

In this section, we assume that the following en-
tity types for the Pub model have been created -
System, Customer, Door, Barmaid and Glass. We
also assume that activities - Arrive, Pour, Drink
and WashUp have been created.

(i) Using the Entity Stack

This is the simplest method of all, but is only ap-
propriate for a simple simulation model where
the life cycle of individual entity types can easily
be identified. This method does not allow the user
to see an overall view of the model during the
construction of the model logic.

For example, to define the life cycle of entity type
“Customer”, click once at the word “Activities In-
volved” in the “Activities Involved” table and
select “Arrive” from the activity list table. The
word “Arrive” will then appear on the first line
of the “Activities Involved” table with “1" and
”1,1" in the same line under field “Order” (order
of the activity) and “Min,Max” (the minimum and
maximum number of entities of that entity type
required for the activity) respectively. Similarly,
activity “Pour” can be added to the “Activities
Involved” table. When activity “Pour” is added,
a queue “ArrCusPou” connecting “Arrive” and
“Pour” is automatically created for “Customer”.
This queue is added to the “Queues Involved”
table in the entity card for the customer. Finally,
when activity “Drink” is added, a queue “PouCus-
Dri” connecting “Pour” and “Drink” is created.
To indicate that the cycle is complete, select “Ar-
rive” again. The user can then click at the “Entity
Life Cycle” button to see a life cycle diagram for
the “Customer”. The conditional path for a cus-
tomer to go to activity “Pour” after “Drink” can
be specified by selecting the “Conditional Arrow”
button (an arrow with a box in the centre). Figure
11 shows the completed entity card for entity type
“Customer”.

The life cycle for a facility entity can be defined
in a similar manner except that the user does not
have to close the cycle by selecting the starting
activity again. All he has to do is to select the
activities that the facility entity is involved in and,
when finished, click the “Entity Life Cycle” but-
ton.

Information on this specification of life cycles of
entities is automatically updated in the “Entities
Involved” table in the Activity stack. The user can
then, if desired, re-specify the conditions in the
“Condition” field of a path in the appropriate
row.

m 2 Soures Quaue : [outside] r-lw-:IZ] 3]
ML iRet Fuollity Queus : [Nona Rember:[= |
Lite Cyolu of Entity

—— Avtivities
Arrlue
Pour
Orink

Arrive

Figure 11: The Entity card “Customer”

(if) Using the Activity Stack

This method allows the user to define the model
logic by selecting the entities that are involved in
each activity. Again, this method does not allow
the user to obtain an overview of the model dur-
ing the construction of the model logic.

For example, to define activity “Arrive”, click on
the word “Entities Involved”. The user can then
select the entity type “Customer” from the entity
list table and enter the name of the queue where
the customer comes from (queue in) before “Ar-
rive” begins, and the name of the queue where
the customer goes to (queue out) after commenc-
ing “Arrive”. The user can continue to select the
facility entity type “Door” for activity “Arrive”.

In order to assist the user in keeping track of the
queues associated with an activity for an entity
type, the default queue for an activity is set to be
the queue out from the previous activity which
the entity is involved in. For example, if activity
“Pour” is defined next, and entity “Customer” is
selected, then the default queue in would be
“wait”. Figure 12 shows the completed activity
card for activity “Drink”.

(iii) Using the ACD Stack

This method allows the user to build up the model
logic by drawing an activity cycle diagram. There
are three types of objects that can be drawn inside
the drawing area - rectangles (activities), circles
(queues) or straight lines (life paths of entities).

12 Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1—13

a
Duration {Hornal (2, 4,5)

(ACTMTY Jorink |

Entity héin bdax From Cusus Con dition To Quess
Cuatomer] PouCusOri daf qutside
Cuatoner 1.1 |Poutuslrl deaire20 ArclusPou
CGlaas 1.1 PguGiaDr) gaf PriGlalos

Altribwl e Conditien

Figure 12: The Activity card “Drink”

Figure 13 shows the complete ACD card for the
Pub model.

mcufrcnt Enlity o Cusioner

Figure 13: The ACD card for
the Pub Model

The user can either select an.activity.to be placed
(using the “Select Display Activity” button) or
display all the activities (using the “Display All
Activities” button) in the drawing area. Objects
that have been placed can be moved around in
the window.

Each of the displayed activity rectangles is linked
with an activity card in the Activity stack. The user
can go to the appropriate activity card to enter
information by first clicking at the “Activity In-
formation” button and then by selecting the
desired activity. Similarly, each of the displayed
queue circles is linked with a queue card in the
Queue stack. The user can go to the appropriate
queue card to enter information by first clicking
at the “Queue Information” button and then by
selecting the desired queue.

Before drawing life paths for an entity, an entity
type must be selected by using the “Select Entity”

button. Drawing a life cycle for a facility entity is
simple. For example, to define the life cycle for
the entity “Barmaid”, select the “Facility Path”
button. First click anywhere in the drawing area
where you want the facility queue for “Barmaid”,
“bidle”, to be placed. The queue “bidle” will then
be drawn automatically. If however the user has
forgotten to define a facility queue for “Barmaid”
and has selected the “Facility Path” button, he
will be prompted for the name of the facility
queue. If he types “bidle” and clicks “OK”, a
queue card called “bidle” will be created. The
user can then select activity “Pour”. Two paths -
one going from “bidle” to “Pour” and one from
“Pour” to “bidle” are then drawn. Since “Bar-
maid” is also involved in activity “WashUp”,
select the “Facility Path” button again. This time
click anywhere inside the queue “bidle” circle and
then select activity “WashUp”. Similarly, the
paths are automatically drawn.

Creating and Assigning Attributes

An attribute can only be created inside the Entity
stack by clicking at the word “Attribute” at the
top of the attribute table in an entity card. An
attribute card will be created in the Attribute
stack. Figure 14 shows the “desire” attribute card
for the entity type “Customer”.

ety [Eastoner] Nembor:E_] [

Cendition

[ATTRBUTE - [desire |

ndex Lecslion

Formela

Cefl Widgth, Base Value

ne—

Figure 14: The Attribute card “desire”
for entity “Customer”

An attribute can be evaluated either in an activity
or in a queue. To assign an attribute in an activity,
go to the appropriate activity card. Click once at
the word “Attribute” and select an attribute from
the attribute list table by clicking at its name. The
user will then be prompted for the index value of
the attribute (this is used to order multiple at-
tribute assignments). After typing in the value,
click “OK”. HyperSim will set the condition for

Grace Au and Ray J. Paul: Simulation Using Hypercard.- CIT 1, 1993, 1, 1-13 13

the assignment to “def”, i.e. default, and the user
can type in a formula for the assignment. Figure
15 shows the activity card for “Drink” after the
attribute “desire” is assigned. Similarly, attributes
can be assigned in the same way in a queue.

[ACTMTY [Orink | Duscion{Noreal{2,4,5)
CondRion
PouCusDri_ _ldef
PouCusQri desire0
PouB|alri def

To Quenms
outsjde

Enlity Min Max From Quaus
Customer L)
Customar 1

fiass 1,

1
1 BriGlaHes

Altribute
|desire

Cendition

Aasignment
dasire=1

be achieved by editing the program text in the
card. The user can either export the generated
code as a text file or go directly into the Turbo
Pascal program. Figure 16 shows the generated
code for the pub example.

| export oanaratal Turto Jiuparsin 13
Pub;
(3 racsTnLB}

(35 MGlob) HeaTupes,Quickdram,0SIntf, Tool Intf,Pock Intf,HE inGiobal,

($S HSamp) HSInSasple,

(35 Mioda) MSistodel,

(85 MOoutp} nNSistutput; 1

Var
Systes, Customar,Door Barmaid,Gloss : entity;
Prriva, Pour,OrInk, HashUp : sctivity;
didle, bidle,ArrfusPou, PouCusDri HasGlaPou,PouGlalri ,Dr iGlalas : quaue;
oulslda : sourcs;

Procedura Buildriedal;
bagin
HakeEnt(SystenEnt, 'SystemEnt’); Bl
nakeEnti{Custoner, ‘Customar '); El
HokeEnt<Baor , *boor '); i
NakeEnt(Baraaid, ‘Barnaid'); «E

Figure 15: Assignment of Attribute “desire”
in Activity “Drink”

Generating a Simulation Program

After the specification is completed, the user can
return to the model card “Pub” and select the
“Code” button. The system will take the user to
the Code stack where a simulation program can
be generated. The built-in program generator
then translates the data file into lines of code.
The program will be shown in a scrollable text
field on the card. Modifications to the code can

,"Olass'),
Hakafl L Lr{Cus loaer, ‘dugira’)]
Hokefc {<Arrive, "Arriva’ 3;
Hakefc t<Pour, "Pour’); O

Figure 16: The Code Stack

Received: August 1, 1992
Accepted: February 25, 1993

Address for correspondence:
Professor Ray J. Paul

Professor of Simulation Modelling
Deputy Head of Department
Department of Computer Science
Brunel University

Middlesex UB8 3PH

UK

phone: 0895-274000

fax: 0895-232806

Grace Au received an undergraduate degree in management scien-
ces, a masters degree in operational research and a Ph.D. in infor-
mation systems from the London School of Economics (LSE). She

is currently a Lecturer in the Department of Business Informatiom

Systems at the Hong Kong University of Science and Technology.

Ray Paul is Professor in Simulation Modelling at Brunel University.
Previously he taught operational research and information systems
at the London School of Economics. He has published more than
three dozen papers and research articles in various international
journals. Professor Paul is a consultant to several UK government
departments and many private companies. He has many internation-
al research contacts, in particular with Brazil, Croatia, Hong Kong
and the U.S.A. He is co-author of two books, Simulation Modelling,
and Artificial Intelligence in Operational Research.

