Journal of Computing and Information Technology - CIT 1, 1993, 1, 29-36 29

Connection Machine
Implementation of a Tabu
Search Algorithm for

the Traveling Salesman

Problem

Jaishankar Chakrapani' and
Jadranka Skorin-Kapov?

1Department of Applied Mathematics and Statistics, State University of New York at Stony Brook
2Harriman School for Management and Policy, State University of New York at Stony Brook

A tabu search algorithm for the traveling salesman problem
(TSP) is developed. The algorithm is based on the well known
2-opt move which is implemented in parallel on the connec-
tion machine CM-2. This involves decomposing the evalua-
tion of the whole 2-opt neighborhood into small independent
steps that can be executed in parallel by different processors.
The implementation is efficient and highly scalable. Im-
plementation details and results of computation for some
TSPs from the literature are presented.

Introduction

The traveling salesman problem (TSP) continues
to receive an enormous attention from re-
searchers in computer science, operations re-
search, and other related disciplines, as a classical
NP-hard combinatorial optimization problem.
An instance of a TSP is given by a set of, say, n
cities and a distance matrix among them. The ob-
jective is to find the shortest tour (i.e.,a trajectory
that starts from a city, visits all other cities exactly
once, and returns to the starting city). The TSP
can be formulated as a special case of a more
general NP-hard classical problem, the quadratic
assignment problem (QAP) which is charac-
terized by two n x n matrices D={d;} and
F={fu} as follows

subject to
n
Z Xk = 1Vi
k=1
n
2 X = 1 Vk
k=1
Xip = 0,1 Vl,k

In the TSP context, x; =1 if city i is the kth visited
city, matrix D is the distance matrix between the
cities, and matrix F reduces to a cyclic permuta-
tion matrix.

TSP is, in general, difficult to solve optimally and
therefore a “good” suboptimal solution is sought
by applying a heuristic method. Some recent ref-
erences to such methods include (Rei92, Joh90,
Ben90). However, some instances of dimension
up to 2392 were optimally solved by Padberg and
Rinaldi (Pad91) using a combination of cutting
plane and branch and bound methods.

Most of the heuristic approaches to the TSP are
local optimization procedures, where a given tour
is modified in an attempt to achieve a shorter
tour. In the general context of local optimization
procedures, a move is a predefined way to perturb
a solution to get another. The neighborhood of a
solution consists of all solutions that can be

- reached from that solution by performing one

30 J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1993, 1, 29—-36

move. Local optimization proceeds greedily from
the current solution performing the move that
gives the best improvement. In the context of
TSPs, one of the popular moves is the so-called
2-opt move. Performing a 2-opt move involves
deleting two tour segments, which in turn iden-
tifies uniquely two new segments that should be
added to obtain a feasible tour.

The main problem with such an approach is the
“locality” of the search. If, at some point during
the search, none of the neighboring solutions are
better than the current solution, the heuristic
stops. Such a solution is locally optimal with
respect to the move. Apart from “random restart”
approach, some new strategies have been
developed to cope with the problem of en-
countering local optimality during a search pro-
cedure. These include simulated annealing,
genetic algorithms and tabu search (see for ex-
ample (Kir83, Glo89a, Glo89b)), and present
ways to incorporate a certain form of intelligence
in the search process. The success of a tabu search
approach when attacking the QAP (Sko90a,
Sko90b, Tai91, Cha91) motivated the develop-
ment of a tabu search heuristic specialized for the
TSP.

Another ingredient of our approach stems from
the recent surge in parallel computing. Recall
that the 2-opt move has a neighborhood of size
O(n®). In other words, from any given solution,
O(n?) different solutions can be obtained by per-
forming a 2-opt move. The 2-opt based tabu
search algorithm evaluates all these different
solutions and performs a move corresponding to
the “best” solution in a restricted sense, which
will be explained in the following sections. We
propose a massively parallel implementation of
the 2-opt move on the connection machine CM-
2. A massively parallel tabu search algorithm for
the QAP has been proposed by the authors
(Cha91). It is possible to treat the TSP as a special
case of the QAP, and use our QAP solving algo-
rithm directly. However, the moves (pairwise ex-
change) which are extremely effective in solving
the QAP do not perform well when applied to
the TSP (Joh90). Therefore, we develop a tabu
search heuristic based on 2-opt moves and pro-
vide an implementation on CM-2.

In the sequel we present the heuristic for the TSP,
followed by a brief overview of the connection
machine CM-2 along with implementation

details. Finally, we present the computational
results and our conclusions, along with outlines
for possible future work.

A tabu search heuristic for the TSP

For the sake of completeness we briefly state the
main elements of tabu search. A comprehensive
description can be found in a two part paper by
Glover (Glo89b,Gl090).

Tabu search is a meta-strategy that can be super
imposed on any local optimization procedure.
The basic idea of tabu search is to keep track of
recently performed moves, and forbid their rever-
sal for a specified number of iterations. When a
local optimum is reached, the search will not stop.
Instead, an inferior solution from the neighbor-
hood will be taken as the current solution (say,
the best in the neighborhood), and the search will
proceed. Making ‘the comeback’ to a local mini-
mum tabu, i.e. forbidden, is then crucial to avoid
cycling or entrapment in the local minimum. For-
bidding the reversal of recently performed moves
serves this purpose. Continuing with this strategy
one intuitively assumes that the probability of
falling back to a local minimum diminishes as the
search moves away from it. Therefore, after some
iterations, older tabu restrictions could be
released. It is clear that with this strategy the
search will encounter a number of different local
minima, and therefore will possibly improve the
incumbent. The usual organization of the tabu
restriction is via a tabu list of a certain length
(tabu list size), fixed or variable, which is updated
circularly. This is also called short term memory
of the search. If, during the search, there is an
indication (via evaluation of the objective func-
tion) that better solutions might be found in a
partially explored “chunk” of the feasible region,
some form of intensified search should be ap-
plied. This is the intermediate memory of the
search. Finally, one would want to diversify the
search by preventing (via penalties) the re-ex-
amination of a subset of the feasible region. This
is the long term memory of the search. During the
search, the more frequently one diversifies the
broader would be the search and one can expect
to have “visited” a large region of the search
space. Alternately, in the same time span, the less
frequently one diversifies the deeper would be
the search and one can expect to have searched

J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1993, 1, 29—36 31

the explored region(s) of the search space more
“thoroughly”. Time limitations and solution
quality requirements often dictate the levels of
intensification and diversification incorporated in
a search strategy.

Our tabu search heuristic for the TSP is similar
to the one developed for the QAP (Cha91). The
parameters of the heuristic that is described
below, have been set after empirical evaluation
of different settings based on the size of the prob-
lem. It is quite impossible to obtain an unique
parameter setting that gives the best results for
all problems. A different parameter setting may
provide better results for specific problems. How-
ever, over a set of problems, slight variations in
the parameter settings do not affect the quality
of the results significantly.

The search starts from a random point and con-
tinues until there is no improvement in 25n itera-
tions, where # is the size of the problem. It then
enters a loop where intensification is achieved by
repeatedly returning to the best solution found
with an empty tabu list. The intensification loop
is exited if 25# iterations find no better solution,
and a frequency based long term memory is in-
voked providing the diversification. This repre-
sents a balance between intensification by pursu-
ing it if better solutions are found, and diversify-
ing otherwise.

Diversification is performed for a fixed, 10n,
number of iterations. It employs a frequency
based long term memory with a threshold of 5 %
as explained in the following. Let lfin; store the
number of times the edge (i,j) was in the traveling
salesman tours visited by the tabu search proce-
dure so far. The search is forced to explore new
regions by imposing a tabu restriction, uncondi-
tionally for 10n iterations, on all the edges that
were present in more than 5 % of the tours ex-
amined so far. After 10n iterations have been per-
formed, the tabu restrictions based on the fre-
quency of edge occurrence are dropped.

Every time a 2-opt move is performed, the two
edges that are deleted from the tour are added
to the tabu list. This forbids the addition of these
edges when generating a new tour for a certain
number of iterations (based on the tabu list size).
Since the tabu list is maintained cyclically, the
tabu status of these edges are dropped after ex-
actly the tabu list size number of iterations. Our
implementation of the tabu list is as follows. Let

t_iter; be the last iteration when the edge (1,j) was
deleted from a tour. In any single 2-opt move two
edges are added and two edges are deleted. If
the difference between the current iteration and
any of the (two) t_iter values of the edges that
would be added is less than the current tabu list
size, then the corresponding 2-opt move is clas-
sified as tabu. Throughout all phases of the
search, the tabu list size is varied dynamically by
cycling through eight configurations of the tabu
list size (see Figure 1). In the figure, the shaded

Configuration Corﬁ?gzra- Passing Criteria
tion
2 no improvement in 5n iterations
3 no improvement in 4n iterations
4 no improvement in 3n iterations
5 no improvement in 2n iterations

no improvement in n iterations

7 no improvement in 2n iterations
8 no improvement in 3n iterations
1 no improvement in 4n iterations

Figure 1: Tabu list configuration

area indicates the active region of the tabu list in
each configuration, and the transition from one
configuration to the next is given as the passing
criteria. For example, if the tabu list is in con-
figuration 1 and there has been no improvement
of the current best solution in 5n iterations, the
tabu list changes to the next configuration (con-
figuration 2). In configuration 2, the new tabu list
size is 3/4th the original tabu list size. Every time
the tabu list starts at configuration 1, a new tabu
list size is selected as a multiple of 4 in the interval
[base_tabu_size, base_tabu_size+12]. Dynamic
tabu list management has been studied before by
Glover and Hiibscher (Glo91a), Taillard (Tai91),
and Skorin- Kapov (Sko90b). The base_tabu_size
along with the required number of diversifica-
tions to be performed are given as inputs to the
algorithm. The complete algorithm follows.

Inputs: D-distance
no_of restarts

matrix, base_tabu_size,

0) generate starting solution
clear tabu list, and go to step 1

1) evaluate all moves

32 J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1993, 1, 29—36

determine the best move subject to tabu
restrictions.

perform the best move
update tabu list
if no improvement in 25n iterations
go to step 2a
else
go to step 1
2a) go to the best solution found so far
clear the tabu list
2b) evaluate all moves

determine the best move subject to tabu
restrictions

perform the best move
update tabu list
if no improvement in 25n iterations

if current step 2b has found a better
solution

go to step 2a
else

if required number of restarts have
been performed

stop
else
go to step 3a
else
go to step 2b
3a) invoke long term memory
3b) evaluate all moves
determine the best move subject to tabu
restrictions
perform the best move
update tabu list
if 10n iterations performed
initialize best solution to the current
solution
revoke long term memory
update number of restarts and go to
step 1
else
go to step 3b

Parallel Implementation

The 2-opt move has a neighborhood of size
O(n?). We provide an implementation of 2-opt
on the connection machine CM-2. With a mas-
sively parallel machine like the connection

machine, all the 2-opt moves for a single iteration
of tabu search can be evaluated in parallel. In the
context of tabu search, parallelism is achieved in
the exploration of the neighborhood.

The Connection Machine system (Hil85) is a fine
grain, SIMD, computing system. A CM-2 model
may contain 16K, 32K, or 64K processors. Each
processor has, associated with it, its own memory
which could either be 8K or 32K bytes (Thi89).
Processors can access their own memory directly
and the memory of other processors through
hardware supported parallel communication.
The processors can be configured in any way to
suit the application. When executing a parallel
instruction, each processor acts on the data
stored in its own memory and for this reason the
parallelism achieved on CM-2 is also known as
data level parallelism. The CM-2 system also sup-
ports virtual processing. Each processor (along
with its local memory) can be sliced into many
units providing the user, virtually, with more than
the physical number of processors. For example,
slicing each processor unit into two provides, vir-
tually, double the number of physical processors
(each with half the memory of a real processor).
Though in the above example a single processor
would sequentially execute code on each half of
the memory, programming can be done at a
higher level of abstraction assuming the
availability of twice the actual number of proces-
sors. The number of virtual processors available
is limited only by the memory requirements
specific to the problem. The ratio of the number
of virtual processors to the number of physical
processors is called VP ratio.

Inter-processor communication operations can
be classified either as send or get operations. If a
“sending processor” knows the address of the
receiving processor, the send operation can be
used. The “receiving processor” need not know
where the data comes from. The converse is true
for the get operation. The most general purpose
communication, where any processor can com-
municate with any other, is supported by a high
speed router. The CM-2 system also supports a
faster communication mechanism called NEWS
grid. NEWS grid communication is a structured
form of communication which requires the
processors to be organized as a multi (up to 31)
dimensional grid. NEWS grid effects communica-
tion between neighboring processors relative to

J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1993, 1, 29—36 33

the specified grid. NEWS grid also supports func-
tions like scan, spread, etc., which combine com-
munication with computation. For example, the
spread function can compute based on the data
from all processors along a particular dimension
of the grid and communicate the results to the
same. In general, NEWS grid communication is
more efficient than general communication and,
send operations are faster than get operations
(Thi 90).

In addition to the general form of inter-processor
communication mentioned above, there are some
special forms of communication operations.
These include the broadcast operation where a
single information is to be communicated to all
the processors, and its inverse — the reduction
operation where information from all the proces-
sors is used to produce a single information.
Broadcast and reductions operations have
separate, highly efficient, hardware implementa-
tions.

An efficient implementation of an algorithm on
a machine such as the CM-2, basically involves
decomposing the algorithm into small, inde-
pendent steps that can be performed simul-
tancously. Ideally, if each step of the algorithm
can be broken into several small and completely
independent steps, parallelization is simple. In
reality, however, such a decomposition is not pos-
sible except for trivial problems. There would
exist some inter-dependency where results from
the small steps have to be put together causing
the necessity for inter-processor communication.
Thus, the main step in the implementation is an
efficient decomposition of the problem to maxi-
mize processor utilization and minimize com-
munication time.

Consider a tour to be a permutation 7 where 7(1)
is the ith visited city. A 2-opt move between 7(1)
and 7t(f), 7t(i) <7(j) would result in a tour repre-
sented by a permutation obtained by reversing
the entries of p between i and j inclusive. In other
words, the result of the 2-opt move is the tour
(1) 7w (2)..x(i-1) () w(-1).. (@ +1) 7(@) 7(j+
+1)..7t(n-1)7(n). The two edges deleted are the
edges between cities 7 (i-1) and 7(7) and 77(j) and
7m(j+1) and the two edges added are between
cities 7t(7) and st(j+1) and 7 (i-1) and 7(j).

Let the processors of the CM-2 be organized as
a n x n matrix. Each processor p;; stores the fol-
lowing information: the left and right neighbors

of city i-left(i), right(i) and the distances; the posi-
tion of cities i and j in the current tour-pos(i),
pos(j) (i) and 7 (j)); and d;. The value of a
2-opt move where the swap points are cities i and
J are computed jointly by processors p; and p;.
The decrease in tour length due to the deleted
edges can be computed locally since the proces-
sors have that information stored in their
memory. The increase in tour length due to the
added edges is communicated to the processors.
The algorithm to communicate and compute fol-
lows.

communication step

pos(i)<pos(j)
edge i-j added during swapping of
right(i) and j

else
edge i-j added during swapping of
left(i) and j

computation sfep

pos(i)<pos(j)
edge left(i)-i deleted during swapping
of i and j

else

edge i-right(i) deleted during swapping
ofiand |

Now, processor p; has enough information to
compute the partial value of the 2-opt move in-
volving the edge deleted from and the edge added
to city i. Similarly, p; has the value of the edge
deleted from and the edge added to city j. In
another communication step processors p; and p;;
exchange their values to compute the complete
effect of their 2- opt move. Figure 2 gives an ex-
ample of a 2-opt move evaluation jointly by two
processors, with the final communication step
completing the evaluation shown by dotted lines.
Tabu status of a move is determined from the last
iteration in which the edge i-j was deleted and is
stored in processor p;. The edges that were
deleted in the last fabu_size (parameter describ-
ing the tabu list size) iterations have a tabu status
of 1 (they are in the tabu list), and the other edges
have a tabu status 0 (they are not in the tabu list).
The edges that have a tabu status of 1 must be
forbidden from entering the tour. Since tabu
status is a 0-1 variable, it can be padded and com-
municated along with the edge distance. Thus,
the processors evaluating a move would know the
tabu status of the edges that would be added if
the move were to be performed.

34 J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1993, 1, 29—36

Evaluation of 2-opt move with swap cities 2 and 4
Starting tour - 12345
Processor 2,4 - added edge 1-4 - communicated

- deleted edge 1-2 - local memory
Processor 4,2 - added edge 5-2 - communicated

- deleted edge 4-5 - local memory

00 O
0O

] 4
o]
o]
]

]
D/@/Tj up

dulinln
O\0 000

Figure 2: Example of a 2-opt evaluation on CM-2

Note that now the processors collectively have
the values of all the moves, along with their cor-
responding tabu statuses. Determining the best
move to be performed involves finding the
processor that has the maximum move value sub-
ject to tabu restrictions. This is done very effi-
ciently using a reduction operation.

After the best 2-opt move subject to tabu restric-
tions is made, the information in some of the
processors has to be updated. Suppose that the
2-opt move performed be between cities i and
J,i<j. Each processor p;; updates the information
stored depending on the positions of the cities k
and /. The algorithm for the updates follows.

pos(k)>pos(i) and pos(k)<pos(f)
swap left and right neighbors of
city k and their distances
pos(k)<pos(i) +pos()-pos(k)
pos()>pos(i) and pos(I)<pos(f)
pos(ly<pos(i)+pos(j)-pos(l)
kI=iji-1j+1
explicitly set positions andjor distances

Note that the neighborhood of a 2-opt move has
size of only n(n-3)/2. The configuration described
so far uses more than twice the number of proces-
sors to evaluate all moves. It is possible to or-
ganize the processors in a one-dimensional con-

figuration using about half the number of proces-
sors. Some additional storage and computation
time are required as now one processor does the
work of two from the previous configuration.
Though the 1D configuration is slightly slower, it
increases the size of the problem than can be
solved without virtual processing. Both con-
figurations were implemented and the 1D im-
plementation was used to solve larger problems.
Further details can be found in the next section.
Recall, the amount of virtual processing possible
depends only on-memory restrictions. In both of
our implementations we use a constant amount
of memory per processor and achieve com-
munication using only send operations. Thus, our
implementations are efficient and highly scalable.

Computational Results

The algorithm was tested on a set of symmetric
traveling salesman problems from the literature,
ranging in size from 100 to 1002 nodes. The al-
gorithm is general in the sense it does not require
the euclidean TSP instance, i.e., it does not ex-
plore the geometric structure of the problem. All
the problems appear in the traveling salesman
problem library (TSPLIB), which is available to
researchers. For information about the access to
the library, the reader is referred to (Rei92). For
all problems we use, except D493, the optimal
solution is known.

The computations were performed on CM-2s
with 16K processors located at NPAC Syracuse,
UMIACS College Park and Thinking Machines
Corporation. Coding was done in C*. Problems
of size larger than 150 were solved using the 1D
configuration of the processors. Without virtual
processing, the 2D implementation takes 6
seconds and a 1D implementation takes 8
seconds to perform 1000 iterations of tabu
search. In both implementations, every time the
VP ratio doubles, the time/iteration gets multi-
plied by a factor of 1.6. When organizing the
processors as a multi dimensional grid, the CM-2
system requires that the number of processors in
cach dimension be a power of 2. With 16K
processors, 128 is size of the largest TSP that can
be solved without virtual processing. TSPs of size
greater than 128 but less than 256 would require
a 256 x 256 grid organization of the processors—a
VP ratio of 4. Alternately, our 1D configuration

J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation.- CIT 1, 1893, 1, 29—36 35

uses only about half the number of processors and
problems of size up to 180 can be solved without
virtual processing. From then on the VP ratio
doubles as the size of the problem gets multiplied
by V2. Therefore, the 1D configuration is prefer-
rable when solving problems larger than 128.

A maximum of five restarts were tried for all but
the three largest problems. For all problems the
base tabu size was fixed at 2n/3 rounded down to
the nearest multiple of four. The maximum time
spent on each problem was less than 10 minutes.
The results are given in Table 1. The best tours
produced by the tabu search algorithm are com-
pared against the previously best known tours
(which are optimal for all problems except D493).
The table also provides results from performing
2-opt based local search with 10 random starting
tours for all but the three largest problems tested.
From the table it is clear that the use of tabu
search to escape from local optima is superior to
local optimization with random restart.

Table 1: Results for TSP

Pct. above best known
Problem after 5 restarts | after 1 restart | after 10 restarts
of tabu search | of tabu search of 2-opt
KROA100 0.000 0.000 4.474
KROB100 0.000 0.000 2.245
KROC100 0.000 0.011 0.800
KROD100 0.000 0.000 3.593
KROE100 0.000 0.000 4,500
LIN105 0.000 0.007 0.765
KROA150 0.003 0.760 3.815
KROB150 0.120 0.333 4.474
KROA200 0.370 0.601 5.319
KROB200 0.230 1.036 4.328
D198 0.250 0.520 1.787
GlL262 0.500 0.672 4.584
LIN318 0.800 1.040 4.580
D423 4,700
ATTSE32 2.100
PR1002 2.650

The solutions obtained for the set of TSPs from
the literature are encouraging: for relatively
smaller problems (size 100 and 105), the optimal
solutions have been obtained. For problems up
to size 318, the heuristic solution is less than 1 %
inferior to the optimal. For other problems, the
heuristic solution is also sufficiently close to the
best known.

Our intention in performing this computational
study was to develop an efficient implementation

of 2-opt on the connection machine. We were
aware that by setting a relatively small time limit
for problems of such complexities, it is possible
that the optimal solution may not be reached.
Performing more restarts will probably improve
the results even further (restarting improved the
results in all cases to which it was applied and the
initial start did not reach optimality). Tabu search
techniques have proved very effective for attack-
ing a number of hard combinatorial optimization
problems. When adapting tabu search to a new
class of problems there usually is a “preprocess-
ing” stage where the strategy is fine tuned and
the search parameters are set. Our implementa-
tion provides a platform for testing various
strategies and adding new insights to the tabu
search approach.

Conclusions

A heuristic algorithm utilizing 2-opt moves within
a framework of the tabu search approach is
developed for the traveling salesman problem. Its
implementation on the massively parallel ar-
chitecture of the connection machine model CM-
2 is proposed. The implementation is geared
towards efficiently utilizing the processors, and
mimimizing the communication among them.
This is achieved by a careful decomposition of the
problem.

The algorithm is very effective for smaller TSPs
in the sense that it reached optimal solutions. For
larger problems more effective tabu search based
strategies might possibly be developed. Our im-
plementation could serve as a valuable tool in the
development. The near doubling of time with VP
ratio nearly offsets the speedup for large
problems. We have provided a general purpose
implementation that examines the whole neigh-
borhood at each iteration. A tabu search strategy
that always examines the whole neighborhood
would not be effecient when solving very large
TSPs. Algorithms that examine restricted neigh-
borhoods may be implemented using lesser
processors improving the time/iteration.

Acknowledgements

This research was partially supported by NSF
grant DDM-8909206. The computations were
conducted using the computing resources of the

36 J. Chakrapani and J. Skorin-Kapov, Connection Machine Implementation.- CIT 1, 1993, 1, 20—-36

North-East Parallel Architectures Center
(NPAC) at Syracuse University, Syracuse, NY;
UMIACS College Park, Maryland; and Thinking
Machines Corporation, Cambridge, Mas-
sachusetts.

References

(Ben90) J.I. Bentley. Experiments on geometric
traveling salesman heuristics. Technical
Report Computing Science Technical
Report No. 151, AT&T Bell Laboratories,
1990.

J. Chakrapani and J. Skorin-Kapov. Mas-
sively parallel tabu search for the quadratic
assignment problem. To appear in Annals
of Operations Research.

(Glo89a) E Glover and H.J. Greenberg. New ap-
proaches for heuristic search: A bilateral
linkage with artificial intelligence.
European Journal of Operations Research,
39(2):119-130, 1989.

(Glo89b) E Glover. Tabu search — part 1. ORSA Jour-
nal on Computing, 1(3):190-206, 1989.

E Glover. Tabu search — part II. ORSA Jour-
nal on Computing, 2(1):4-32, 1990.

E Glover and R. Hiibscher. Bin packing
with tabu search. Technical report, Center
for Applied Artificial Intelligence, Univer-
sity of Colorado, Boulder, 1991.

W.D. Hillis. The Connection Machine. The
MIT Press, 1985.

(Cha91)

(G1090)

(G1091)

(Hil85)

(Joh90) D.S. Johnson. Local optimization and the
traveling salesman problem. In Proceedings
of the Seventeenth Colloguium on Automata,
Languages and Programming, pages 446-
461. Springer-Verlag, 1990.

(Kir83) S. Kirkpatrick, C.D. Gellati, and M.P. Vec-
chi. Optimizing by simulated annealing,
Science, 220:671-680, 1983.

(Pad91) M. Padberg and G. Rinaldi. A branch-and-
cut algorithm for the resolution of large-
scale symmetric traveling salesman
problems. SLAM Review, 33(1):60-200,
1991.

(Rei92) G. Reinelt. Fast heuristics for large

geometric traveling salesman problems.
ORSA Journal on Computing, 4(2):206-217,
1992,

(Sko90a) J. Skorin-Kapov. Tabu search applied to the
quadratic assignment problem. ORSA Jour-
nal on Computing, 2(1):33-45, 1990.

(Sko90b) I. Skorin-Kapov. Extensions of a tabu
search adaptation to the quadratic assign-
ment problem. To appear in Computer and
Operations Research.

E. Taillard. Robust tabu search for the
quadratic assignment problem. Parallel
Computing, 17:443-455, 1991.

Thinking Machines Corporation,
Cambridge Massachussetts. Connection
Machine Model CM-2, Technical Summary
Version 5.1, May 1989.

Thinking Machines Corporation,
Cambridge Massachussetts. C* Program-
ming Guide, Version 6.0, November 1990.

(Taio1)

(Thi89)

(Thi90)

Received: September 22, 1992
Accepted: April 7, 1992

Address for correspondence:

Jadranka Skorin-Kapov

Harriman School for Management and Policy
State University of New York at Stony Brook
Stony Brook, NY 11794

e-mail: jskorin@cecvm.sunysb.edu

Jaishankar Chakrapani received his Ph.D. in the Department of
Applied Mathematics, State University of New York at Stony Brook.
Hereceived his B.S. in Applied Sciences from Bharathiar University,
India and his B.S. in Computer Science and Engineering from the
Indian Institute of Science. His research interests include heuristics
for combinatorial optimization, tabu search, parallel algorithms,
computational geometry and neural networks, He has published in
Computers and Operations Research and Annals of Operations Re-
search.

Jadranka Skorin-Kapov is an Associate Professor in the Harriman
School for Management and Policy, State University of New York
at Stony Brook. She received her B.Sc. and M.Sc. in Applied Math-
ematics from the University of Zagreb, Croatia and her Ph.D. in
Operations Research from the University of British Columbia,
Canada. Her research interests are in the area of combinatorial op-
timization. She has published in Mathematical Programming,
Operations Research Letters, ORSA Journal on Computing, Com-
puters and Operations Research, Discrete Applied Mathematics,
European Journal of Operational Research, and Annals of Opera-
tions Research.

