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Rule induction, a subarea of machine learning, is concerned
with the problem of constructing rules from examples. In rule
induction systems, various heuristic functions are used to es-
timate the quality of rules. Most of them use some form of
probability estimates, relative frequency being the most com-
mon. This has resulted in the problem of small disjuncts,
where specific rules produce high error rates, due to unreli-
able probability estimates from small samples. To alleviate
this problem, the Laplace estimate has been used in the rule
induction system CNZ2. We have replaced the Laplace es-
timate by a general Bayesian probability estimate, the m-es-
timate, which does not rely on the Laplacian assumption of
equally likely classes. The parameter /1 in the m-estimate al-
lows for adapting to the learning domain. Depending on the
level of noise in the examples and other properties of the
domain, the appropriate level of generalization can be
achieved by setting the m parameter to an appropriate value.
We compare the performance of rules derived by using the
Laplace and the m-estimate on several practical domains in
terms of classification accuracy and the theoretically under-
pinned measure of relative information score.

Introduction

One of the most common formalisms used to rep-
resent knowledge in expert systems is the for-
malism of if-then rules. Rule-induction systems
are concerned with the automatic synthesis of if-
then rules from a given set of examples with
known classifications. An example is described by
the values of a fixed collection of features, called
attributes.

For illustration, consider the following rule,
derived by the CN2 rule-induction system (Clark
and Boswell 91) from the examples in the 1984
US Congressional Voting Records Database.
This database includes votes for each of the U.S.
House of Representatives congressmen on the 16
key votes in 1984. Given the votes (attributes),

the task is to predict the party affiliation (class)
of a congressman, which may be either republican
or democrat.
IF adoption_of_the_budget_resolution = y
AND physician_fee freeze = n
AND education_spending = n
THEN  class = democrat

The above rule predicts that a congressman is a
democrat if he voted for the adop-
tion_of the budget resolution and against the
physician_fee freeze and education_spending. Al-
most two hundred congressmen from the
database are correctly classified as democrats by
the rule.

The CN2 system (Clark and Niblett 89, Clark and
Boswell 91) uses the covering approach to con-
struct a set of rules for each possible class: it con-
structs a rule that correctly classifies some ex-
amples, removes the correctly classified examples
from the training set and repeats the process until
no more examples remain. To construct a rule
that classifies examples in a given class, CN2 starts
with a rule with an empty antecedent (if part) and
the selected class as a consequent (then part).
The antecedent of this rule is satisfied by all ex-
amples in the training set, and not only those of
the selected class. CN2 then progressively refines
the antecedent by adding conditions to it, until
only examples of the selected class satisfy the an-
tecedent. To allow for handling imperfect data,
CN2 may construct a set of rules which is slightly
imprecise, i.e., does not classify all examples in
the training set correctly.

Various heuristics are used in rule-induction to
direct search through the space of possible rules.
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These heuristics attempt to measure the quality
of a rule. At each step of the covering algorithm,
the rule with the highest heuristic value (the best
rule) is added to the current set of rules. Possible
metrics of rule quality are accuracy on the train-
ing examples, used in AQ15 (Michalski et al. 86)
and entropy, used in CN2 (Clark and Niblett 89).
Both perform very similarly in the sense that they
prefer rules which cover examples of only one
class.

The problem with these metrics is that they tend
to select very specific rules covering only a few
examples (such rules are also referred to as small
disjuncts). Namely, the likelihood of finding rules
with high apparent accuracy on the training data
increases as the rules become more specific. In
the extreme case, a maximally specific rule will
cover one example and hence have an unbeatable
score using the metrics of apparent accuracy
(scores 100 % accuracy) or entropy (scores (.00,
a perfect score). Apparent accuracy on the train-
ing data, however, does not adequately reflect
true predictive accuracy, i.e., accuracy on new
testing data. It has been shown (Holte et al. 89)
that small disjuncts have very high error rates on
new testing data.

There is a simple explanation for this phenom-
enon. The accuracy of a rule on the testing set,
which can also be interpreted as the probability
of correctly classifying an example from the test-
ing set, is predicted from its performance on the
training set by using relative frequency. The rela-
tive frequency of correct classifications converges
to the true probability of correct classifications
only when the rule covers many examples. When
this is not the case, the probability estimate of
correct classification becomes unreliable: the less
examples the rule covers the more unreliable its
accuracy estimated by relative frequency. To al-
leviate this problem, the Laplace probability es-
timate was used as a search heuristic in CN2
(Clark and Boswell 91). As the Laplace estimate
is more reliable than relative frequency when es-
timating probabilities from small samples, sig-
nificant improvements in the performance of
CN2 were reported.

Let usillustrate this problem by a simple example.
Consider a domain with two classes C; and C,,
and consider two rules R; and R,, R, covering
1000 examples of class C; and 1 example of C,
(we say that R; has coverage (1000,1)) and R,

covering a single example of class C;. The ac-
curacies of R; and R,, estimated by relative fre-
quency, are 99.9 % and 100 %, respectively, and
thus R, would be selected. If the Laplace estimate
is used, however, the estimates are 99.8 % and
66.7 % and R, is by far better than R,.

In short, the metrics of apparent accuracy
fentropy have an undesirable Zdownward bias’,
i.e. preference for rules low down in the general
to specific search space, which the Laplace es-
timate successfully avoids (Clark and Boswell 91).
The Laplace estimate was also used in tree-prun-
ing (Niblett and Bratko 86) to estimate the static
error in a node (the error expected if the node
were turned to a leaf, ie. its subtrees were
pruned). This estimate, however, relies on the as-
sumption that the prior probability of each class
is uniformly distributed. This assumption implies
that all classes are a priori equally likely, which is
rarely true in practice and was reported to cause
serious problems to the Niblett-Bratko method
of tree-pruning (Cestnik et al. 87, Mingers 89).

We recently investigated the use of a general
Bayesian probability estimate in machine learn-
ing (Cestnik 90,91). The m-estimate, of which the
Laplace estimate is a special case, was successful-
ly used in the ’naive’ Bayesian classifier (Cestnik
90) and in tree-pruning (Cestnik and Bratko 91).
This estimate takes into account the prior (un-
conditional) probabilities of the classes. It also
has a tunable parameter m, which allows for
adapting to the properties of a given domain, such
as the level of noise in examples.

In the paper, we describe the use of the m prob-
ability estimate in rule induction. We used it as a
search heuristic in CN2 and appropriately tuned
the m parameter by trying several different values
for it. The improvement achieved was especially
evident in the domains where the assumption of
equally likely classes is severely violated. The per-
formance was measured in terms of classification
accuracy and in terms of the relative information
score (Kononenko and Bratko 91) of the clas-
sifications.

The relative information score measure takes
into account the difficulty of the classification
problem. Namely, in domains where one of the
classes is highly likely, it is trivial to achieve high
classification accuracy. The completely unin-
formed classifier that classifies into the majority
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class would in that case have an undeservedly
high score according to classification accuracy.

A general Bayesian probability
estimate

To obtain a general Bayesian estimate of prob-
ability p on the basis of some evidence E, an initial
(prior) probability distribution for p has to be as-
sumed first. Using evidence E the initial distribu-
tion is transformed to a final one, from which the
expectation can be taken as a point estimate for
p- The first task, namely the assumption of an in-
itial probability distribution, is regarded as a basic
difficulty of the Bayesian procedure and, conse-
quently, represents a major obstacle to its wider
application (Cheeseman 88).

In Bayesian analysis (Berger 85) the initial prob-
ability distribution is usually taken from the class
of beta probability distributions. In this case, the
initial distribution is completely specified by its
initial expectation and variance.

In (Cestnik 90, 91) a probability estimate of con-
ditional probabilities, called the m-estimate, was
developed. The basic idea behind this estimate is
that the initial expectation can be estimated from
an unconditional sample. Therefore, only one
parameter, the variance, remains to be specified.
The m-estimate has the following form:

_ I+mp,
P = ham
where r is the number of positive examples, n is
the total number of examples observed, p, is the
initial expectation (prior probability of an ex-
ample being positive) and m is a parameter of the
estimation method. The parameter m is related
to the initial variance by the following formula:

Pa(1—pa)
VY ="y

The parameter m has several interpretations.
First, as can be seen from the above formula, it
is inversely proportional to the initial variance. In
other words, the higher the value of m, the lower
the initial variance; this means that we are very
confident in the initial expectation of p, i.e. the
prior probability p,. Second, it controls the
balance between relative frequency and prior
probability, as can be observed from the following
form of m-estimate:

r

X
n+m n

P= X Pa

n+m
Finally, m can be set to correspond to the level
of noise in data (Cestnik and Bratko 91). When
more noise is expected in the examples, a higher
value of m should be used. In summary, as the
value of m increases, the prior probability plays
a more important role; as a result, the examples
are considered less trustworthy.

How should the actual value of parameter m be
determined? On one hand, it can be set subjec-
tively by the domain expert. For example, let us
consider two rules taken from a simple chess
endgame domain with synthetical noise (DZeros-
ki and Lavrac 91). The first rule covers (8,0) and
the second (26,4) examples. The prior prob-
abilities of the classes are 1/3 and 2/3, respective-
ly. Suppose that after examining each rule, we
strongly prefer the second rule to the first one.
Accordingly, we would like to set the value of m
in the m-estimate so that the estimated accuracy
of the second rule is higher then that of the first
one. After a simple manipulation of the cor-
responding formulas we obtain m >3.

On the other hand, the expert might not be avail-
able. In that case, which also covers all the ex-
periments in this paper, we propose that several
different values for m should be applied. At the
end, after measuring the performance of the in-
duced classifiers, the value of m which gives the
best performance can be selected. Such a proce-
dure in fact corresponds to a series of Bayesian
procedures in which we take different initial
probability distribution each time. If we have a
criterion to measure performance, which is often
the case, we can evaluate the quality of each prior
distribution and select the best one.

Quinlan (1991) presents an improved probability
estimate for small disjuncts which is very similar
to the m-estimate. However, it is introduced as
an ad-hoc modification of the Laplace estimate,
rather than derived directly by a Bayesian estima-
tion procedure. In addition, Quinlan proposes
that the following value of m should be used:

1
1—pa

Hl =

for which no theoretical justification is given. In
fact, in our experiments we found that the best
value for m depends mostly on domain charac-
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teristics such as noise, and not on the prior prob-
abilities as proposed by Quinlan.

Experimental Comparison

Experimental Method

Experiments were performed to measure the im-
provement in predictive accuracy resulting from
the use of the m-estimate as a search heuristic
instead of the Laplace estimate. As tests on a
single domain are not sufficient to draw reliable
conclusions about the relative performance of al-
gorithms, experiments on twelve domains, shown
in Table 1, were conducted. We used the same
data as Clark and Boswell (91) and also largely
followed their experimental design.

Table 1: Details of Experimental Domains

) . Number of
Domaint Description
Exs | Atis | Cls
hmgheg: disease diagnosis 148 18 4
raphy
pole-and- | predict human balancing 1044 4 P
cart action from exs
soybean disease diagnosis 307 35 19
heart- disease diagnosis (data
diseaseC from Cleveland) 203 18 2
'heart- disease diagnosis (data 204 13 2
diseaseH from Hungary)
glass predict glass type from 194 7 9
chem. content
primary- :
Mgy predict tumor type 330 17 15
voting predict
4 democrat/republican from 435 16 2
records s
thyroid disease diagnosis 1860 29 3
breast-can- | predict if recurrence is like- 286 9 2
cer by
hepatitis predict if survival likely 157 19 2
7 predict if survival from
SEhioesldiy heart problem likely el 7 =

CN2 using the Laplace estimate and CN2 using
the m-estimate were compared. In each domain,
the data were split into 2/3 for training and 1/3
for testing. Twenty different splits were used, and
both CN2 with Laplace and CN2 with m-estimate
were run on the same splits. The results were
averaged over the 20 runs. In CN2, the default
star size of 5 was used and significance testing was
switched off. Unordered rules were generated,
which are much easier to interpret and were

found to achieve better performance (Clark and
Boswell 91) than ordered rules.

Besides classification accuracy, we also measured
the size of the rule sets produced (as the total
number of attribute tests appearing in the rules).
In addition, the relative information score of the
classifications was computed. Below we briefly
describe this measure, introduced by Kononenko
and Bratko (91).

The most general form of the answer of a clas-
sifier, given a testing example, is a probability dis-
tribution over the classes of the domain. Let the
correct class of example ¢, be C, its prior prob-
ability P(C) and the probability returned by the
classifier P’(C). The information score of this
answer is

—logP(C)+logP’(C) P(C)z P(C)
I(e)= {[og(l-P(C))—log(l—P’(C)) P'(C)<P(0)

As I(e,) indicates the amount of information
about the correct classification of e, gained by the
classifier’s answer, it is positive if P(C) >P(C),
negative if the answer is misleading
(P’(C)>P(C)) and zero if P’(C)=P(C).

The relative information score I, of the answers of
a classifier on a testing set consisting of examples
ey, ey, ..., €, belonging to one of classes Cy, C,, ...,
Cy can be calculated as the ratio of the average
information score of the answers and the entropy
of the prior distribution of classes.

1 n
o 5 Z I(ex)
k=1

Jrr = N
= P(Ci) x logP(Ci)

i=1 ;

The relative information score of the ’default’
classifier, which always returns the prior prob-
ability distribution, is zero. If the classifier always
guesses the right class and is absolutely sure about
it (P’(C)=1), then I,=1, provided the class dis-
tributions of the training and testing sets are the
same.

It was easy to modify the answer given by CN2 to
a probability distribution. Namely, when unor-
dered rules are produced, several rules may apply
to a single example. In that case, the distributions
of examples covered by each of the applied rules
are summed, and the example is classified into
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the majority class (Clark and Boswell 91). For in-
stance, if two rules with coverage (10,2) and
(4,40) apply, the 'summed’ distribution would be
(14,42) and the example is classified in C,. To get
the probability distribution over classes (C,C7)
returned by CN2, we divide the distribution with
the total number of examples covered (56) and
obtain as answer the probability distribution
(0.25,0.75).

The prior probabilities of the classes, used both
in the m-estimate during the search for rules and
in the calculation of the relative information
score were estimated by relative frequency from
the whole training set. As the number of ex-
amples in the entire set is usually high enough,
this estimate is sufficiently reliable.

Experimental Results

For each domain, 15 different values of m were
applied (0, 0.01, 0.5, 1, 2, 3, 4, 8, 16, 32, 64, 128,
999). Since we regard the role of m as being of
qualitative nature, the values for m were chosen
from a quasi-logarithmic scale.

The best accuracy obtained for a fixed value of
m was selected. These accuracies are listed in
Table 2 together with the results obtained when
using the Laplace estimate. The relative informa-
tion score obtained for the same value of m, as
well as the one for the Laplace estimate, are given
in Table 3. The size of the corresponding rule sets,
i.e. the total number of attribute tests (literals)
appearing in the rules, is given in Table 4.

Comparative accuracies

Table 2 gives the accuracies obtained for all
of the above domains. To make an overall com-
parison between the heuristics, a paired, one-
tailed t-test was used, whose results are shown in
the smaller table at the bottom. From this t-test,
it can be seen that using the m-estimate with the
appropriate value of m significantly (>99 %) im-
proves CN2’s accuracy.

Note that although the overall improvement in
accuracy is slight (just 1.35 %), substantial im-
provements have been achieved in several
domains, such as echocardio and primary tumor.
It is worth noting that the Laplacian assumption
of equally likely classes is violated in these
domains. Furthermore, even the slight improve-
ments in some domains (breast-cancer) have
meant improvement from 'worse-than-default’ to

‘better-than-default’ performance. Thus, CN2
with the m-estimate (and the best value of m)
achieves accuracies that are better than those
achieved by the uninformed ’default’ classifier in
all domains. In other words, no domain is *worse-
than-default’ in this case.

Table 2: Percentage Accuracies for Different Heuris-
tics.

The table shows percentage accuracies for CN2 with the
Laplace estimate and with the m-estimate. The third column
gives the value of m for which best results were achieved (best
value of m), while the second column gives the accuracies
achieved for these values of . The lower table gives an over-
all comparison of accuracies using paired, one-tailed t-test on
the data from the upper table.

Algorithm
D ; CN2 Default
omain
Laplace Best m
Value |Accuracy
lymphography 79.81 2 83.16 54.59
pole-and-cart 69.58 05 71.80 4817
soybean 82.40 32 81.47 10.39
heart-diseaseC 78.02 0.5 78.61 52.28
heart-diseaseH 79.13 128 79.90 64.02
glass 65.15 32 64.29 35.94
primary-tumor 41.94 0.01 45.16 23.54
voting-records 95.35 64 96.28 62.31
thyroid 95.52 32 96.84 95.29
breast-cancer 71.42 0.5 72.85 72.05
hepatitis 80.40 0 80.79 78.14
echocardio 66.96 0 71.15 67.79
Algorithms Mean ('l{A”g;"; Significance of
Compared v) Improvement
CN2 (Laplace) - CN2 138% 0938 %
(Best m)

Comparative Relative Information Scores

Table 3 gives the relative information scores for
all of the above domains. Again, using the m-es-
timate with the appropriate value of m sig-
nificantly (>94 %) improves CN2’s relative in-
formation score. The overall improvement is
slight, but substantial improvement has been
achieved in domains where the Laplacian as-
sumption is violated (primary tumor, lymphog-
raphy).



42 S. DZeroski et al. Rule induction and the m-estimate.- CIT 1, 1993, 1. 37—46

Table 3: Relative Information Scores for Different
Heuristics.

The table shows relative information scores for CN2 with the
Laplace estimate and with the m-estimate using the same
value of m as in Table 2. Note that for some domains other
values of m give better relative information scores. An overall
comparison using paired, one-tailed t-test on the data from
the upper table is given in the lower table.

) Heuristic
Domain
Laplace Best m
lymphography 62.05 64.30
pole-and-cart 39.70 44.45
soybean 84.95 83.85
heart-diseaseC 53.40 85.15
heart-diseaseH 52,05 46.70
glass 50.70 49.75
primary-tumor 35.35 38.75
voting-records 88.60 88.25
thyroid 25.80 46.60
breast-cancer 18.95 22.85
hepatitis 31.80 32.70
echocardio 15.75 24.80
Algorithms Mean Improve- | Significance of
Compared ment (Mean X - Y) | Improvement
CN2 {Ifgggcr?n)) - CN2 325 % 94.26 %

Comparative sizes of rule sets

Table 4 gives the rule set sizes for all domains. An
overall comparison reveals that the rules
produced by using the m-estimate are significant-
ly (>91 %) more specific. In most of the domains,
better accuracies were achieved with the m-es-
timate when the rules were more complex
(specific). When estimating probabilities from
few examples more accurately, CN2 with the m-
-estimate has been able to select better rules
which, although more specific, had still good
predictive accuracy.

In fact one might argue that these rules are ex-
actly at the right level of specificity for the given
domains, determined by the appropriate value of
m. It can be immediately noticed, namely, that
the size of the rule set monotonically decreases
with increasing m (see Figure 2). Similarly, the
average number of examples covered by a rule
increases accordingly. Thus, m controls the level
of fitting/generalization to be performed by CN2.

In two of the domains (voting-records and heart-
disecaseH) better results were achieved with
smaller (more general) rule sets. Slight decrease

in classification accuracy was recorded only in the
soybean and glass domains. This only means,
however, that the appropriate value of m was not
among the ones chosen for our experiments.
Repeating the experiments for the soybean
domain with a finer resolution for m (15, 16, ...,
25), we obtained both better classification ac-
curacy and relative information score for m= 23.

Table 4: Sizes of Rule Sets for Different
Heuristics.

The table shows rule set sizes as total number of literals (at-
tribute tests) for CN2 with the Laplace estimate and CN2
with the m-estimate using the same value of m as in Table 2.
An overall comparison using paired, one-tailed t-test on the
data from the upper table is given in the lower table

. Heuristic
Domain
Laplace Best m
lymphography 37.45 39.80
pole-and-cart 123.10 198.45
soybean 110.25 107.55
heart-diseaseC 55.95 70.15
heart-diseaseH 59.25 30.30
glass 49.50 42.05
primary-tumor 305.55 549.95
voting-records 59.70 24.75
thyroid 82.25 90.65
breast-cancer 84.15 110.75
hepatitis 42.60 75.65
echocardio 46.40 100.40
Algorithms Mean Significance of
Compared Imprayement Improvement
P (Mean X - Y) P
CN2 (Laplace) - CN2 3202 % 91.90 %
(Best m)

Closer look at selected domains

To illustrate the performance of CN2 with the
various Bayesian estimates we give the results for
all values of m, as well as for the Laplace estimate
for the domains echocardio, lymphography,
primary tumor and thyroid. For all of them the
Laplacian assumption of equally likely classes is
violated. The appropriate values for m are 0, 2,
0.01 and 32, respectively.

The results, given in Figure 1, include the clas-
sification accuracy and the relative information
score, which takes into account the ‘informa-
tiveness’ of the answers of a classifier. We give
the rule set sizes for the same domains in Figure
2. As the generality (coverage) of rules increases
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Figure 1: Accuracy and Relative Information Score for Different Heuristics.
The value of m used in CN2 is depicted on the x-axis, while the y-axis gives the classification
accuracy and the corresponding relative information score. The straight lines denote
the performance of CN2 using the Laplace estimate.

when the rule set size decreases, we have not in-
cluded the corresponding graphs.

In the lymphography domain, the best perfor-
mance is obtained with m=2. Both accuracy and
relative information score clearly reach their
peaks at this value of m, which is obviously the
one appropriate for this domain. This is achieved
by a rule set which is only slightly more complex
than the one obtained with Laplace.

In the thyroid domain, the classification accuracy
achieved with different values of m is much the
same as the one obtained with Laplace. The rela-
tive information score is, however, substantially

higher for almost all values of m, as the Laplace
assumption is severely violated in this domain.
(Similar statement holds for relative information
score in the primary tumor domain.) The peak
performance is achieved with m =32 and aslightly
larger rule set than the one produced with
Laplace. '

For domains echocardio and primary tumor, the
situation is somewhat different. Although the
best performance is achieved with small values of
m, the induced rules are much more complex as
compared to the ones induced with Laplace.
However, other values of m exist (16 and 32,
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Figure 2: Sizes of Rule Sets for Different Heuristics.
The value of m used in CN2 is depicted on the x-axis, while the y-axis gives the number of rules
induced and the corresponding total number of attribute tests (literals). The straight lines denote
the performance of CN2 using the Laplace estimate.

respectively) for which almost equal performance
can be achieved with much more compact rule
sets. We can see that different values of m provide
us with different models of the domain, at various
levels of generality, among which we can select
one according to the measures described above.

Conclusion

In our approach, the problem of small disjuncts
is solved by estimating their accuracy in a more
reliable way. Rather than using different forms of
bias for disjuncts of different size (as proposed

by Holte et al. (89)), we estimate the accuracy of
all disjuncts by the same Bayesian procedure. The
general Bayesian m probability estimate turned
out to be a successful mechanism in rule induc-
tion, allowing to set the appropriate level of
generalization for the domain (examples) at
hand. It does not make the assumption used in
the Laplace estimate, namely that all classes are
equally likely, thus enabling much better perfor-
mance in domains where this assumption is vio-
lated.

It is generally agreed that too long, specific rules
are likely to perform worse on new, previously
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unseen data. On the other hand, too general rules
are also likely to have low predictive power. By
using the appropriate value of the parameter m
in the m-estimate we actually determine the ap-
propriate level of generalization suitable for the
given domain. This has allowed CN2 with the m-
estimate to perform better, although the induced
rule sets are on the average larger and more
specific than the one produced with the Laplace
estimate. We have also seen that rules produced
by using the m-estimate produce higher relative
information scores, the latter being theoretically
underpinned as a much more appropriate
measure of classifier’s performance than ac-
curacy.

One might argue that to achieve better perfor-
mance we have to pay the price of determining
the appropriate value of m. Our message is that
determining the right value of m is worth the ef-
fort. In fact, using a spectrum of values for m, we
can produce a spectrum of rules (models) of dif-
ferent generality for the domain at hand.
Whereas a series of decision trees of increasing
generality can be produced by sequential pruning
(Breiman et al. 84, Cestnik and Bratko 91), a
series of increasingly more general rule sets can
be produced by a series of increasing values of m.
We could then select among this models on the
basis of performance criteria, such as accuracy
and relative information score, or on the basis of
comprehensibility (transparency) to the end user.
Further work will address the problem of auto-
matic tuning of the parameter m using data from
the training set (possibly by a cross-validation
procedure) to maximize performance according
to given criteria.
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