Journal of Computing and Information Technology - CIT 1, 1993, 1, 47-55 47

Program Partitioning
for a Control/Data

Driven Computer

Jurij Silc and Borut Robié

"JoZet Stefan" Institute, Ljubljana, Slovenia

The paper examines the problem of dataflow graph partition-
ing aiming to improve the efficiency of macro-dataflow com-
puting on a hybrid control/data driven architecture. The par-
titioning consists of dataflow graph synchronization and
scheduling of the synchronous graph. A new scheduling al-
gorithm, called Global Arc Minimization (GAM), is intro-
duced. The performance of the GAM algorithm is evaluated
relative to some other known heuristic methods for static
scheduling. When interprocessor communication delays are
taken into account, the GAM algorithm achieves better per-
formance on the simulated hybrid architecture.

Introduction

There are several commercial and research ef-
forts currently under way to build parallel com-
puters in order to achieve performance far
beyond what is possible today. Pipelining and
multiprocessing do not break significantly with
the standard way in which computers are or-
ganized. Processors spend a lot of time fetching
instructions and data from memory. On the other
hand, dataflow computers (DENNIS 1980)
depart radically from tradition in order to boost
speed enormously. They respond instantaneously
to the arrival of data by attaching it to the instruc-
tion waiting for it. Instead of fetching the same
data several times, copies of data are produced
and simultaneously sent to the instructions wait-
ing for it.

In the past 15 years quite a few projects have em-
barked on the design for a dataflow machine. For
a survey of design published before 1986 see
(SRINI 1986). Many of these early projects did
not get past the design stage and only two were
bold enough to announce that their goal was to
produce a commercial dataflow machine: the
static dataflow project at Hughes Aircraft Co.

(VEDDER et al. 1985) and the Data-Driven Sig-
nal Processor Project at ESL Inc.
(HOGENAUER 1982). Due to various reasons
neither of them reached the commercial stage.
More successful was the group at NEC, produc-
ing uPD7281 - a one-chip processing element
based on dataflow. This image pipelined proces-
sor did reach the commercial stage and has been
available since 1985 (JEFFERY 1985).

Until the mid-eighties the primary goal had been
to explore the dataflow approach, but in the last
couple of years the emphasis has shifted toward
building practical machines. The Dutch company
DTN developed a simple dataflow machine based
on the uPD7281 (VEEN and van der BORN
1990). In Japan two follow-up dataflow projects
are under way. Building on experience with the
SIGMA-1, the EM-4 with target structure of
more than 1000 processing elements is being
produced (SAKAI et al. 1989). The work on the
Q-p project has led to the fabrication of a set of
five VLSI chips, to be combined next year into a
single-chip stand-alone data-driven processor
(NISHIKAWA et al. 1987). The seminal dataflow
research by Arvind at MIT has recently resulted
in an arrangement with Motorola to build a
machine based on their Monsoon architecture
(ARVIND and NIKHIL 1990).

Rather than adopting dataflow scheduling at the
individual instruction level (fine-grain dataflow),
we consider larger chunks of instructions. Such
large-grain approach to dataflow by using a hybrid
computation model has been termed macro-
dataflow. In particular, we describe an architec-
ture, named MADAME (MAcro DAtaflow

48 J. Silc and B. Robié. Program Partitioning.- CIT 1, 1993, 1, 47—55

MachinE), for supporting control/data driven
computation. The machine belongs to the family
of hybrid computer architectures. MADAME is
characterized by many processors and a
memory/control unit which gathers the results re-
quired by subsequent instructions, generates new
tasks, and passes them back to processors. The
basic idea of MADAME is a result of our pre-
vious research of synchronous dataflow architec-
ture (ROBIC et al. 1987, SILC and ROBIC 1988,
SILC and ROBIC 1989, SILC et al. 1990). In this
paper we consider the problem of optimal con-
struction of instruction chunks aiming to mini-
mize interprocessor communication.

The paper is organized as follows. After a brief
description of the organization of MADAME, we
introduce a new program graph partitioning
method consisting of graph synchronization and
scheduling. The partitioning method is illustrated
on the FFT algorithm where a considerable
speedup improvement was achieved when com-
pared with some well-known scheduling algo-
rithms.

Machine organization

MADAME is a ring consisting of p identical
dataflow processors (DFP) and a control unit
named Token Flow Manager (TFM). MADAME
communicates with the host via the TFM unit

(Fig.1).

Though some other processor network might be
more suitable we decided to use the ring or-
ganization since it offers the possibility of using
existing dataflow processors. Having minimum
amount of interface hardware used for cascading,
an appropriate candidate is xPD7281.

Operation principles

A high-level dataflow program is translated into
a machine-level program. A mental image of the
latter is suggested by representing it as a dataflow
graph (DFG) in which each node represents an
instruction and each (directed) arc a conceptual
medium over which data items flow.

Let p be the number of DFPs. DFG, viewed as a
set of instructions, is partitioned into p subsets
using program graph partitioning schemes which
will be described in detail in the next section. Arcs
connecting instructions within the same subset
are termed Jocal while the others are referred to
as global. A host is used to assign a different DFP
to each subset and performs loading of the subset
into the assigned DFP. Concurrently, the assign-
ment of subsets is also recorded in TFM.
Moreover, TFM records where the input and out-
put arcs reside and also the dependencies be-
tween instructions residing in different DFPs, i.e.
global arcs.

The execution starts after the TFM unit has sup-
plied the input data (operand tokens), which may
be absorbed by several DFPs. Inside the DFPs

HOST
TFM
(op. tokens res. tokens W
DD DFP, [eee —__| DIP,

Figure 1: MADAME - MAcro DAtaflow MachinE.

J. Silc and B. Robig. Program Partitioning.- CIT 1, 1993, 1, 47—55 49

the execution proceeds in an asynchronous
fashion according to dataflow principles. How-
ever, when data (result token) is to be sent to an
instruction in some other DFP, it is not sent
directly to it as indicated by the corresponding
global arc in the DFG. Instead, the result token
is first consumed by the TFM unit which, in turn,
forwards it as an operand token (with a time
delay, if necessary) to the destination DFP.
Tokens travelling along global arcs will be termed
global tokens. Therefore, special attention has to
be paid to the instructions (nodes) which are des-
tinations of global arcs, since the operand tokens
which fire them arrive from TFM. Consequently,
it is the responsibility of TFM to supply these
tokens in time so that the total execution time 7,
of the DFG will be minimized.

Since instructions related to a global arc are as-
signed to different DFPs, a communication delay
between DFPs occurs. Therefore, one of the ob-
jectives is to keep the number y of global arcs
(which influences the throughput rate in the ring)
as low as possible. This clearly depends on the
way the instruction set has been partitioned, and
a heuristic static scheduling algorithm, called
Global Arc Minimization (GAM), has been
designed for this purpose.

Dataflow processor

DFP may be any data-driven processor, capable
of memorizing and executing parts of DFG and
of efficient communicating with its environment.
It should facilitate cascading with a minimum
amount of interface hardware to increase the
throughput rate. There are several candidate
DFPs (JEFFERY 1985, NISHIKAWA et al. 1987,
KOREN and PELED 1987) among which the
NEC #PD7281 has been chosen as the most ap-
propriate one.

Token flow manager

If TFM operated simply as a queue, several dis-
advantages would appear. For example, an
operand token at the front of the queue might
be sent to an instruction which could not be fired
yet. Also, a token might be sent to an instruction
which could postpone its firing without affecting
T,. Therefore, we designed TFM to operate as a
list as follows:

e an operand token is always sent from the front
of the list, and

e an incoming result token is inserted into the
list according to the associated pointer.

In the next section the construction of informa-
tion needed for efficient functioning of the TFM
will be described.

Program Graph Partitioning

Graph partitioning is a procedure which takes a
dataflow graph (DFG) and assigns each node (in-
struction) to an actual DFP. Partitioning attempts
to satisfy three conflicting goals:

1. Maximize the parallelism of the execution in
the DFG.

2. Minimize processor resources.

3. Minimize interprocessor communication.

The partitioning can be accomplished during
either runtime or compile time. The runtime par-
titioning (dynamic allocation) is a costly ap-
proach, however, due to severe supervisory over-
head. Therefore, it is preferable to use compile
time mechanisms wherever possible (BECK et al.
1990). Since a large number of applications in
image processing can be represented by acyclic
DFGs, compile time partitioning (static alloca-
tion) is an important alternative. Therefore, our
discussion is limited to the compile time partition-
ing.

The graph partitioning proceeds in two stages:

e dataflow graph synchronization, and
e scheduling of the synchronous dataflow graph.

Synchronization

Let V = {1,2,..,n} be a set of instructions to be
executed by a set of identical DFPs. The set V'is
partially ordered by a data dependency relation
> so0 that if u >v then u must be executed before
v can be initiated. The partially ordered set V is
described by a finite acyclic directed graph DFG
= (KA), where V'is now viewed as a set of vertices
and A ={(u,v) EV X V| u>v}is aset of arcs
representing data dependencies between ver-
tices. Associated with each vertex v is 1(v) € IN
representing its execution time. Given “un-
limited” number of DFPs, the minimum execu-

50 J. Silc and B. Robi&. Program Partitioning.- CIT 1, 1993, 1, 47—55

tion time of the DFG is denoted by T,. When
there are only p DFPs, the minimum execution
time of the DFG is denoted by 7, and is T, = T
Conversely, given time T where T = T, the min-
imum number of DFPs needed to execute the DFG
in time T is denoted by pr.

Given T and p, the synchronization phase consists
of a construction of the

function s : V' = {0,1...., T} such that:

e WwEV:s(v) +t(v) < T.

o Y(u,v)EA:s(u) + t(u) < s).

e V1 =0,.T:| {v]|s(v) <7 <s()+
+1(v)} | =p.

Given p and T the synchronized DFG, denoted
by SDFG(p,T), is a DFG where each v € Vis as-
sociated with the number s(v). If v is a vertex then
s(v) is the start time and f(v) = s(v) + #(v) is its
finish time. Given p DFPs, a natural goal is to
construct SDFG(p,T,). To do this, the Time Min-
imization synchronization algorithm is used. On
the other hand, when a dedicated architecture is
designed for a problem domain it is often possible
to estimate T,. It is natural to construct
SDFG(pr,,T») in this case, since one of the

design goals is to minimize processor resources.
This is achieved by the Processor Minimization
synchronization algorithm. Algorithms for SDFG
construction were introduced in (SILC and
ROBIC 1988, SILC and ROBIC 1989, SILC et
al. 1990) and are briefly explained as follows.

Let g denote the number of occupied processors
at the moment 7. In the Time Minimization algo-
rithm, the number of free processors at that mo-
ment is p—gq. Therefore, at most p—q ready in-
structions can be started. Note that some of ready
instructions are urgent. When starting ready in-
structions as many as possible urgent instructions
are selected. The selection of ready instructions
was performed according to three criteria: ran-
dom selection, increasing #(v) selection, and
decreasing 1(v) selection. However, none of these
criteria proved to be superior. In the Processor
Minimization algorithm, the number of free
processors at some moment is LBP—q, where
LBP is a lower bound on the number of DFPs.
Since urgent instructions have already been taken
into account when LBP was computed, only
deferrable instructions may be selected (using the
same criteria as above).

Time Minimization Synchronization Algorithm
input: DFG, p.
output: SDFG(p,T,), i.e., s(v), for allv € V.
T:=0,T,:=0,9q:=0, W:=V
repeat
ifg > 0 then
P; :={v EVI|f(v) = 1};
Wi=W-Piq:=q- |P|
endif
P, := {v € V|v has all input operands};

% P, are ready instructions.
% Let P, = P, U P, where

% P, have to be fired at the moment 7
% (urgent instructions)

% and P, need not to be fired at 7
% (deferrable instructions).

if g < p then
ifpgq < |P,| then Let P, C P,,
where |P,| < p—gq else
if p—q = |P,| then P, := P, else
Let P, CP, where |P,| =p-¢q-
_IPuI; P,:=P,U P,
endif

g:=q + |P,| % Fire some additiona

instructions
endif
forallv € P, do s(v) := 7 endforall
T, := 7; Increment T

until W = 0,

Processor Minimization Synchronization Algo-
rithm

input: DFG, T...
output: SDFG(pr,, ,T), i.e., s(v), forallv € V.
Compute LBP, i.e., a lower bound on the
number of DFPs;
T:=0,pr, :=0,g:=0
repeat
if g > 0 then
Ps:={v E V|f(v) = 1};
q:=q~ |P
endif
P,:= {v € V|v has all input operands};

J. Silc and B. Robié. Program Partitioning.- CIT 1, 1993, 1, 47—55 51

% P, are ready instructions.
% Let P, = P, U P, where
% P, have to be fired at the moment 7
% (urgent instructions)
% and P, need not to be fired at 7
% (deferrable instructions).
:=q + |P,| % Fire all urgent
instructions
if g < LBP then
Let P, C P, where |P,| < LBP-g;
q:=q + |P,| % Fire some
additional instructions
endif
forallv € P, U P, do s(v) := 7 endforall

Pr, := max (q,pr,,); Increment v

untilt = T;

Scheduling

After SDFG(p,T) has been constructed, the
processor index t(v), 1 < m(v) < p of a host DFP
is computed for each vertexv € V. The arcs con-
necting vertices in different DFPs are termed
global arcs. Since the communication between
vertices residing in different DFPs is a time con-
suming operation, the goal is to schedule vertices
so that the interprocessor communication time is
minimized. In order to achieve this, a criterion
which keeps the number of global arcs as low as
possible (and thus improves the throughput rate)
was successfully applied.

We can now outline two versions of the Global
Arc Minimization scheduling algorithm.

GAM-F: Global Arc Minimization Algorithm
(Forward version)

input: SDFG(p,T).
output: 77(v), for allv € V.

Sort pairs (v,s(v)) on s(v) and push them on
stack S.

% (v,s(v)) with minimal s(v) is on top of S.
for g := 1 to p do F [g] := 0 endfor
repeat

Pop from § pairs with equal s and store them
into W.

P:={q | Flg] < s}

forallv € W do
forall g € P do

c(v, g) = number of immediate
predecessors of v that have been
assigned to g-th DFP.

endforall
endforall

Solve WBM-problem for graph
(WUP, W X P).

forall pairs (v, g) which are part of the
solution do

Flgq]:=fv);n(v) :=¢q
endforall
W:=0;P:=0

until § = 0;

GAM-B: Global Arc Minimization Algorithm
(Backward version)

input: SDFG(p,T).
output: 77(v), for allv € V.

Sort pairs (v, f(v)) on f(v) and push them on
stack S.

% (v, f(v)) with maximal f(v) is on top of S.
for g := 1 to p do Flgq] := T endfor
repeat

Pop from S pairs with equal f and store them
into W.

P:={q | Flql = f};
forallvy € Wdo
forallg € P do

¢(v,) = number of immediate
successors of v that have been assigned
to g-th DFP.

endforall
endforall

Solve WBM-problem for graph
(WUP,WXP).

forall pairs (v,q) which are part of the
solution do

Fg] :=s(v); n(v) := ¢
endforall
W.=0;P:=0
until § = 0,

52 J. Silc and B. Robi&. Program Partitioning.- CIT 1, 1993, 1, 47—55

In both versions the weighted bipartite matching
(WBM) problem (MEHLHORN 1984) has to be
solved. The GAM-F version schedules vertices
starting at the input vertices of the SDFG and
proceeds towards the output vertices tending to
assign a vertex v to DFP which hosts maximum
number of v’s immediate predecessors. Conver-
sely, the GAM-B starts at the bottom of DFG
and tends to assign a vertex v to DFP which hosts
maximum number of v’s immediate successors.

To conclude, the GAM algorithm assigns the cor-
responding processor index 7z(v) to each vertex v
€ V. Thus, the graph partitions and the set of
global arcs are implicitly determined.

Global Token Construction

After each v € I has been associated with the
processor index 7r(v), the construction of global
tokens may be initiated. Remember that data d
which flows through global arc (u,v) is encapsu-
lated in the global token and is controled by TFM.
Besides data d the global token contains control
fields s(v) (calculated by the GAM algorithm)
and A(v) which points to a location in the 7z(v)-th
TFM list where data d is to be inserted. The
pointer A(v) strongly depends on the start time
s(v) (calculated by synchronization algorithms)
and is constructed according to the following rule:
a vertex v has pointer A(v) = i if there are exactly
i—1 vertices which have the processor index equal
to 7z(v) and start time less than s(v).

Performance evaluation

In this section, the performance of the algorithm
will be analyzed in the problem of computing 8-
point Fast Fourier Transform and compared with
three other heuristic algorithms for static
scheduling, classical Critical Path Method (CPM)
(COFFMAN et al. 1976), Heavy Node First
(HNF) (SHIRAZI et al. 1990), and Weighted
Length (WL) (SHIRAZI et al. 1990).

The DFG in Fig.2 represents the FFT algorithm
designed to perform an 8-point FFT transform.
The basic operations are addition € and subtrac-
tion-and-multiplication ®. The first operation
simply adds two input data together, while the
latter performs (I; — I;) X €**8 where I, and I,
are two inputs, and 0 < k < 7. The execution

time of each @ and ® node is assumed to be one
and five time units, respectively. In this case,
T, =72, Te = 15,and S = 4.8, where T is the
sequential execution time, T is minimum parallel
execution time, and S, = T,/T. is the ideal
speedup.

S(0)
S(1)
$(2)

5(3)

Figure 2: DFG of 8-point FFT

Let T, denote the minimum parallel execution
time when MADAME consists of p DFPs. The
corresponding speedup is S, = T,/T,. We also
So™8;

S,
The results of the performance analysis are given
for p = 3 processors and different interprocessor
communication delays ..

define the degradation of S, to be D, =

The DFG in Fig.2 is partitioned using schemes
CPM, HNE and WL as shown in Fig.3 (inciden-
tally, all of them give the same result). The
dataflow processor P; hosts vertices
B.HLLQR,TU while DEGKPSX and
A,CEJM,N,O,V,W have been assigned to P, and
P;, respectively. There are 22 global arcs. For ex-
ample, global arc (K,W) starts in P, at vertex K
and ends in P; at vertex W. The organization of
the corresponding TFM list is given in Fig.4. Note
that vertex V is not in the list since it has no global
input arcs.

P [H T 7B 1 0L T U IR

PR [D _ TG[E[P T K T X [58]

P, [F JcAl o [N[UM[__ VvV [W !
L L 1) L H
0 5 10 13 20 25

Figure 3: CPM, HNF, and WL scheduling

J. Silc and B. Robi&. Program Partitioning.- CIT 1, 1993, 1, 47—55 53

Alv)

mv) |1 2 3 4 5 6 7 8
1 H{B|L|T|JU|T|R|Q
2 DIGIE|PIK|X]|S
3 FIC{A|OIN|JIM|W

Figure 4: TFM lists for CPM, HNEF,
and WL algorithms

Fig.5 and Fig.6 show the results of the scheduling
according to the algorithms GAM-B and GAM-E
respectively. Both algorithms radically decrease
the number of global arcs compared with CPM,
HNE and WL algorithms, i.e., GAM-B results in
16 and GAM-Fin 15 global arcs. This is important
when 7, > 0 since there are less interprocessor
communication delays which in turn improves the
speedup (Table 1).

A _TGIE 0 INOML VT W |
p CF AP T K 1 X T |
B COh T3 T T T v n |
v i i N 1 1 -
0 5 10 15 20 25
Figure 5: GAM-B scheduling
A [CCH T8 NS I [P | O 173 (]
i B __JGIE[0. NOw VT W]
P, [T _ToAl P T K T X T8)
i . i . . i
0 5 10 15 20 25

Figure 6: GAM-F scheduling

Table 1: Comparison of the scheduling algorithms.

p=3 CPM, HNF, WL GAM-F, GAM-B
ts ERERER | o
0 25 288 067 | 25 288 067
2 27 267 080 | 25 2838 067
4 31 232 107 | 28 257 087
10 | 48 167 187 | 40 180 167

The TFM lists for the GAM-B and GAM-F algo-
rithms are given in Fig.7 and 8, respectively. Ob-
serve that the length of the TFM list was reduced
when GAM-F algorithm was applied.

Av)
)1 2 3 4 5 6 7 8
| H{B{L|T|JU["T
2 DIG|E[N|J|W
3 FIC|A|P|X]| S

Alv)
)1 2 3 4 5 6 7 8
1 H|{G|E|N|J|W
2 FICIA[P|X|R|Q
3 DIB|[T|U|[T]S

Figure 8: TFM lists for GAM-F algorithm

We experimentally found the effectiveness of for-
ward and backward versions of the GAM algo-
rithm to be practically equal. We considered 500
randomly generated graphs with the number »n of
vertices (instructions) and instruction execution
times 7(v) also randomly selected (20 < n < 120
and 1 < ¢(v) < 10). Using the Time Minimization
synchronization algorithm with p = 1/2p; and
having the interprocessor communication delay
1, between 0 and 20, we obtained results depicted
in Table 2. Here D} and D} denote degradation
of S. resulting from algorithms GAM-F and
GAM-B, respectively.

Table 2: Comparison of GAM-B and GAM-F

algorithms.
te 0 5 10 20
DJ /D¢ 1 9923 9986 9935

Using software simulator we also compared the
performance of MADAME to pure dataflow ar-
chitecture (SILC 1992). For pure dataflow ar-
chitecture the instruction start times were com-
puted according to as-soon-as-possible firing rule.
For MADAME, however, we used the Time Min-
imization synchronization algorithm. In pure
dataflow processor scheduling was nondeter-
ministic while in MADAME it was performed ac-
cording to GAM-B or GAM-F algorithm
(whichever was better). Interprocessor com-
munication delays were equal for both architec-
tures.

54 J. Silc and B. Robi&. Program Partitioning.- CIT 1, 1993, 1, 47—55

Special attention was paid to the impact of
processor reduction on the total execution time.
Generally, when the number of processors is
reduced, the speedup is lowered, too. However,
this degradation of speedup was less severe in
MADAME as described in Table 3.

Table 3: Degradation of ideal speedup.

Pure Dataflow MADAME
P Dpin % Dg in %
16 0 0
12 1.2 0.2
8 11.9 5.9
4 388 21.8

Table 3 shows the results obtained from 100 ran-
domly generated graphs whose maximum paral-
lelism was 16. The number n of vertices (instruc-
tions) and instruction execution times 7(v) were
also randomly selected with 100 < n < 200 and
1 = ¢(v) = 10. For example, when only 8 proces-
sors were available, pure dataflow architecture
exhibited 11.9 % speedup degradation. However,
the corresponding degradation on MADAME
was only 5.9 %.

Conclusions

Rather than adopting dataflow scheduling at the
individual instruction level, larger chunks of in-
structions were considered (macro-dataflow).
The DFG, viewed as a set of instructions, was par-
titioned into disjoint subsets each of them loaded
into its own DFP. Data flow between instructions
residing in different DFPs is conceptually
described by global arcs. While partitioning the
set of instructions of DFG into subsets, two goals
have to be achieved. First, the number of the
global arcs induced by partition should be mini-
mized. The reason for this is DFP’s limited ability
to concurrently communicate with its environ-
ment, as well as the time delay due to the indirect
communication between DFPs. Secondly, subsets
should be as large as possible, both to ensure the
efficient utilization of DFPs, and to minimize the
number of DFPs involved in the computation
(ROBIC et al. 1991). The results of program par-
titioning would be used by Token Flow Manager
during program execution if the MADAME were
target architecture.

Acknowledgement

This work was supported by the MZT of the
Republic of Slovenia under grant P2-1133-106.

References

ARVIND, R. NIKHIL (1990) Executing a Program
on the MIT Tagged-Token Dataflow Architec-
ture. IEEE Trans. Computers, C-39, 300-
-318.

M. BECK et al. (1990) Static Scheduling for Dynamic
Dataflow Machine. Journal of Parallel and
Distributed Computing, 10(4), 279-288.

E.G. COFFMAN et al. (1976) Computer and Job-
Shop Scheduling Theory. Wiley-Interscience,
New York.

J. DENNIS (1980) Data Flow Supercomputers. [EEE
Computer, 13(11), 48-56.

E. HOGENAUER et al. (1982) DDSP — A Data
Flow Computer for Signal Processing.
Presented at the Proceedings of the Interna-
tional Conference on Parallel Processing,
Columbus, Ohio.

T JEFFERY (1985) The uPD7281 Processor. Byte
(11), 237-246.

I. KOREN, LLPELED (1987) The Concept and Im-
plementation of Data- Driven Processor Ar-
rays. IEEE Computer, 20(7), 102-103.

K. MEHLHORN (1984) Graph Algorithms and NP-
Completeness. Springer-Verlag, Berlin.

H.NISHIKAWA et al. (1987) Architecture of a One-
Chip Data-Driven Processor: Q-p. Presented
at the Proceedings of the International Con-
ference on Parallel Processing, University Park,
Pennsylvania.

B. ROBIC et al. (1987) Resource Optimization in
Parallel Data Driven Architecture. Presented
at the Proceedings of the 5th IASTED Int’l
Symposium on Applied Informatics, Grindel-
wald, Switzerland.

B.ROBIC et al. (1991) Graph Compactor for Map-
ping of Algorithms on VLSI Processor Ar-
rays. Presented at the Proceedings of the ISMM
Int'l Workshop Parallel Computing, Trani,
Italy.

S. SAKAI et al. (1989) An Architecture of a Dataflow
Single Chip Processor. Presented at the
Proceedings of the 16th Annual Int’l Sym-
posium on Computer Architecture, Jerusalem,
Israel.

B. SHIRAZI et al. (1990) Analysis and Evaluation of
Heuristic Methods for Static Task Scheduling.

J. Silc and B. Robié. Program Partitioning.- CIT 1, 1993, 1, 47—55 55

Journal of Parallel and Distributed Computing,
10(3), 222-232.

V. SRINI (1986) An Architectural Comparison of
Dataflow Systems. IEEE Computer, 19(3), 68-
-88.

J. SILC, B. ROBIC (1988) Efficient Dataflow Ar-
chitecture for Specialized Computations.

Presented at the Proceedings of the 12th World -

Congress on Scientific Computation, Paris,
France.

J. SILC, B. ROBIC (1989) Synchronous Dataflow-
Based Architecture. Microprocessing and
Microprogramming, 27(1-5), 315-322.

J. SILC et al. (1990) Performance Evaluation of an
Extended Static Dataflow Architecture. Com-
puters and Artificial Intelligence, 9(1), 43-60.

J. SILC (1992) Time Optimization of Asynchronous
Processing with Introduction of Some
Synchronization Mechanisms. PhD. Thesis,
University of Ljubljana, Slovenia.

R. VEDDER et al. (1985) The Hughes Data Flow
Multiprocessor. Presented at the Proceedings
of the 5th Int’l Conference on Distributed Com-
puting Systems, Denver, Colorado.

A. VEEN, R. van den BORN (1990) The RC Com-
piler for the DTN Dataflow Computer. Jour-
- nal of Parallel and Distributed Computing, 10

(4), 319-332.

Received: October 19, 1992
Accepted: February 16, 1993

Adress for correspondence:

Jurij Sile

JoiZef Stefan Institute

Laboratory for Computer Architectures
Jamova 39,

61111 Ljubljana

Slovenia

phone: +38 61 159-199

fax: +38 61 161-029

e-mail: jurij.silc@ijs.si

Jurij Sile received B.Sc, M.Sc and Ph.D degrees in electrical en-
gineering from the University of Ljubljana, Slovenia, in 1979, 1982
and 1992, respectively. In 1980 he joined the JoZef Stefan Institute,
Ljubljana and since 1986 he is the head of the Laboratory for Com-
puter Architectures. Between 1980 and 1985 he was working on bub-
ble memory systems and computer networks. His present interests
are in parallel processing and computer architectures. He has pub-
lished over 80 papers and reports.

Borut Robi¢ received B.Sc and M.Sc degrees in computer science
from the University of Ljubljana, Slovenia, in 1984 and 1987, respec-
tively. In 1984 he joined the JoZef Stefan Institute, Ljubljana, where
he was a research assistant at the Department of Computer Science
and Informatics. His main interests are in parallel algorithms, com-
putation theory and combinatorial optimization. At present, Mr.
Robié is working on his Ph.D.

