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Support vector machine (SVM) is a popular classi-
fication technique with many diverse applications. 
Parameter determination and feature selection sig-
nificantly influences the classification accuracy rate 
and the SVM model quality. This paper proposes two 
novel approaches based on: Microcanonical Annea- 
ling (MA-SVM) and Threshold Accepting (TA-SVM) 
to determine the optimal value parameter and the rele- 
vant features subset, without reducing SVM classifi-
cation accuracy. In order to evaluate the performance 
of MA-SVM and TA-SVM, several public datasets are 
employed to compute the classification accuracy rate. 
The proposed approaches were tested in the context of 
medical diagnosis. Also, we tested the approaches on 
DNA microarray datasets used for cancer diagnosis. 
The results obtained by the MA-SVM and TA-SVM 
algorithms are shown to be superior and have given 
a good performance in the DNA microarray data 
sets which are characterized by the large number of 
features. Therefore, the MA-SVM and TA-SVM ap-
proaches are well suited for parameter determination 
and feature selection in SVM.
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1. Introduction

Over the recent past years, support vector ma-
chines (SVMs) have become the reference for 
many classification problems. They have seve- 

ral advantages, we mention: their flexibility, 
their ability of generalization and their compu-
tational efficiency. The major problem in SVMs 
lies in the fact that they do not directly obtain 
the relevant features and the optimal parame-
ters values.
The effectiveness of SVMs to obtain high clas-
sification rate and perfect quality of SVM model 
lies in two critical factors: feature selection and 
parameter determination [1]. The objectives of 
feature selection aim to reduce the number of 
features by removing irrelevant, noisy and re-
dundant features. In addition, the determination 
of optimal value of parameters has an important 
role in reaching a high classification accuracy 
rate. There are two main parameters: the SVM 
model parameter and the kernel function pa-
rameter.
The adjustment of these parameters is a very 
interesting field of research. The classification 
accuracy rate largely depends on SVM parame-
ter C (the regularization parameter) and the ker-
nel function parameter which must be chosen 
carefully.
Several studies have been conducted in the 
domain of the parameters determination: grid 
search [2], [3] is the most widely used to de-
termine the parameters of SVM and kernel 
function. Another approach, defined by Pai and 
Hong [4], combines genetic algorithms and the 
SVM to generate a set of parameter values for 
SVM. Also, Pain and Hong in [5], [6] presented 
a simulated annealing approach to obtain pa-
rameter values of SVM and test their approach 
on a real data set. Ren and Bai [7] developed 
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an approach to determine the optimal SVM pa-
rameters by using genetic algorithms and parti-
cle swarm optimization. These studies focused 
only on the determination of the parameters. 
Seyyid Ahmed Medjahed et al. [8] have pro-
posed a new approach for parameter determina-
tion and feature selection called SA-SVM. This 
approach is based on simulated annealing and 
SVM.
For feature selection, many researchers are in-
terested in developing a new method. The fea-
ture selection methods can be categorized as: 
Filter, Wrapper and Embedded methods. In 
[9] Chen and Hsien developed a latent seman-
tic analysis (LSA) and a web page for feature 
selection (WPFA), combined with the SVM 
to screen features. Gold et al. [10] developed 
a Bayesian viewpoint of SVM classifiers to 
adjust the parameter values in order to deter-
mine the irrelevant features. Chapelle et al. [11] 
presented an automatically tuning multiple pa-
rameters and used the principal components to 
obtain features for the SVM technique. In [12] 
the authors adopt the accuracy rate of the clas-
sifier as the performance measure. Shon et al. 
[13], use genetic algorithms in screening the 
dataset features. Seyyid Ahmed Medjahed et 
al. [14] have proposed a new feature selection 
approach based on Gray Wolf Optimizer and 
a new objective function for band selection in 
hyperspectral image. In [15], the authors have 
used Binary Cuckoo Search which is a new op-
timization approach for hyperspectral band se-
lection.
In this study, the problem of parameter deter-
mination and feature selection is defined as a 
combinatorial optimization problem. The goal 
is to reduce the number of features by elimina- 
ting the irrelevant features and to determine the 
optimal value of SVM parameters.
We propose two novel approaches called: 
MA-SVM (Microcanonical Annealing – Sup-
port Vector Machine) and TA-SVM (Threshold 
Accepting – Support Vector Machine). The first 
approach is based on Microcanonical Anneal-
ing (MA) and the second uses Threshold Ac-
cepting (TA). These algorithms are stochastic 
optimization algorithms which have never been 
tested in the context of feature selection and 
parameter determination. We slightly modified 
the MA and TA algorithms to be adapted for our 
objective.
Performance assessment was conducted on five 
medical datasets taken from the UCI Machine 

Learning Repository and two DNA microarray 
datasets largely used for cancer diagnosis (co-
lon cancer and leukemia).
The first contribution of our approach is to 
combine the problems of parameter determina-
tion and feature selection in a single problem 
which interestingly obtains good results and es-
tablishes a relationship with SVM parameters 
and the selected features. Also, this combina-
tion provides a good generalization and a per-
fect quality of the SVM model.
The second contribution is to demonstrate the 
performances of two very effective optimiza-
tion methods (MA and TA) which have never 
been applied in the context of feature selection 
and parameter determination.
This paper is organized as follows: in the next 
section, an overview of SVM is introduced. In 
Section 3, we discuss the problem of parameter 
determination and feature selection. Section 4 
details the proposed approaches. In Section 5, 
we analyze the experimental results. Finally, 
concluding remarks are made in Section 6.

2. Overview of Support Vector 
Machine

Support vector machine is a popular classifica-
tion method. Developed by Vladimir N. Vapnik 
in 1995 [16], [17], SVM aims to solve the bi-
nary classification problem by finding the op-
timal hyperplane which maximizes the margin 
between the instances of classes [18].
Mathematically, finding the optimal hyperplane 
is equivalent to solving the following primal 
optimization problem:
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where, X ⊆ d is the instances set and Y = 
{‒1, +1} are the labels.
∀i ξi ≥ 0 are called slack variables and they rep-
resent the distance between the wrong points 
and the hyperplane.

carefully. The results depend directly on these 
parameters.
SVM parameter C represents the cost of the 
penalty. It creates a soft margin that permits 
some misclassifications. A large value of C in-
creases the cost of misclassifying points and 
forces the creation of a more accurate model 
that might not generalize well. A small value 
of C produces unsatisfactory accuracy rate and 
makes the model useless [22].
The kernel parameter influences also the clas-
sification accuracy rate. For example, by using 
a Gaussian kernel, the parameter σ must be de-
termined. The kernel parameter σ has a much 
stronger impact than parameter C on classifi-
cation outcomes, because its value influences 
the partitioning outcome in the feature space. 
An excessive value for parameter σ leads to 
over-fitting, while a disproportionately small 
value results in under-fitting [22], [23].
In addition, feature selection is an important step 
in classification. It aims to select the optimal 
subset of features, which improves the genera- 
lization performance, computational efficiency, 
and feature interpretability. The features can 
be highly correlated and uninformative, which 
might decrease the classification accuracy rate 
and the quality of SVM model [22].
The aim of feature selection is to find the smal- 
lest feature subset that increases the classifica-
tion accuracy rate. The optimal feature subset 
is not unique; it may be possible to achieve the 
same accuracy rate using different sets of fea-
tures, because if two features are correlated, 
one can be replaced by the other. Note that fea-
ture subset selection chooses a set of features 
from the existing features, and does not con-
struct new ones; there is no feature extraction 
or construction [24], [25].

3. The Proposed MA-SVM and 
TA-SVM Approaches

Most methods focus on solving the problem 
of parameter determination or the problem of 
feature selection, separately. These approaches 
do not address the problems of feature selection 
and parameter determination together.
The present study proposes to combine the 
problems of feature selection and parameter 

The parameter C controls the trade-off between 
the slack variables and the size of the margin. 
By introducing the Lagrange multipliers, we de-
fine the dual form of the problem (1) as follows:
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K (xi, xj) is the kernel function. Linear, Polyno-
mial and Gaussian kernels are the widely used 
in the literature and are defined as follows:

Linear K (xi, xj) = (xi · xj) 
Polynomial K (xi, xj) = [(xi · xj) + 1]d where d 
∈ , d ≠ 0 
Gaussian K (xi, xj) = 

2
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The problem (2) can be solved by using: Interior 
Point, Sequential Minimal Optimization, Trust 
Region, etc. In this work, we propose to use Se-
quential Minimal Optimization [19], [20], [21].

2.1. Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [19], 
[20], [21] is an optimization method used to 
solve quadratic problems. SMO is largely used 
for SVM and it reformulates the quadratic prob-
lem into small sub-problems.
The algorithmic scheme of SMO can be de-
scribed as follows:
1. Firstly, we take a Lagrange multiplier α1 

that does not meet the conditions for Ka- 
rush-Kuhn-Tucker (KKT) for the optimiza-
tion problem.

2. The second step is to take a second multi-
plier α2 and optimize the pair (α1, α2).

3. The steps 1 and 2 are repeated until con-
vergence.

2.2. Parameter Determination and Feature 
Selection

Hyper-parameters of SVM (Parameter C and 
kernel function parameter) must be chosen 
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an approach to determine the optimal SVM pa-
rameters by using genetic algorithms and parti-
cle swarm optimization. These studies focused 
only on the determination of the parameters. 
Seyyid Ahmed Medjahed et al. [8] have pro-
posed a new approach for parameter determina-
tion and feature selection called SA-SVM. This 
approach is based on simulated annealing and 
SVM.
For feature selection, many researchers are in-
terested in developing a new method. The fea-
ture selection methods can be categorized as: 
Filter, Wrapper and Embedded methods. In 
[9] Chen and Hsien developed a latent seman-
tic analysis (LSA) and a web page for feature 
selection (WPFA), combined with the SVM 
to screen features. Gold et al. [10] developed 
a Bayesian viewpoint of SVM classifiers to 
adjust the parameter values in order to deter-
mine the irrelevant features. Chapelle et al. [11] 
presented an automatically tuning multiple pa-
rameters and used the principal components to 
obtain features for the SVM technique. In [12] 
the authors adopt the accuracy rate of the clas-
sifier as the performance measure. Shon et al. 
[13], use genetic algorithms in screening the 
dataset features. Seyyid Ahmed Medjahed et 
al. [14] have proposed a new feature selection 
approach based on Gray Wolf Optimizer and 
a new objective function for band selection in 
hyperspectral image. In [15], the authors have 
used Binary Cuckoo Search which is a new op-
timization approach for hyperspectral band se-
lection.
In this study, the problem of parameter deter-
mination and feature selection is defined as a 
combinatorial optimization problem. The goal 
is to reduce the number of features by elimina- 
ting the irrelevant features and to determine the 
optimal value of SVM parameters.
We propose two novel approaches called: 
MA-SVM (Microcanonical Annealing – Sup-
port Vector Machine) and TA-SVM (Threshold 
Accepting – Support Vector Machine). The first 
approach is based on Microcanonical Anneal-
ing (MA) and the second uses Threshold Ac-
cepting (TA). These algorithms are stochastic 
optimization algorithms which have never been 
tested in the context of feature selection and 
parameter determination. We slightly modified 
the MA and TA algorithms to be adapted for our 
objective.
Performance assessment was conducted on five 
medical datasets taken from the UCI Machine 

Learning Repository and two DNA microarray 
datasets largely used for cancer diagnosis (co-
lon cancer and leukemia).
The first contribution of our approach is to 
combine the problems of parameter determina-
tion and feature selection in a single problem 
which interestingly obtains good results and es-
tablishes a relationship with SVM parameters 
and the selected features. Also, this combina-
tion provides a good generalization and a per-
fect quality of the SVM model.
The second contribution is to demonstrate the 
performances of two very effective optimiza-
tion methods (MA and TA) which have never 
been applied in the context of feature selection 
and parameter determination.
This paper is organized as follows: in the next 
section, an overview of SVM is introduced. In 
Section 3, we discuss the problem of parameter 
determination and feature selection. Section 4 
details the proposed approaches. In Section 5, 
we analyze the experimental results. Finally, 
concluding remarks are made in Section 6.

2. Overview of Support Vector 
Machine

Support vector machine is a popular classifica-
tion method. Developed by Vladimir N. Vapnik 
in 1995 [16], [17], SVM aims to solve the bi-
nary classification problem by finding the op-
timal hyperplane which maximizes the margin 
between the instances of classes [18].
Mathematically, finding the optimal hyperplane 
is equivalent to solving the following primal 
optimization problem:

( )

2

=1
, ,

. . , 1

0
{1,.

1min 2

.., }

 

N

w b i

i

i

i i

i

s c y w x

C

b

i N

wξ ξ

ξ

ξ

≥ −

∈

+

+

≥

∑

       (1)

where, X ⊆ d is the instances set and Y = 
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∀i ξi ≥ 0 are called slack variables and they rep-
resent the distance between the wrong points 
and the hyperplane.
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determination in a single model. This combin-
ing improves the quality of SVM model and the 
generalization ability. Therefore, combining 
feature selection with parameter determination 
provides the values of SVM parameter C and 
kernel parameter in function of the relevant 
subset of selected features.
In the proposed approaches, we reformulate the 
problems of parameter determination and fea-
ture selection as a single combinatorial problem 
which can be defined as follows:
Considering the dataset D = {f1, ..., ft} where fi 
represents the feature of the dataset ∀i = 1, ..., t. 
We define the set V = {V1, ..., Vt}, Vi = {0, 1} 
∀i = 1, ..., t, such as:

if Vi = 1
The feature fi is selected and 
participates in the construction 
of the model

else if Vi = 0
The feature fi is not selected 
and does not participate in the 
construction of the model

In this study, the objective function E (X) of the 
proposed approaches is the classification error 
rate computed by using SVM. The goal is to 
find the optimal value of C, kernel parameter σ 
and Vi (SVM parameters and the optimal sub-
set of features) that minimize the classification 
error rate. We are facing a combinatorial opti-
mization problem which can be solved by using 
stochastic search techniques. The basic idea is 
to find the space where real valued energy func-
tion is minimized (finding the optimum).

3.1. Microcanonical Annealing

The microcanonical annealing (MA) is a vari-
ant of simulated annealing developed by Creutz 

[26] and it possesses properties close to those of 
simulated annealing [27]. The main difference 
with simulated annealing is the convergence to-
wards the global optimum. The first is based on 
plateaus of temperature [28] and the second on 
decreasing plateaus of total energy.
The microcanonical annealing algorithm uses 
the algorithm of Creutz, which is based on the 
evaluation of a series of transitions to maximize 
the entropy for a total energy constant [29], 
[30]. This total energy is fixed beforehand [26]. 
The microcanonical annealing considers that 
the system is isolated (no heat exchange with 
its environment), thus it is based on decreasing 
levels of total energy related to the reduction of 
the kinetic energy at each step.
The total energy is defined as:

     Et = E (xk) + Ec (E (xk) 
            is the energy function in  step k)

The total energy must be very high at the be-
ginning of the algorithm and by reducing the 
total energy, the algorithm will converge to the 
global optimum. In this case, the kinetic energy 
Ec will play a similar role as the temperature in 
simulated annealing and it is constrained to be 
positive:

                ( )c
EPr E E exp KT

 = ∝  
 

              (3)

where K is the Boltzmann constant and T is the 
temperature in simulated annealing standard 
[26].
Equation (3) explains that the kinetic energy 
follows the Boltzmann distribution [31]. The 
MA algorithm is described as follows:

Initially, the total energy is very high, in each 
plateau, the total energy is reduced. When 
Δ E = 0, the algorithm accepts all transitions to 
the states of lower total energy. The movement 
toward higher total energy states is accepted 
only when Δ E = Ec (there must be a sufficient 
kinetic energy to compensate for the increase 
of potential energy, and thus to stay at constant 
energy).
Compared to simulated annealing, the advan-
tage of the microcanonical annealing is that it 
does not require a random number generator 
for the acceptance or refusal of a configuration. 
Nevertheless, the MA algorithm is much faster 
than SA algorithm [31]. In addition, in case of 
large problems, several studies have shown that 
the results are very similar to those of simulated 
annealing, with a benefit to the microcanonical 
annealing in terms of computation time [31].
However, Creutz [26] noted that, in case of 
the problems of small size, the probability for 
the system to be trapped in metastable states is 
higher [26], [32].
In this first approach called MA-SVM, we adapt 
the microcanonical annealing to the problem of 
parameter determination and feature selection. 
Figure 1 shows the procedure of MA-SVM ap-

proach, the total energy is reduced in each pla-
teau, and when the total energy is close to 0, the 
algorithm converges to the global optimum.

3.2. Threshold Accepting

Threshold accepting (TA) is a heuristic opti-
mization algorithm. Developed by Duek and 
Scrubs [33], the threshold accepting is a varia- 
tion of simulated annealing which simplifies 
the simulated annealing procedure by leaving 
out the probabilistic element in accepting worse 
solutions [34].
TA uses a deterministic threshold and a worse 
solution is accepted if the difference between 
the worse solution and the current solution is 
smaller than or equal to threshold [33]. Expli- 
citly, TA algorithm uses a similar approach as 
simulated annealing, but instead of accepting 
new points that raise the objective function with 
a certain probability, it accepts all new points 
below a fixed threshold [35], [36]. The TA al-
gorithm is described in Algorithm 2.
The threshold is systematically lowered like the 
temperature in simulated annealing standard 
[36].

Algorithm 1.  Microcanonical annealing.

1:  initialize at a random state xk; calculate the function E (xk)
2:  choose another state xk+1; calculate the function E (xk+1)
3:  if Δ E < 0 or Δ E < Ec then
4:     accept the transition and decrease the total energy
5:  else
6:     reject the transition
7:  end if
8:  repeat steps 2 to 7 until reaching equilibrium Figure 1. The procedure of the proposed MA-SVM approach.
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new points that raise the objective function with 
a certain probability, it accepts all new points 
below a fixed threshold [35], [36]. The TA al-
gorithm is described in Algorithm 2.
The threshold is systematically lowered like the 
temperature in simulated annealing standard 
[36].

Algorithm 1.  Microcanonical annealing.

1:  initialize at a random state xk; calculate the function E (xk)
2:  choose another state xk+1; calculate the function E (xk+1)
3:  if Δ E < 0 or Δ E < Ec then
4:     accept the transition and decrease the total energy
5:  else
6:     reject the transition
7:  end if
8:  repeat steps 2 to 7 until reaching equilibrium Figure 1. The procedure of the proposed MA-SVM approach.
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The key components of TA are the function that 
determines the lowering of the threshold during 
the course of the procedure, stopping criteria as 
well as the methods used to create initial and 
neighboring solutions. The main advantages 
of TA are its conceptual simplicity and its ex-

cellent performance on different combinatorial 
optimization problems [37].
In this second approach called TA-SVM, we 
adapt the threshold accepting algorithm to our 
problem. Figure 2 illustrates the operation of 
TA-SVM approach.

The second idea of this research is to integrate 
the training set selection in the problem by com-
bining the holdout method with the MA and TA 
algorithms as shown in Figures 1 and 2.
The instances that constitute the training set 
represent a very important factor in building 
the model and obtaining a high classification 
accuracy rate. Some instances are considered 
as noise and their removal increases the clas-
sification accuracy rate. Therefore, we propose 
to incorporate the holdout method in each itera- 
tion of MA and TA algorithms. In each itera-
tion, MA and TA algorithms split the dataset 
randomly into training and testing sets.

4. Experiment Results

4.1. Datasets

In this study, to evaluate performances of the 
proposed MA-SVM and TA-SVM approaches, 
two experimentations are done.
The first experimentation is conducted on five 
UCI Machine Learning Repository datasets 
(Breast Cancer, Cardiotocography, ILPD (In-
dian Liver Patient Dataset), Mammographic 
Mass and Vertebral Column) widely used in 
the literature. These datasets are taken from: 
http://archive.ics.uci.edu/ml/.
The format of UCI Machine Learning Repo- 
sitory datasets is arranged as shown in Table 1.
The second experimentation is done to support 
and validate our results. We have applied both 
approaches on two DNA microarray datasets: 
Colon Cancer and Leukemia. These datasets 
are widely used in the literature [38], [39], [40], 
[41], [42].

The colon cancer dataset contains expression 
levels of 2000 genes taken from over 62 diffe- 
rent samples (40 negative and 22 positive) [43].
The leukemia dataset contains expression le- 
vels of 7129 genes taken from over 72 sam-
ples. Labels indicate which of the two variants 
of leukemia is present in the sample (AML: 25 
samples and ALL: 47 samples) [44].
The colon cancer and leukemia datasets used 
for this experimentation are characterized by 
the large number of features (genes expression) 
and the analysis of all these genes is impossible. 
Nevertheless, the selection of a relevant feature 
subset has an important role.

4.2. Parameters setting

To conduct our experimentations and demon-
strate the effectiveness of our approaches, the 
parameters of the proposed approaches are con-
figured as follows:
For MA-SVM, the total energy Et is set to 1000. 
This value will decrease slowly by following a 
geometric law with a ration α = 0.99.
For TA-SVM, the value of NumbRounds is equal 
to 1000 × Domain_size.
MA-SVM and TA-SVM stop when the value 
of energy function reaches 0 (classification er-
ror rate = 0) or when the energy function stops 
evolving after a certain number of iterations 
(200 iterations).
SVM classifier is used with four kernel func-
tions: Linear, Polynomial and Gaussian.
The dataset is randomly divided, by using the 
holdout method, into three sets: 60% of in-
stances constitute the training set, 20% of in-
stances constitute the testing set and 20% of 
instances are used for the validation.

Datasets Number of classes Number of instances Number of features
Breast Cancer 2 699 9

Cardiotocography 2 1831 21
ILPD 2 583 9

Mammographic Mass 2 961 5
Vertebral Column 2 310 6

Table 1.  Datasets taken from the UCI Machine Learning Repository.

Figure 2. The procedure of proposed TA-SVM approach.

Algorithm 2.  Threshold accepting.

1:   initialize NumbRounds and NumbSteps
2:   randomly generate current solution xk
3:   calculate the function E (xk)
4:   for r = 1: NumbRounds
5:      compute threshold sequence τr
6:      for i = 1: NumbSteps do
7:         generate another solution xk+1
8:         calculate the function E (xk+1)
9:         Calculate Δ E = E (xk+1) – E (xk)
10:       if Δ E = < τr
11:           xk = xk+1
12:           accept the transition
13:       else
14:           reject the transition
15:       end if
16:    end for
17: end for
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4.3. Results and discussion

The results obtained for UCI Machine Lear- 
ning Repository datasets by using the proposed 
MA-SVM and TA-SVM approaches are sum-
marized in the Table 2.
Table 2 describes the classification accuracy 
rate obtained by the proposed approaches for 
each dataset. The classification accuracy is 
computed by using the SVM classifier with 
Linear, Polynomial and Gaussian kernel func-
tions. The first column in Table 2 represents the 
datasets. The second column is the classifica-
tion accuracy rate obtained by TA-SVM and the 
third column is the classification accuracy rate 
obtained by MA-SVM.
For breast cancer dataset, the high accuracy is 
achieved by using MA-SVM with Polynomial 
and Gaussian kernel (100% of accuracy). The 
same remark is observed for cardiotocography 
dataset, MA-SVM achieved 100%. For ILPD 
dataset, MA-SVM using Gaussian kernel has 
reached 75.47% of accuracy and we noted 
75.33% of accuracy obtained by TA-SVM with 
Gaussian kernel. Also, for Mammographic 
mass and Vertebral column datasets, MA-SVM 
using Gaussian kernel has achieved slightly 
higher accuracy, 91.98%, than TA-SVM with 
Gaussian kernel which has achieved 91.80%.
As seen in Table 2, both proposed approaches 
have produced a high classification accuracy 
rate with some advantage for MA-SVM. The 
Gaussian kernel and Polynomial kernel have 
produced quite similar results for breast can-
cer and cardiotocography datasets (100% us-
ing MA-SVM). For the rest of the datasets, the 
Gaussian kernel has achieved good accuracy 
compared to Polynomial kernel. Low classifi-
cation accuracy is noted for the Linear kernel.

The analysis of the results has demonstrated 
that high accuracy is observed for the Gaussian 
kernel. This is why we focused the rest of our 
experimentations on the Gaussian kernel.

The number of iterations and computational 
time of MA-SVM and TA-SVM using the 
Gaussian kernel is described in Table 3.

Table 3 shows the number of iterations and the 
computational time of MA-SVM and TA-SVM. 
The first column contains the datasets.

The second column contains the number of ite- 
rations and the last column contains the compu-
tational time in seconds.

From Table 3, we clearly observe that MA-SVM 
is much faster that TA-SVM. The number of 
iterations performed by MA-SVM is smaller 
than that performed by TA-SVM.
The analysis of the results described in Tables 2 
and 3, allows us to highlight, on the one hand, 
that the MA-SVM approach provides better re-
sults compared to those of the TA-SVM, and, on 
the other hand, that both approaches, MA-SVM 
and TA-SVM, gave us a better classification ac-
curacy rate and provided the most appropriate 
C and σ values for all the datasets used in the 
experimentation.
Table 4 describes the number of selected fea-
tures by the MA-SVM and TA-SVM using 
Gaussian kernel.

In the context of selected features, the results 
show that both proposed approaches, MA-SVM 
and TA-SVM, have selected the smaller rele-
vant subset of features which has given the high 
classification accuracy rate.
The second experimentation is conducted on 
DNA microarray datasets: colon cancer and leu-
kemia. In Table 5 we summarize the results ob-
tained by the proposed MA-SVM and TA-SVM 
approaches by using the Gaussian kernel.
Table 5 shows the results obtained by the pro-
posed MA-SVM and TA-SVM approaches using 
the Gaussian kernel. Table 5 contains the initial 
number of features, the number of selected fea-
tures, the classification accuracy rate, the com-
putational time and the number of iterations.
From Table 5 and for leukemia dataset, we no-
ticed 99.98% of accuracy obtained by MA-SVM 

and 66.67% of accuracy obtained by TA-SVM. 
Also, the MA-SVM achieved 95.65% of accu-
racy on colon cancer dataset and 65.22% accu-
racy achieved by TA-SVM.
In this experimentation, the results obtained by 
the MA-SVM are quite appropriate and very 
satisfying compared to those obtained by the 
TA-SVM in terms of classification accuracy 
rate and computation time. It is clear that the 
number of selected features is much smaller 
than the initial one.
TA-SVM is not very effective on large datasets 
(large number of features) such as the microar-
ray gene expression dataset. This is due to the 
fact that TA-SVM must compute the threshold 
set in each round, which is very intense in com-
putation time.
The results obtained with the two datasets cor-
roborate the conclusion that we have reached.
The proposed MA-SVM approach is com-
pared to several approaches defined in previ-
ous works. Table 6 presents the classification 
accuracy rate obtained by MA-SVM and other 
approaches.

Datasets TA-SVM (%) MA-SVM (%)
Linear Polynomial Gaussian Linear Polynomial Gaussian

Breast Cancer 98.33 99.00 99.26 99.95 100 100
Cardiotocography 99.01 99.22 99.86 99.12 100 100

ILPD 70.45 70.43 75.33 70.00 73.89 75.47
Mammographic Mass 88.22 89.90 90.00 86.60 90.60 90.72

Vertebral Column 85.67 85.30 91.80 89.28 90.42 91.98

Table 2.  Classification accuracy rates obtained by MA-SVM and TA-SVM for each dataset.

TA-SVM (%)

Datasets Number of 
iterations

Computation 
time (S)

Breast Cancer 6084 1409.6
Cardiotocography 10341 7289.1

ILPD 9341 4593.4
Mammographic Mass 5576 1420.6

Vertebral Column 5400 1336

MA-SVM (%)

Datasets Number of 
iterations

Computation 
time (S)

Breast Cancer 1489 500
Cardiotocography 1002 1043.99

ILPD 7313 6335.27
Mammographic Mass 5000 3140.68

Vertebral Column 4560 2391.23

Table 3.  Computation time and number of iterations 
performed by MA-SVM and TA-SVM.

Datasets and the 
initial number 

of features

Number of 
selected features

TA-SVM MA-SVM
Breast Cancer (9) 6 4

Cardiotocography (21) 14 13
ILPD (9) 5 3

Mammographic Mass (5) 2 4
Vertebral Column (6) 4 4

Table 4.  Number of features selected by MA-SVM 
and TA-SVM approaches.

Leukemia
Methods TA-SVM MA-SVM

Number of initial features 7129 7129
Number of selected 

features 7129 2693

Classification accuracy 
rate (%) 66,67 99,98

Computation time (S) 2214.7 3354.57
Number of iterations 481 756

Colon cancer
Datasets TA-SVM MA-SVM

Number of initial features 2000 2000
Number of selected 

features 2000 1015

Classification accuracy 
rate (%) 65.22 95.65

Computation time (S) 9793.4 6619.2
Number of iterations 1538 849

Table 5.  The results obtained by MA-SVM and 
TA-SVM on the DNA microarray datasets.
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Table 6 presents the classification accuracy rate 
obtained by the proposed MA-SVM approach, 
compared to SVM-RFE, SVM-RFE-mRMR, 
PSO-SVM, and Relief. The results of SVM-RFE 
and SVM-RFE-mRMR are taken from [45]. For 
PSO-SVM and Relief, we have used the same 
training, testing and validation tests. We note 
that PSO-SVM is a wrapper approach based on 
particle swarm optimization [46] and SVM. Re-
lief is a filter approach [47].

The higher classification accuracy rate is ob-
tained by PSO-SVM, compared to other ap-
proaches. As seen in Table 6, MA-SVM has 
provided better results compared to SVM-RFE, 
SVM-RFE-mRMR and Relief.

5. Conclusion

In this paper, we present two novel approaches 
in feature selection and parameter determi-
nation applied for medical diagnosis. The ap-
proaches are called MA-SVM and TA-SVM. 
The first one is based on the Microcanonical 
Annealing algorithm, while the second one is 
based on the Threshold Accepting algorithm. 
The objective function to minimize is the clas-
sification error rate. The aims of this study are 
to determine the optimal parameter of the SVM 
and its kernel function. In addition, we attempt 
to select the optimal subset of features by remo- 
ving the irrelevant and redundant features.
The experimentation is done under five UCI 
Machine Learning Repository datasets and two 
DNA microarray datasets widely used in the lite- 
rature.
The results obtained by both approaches 
demonstrate that MA-SVM improves the clas-
sification accuracy rates by removing trivial 

or insignificant features and effectively finds 
the better parameters values. The TA-SVM is 
adapted for the datasets that contain a small 
number of features.
We concluded that MA-SVM provides satisfac-
tory results and it is adapted to large problems.
Finally, we can say that MA-SVM is thus useful 
for parameter determination and feature selec-
tion in the SVM, regardless of the size of the 
problem.
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Table 6 presents the classification accuracy rate 
obtained by the proposed MA-SVM approach, 
compared to SVM-RFE, SVM-RFE-mRMR, 
PSO-SVM, and Relief. The results of SVM-RFE 
and SVM-RFE-mRMR are taken from [45]. For 
PSO-SVM and Relief, we have used the same 
training, testing and validation tests. We note 
that PSO-SVM is a wrapper approach based on 
particle swarm optimization [46] and SVM. Re-
lief is a filter approach [47].

The higher classification accuracy rate is ob-
tained by PSO-SVM, compared to other ap-
proaches. As seen in Table 6, MA-SVM has 
provided better results compared to SVM-RFE, 
SVM-RFE-mRMR and Relief.

5. Conclusion

In this paper, we present two novel approaches 
in feature selection and parameter determi-
nation applied for medical diagnosis. The ap-
proaches are called MA-SVM and TA-SVM. 
The first one is based on the Microcanonical 
Annealing algorithm, while the second one is 
based on the Threshold Accepting algorithm. 
The objective function to minimize is the clas-
sification error rate. The aims of this study are 
to determine the optimal parameter of the SVM 
and its kernel function. In addition, we attempt 
to select the optimal subset of features by remo- 
ving the irrelevant and redundant features.
The experimentation is done under five UCI 
Machine Learning Repository datasets and two 
DNA microarray datasets widely used in the lite- 
rature.
The results obtained by both approaches 
demonstrate that MA-SVM improves the clas-
sification accuracy rates by removing trivial 

or insignificant features and effectively finds 
the better parameters values. The TA-SVM is 
adapted for the datasets that contain a small 
number of features.
We concluded that MA-SVM provides satisfac-
tory results and it is adapted to large problems.
Finally, we can say that MA-SVM is thus useful 
for parameter determination and feature selec-
tion in the SVM, regardless of the size of the 
problem.
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