
Extended Fault Taxonomy of
SOA-Based Systems

Guru Prasad Bhandari1 and Ratneshwer Gupta2

1DST-CIMS, Institute of Science, Banaras Hindu University, Varanasi, India
2School of Computer and Systems Sciences, JNU, New Delhi, India

237CIT. Journal of Computing and Information Technology, Vol. 25, No. 4, December 2017, 237–257
doi: 10.20532/cit.2017.1003569

Service Oriented Architecture (SOA) is considered as
a standard for enterprise software development. The
main characteristics of SOA are dynamic discovery
and composition of software services in a heteroge-
neous environment. These properties pose newer chal-
lenges in fault management of SOA-based systems
(SBS). A proper understanding of different faults in an
SBS is very necessary for effective fault handling. A
comprehensive three-fold fault taxonomy is presented
here that covers distributed, SOA specific and non-
functional faults in a holistic manner. A comprehensive
fault taxonomy is a key starting point for providing
techniques and methods for accessing the quality of a
given system. In this paper, an attempt has been made
to outline several SBSs faults into a well-structured
taxonomy that may assist developers in planing suit-
able fault repairing strategies. Some commonly em-
phasized fault recovery strategies are also discussed.
Some challenges that may occur during fault handling
of SBSs are also mentioned.

ACM CCS (2012) Classification: Applied computing
→ Enterprise computing → Service-oriented archi-
tectures
Information systems → World Wide Web → Web ser-
vices
Software and its engineering → Software organiza-
tion and properties → Extra-functional properties →
Software fault tolerance

Keywords: fault, SOA-based System (SBS), Service
Oriented Architecture, SOA, distributed system, QoS,
non-functional faults

1. Introduction

SOA (Service-Oriented Architecture) is a pop-
ular distributed design paradigm that provides

architectural style to enable applications to be
built using service as a key element. The sys-
tem developed using the concept of SOA is
known as SOA-based System (SBS). The main
property of SOA is to dynamically discover ser-
vices from different service providers and their
composition at runtime in order to construct the
software system. This transparency makes the
SOA effective but also brings the possibility of
various faults to occur at different stages.
In technological terms, a fault is an abnormal
condition of the system (or in a component,
equipment, or sub-system) which may lead to a
failure. In other words, a fault is a problem that
occurs when a service invocation made by an
SBS results in some abnormal behavior at run-
time [1]. IEEE [2] defines more precisely a soft-
ware fault as an incorrect step, process or data
definition in a computer program. The error is a
human action that generates an incorrect result.
Failure is the inability of a system or compo-
nent to accomplish its required functions within
specified performance requirements. The faults
can easily escape the attention and increase in
their severity. If a fault is not handled properly,
then it increases the system failure rate. Detect-
ing a faulty service is a very difficult task. The
fault can only be detected in the execution step
when the service is actually executed. The fault
analysis process takes fault data as input and
determines a suitable remedial strategy for the
fault instance [3].
SBS must be capable to manage faults, i.e. a
system can detect a fault and its root cause and

238 239G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

recover it from fault situation. A fault leads to a
failure when the system does not perform up to
the specifications and shows the behavior that is
a visible deviation from the expected behavior
of the system. So, immediate recovery action is
needed to handle the fault and to keep the sys-
tem free from failure to increase its dependabil-
ity. Correct execution of its functions without
any interruptions ensures the dependability of
a system. To increase the dependability of the
SBS, a fault management should be performed
that covers the following basic operations: 1)
detection of faults in SBS by identifying the
location of the fault, 2) diagnosis of the fault;
the root cause of the fault is identified and,
finally 3) recovery from the fault situation, ap-
plying appropriate recovery strategy and back
to its smooth functioning.
A taxonomy is a practicable idea for under-
standing similarities and differences of the
methods and techniques based on their char-
acteristics. The main contribution of this paper
is a fault taxonomy of SBS. The attributes of
a fault can be classified including its severity,
failure type, time of failure occurrence and the
type of fault. Different aspects of faults in SBS
have been studied and outlined in three cate-
gories as SOA life cycle-specific faults, distrib-
uted system faults, and non-functional faults.
Some commonly emphasized fault recovery
strategies are also discussed. Some challenges
that may occur during fault handling of SBSs
are also mentioned.
The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3
briefly introduces Service Oriented Architec-
ture (SOA). Some faults in SBS, observed in
the literature, are summarized in Section 4. The
proposed extended fault taxonomy of SBS and
a brief explanation of every identified fault are
mentioned in Section 5 and the following sub-
sections. In Section 6, some commonly adopted
fault recovery strategies for SBS have been
discussed. Section 7 points out some SBS fault
handling challenges. Finally, Section 8 summa-
rizes the work with the concluding remarks.

2. Related Work

In the literature, most of the taxonomies have
underlined the general software faults. Some

efforts are centered on distributed system and
Component-based System (CBS). Very few re-
search efforts are available related to fault tax-
onomy of SOA based system (SBS). A study of
Stefan et al. [4] is very close to our work. They
have categorized SOA fault taxonomy into five
types such as publishing fault, discovery fault,
composition fault, binding fault and execution
fault corresponding to SOA life cycle stages.
Their presentation of fault taxonomy of SOA is
unaware of the interactions among the faults.
They have presented a well-defined collection
of SOA related faults, nevertheless they have
weakly mentioned how a fault propagates to
another fault. Cheun et al. [5] have defined
fault taxonomy by extracting all target elements
and inter-relationships among the elements for
service fault management and presented proto-
type implementation using cause taxonomy and
checked its validity experimentally.
Avižienis et al. [6] presented a comprehensive
paper on taxonomy of the dependable and se-
cure computing. Mariani [7] has proposed a
fault taxonomy related to the component-based
systems along with the brief explanation of
the causes and consequences of faults. In his
approach, faults are categorized as syntactic
faults, semantics faults, non-functional faults,
connectors faults, topology faults, and other
faults. There are some differences between
CBS and web services. Web services execute
remotely, whereas components are mostly
downloaded to execute locally on the client and
they have to deal with considerable heteroge-
neity in platforms middleware. Hummer et al.
[8] have also used well-established fault dimen-
sions proposed by Avizienis et al. [6], to elabo-
rate a fault taxonomy for Event-based Systems
(EBS) by discussing fault instances across the
five sub-areas of event processing. Chan et al.
[9] have presented a fault taxonomy based upon
[10] for web service composition that covers
physical faults, development faults, and inter-
action faults.
Fault taxonomy, classifying only security faults
of software with its application is presented by
Aslam et al. [11]. They have categorized secu-
rity faults as synchronization errors, condition
validation errors, configuration errors and en-
vironment faults. Their classification scheme
is helpful in the understanding of computer se-
curity faults that cause security breaches. Vija-

3.1. SOA Life Cycle

Following are the different stages of SOA life
cycle.
Publishing. Service providers construct ser-
vices on the network and provide their corre-
sponding service descriptions. All web services
are described by WSDL (Web Service Descrip-
tion Language) documents.
Discovery. If a service consumer needs an
appropriate service to perform a certain task,
then he has to discover a corresponding service
among all the service providers. A comparison
between a required service and a service in the
repository can be made, based on the search cri-
teria, to discover the suitable one.
Composition. If there is no such an identi-
cal service discovered in the service deposi-
tory then there is still another possible option
to compose two or more services to fulfill the
service consumer's requirement. Two or more
services can dynamically be composed at run-
time, either by the service choreography or ser-
vice orchestration.
Binding. At this stage, desired service execu-
tion permission is granted to the service con-
sumer after applying authentication, authoriza-
tion, and accounting. If a service is bound to the
consumer system, then it can be used to fulfill
the requirement. SLA (Service Level Agree-
ment) describes the details of the agreement
between service consumer and service broker.
Execution. If the service is successfully bound
to a consumer, service(s) can be executed. All
the input parameters are transferred to the ser-
vice provider system and output parameters are
returned to the consumer.

yaraghavan et al. [12] have presented bug tax-
onomies with some bugs and challenges in the
real software environment examples. Kidwell
et al. [13] have mentioned that fault classifi-
cation provides vital information for software
analytics and that machine learning techniques
like clustering can be applied to learn a pro-
ject-specific fault taxonomy.
From the above literature review, it can be ob-
served that several efforts are available regard-
ing the fault taxonomy, but there are limited ef-
forts available regarding fault taxonomy of SOA
based systems. We extend the above contribu-
tions further by presenting a fault taxonomy,
especially meant for SBS, that covers distrib-
uted, SOA specific and non-functional aspects
together. The proposed taxonomy tries to collo-
cate possible faults of SBSs in well-structured
classification on the basis of their severity,
types and time of occurrence.

3. Service Oriented Architecture

According to IBM definition [14], "SOA"
(Service Oriented Architecture) is a set of ar-
chitectural principles, patterns, and criteria,
that address characteristics such as modularity,
encapsulation, loose coupling, separation of
concerns, reuse and composability. Microsoft
defines it as "a loosely-coupled architecture de-
signed to meet the business needs of the orga-
nization" [15]. Mainly there are three parties in
the SOA-based System (SBS). These are service
provider, service broker (or service repository
or service registry) and service consumer. The
service provider constructs a service or a set of
services and registers them into service repos-
itory. The service provider creates a web ser-
vice and deploys it into the service repository.
Service broker makes the information of the
available web service to the service consumer.
Service requester or service consumer demands
for a service or a set of services according to the
need. Service providers and service consumers
are loosely coupled. They communicate with
each other through a service broker. A service
provider can also be a service consumer. Figure
1 illustrates a basic SOA interaction structure.
In further subsection, SOA life cycle steps are
briefly described.

Figure 1. SOA interaction structure.

238 239G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

recover it from fault situation. A fault leads to a
failure when the system does not perform up to
the specifications and shows the behavior that is
a visible deviation from the expected behavior
of the system. So, immediate recovery action is
needed to handle the fault and to keep the sys-
tem free from failure to increase its dependabil-
ity. Correct execution of its functions without
any interruptions ensures the dependability of
a system. To increase the dependability of the
SBS, a fault management should be performed
that covers the following basic operations: 1)
detection of faults in SBS by identifying the
location of the fault, 2) diagnosis of the fault;
the root cause of the fault is identified and,
finally 3) recovery from the fault situation, ap-
plying appropriate recovery strategy and back
to its smooth functioning.
A taxonomy is a practicable idea for under-
standing similarities and differences of the
methods and techniques based on their char-
acteristics. The main contribution of this paper
is a fault taxonomy of SBS. The attributes of
a fault can be classified including its severity,
failure type, time of failure occurrence and the
type of fault. Different aspects of faults in SBS
have been studied and outlined in three cate-
gories as SOA life cycle-specific faults, distrib-
uted system faults, and non-functional faults.
Some commonly emphasized fault recovery
strategies are also discussed. Some challenges
that may occur during fault handling of SBSs
are also mentioned.
The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3
briefly introduces Service Oriented Architec-
ture (SOA). Some faults in SBS, observed in
the literature, are summarized in Section 4. The
proposed extended fault taxonomy of SBS and
a brief explanation of every identified fault are
mentioned in Section 5 and the following sub-
sections. In Section 6, some commonly adopted
fault recovery strategies for SBS have been
discussed. Section 7 points out some SBS fault
handling challenges. Finally, Section 8 summa-
rizes the work with the concluding remarks.

2. Related Work

In the literature, most of the taxonomies have
underlined the general software faults. Some

efforts are centered on distributed system and
Component-based System (CBS). Very few re-
search efforts are available related to fault tax-
onomy of SOA based system (SBS). A study of
Stefan et al. [4] is very close to our work. They
have categorized SOA fault taxonomy into five
types such as publishing fault, discovery fault,
composition fault, binding fault and execution
fault corresponding to SOA life cycle stages.
Their presentation of fault taxonomy of SOA is
unaware of the interactions among the faults.
They have presented a well-defined collection
of SOA related faults, nevertheless they have
weakly mentioned how a fault propagates to
another fault. Cheun et al. [5] have defined
fault taxonomy by extracting all target elements
and inter-relationships among the elements for
service fault management and presented proto-
type implementation using cause taxonomy and
checked its validity experimentally.
Avižienis et al. [6] presented a comprehensive
paper on taxonomy of the dependable and se-
cure computing. Mariani [7] has proposed a
fault taxonomy related to the component-based
systems along with the brief explanation of
the causes and consequences of faults. In his
approach, faults are categorized as syntactic
faults, semantics faults, non-functional faults,
connectors faults, topology faults, and other
faults. There are some differences between
CBS and web services. Web services execute
remotely, whereas components are mostly
downloaded to execute locally on the client and
they have to deal with considerable heteroge-
neity in platforms middleware. Hummer et al.
[8] have also used well-established fault dimen-
sions proposed by Avizienis et al. [6], to elabo-
rate a fault taxonomy for Event-based Systems
(EBS) by discussing fault instances across the
five sub-areas of event processing. Chan et al.
[9] have presented a fault taxonomy based upon
[10] for web service composition that covers
physical faults, development faults, and inter-
action faults.
Fault taxonomy, classifying only security faults
of software with its application is presented by
Aslam et al. [11]. They have categorized secu-
rity faults as synchronization errors, condition
validation errors, configuration errors and en-
vironment faults. Their classification scheme
is helpful in the understanding of computer se-
curity faults that cause security breaches. Vija-

3.1. SOA Life Cycle

Following are the different stages of SOA life
cycle.
Publishing. Service providers construct ser-
vices on the network and provide their corre-
sponding service descriptions. All web services
are described by WSDL (Web Service Descrip-
tion Language) documents.
Discovery. If a service consumer needs an
appropriate service to perform a certain task,
then he has to discover a corresponding service
among all the service providers. A comparison
between a required service and a service in the
repository can be made, based on the search cri-
teria, to discover the suitable one.
Composition. If there is no such an identi-
cal service discovered in the service deposi-
tory then there is still another possible option
to compose two or more services to fulfill the
service consumer's requirement. Two or more
services can dynamically be composed at run-
time, either by the service choreography or ser-
vice orchestration.
Binding. At this stage, desired service execu-
tion permission is granted to the service con-
sumer after applying authentication, authoriza-
tion, and accounting. If a service is bound to the
consumer system, then it can be used to fulfill
the requirement. SLA (Service Level Agree-
ment) describes the details of the agreement
between service consumer and service broker.
Execution. If the service is successfully bound
to a consumer, service(s) can be executed. All
the input parameters are transferred to the ser-
vice provider system and output parameters are
returned to the consumer.

yaraghavan et al. [12] have presented bug tax-
onomies with some bugs and challenges in the
real software environment examples. Kidwell
et al. [13] have mentioned that fault classifi-
cation provides vital information for software
analytics and that machine learning techniques
like clustering can be applied to learn a pro-
ject-specific fault taxonomy.
From the above literature review, it can be ob-
served that several efforts are available regard-
ing the fault taxonomy, but there are limited ef-
forts available regarding fault taxonomy of SOA
based systems. We extend the above contribu-
tions further by presenting a fault taxonomy,
especially meant for SBS, that covers distrib-
uted, SOA specific and non-functional aspects
together. The proposed taxonomy tries to collo-
cate possible faults of SBSs in well-structured
classification on the basis of their severity,
types and time of occurrence.

3. Service Oriented Architecture

According to IBM definition [14], "SOA"
(Service Oriented Architecture) is a set of ar-
chitectural principles, patterns, and criteria,
that address characteristics such as modularity,
encapsulation, loose coupling, separation of
concerns, reuse and composability. Microsoft
defines it as "a loosely-coupled architecture de-
signed to meet the business needs of the orga-
nization" [15]. Mainly there are three parties in
the SOA-based System (SBS). These are service
provider, service broker (or service repository
or service registry) and service consumer. The
service provider constructs a service or a set of
services and registers them into service repos-
itory. The service provider creates a web ser-
vice and deploys it into the service repository.
Service broker makes the information of the
available web service to the service consumer.
Service requester or service consumer demands
for a service or a set of services according to the
need. Service providers and service consumers
are loosely coupled. They communicate with
each other through a service broker. A service
provider can also be a service consumer. Figure
1 illustrates a basic SOA interaction structure.
In further subsection, SOA life cycle steps are
briefly described.

Figure 1. SOA interaction structure.

240 241G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

4. Some Observed Faults in SOA
Based Systems

In this section, some of the observable SBS
faults, available in the literature are presented.
Basically, a fault is a problem that results in
some abnormality condition at runtime [1]. Ser-
vice faults can fall into one of the four catego-
ries: healthy, impacted, hidden and faulty [16].
From a temporal perspective, Huang et al. [16]
have mentioned four parameters of a service
si; service execution time E(si), accumulated
execution time A(si), execution time threshold
T(si), and intermediate deadline D(si). Among
the four parameters, E(si) and A(si) are moni-
tored at runtime. Based on these four values, a
service falls into one of the four categories:

 ● Healthy: Formally, if and only if E(si) ≤
T(si) and A(si) ≤ D(si), which means it is in
a good situation. Healthy service does not
show any abnormal behavior at all, but if
it depends on other faulty service or gen-
erates fault itself, then it can be faulty. It
depends upon the nature of the fault and on
what kind of behavior it possesses.

 ● Impacted: If and only if E(si) ≤ T(si) and
A(si) > D(si), which means si is not the root
cause to originate fault, but its QoS is im-
pacted by other service say sj. If the work-
flow goes through the impacted region, the
fault may be propagated to the system.

 ● Hidden: Hidden fault can be defined for-
mally as, if and only if E(si) > T(si) and
A(si) ≤ D(si), which means it should be re-
configured to avoid any problem caused
by inter-dependency. The hidden fault is

problematic to identify and takes any re-
medial action for redemption.

 ● Faulty: Faulty service shows abnormal
behavior at runtime. Formally, it can be
defined as, if and only if E(si) > T(si) and
A(si) > D(si), refers it is a root cause of the
application-level violation.

In this review, we highlight the faulty cases in
SBSs. There are so many reasons for the oc-
currence of faults in SOA. Service mismatch is
one of the major causes of the fault. A service
mismatch occurs during development time, if
not corrected, creates fault at runtime. Service
mismatch is the problem that may occur when
a service does not fully match the feature ex-
pected. If a fault is active, then it generates an
error. Fault can be either initiated by external
interaction or by internal dormant fault [6]. If
error propagates in an SBS, then it causes fail-
ure, of the system resulting in incorrect service.
The creation of fault and its propagation is
shown in Figure 2.
A byzantine fault is a SBS fault highly em-
phasized by the researchers, it presents differ-
ent symptoms to different observers. A system
can lose the execution due to byzantine failure
which is created by root cause of a byzantine
fault. Zhao et al. [17] have proposed a frame-
work for byzantine failure tolerance messaging
framework (BTF-WS) which is based on Cas-
tro and Liskov's BFT algorithm to maximize the
interoperability. This framework has a draw-
back as it needs high cost in terms of processing
power because every client request effectively
processes twice to maintain the replicas for the
security purpose.

Wang et al. [3] have categorized fault types on
the basis of four contexts such as: functional
context, QoS context, domain context and plat-
form context. Belli et al. [18] have shown fault
taxonomy on the basis of sequencing pattern of
the graph-based approach; positive sequencing
faults, negative sequencing faults. Balbastro
et al. [19] have focused on the error during ser-
vice delivery as a latent error and dormant fault.
Zhai et al. [20] have classified SOA faults on
the basis of stages of SOA life cycle.
Friedrich et al. [21] have discussed permanent
fault and transient fault. The permanent fault
occurs due to the faulty operation and may re-
sult in faulty behavior. There may be a transient
fault or a temporary fault, although the subse-
quent operations of this operation are correct.
Jinfu et al. [22] have identified three types of

faults: 1) interaction faults of several param-
eters of the same service, 2) interaction faults
of parameters for different services and 3) vul-
nerability faults. Through effective testing, one
can find the interaction fault [23], [22], [24] be-
tween parameters of the same service or inter-
service fault between two services.
Ye et al. [23] have categorized faults into two
major types: type 1 relates to the internal fault
to a service and type 2 corresponds to inconsis-
tency faults that cut across different services in
a service composition. Different faulty versions
of service compositions can be obtained by
seeding one fault to every original service com-
positions using mutation testing techniques.
Each faulty version has one mutation.
In Table 1, we summarize different types of
fault in SBS observed in the literature. The

Figure 2. Propagation model of fault, error and failure.

Table 1. Fault types, fault tolerant systems and assumptions.

Fault Fault Tolerant
approach Fault assumption/Cause Remarks

Prescribed
policy violation
fault [25], [26]

Logging based
approach

Opening socket connec-
tions, reading and writing
files, and accessing criti-
cal memory regions.

– History based approach to analyzing whether
prescribed policies are violated or not.

– Long-lived transactions can hold locks on
external objects for long periods of time.

Transaction iso-
lation fault [19]

Synchronized
transactional
fault tolerant

approach

Transaction evolving
from a flat transaction,
transactions with save-
points, nested transactions

– A mechanism for handling exceptions in a
synchronized way

– FT (Fault Tree) technique for providing cor-
rect service in case of long-lived transaction

Service
unavailability
fault [27], [24]

Modelling
approach

– Temporal unavailability
of service = Estimated
execution time < end
available time

– Temporal service
unavailability

– Analysis impact region and applying repair
strategies: replacement, re-composition, and
renegotiation

– Calculates temporal negative impact, in-
consistent and satisfied OR consistent and
unsatisfied OR inconsistent and unsatisfied.

Byzantine fault
(arbitrary fault)

[17]

Byzantine
fault-tolerance

framework (BT-
F-WS)

Byzantine fault: Different
symptoms to different
observers.

– To achieve maximum interoperability
– Implementation in Standard SOAP messag-

ing framework
– On a testbed consisting of 20 Dell SC440

Servers connected by a 100 Mbps Ethernet
on SUSE Linux

Network traffic
fault [28]

Prototype-DRTS
(Distributed
Real-time

Systems) tool

Availability of network
and nodes congestion,
transmission errors and
delays

– Result: identify constraint violations, in-
crease the probability of exhibiting network
traffic related faults.

– Uses UML 2.0 model based on analysis of
control flow in sequence diagrams

Timeout
exception [29] Formal approach

WS-CDL and WS-BPEL
supportive exception
handling
– Interaction failures
– Timeout errors
– Validation errors

– In case of deadline overrun, the event handler
will take over and halt the process.

– Using a document ordering and delivery
process

240 241G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

4. Some Observed Faults in SOA
Based Systems

In this section, some of the observable SBS
faults, available in the literature are presented.
Basically, a fault is a problem that results in
some abnormality condition at runtime [1]. Ser-
vice faults can fall into one of the four catego-
ries: healthy, impacted, hidden and faulty [16].
From a temporal perspective, Huang et al. [16]
have mentioned four parameters of a service
si; service execution time E(si), accumulated
execution time A(si), execution time threshold
T(si), and intermediate deadline D(si). Among
the four parameters, E(si) and A(si) are moni-
tored at runtime. Based on these four values, a
service falls into one of the four categories:

 ● Healthy: Formally, if and only if E(si) ≤
T(si) and A(si) ≤ D(si), which means it is in
a good situation. Healthy service does not
show any abnormal behavior at all, but if
it depends on other faulty service or gen-
erates fault itself, then it can be faulty. It
depends upon the nature of the fault and on
what kind of behavior it possesses.

 ● Impacted: If and only if E(si) ≤ T(si) and
A(si) > D(si), which means si is not the root
cause to originate fault, but its QoS is im-
pacted by other service say sj. If the work-
flow goes through the impacted region, the
fault may be propagated to the system.

 ● Hidden: Hidden fault can be defined for-
mally as, if and only if E(si) > T(si) and
A(si) ≤ D(si), which means it should be re-
configured to avoid any problem caused
by inter-dependency. The hidden fault is

problematic to identify and takes any re-
medial action for redemption.

 ● Faulty: Faulty service shows abnormal
behavior at runtime. Formally, it can be
defined as, if and only if E(si) > T(si) and
A(si) > D(si), refers it is a root cause of the
application-level violation.

In this review, we highlight the faulty cases in
SBSs. There are so many reasons for the oc-
currence of faults in SOA. Service mismatch is
one of the major causes of the fault. A service
mismatch occurs during development time, if
not corrected, creates fault at runtime. Service
mismatch is the problem that may occur when
a service does not fully match the feature ex-
pected. If a fault is active, then it generates an
error. Fault can be either initiated by external
interaction or by internal dormant fault [6]. If
error propagates in an SBS, then it causes fail-
ure, of the system resulting in incorrect service.
The creation of fault and its propagation is
shown in Figure 2.
A byzantine fault is a SBS fault highly em-
phasized by the researchers, it presents differ-
ent symptoms to different observers. A system
can lose the execution due to byzantine failure
which is created by root cause of a byzantine
fault. Zhao et al. [17] have proposed a frame-
work for byzantine failure tolerance messaging
framework (BTF-WS) which is based on Cas-
tro and Liskov's BFT algorithm to maximize the
interoperability. This framework has a draw-
back as it needs high cost in terms of processing
power because every client request effectively
processes twice to maintain the replicas for the
security purpose.

Wang et al. [3] have categorized fault types on
the basis of four contexts such as: functional
context, QoS context, domain context and plat-
form context. Belli et al. [18] have shown fault
taxonomy on the basis of sequencing pattern of
the graph-based approach; positive sequencing
faults, negative sequencing faults. Balbastro
et al. [19] have focused on the error during ser-
vice delivery as a latent error and dormant fault.
Zhai et al. [20] have classified SOA faults on
the basis of stages of SOA life cycle.
Friedrich et al. [21] have discussed permanent
fault and transient fault. The permanent fault
occurs due to the faulty operation and may re-
sult in faulty behavior. There may be a transient
fault or a temporary fault, although the subse-
quent operations of this operation are correct.
Jinfu et al. [22] have identified three types of

faults: 1) interaction faults of several param-
eters of the same service, 2) interaction faults
of parameters for different services and 3) vul-
nerability faults. Through effective testing, one
can find the interaction fault [23], [22], [24] be-
tween parameters of the same service or inter-
service fault between two services.
Ye et al. [23] have categorized faults into two
major types: type 1 relates to the internal fault
to a service and type 2 corresponds to inconsis-
tency faults that cut across different services in
a service composition. Different faulty versions
of service compositions can be obtained by
seeding one fault to every original service com-
positions using mutation testing techniques.
Each faulty version has one mutation.
In Table 1, we summarize different types of
fault in SBS observed in the literature. The

Figure 2. Propagation model of fault, error and failure.

Table 1. Fault types, fault tolerant systems and assumptions.

Fault Fault Tolerant
approach Fault assumption/Cause Remarks

Prescribed
policy violation
fault [25], [26]

Logging based
approach

Opening socket connec-
tions, reading and writing
files, and accessing criti-
cal memory regions.

– History based approach to analyzing whether
prescribed policies are violated or not.

– Long-lived transactions can hold locks on
external objects for long periods of time.

Transaction iso-
lation fault [19]

Synchronized
transactional
fault tolerant

approach

Transaction evolving
from a flat transaction,
transactions with save-
points, nested transactions

– A mechanism for handling exceptions in a
synchronized way

– FT (Fault Tree) technique for providing cor-
rect service in case of long-lived transaction

Service
unavailability
fault [27], [24]

Modelling
approach

– Temporal unavailability
of service = Estimated
execution time < end
available time

– Temporal service
unavailability

– Analysis impact region and applying repair
strategies: replacement, re-composition, and
renegotiation

– Calculates temporal negative impact, in-
consistent and satisfied OR consistent and
unsatisfied OR inconsistent and unsatisfied.

Byzantine fault
(arbitrary fault)

[17]

Byzantine
fault-tolerance

framework (BT-
F-WS)

Byzantine fault: Different
symptoms to different
observers.

– To achieve maximum interoperability
– Implementation in Standard SOAP messag-

ing framework
– On a testbed consisting of 20 Dell SC440

Servers connected by a 100 Mbps Ethernet
on SUSE Linux

Network traffic
fault [28]

Prototype-DRTS
(Distributed
Real-time

Systems) tool

Availability of network
and nodes congestion,
transmission errors and
delays

– Result: identify constraint violations, in-
crease the probability of exhibiting network
traffic related faults.

– Uses UML 2.0 model based on analysis of
control flow in sequence diagrams

Timeout
exception [29] Formal approach

WS-CDL and WS-BPEL
supportive exception
handling
– Interaction failures
– Timeout errors
– Validation errors

– In case of deadline overrun, the event handler
will take over and halt the process.

– Using a document ordering and delivery
process

242 243G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

data in the table are organized in the following
manner. Firstly, we mention the types of fault,

their corresponding fault tolerance approach,
the possible reason for that particular fault and

finally some special remarks. We try to cover
various faults that may occur in an SBS.

5. The Proposed Extended Fault
Taxonomy of SOA-based System

The proposed fault taxonomy is based on sev-
eral studies [3], [4], [39], [30], [18] and [9]. We
have categorized SBSs fault into three classes
in our proposed fault taxonomy of SBS: SOA
cycle-specific fault, distributed system related
faults and non-functional faults. The proposed
classification scheme can assist in the proper
understanding of faults that results in security
breaches by categorizing faults and grouping
faults that share mutual characteristics. Faults
may overlap each other as one fault may be-
come the cause of another fault.

SOA life cycle has 5 major steps (as mentioned
in Section 3). Each step corresponds to unique
faults; publishing fault, discovery fault, compo-
sition fault, binding fault, and execution fault.
The categorization of SOA specific faults is
motivated by the fault taxonomy of Brüning
[4]. However, their taxonomy fails to represent
the cascading faults in the SBS. SBS belongs to
the distributed system, thus we have made one
class for distributed system faults that covers
the hardware faults, software faults, communi-
cation errors, and user wrongs. All other faults
dealing with non-functional properties are cat-
egorized into the third category called ‘non-
functional faults'. Figure 3 depicts the proposed
fault taxonomy framework and Figure 4 dis-
plays the proposed fault taxonomy of SBS. In
the following subsections, the proposed fault
taxonomy has been explored.

Table 1. (cont.).

Transient fault
[30]

Framework for
fault-tolerant
composition

Assume there is a
network problem – The transient fault causes unavailable service

SLA Claim fault
[31]

Theoretical
model

Customers making false
or repetitive claims

– Customer's malicious or aggressive Internet
activities do not guarantee SLA claims and
violate the AUP (Acceptable Use Policy)

– False or repetitive claims are also a violation
of SLA.

Latent errors and
dormant faults

[19]
CAA-DRIP
framework Error at service delivery – Simulation technique

Adaption faults
[32]

Context-Aware
Adaptive Appli-
cations (CAAAs)

– Faults related to archi-
tectural layering and
context-based

– Unable to change ac-
cording to surrounding

– Architecture choices must inform and be
informed by validation and verification
techniques

– Focus on different faults that are realized as
failures in higher layers.

Vulnerability
faults (interac-
tion faults) [22]

A fuzzy mutation
approach algo-

rithm

Interaction faults of pa-
rameters within services
and inter-services; testing
approach

– Extract URL information of the Web services
to obtain the interface information.

– Testing involves injecting only one mutant at
a time.

– Implemented in c#, the efficiency of the
proposed system is 54%.

SLA violation
[33], [34]

SLA violation
handling

approach using
incremental time
impact analysis

– Time inconsistency and
unsatisfactory condi-
tion.

– Change of service due
to the service replace-
ment.

– Find impact region, existing impact region
and expand the impact region and increase
the range if it does not produce robust and
adaptive SBS.

– Recover and handle the violation in rela-
tion to the strategy of minimizing the no. of
service change.

Crash fault [35] Byzantine fault
tolerance model

– Crash faults and mali-
cious fault

– Crash fault due to
hardware failure or
malicious fault due to
software malfunction

– The server is replicated to 4 replicas to toler-
ate from fault replica.

– Optimistic replication technique is used.
– Reduce 20% of the peak system throughput

to keep 4 replicas

Cascading
failure [36]

Cascading
Failure Tolerance

Failure in one node
(service) depending on
another service

– Increasing the number of alternate services
can significantly improve the network toler-
ance if each service has only few alternate
services available.

– Scale-free topology has been used.

Temporal
violation [37]

Temporal vio-
lation handling
point-selection

strategy

Failures of system on-
time completion due to
uncertain system perfor-
mance, failure of timely
completion of workflow
activities

– Throughput consistency state verification
– Violation handling point selection
– The mean time response time of workflow

instances is 79.64 s, and mean response time
delay of postponed workflow instances is less
than 7.9 s

Composite
service

unavailability
[38]

Protocol-based
automatic failure

recovery

Runtime unavailability of
component services that
results in composition
failure.

– Migrating the failed execution into a best al-
ternative execution of the composite service.

– Computing the number of invisibly compen-
sated transitions is NP-complete.

– The finite state machine to model the ap-
proach.

5.1. Distributed System Faults

SOA is a distributed system, so faults occur in
a distributed system inherently occur in an SBS
as well. Mariani [7] suggests a fault taxonomy
that narrates distributed system faults, but their
taxonomy is targeted for a component-based sys-
tem. Data corruption, hanging processes, mis-
leading return values. Misbehaving participating
machines, hardware/software/network aging are
the major causes generating a fault in SBS [40].
Intermittent Internet outages, outages caused by
hardware (server/node) crashes and downtime
due to the maintenance of hardware and soft-
ware upgrades and bug fixes may generate dis-
tributed system faults [40]. Moreover, resources
exploitation, insufficient disk space during data
reading and writing to the disk cause temporary
failures of all involved computational jobs. We
have sub-categorized distributed faults into four
classes platform context fault, software fault, in-
teraction fault and human error/wrongs. Each of
them is individually introduced as follows.

5.1.1. Platform Context Fault

Adaption faults, hardware or device related faults
and connectivity related faults are acknowledged
as platform context faults. Due to different plat-
forms and the environments, the new technol-
ogy cannot adapt to the emerging technology.
Hardware change, and communication medium
change bring the system into the unintended
state. Since SBS is a platform independent sys-
tem, the manufactured hardware platform should
cope with the software technology. We have in-
vestigated a few platform context faults related
to SBS. Following subsections describe each of
them briefly.
Adaption fault. Architecture choices must in-
form and be informed by validation and verifi-
cation techniques in order to mitigate the impact
of adaptation faults and their associated failures.
Different faults are realized as failures in higher
layers. Faults tend to be detected in layers other
than the ones in which they occur. Faults related
to architectural layering and context-based
system are called adaption faults. Adaptation
faults are unable to change according to sur-
rounding environment-speed/location. Sama
et al. [32] have discussed adaption faults and
proposed Context-Aware Adaptive Applica-
tions (CAAAs) system as fault tolerant system.

Figure 3. A proposed extended fault taxonomy
framework.

242 243G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

data in the table are organized in the following
manner. Firstly, we mention the types of fault,

their corresponding fault tolerance approach,
the possible reason for that particular fault and

finally some special remarks. We try to cover
various faults that may occur in an SBS.

5. The Proposed Extended Fault
Taxonomy of SOA-based System

The proposed fault taxonomy is based on sev-
eral studies [3], [4], [39], [30], [18] and [9]. We
have categorized SBSs fault into three classes
in our proposed fault taxonomy of SBS: SOA
cycle-specific fault, distributed system related
faults and non-functional faults. The proposed
classification scheme can assist in the proper
understanding of faults that results in security
breaches by categorizing faults and grouping
faults that share mutual characteristics. Faults
may overlap each other as one fault may be-
come the cause of another fault.

SOA life cycle has 5 major steps (as mentioned
in Section 3). Each step corresponds to unique
faults; publishing fault, discovery fault, compo-
sition fault, binding fault, and execution fault.
The categorization of SOA specific faults is
motivated by the fault taxonomy of Brüning
[4]. However, their taxonomy fails to represent
the cascading faults in the SBS. SBS belongs to
the distributed system, thus we have made one
class for distributed system faults that covers
the hardware faults, software faults, communi-
cation errors, and user wrongs. All other faults
dealing with non-functional properties are cat-
egorized into the third category called ‘non-
functional faults'. Figure 3 depicts the proposed
fault taxonomy framework and Figure 4 dis-
plays the proposed fault taxonomy of SBS. In
the following subsections, the proposed fault
taxonomy has been explored.

Table 1. (cont.).

Transient fault
[30]

Framework for
fault-tolerant
composition

Assume there is a
network problem – The transient fault causes unavailable service

SLA Claim fault
[31]

Theoretical
model

Customers making false
or repetitive claims

– Customer's malicious or aggressive Internet
activities do not guarantee SLA claims and
violate the AUP (Acceptable Use Policy)

– False or repetitive claims are also a violation
of SLA.

Latent errors and
dormant faults

[19]
CAA-DRIP
framework Error at service delivery – Simulation technique

Adaption faults
[32]

Context-Aware
Adaptive Appli-
cations (CAAAs)

– Faults related to archi-
tectural layering and
context-based

– Unable to change ac-
cording to surrounding

– Architecture choices must inform and be
informed by validation and verification
techniques

– Focus on different faults that are realized as
failures in higher layers.

Vulnerability
faults (interac-
tion faults) [22]

A fuzzy mutation
approach algo-

rithm

Interaction faults of pa-
rameters within services
and inter-services; testing
approach

– Extract URL information of the Web services
to obtain the interface information.

– Testing involves injecting only one mutant at
a time.

– Implemented in c#, the efficiency of the
proposed system is 54%.

SLA violation
[33], [34]

SLA violation
handling

approach using
incremental time
impact analysis

– Time inconsistency and
unsatisfactory condi-
tion.

– Change of service due
to the service replace-
ment.

– Find impact region, existing impact region
and expand the impact region and increase
the range if it does not produce robust and
adaptive SBS.

– Recover and handle the violation in rela-
tion to the strategy of minimizing the no. of
service change.

Crash fault [35] Byzantine fault
tolerance model

– Crash faults and mali-
cious fault

– Crash fault due to
hardware failure or
malicious fault due to
software malfunction

– The server is replicated to 4 replicas to toler-
ate from fault replica.

– Optimistic replication technique is used.
– Reduce 20% of the peak system throughput

to keep 4 replicas

Cascading
failure [36]

Cascading
Failure Tolerance

Failure in one node
(service) depending on
another service

– Increasing the number of alternate services
can significantly improve the network toler-
ance if each service has only few alternate
services available.

– Scale-free topology has been used.

Temporal
violation [37]

Temporal vio-
lation handling
point-selection

strategy

Failures of system on-
time completion due to
uncertain system perfor-
mance, failure of timely
completion of workflow
activities

– Throughput consistency state verification
– Violation handling point selection
– The mean time response time of workflow

instances is 79.64 s, and mean response time
delay of postponed workflow instances is less
than 7.9 s

Composite
service

unavailability
[38]

Protocol-based
automatic failure

recovery

Runtime unavailability of
component services that
results in composition
failure.

– Migrating the failed execution into a best al-
ternative execution of the composite service.

– Computing the number of invisibly compen-
sated transitions is NP-complete.

– The finite state machine to model the ap-
proach.

5.1. Distributed System Faults

SOA is a distributed system, so faults occur in
a distributed system inherently occur in an SBS
as well. Mariani [7] suggests a fault taxonomy
that narrates distributed system faults, but their
taxonomy is targeted for a component-based sys-
tem. Data corruption, hanging processes, mis-
leading return values. Misbehaving participating
machines, hardware/software/network aging are
the major causes generating a fault in SBS [40].
Intermittent Internet outages, outages caused by
hardware (server/node) crashes and downtime
due to the maintenance of hardware and soft-
ware upgrades and bug fixes may generate dis-
tributed system faults [40]. Moreover, resources
exploitation, insufficient disk space during data
reading and writing to the disk cause temporary
failures of all involved computational jobs. We
have sub-categorized distributed faults into four
classes platform context fault, software fault, in-
teraction fault and human error/wrongs. Each of
them is individually introduced as follows.

5.1.1. Platform Context Fault

Adaption faults, hardware or device related faults
and connectivity related faults are acknowledged
as platform context faults. Due to different plat-
forms and the environments, the new technol-
ogy cannot adapt to the emerging technology.
Hardware change, and communication medium
change bring the system into the unintended
state. Since SBS is a platform independent sys-
tem, the manufactured hardware platform should
cope with the software technology. We have in-
vestigated a few platform context faults related
to SBS. Following subsections describe each of
them briefly.
Adaption fault. Architecture choices must in-
form and be informed by validation and verifi-
cation techniques in order to mitigate the impact
of adaptation faults and their associated failures.
Different faults are realized as failures in higher
layers. Faults tend to be detected in layers other
than the ones in which they occur. Faults related
to architectural layering and context-based
system are called adaption faults. Adaptation
faults are unable to change according to sur-
rounding environment-speed/location. Sama
et al. [32] have discussed adaption faults and
proposed Context-Aware Adaptive Applica-
tions (CAAAs) system as fault tolerant system.

Figure 3. A proposed extended fault taxonomy
framework.

244 245G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

Device fault. Hardware components can be
faulty at any stage of process execution. Hard-
ware glitches, power failure, and technical fail-
ure may occur in any component of the system
that brings the distributed system failure. We
have noticed three kinds of faults: server fault,
client fault, and router fault as device fault or
node fault. Faults in a particular node or com-
munication channel, transmission media, mem-
ory, processing units, storage media, surges and
spikes of power supply are possibly observed
device faults or crash faults. Hardware faults
causing subsequent software faults are physical
faults with their origin in the physical device
[41].
Connectivity fault. Congestion, transmission
errors, transmission delays are the connectivity
related problems that cause unavailability of
network and nodes. Garousi et al. [28] have im-
plemented prototype-DRTS (Distributed Real-
Time Systems), a prototype tool that uses UML
2.0 model based on the analysis of control flow
in sequence diagrams. As a result, their tool is
able to identify constraint violations and in-
creases the probability of exhibiting network
traffic related faults. Liu et al. [30] have stated
that transient fault may cause unavailability of
service due to network problem in service-ori-
ented architecture.

5.1.2. Software Fault

In this category, we have presented mainly
two types of faults, such as byzantine fault and
malicious fault. The term byzantine fault was
coined by Lamport to represent an arbitrary
fault, which might be a crash fault due to hard-
ware failures or a malicious fault due to soft-
ware malfunction caused by an intrusion into
the system. Byzantine fault often refers to ar-
bitrary fault and shows different symptoms to
different observers. Byzantine fault tolerance
refers to the capability of a system to provide
correct services to its clients in the presence of
byzantine faults. A study [42] by Chai et al. has
proposed a byzantine fault tolerance approach
using state-machine replication with byzan-
tine agreement algorithm. To ensure the SBS
is secure against malicious attacks we need to
analyze and understand the characteristics of
faults that can subvert security mechanisms.
Zhao et al. [17] have also developed byzantine

fault-tolerance framework named BTF-WS to
achieve maximum interoperability. They have
implemented their BTF-WS in standard SOAP
messaging framework and tested it on a testbed
consisting of 20 Dell SC440 servers connected
by a 100 Mbps Ethernet on SUSE Linux.
The malicious fault may occur due to software
malfunction caused by an intrusion into the sys-
tem. Chai et al. [35] have also discussed byz-
antine fault (crash fault and malicious fault)
and modeled byzantine fault tolerance system.
Their byzantine fault tolerance mechanisms
guarantee correctness of properties. The server
is replicated to 4 replicas to tolerate from fault
replica. The optimistic replication technique
has been used. It reduces 20% of the peak sys-
tem throughput to keep 4 replicas.

5.1.3. Interaction Fault

URL (Unified Resource Locator) information of
the Web services it used to obtain the interface
information. It can parse WSDL documents to
obtain the SOAP messages. Vulnerability faults
cannot be detected if the testing involves inject-
ing only one mutant at a time. Chen et al. [22]
have proposed a fuzzy mutation approach algo-
rithm to reduce the interaction faults/vulnera-
bility faults assuming that there are interaction
faults of parameters within services and inter-
services. From the implementation in C#, 54%
efficiency of the proposed system has been
achieved. Failure in one node (service) may
affect another service. Increasing the number
of alternate services can significantly improve
the network tolerance if each service has only
a few alternate services available. Dependency
which creates the failure of one service can
cause the failure of another dependent service.
Effect of network topology on tolerance is more
significant on a lower degree of an alternative.
Scale-free topology has generally the highest
tolerance. Lhaksman et al. [36] have proposed
cascading failure tolerance system to deal with
cascading failure caused by service interaction.

5.1.4. Human Error

Human error causes the service interruptions
on the smooth execution of SBS and creates
a problem on service delivery. Human error is

Figure 4. A proposed extended fault taxonomy for SBS.

244 245G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

Device fault. Hardware components can be
faulty at any stage of process execution. Hard-
ware glitches, power failure, and technical fail-
ure may occur in any component of the system
that brings the distributed system failure. We
have noticed three kinds of faults: server fault,
client fault, and router fault as device fault or
node fault. Faults in a particular node or com-
munication channel, transmission media, mem-
ory, processing units, storage media, surges and
spikes of power supply are possibly observed
device faults or crash faults. Hardware faults
causing subsequent software faults are physical
faults with their origin in the physical device
[41].
Connectivity fault. Congestion, transmission
errors, transmission delays are the connectivity
related problems that cause unavailability of
network and nodes. Garousi et al. [28] have im-
plemented prototype-DRTS (Distributed Real-
Time Systems), a prototype tool that uses UML
2.0 model based on the analysis of control flow
in sequence diagrams. As a result, their tool is
able to identify constraint violations and in-
creases the probability of exhibiting network
traffic related faults. Liu et al. [30] have stated
that transient fault may cause unavailability of
service due to network problem in service-ori-
ented architecture.

5.1.2. Software Fault

In this category, we have presented mainly
two types of faults, such as byzantine fault and
malicious fault. The term byzantine fault was
coined by Lamport to represent an arbitrary
fault, which might be a crash fault due to hard-
ware failures or a malicious fault due to soft-
ware malfunction caused by an intrusion into
the system. Byzantine fault often refers to ar-
bitrary fault and shows different symptoms to
different observers. Byzantine fault tolerance
refers to the capability of a system to provide
correct services to its clients in the presence of
byzantine faults. A study [42] by Chai et al. has
proposed a byzantine fault tolerance approach
using state-machine replication with byzan-
tine agreement algorithm. To ensure the SBS
is secure against malicious attacks we need to
analyze and understand the characteristics of
faults that can subvert security mechanisms.
Zhao et al. [17] have also developed byzantine

fault-tolerance framework named BTF-WS to
achieve maximum interoperability. They have
implemented their BTF-WS in standard SOAP
messaging framework and tested it on a testbed
consisting of 20 Dell SC440 servers connected
by a 100 Mbps Ethernet on SUSE Linux.
The malicious fault may occur due to software
malfunction caused by an intrusion into the sys-
tem. Chai et al. [35] have also discussed byz-
antine fault (crash fault and malicious fault)
and modeled byzantine fault tolerance system.
Their byzantine fault tolerance mechanisms
guarantee correctness of properties. The server
is replicated to 4 replicas to tolerate from fault
replica. The optimistic replication technique
has been used. It reduces 20% of the peak sys-
tem throughput to keep 4 replicas.

5.1.3. Interaction Fault

URL (Unified Resource Locator) information of
the Web services it used to obtain the interface
information. It can parse WSDL documents to
obtain the SOAP messages. Vulnerability faults
cannot be detected if the testing involves inject-
ing only one mutant at a time. Chen et al. [22]
have proposed a fuzzy mutation approach algo-
rithm to reduce the interaction faults/vulnera-
bility faults assuming that there are interaction
faults of parameters within services and inter-
services. From the implementation in C#, 54%
efficiency of the proposed system has been
achieved. Failure in one node (service) may
affect another service. Increasing the number
of alternate services can significantly improve
the network tolerance if each service has only
a few alternate services available. Dependency
which creates the failure of one service can
cause the failure of another dependent service.
Effect of network topology on tolerance is more
significant on a lower degree of an alternative.
Scale-free topology has generally the highest
tolerance. Lhaksman et al. [36] have proposed
cascading failure tolerance system to deal with
cascading failure caused by service interaction.

5.1.4. Human Error

Human error causes the service interruptions
on the smooth execution of SBS and creates
a problem on service delivery. Human error is

Figure 4. A proposed extended fault taxonomy for SBS.

246 247G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

difficult to model and prevent. Shwartz et al.
[43] have noticed four human wrongs: request,
time, configuration item and command wrongs.
The user or the operator of the SBS may send
the request with invalid input or logical error. In
that case, the system cannot function properly.
The user can send a request at an invalid time
like ordering an item after a time-out. If the
SBS system developer has not properly handled
the exception of the system as many ways the
system can be configured then the system may
produce the invalid configuration result. A very
common mistake by the user is an invalid com-
mand resulting from syntactical or symmetrical
error in the command.

5.2. SOA Cycle-specific Faults

SOA cycle-specific faults apply to SOA only.
Some distributed system faults are also com-
mon with SOA cycle-specific faults because
SOA is also a distributed design paradigm. We
have also adopted some aspects of the fault tax-
onomy of Brüning et al. [4]. We try to include
some additional SOA cycle-specific faults in
addition to Brüning et al. taxonomy. There are
five steps of SOA cycle: publishing, discov-
ering, composition, binding and execution, as
mentioned in Section 3. We have categorized
SOA cycle-specific faults into five categories
as described in the following subsections.

5.2.1. Publishing Fault

The fault which occurs in the publishing stage
of SBS is called publishing fault. Logical faults
and policy violations are noticed as publishing
fault in our proposed fault taxonomy of SBS.
Bartole et al. [26] have discussed fault regard-
ing prescribed policy violation. They have also
proposed a history-based approach to analyzing
whether prescribed policies are violated or not.
Their approach deals with security-relevant ac-
tivities, for example, opening socket problem, a
problem on reading and writing files, and prob-
lem on accessing critical memory regions etc.

5.2.2. Discovering Fault

Service unavailability fault has gained more at-
tention from the researchers. Ismail et al. [27]
and Wang et al. [24] have presented mathemat-

ical model about the temporal unavailability of
services. They have stated that a service can
be unavailable for certain period of time due
to its maintenance, or some services may be
available for only a certain time, for example,
railways ticket booking service, movie theatre
ticket booking service. Temporal unavailability
of service can be calculated by estimating exe-
cution time and end available time.

5.2.3. Composition Fault

Service composition process may fail at inter-
mediate state due to an incomplete description
of goal service requirements or due to the fact
that the user is unaware or uninformed of the
functionality provided by the existing partici-
pant services [44], [45]. For example: if the
"Online Booking" service is lacking all other
committed services such as "Item Availability
Check" the service should be roll-backed. Ser-
vice composition is the most fault-prone ac-
tivity in SBS since the task of the composition
integrates divergent web services discovered
through different descriptors. It is functionally
very expensive and not significant towards end
level solutions, and may lead to serious vulner-
able [46]. Migrating the failed execution into
a best alternative execution of the composite
service which has the same ability to reach a
final state. Computing the number of invisibly
compensated transitions is NP-complete. Run-
time unavailability of component services may
result in composition failure. Menadjelia [38]
has developed protocol-based automatic failure
recovery to recover composite service unavail-
ability problem. The finite state machine has
been used to model the approach.

5.2.4. Binding Fault

When service provider tries to bind the agree-
ment service in the system of service consumer
from the service repository, there may happen
various kinds of faults like mismatching faults,
authentication, authorization and accounting
faults. Signature mismatch faults, SLA faults,
security-related faults are identified as binding
faults. Mainly, there are two types of faults con-
sidered as binding faults. They are signature
mismatch and SLA fault.
If the signature assigned to service consumer
does not match the signature of service repos-

itory, then there will be a signature mismatch
problem. SLA fault is associated with the prob-
lem while making an agreement between ser-
vice broker or provider to the service consumer.
Kandukuri et al. [31] have stated that customers
participating in malicious or aggressive inter-
net activities do not guarantee for SLA claims
and shall be in violation of the AUP (Accept-
able Use Policy). False or repetitive claims are
also a violation of the terms of service and may
be subject to service suspension. Whenever an
SLA violation occurs to a service it can impact
dependent services. Ismail et al. [33], [34] have
proposed SLA violation handling approach us-
ing incremental time impact analysis. Their ap-
proach can efficiently recover and handle the
violation in relation to the strategy of minimiz-
ing the number of service changes. It finds im-
pact region, existing impact region and expands
the impact region, and increases the range if it
does not cover the affected range.

5.2.5. Execution Fault

Failures of system on-time completion are
caused by uncertain system performance. It is
very difficult to find the location of the tem-
poral violation where exactly in a service. Luo
et al. [37] have proposed temporal violation
handling point selection strategy to deal with
the temporal violation. They have adopted
throughput consistency state verification and
violation handling point selection. Transac-
tions have been evolving from flat transactions,
transactions with save-points, nested trans-
actions, and more advanced ones, in order to
give it more flexibility. Some transactions may
be long-lived transactions that exploit the re-
sources and can hold locks on external objects
for long periods of time due to the infinite ex-
ecution in the faulty situation. So, Balbastro
et al. [19] have discussed transaction isolation
fault and proposed a mechanism for handling
exceptions in a synchronized way.

5.2.6. Service Delivery Fault

We have categorized service delivery fault as
separate fault category because it is also an em-
phasized stage of the SBS. Many researchers
have primarily been focused on service deliv-

ery fault. Balbastrol et al. [19] have developed
CAA-DRIP framework as fault tolerant system
to deal with latent errors and dormant faults and
errors at service delivery in SOA. They have
used simulation technique as repair assump-
tion. Timeout error is also very common and
occurs in any distributed system. Yeung et al.
[29] have proposed the formal approach to han-
dle timeout exception and message events. If
an invocation cannot complete within the max-
imum duration allowed, the event handler will
take over and halt the process.

5.3. Non-functional Faults

At runtime, some services may become faulty
and cause a process to disrupt its end-to-end
quality of service (QoS) constraints. The faults
identified in this category are also common
with distributed system faults and SOA cy-
cle-specific faults, however, we have specified
only non-functional and security-related faults
in this category. If the system ensures the secu-
rity, then the SBS can be more dependable and
reliable, which guarantees the overall quality of
service. Thus, we have categorized security re-
lated faults into this class. Security fault, SLA
(Service Level Agreement) and QoS are briefly
explained as follows.

5.3.1. Security Fault

Security in SBS is important so as to ensure re-
liable operation and to protect the integrity of
stored information. In case of authentication,
authorization and accounting problem, secu-
rity fault may occur. Violation of security re-
quirements includes integrity, authentication,
non-repudiation and confidential violations [3].
Confidential violations cause invalid service
invocation and intruder may attack the system.
Authentication ensures whether the service user
is authenticated to bind the service. If the au-
thentication detail provided by the user is not
valid, then there will be authentication fault.
For security purpose, sensitive data should be
in encrypted form, but there may be encryp-
tion fault and/or decryption fault to the service
due to invalid request or design time fault. If
the signature provided by the service user is in-
valid, then there will be a signature fault.

246 247G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

difficult to model and prevent. Shwartz et al.
[43] have noticed four human wrongs: request,
time, configuration item and command wrongs.
The user or the operator of the SBS may send
the request with invalid input or logical error. In
that case, the system cannot function properly.
The user can send a request at an invalid time
like ordering an item after a time-out. If the
SBS system developer has not properly handled
the exception of the system as many ways the
system can be configured then the system may
produce the invalid configuration result. A very
common mistake by the user is an invalid com-
mand resulting from syntactical or symmetrical
error in the command.

5.2. SOA Cycle-specific Faults

SOA cycle-specific faults apply to SOA only.
Some distributed system faults are also com-
mon with SOA cycle-specific faults because
SOA is also a distributed design paradigm. We
have also adopted some aspects of the fault tax-
onomy of Brüning et al. [4]. We try to include
some additional SOA cycle-specific faults in
addition to Brüning et al. taxonomy. There are
five steps of SOA cycle: publishing, discov-
ering, composition, binding and execution, as
mentioned in Section 3. We have categorized
SOA cycle-specific faults into five categories
as described in the following subsections.

5.2.1. Publishing Fault

The fault which occurs in the publishing stage
of SBS is called publishing fault. Logical faults
and policy violations are noticed as publishing
fault in our proposed fault taxonomy of SBS.
Bartole et al. [26] have discussed fault regard-
ing prescribed policy violation. They have also
proposed a history-based approach to analyzing
whether prescribed policies are violated or not.
Their approach deals with security-relevant ac-
tivities, for example, opening socket problem, a
problem on reading and writing files, and prob-
lem on accessing critical memory regions etc.

5.2.2. Discovering Fault

Service unavailability fault has gained more at-
tention from the researchers. Ismail et al. [27]
and Wang et al. [24] have presented mathemat-

ical model about the temporal unavailability of
services. They have stated that a service can
be unavailable for certain period of time due
to its maintenance, or some services may be
available for only a certain time, for example,
railways ticket booking service, movie theatre
ticket booking service. Temporal unavailability
of service can be calculated by estimating exe-
cution time and end available time.

5.2.3. Composition Fault

Service composition process may fail at inter-
mediate state due to an incomplete description
of goal service requirements or due to the fact
that the user is unaware or uninformed of the
functionality provided by the existing partici-
pant services [44], [45]. For example: if the
"Online Booking" service is lacking all other
committed services such as "Item Availability
Check" the service should be roll-backed. Ser-
vice composition is the most fault-prone ac-
tivity in SBS since the task of the composition
integrates divergent web services discovered
through different descriptors. It is functionally
very expensive and not significant towards end
level solutions, and may lead to serious vulner-
able [46]. Migrating the failed execution into
a best alternative execution of the composite
service which has the same ability to reach a
final state. Computing the number of invisibly
compensated transitions is NP-complete. Run-
time unavailability of component services may
result in composition failure. Menadjelia [38]
has developed protocol-based automatic failure
recovery to recover composite service unavail-
ability problem. The finite state machine has
been used to model the approach.

5.2.4. Binding Fault

When service provider tries to bind the agree-
ment service in the system of service consumer
from the service repository, there may happen
various kinds of faults like mismatching faults,
authentication, authorization and accounting
faults. Signature mismatch faults, SLA faults,
security-related faults are identified as binding
faults. Mainly, there are two types of faults con-
sidered as binding faults. They are signature
mismatch and SLA fault.
If the signature assigned to service consumer
does not match the signature of service repos-

itory, then there will be a signature mismatch
problem. SLA fault is associated with the prob-
lem while making an agreement between ser-
vice broker or provider to the service consumer.
Kandukuri et al. [31] have stated that customers
participating in malicious or aggressive inter-
net activities do not guarantee for SLA claims
and shall be in violation of the AUP (Accept-
able Use Policy). False or repetitive claims are
also a violation of the terms of service and may
be subject to service suspension. Whenever an
SLA violation occurs to a service it can impact
dependent services. Ismail et al. [33], [34] have
proposed SLA violation handling approach us-
ing incremental time impact analysis. Their ap-
proach can efficiently recover and handle the
violation in relation to the strategy of minimiz-
ing the number of service changes. It finds im-
pact region, existing impact region and expands
the impact region, and increases the range if it
does not cover the affected range.

5.2.5. Execution Fault

Failures of system on-time completion are
caused by uncertain system performance. It is
very difficult to find the location of the tem-
poral violation where exactly in a service. Luo
et al. [37] have proposed temporal violation
handling point selection strategy to deal with
the temporal violation. They have adopted
throughput consistency state verification and
violation handling point selection. Transac-
tions have been evolving from flat transactions,
transactions with save-points, nested trans-
actions, and more advanced ones, in order to
give it more flexibility. Some transactions may
be long-lived transactions that exploit the re-
sources and can hold locks on external objects
for long periods of time due to the infinite ex-
ecution in the faulty situation. So, Balbastro
et al. [19] have discussed transaction isolation
fault and proposed a mechanism for handling
exceptions in a synchronized way.

5.2.6. Service Delivery Fault

We have categorized service delivery fault as
separate fault category because it is also an em-
phasized stage of the SBS. Many researchers
have primarily been focused on service deliv-

ery fault. Balbastrol et al. [19] have developed
CAA-DRIP framework as fault tolerant system
to deal with latent errors and dormant faults and
errors at service delivery in SOA. They have
used simulation technique as repair assump-
tion. Timeout error is also very common and
occurs in any distributed system. Yeung et al.
[29] have proposed the formal approach to han-
dle timeout exception and message events. If
an invocation cannot complete within the max-
imum duration allowed, the event handler will
take over and halt the process.

5.3. Non-functional Faults

At runtime, some services may become faulty
and cause a process to disrupt its end-to-end
quality of service (QoS) constraints. The faults
identified in this category are also common
with distributed system faults and SOA cy-
cle-specific faults, however, we have specified
only non-functional and security-related faults
in this category. If the system ensures the secu-
rity, then the SBS can be more dependable and
reliable, which guarantees the overall quality of
service. Thus, we have categorized security re-
lated faults into this class. Security fault, SLA
(Service Level Agreement) and QoS are briefly
explained as follows.

5.3.1. Security Fault

Security in SBS is important so as to ensure re-
liable operation and to protect the integrity of
stored information. In case of authentication,
authorization and accounting problem, secu-
rity fault may occur. Violation of security re-
quirements includes integrity, authentication,
non-repudiation and confidential violations [3].
Confidential violations cause invalid service
invocation and intruder may attack the system.
Authentication ensures whether the service user
is authenticated to bind the service. If the au-
thentication detail provided by the user is not
valid, then there will be authentication fault.
For security purpose, sensitive data should be
in encrypted form, but there may be encryp-
tion fault and/or decryption fault to the service
due to invalid request or design time fault. If
the signature provided by the service user is in-
valid, then there will be a signature fault.

248 249G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

5.3.2. SLA Fault

SLA (Service Level Agreement) is a commit-
ment between the service provider and the
service consumer confirming the minimum
levels of service to be expected from a partic-
ular product. Whenever SLA violation occurs
to a service it can impact dependent services.
SLA fault is also noticed in binding because,
while the service consumer is able to use the
service as defined in SLA, there can be SLA
fault. SLA claim fault, as defined by Kandukuri
et al. [31], false and repetitive claims by service
customers are also a violation of the terms of
service and may be subject to service suspen-
sion. A customer participating in malicious or
aggressive internet activities does not ensure
for SLA claims and shall be in violation of the
AUP (Acceptable Use Policy). There are some
studies conducted on handling SLA violation in
SBS as in [33].

5.3.3. QoS Not Satisfied

QoS (Quality of Service) is the measure of
transmission quality and service availability
of a network [47]. Service availability is a ma-
jor foundation element of QoS. The design of
high availability of the network infrastructure
ensures the QoS. Loss, delay, jitter, low band-

width etc. are the major parameters of network
traffic that can increase the downtime of the
SBS. Delay Variation (Jitter) between the end-
to-end services due to the unstable communi-
cation can generate the time-out fault [47]. A
system is said to be reliable if every packet in
the system experienced the bounded delay [48].
Due to a low bandwidth, message passing can
take undesirably long time. QoS not satisfied is
directly integrated with other faults.
In a network of services, failure of one service
can cause the other dependent services failure.
Lhaksmana et al. [36] have addressed cascad-
ing failure in the service network and provided
cascading failure tolerance approach. By means
of the cascading failure simulation they have
found that scale-free topology shows better tol-
erance, the effect of network topology on toler-
ance is more significant at a lower degree of al-
ternative services. The inverse of the degree of
alternative is increased as the number of nodes
experiencing cascading failure increases. The
number of nodes involved in cascading failure
is estimated linear to the average number of re-
quired component services. Luo et al. [37] have
proposed a temporal violation handling from
throughput consistency state verification and
selection of the violation handling point which
is able to determine the location of temporal vi-
olation in service and workflow.

Matrix representation of proposed extended fault
taxonomy is presented in Figure 5. It shows the
interaction between SOA faults and dimensions
where dimensions are adopted from Avizienis
et al. [6]. There are eight dimensions included
in our proposed fault taxonomy: development
and operational, internal and external, hardware
and software, and malicious and non-malicious,
as shown in rows. Ɵ symbol indicates that there
is an interaction between dimensions and the
corresponding fault in the column. If there is no
Ɵ symbol, then there is no interaction between
dimensions and the fault. One fault can occur
in several dimensions at a time. For example,
crash fault can be the operational fault, and/or
internal fault and/or hardware fault and/or ma-
licious fault. A fault taxonomy proposed in [9]
also tried this in same way adopting dimensions
from Avizienis [6] but their taxonomy has some
limitations on overlapping. In their work, there
is no overlapping on the dimensions of the same
group like time-out fault can be hardware fault
and software fault as well but their taxonomy is
unaware of this.

6. Fault Recovery Strategies for
SOA-based System

We have categorized fault recovery strategies
of service-oriented computing into two major
categories: local recovery strategies and global
recovery strategies, as shown in Figure 6. Inter-
nal recovery concerns the interactions among
parameters in a service. Forward recovery tech-
nique is related to the transactional behaviors of
the messages as results all or nothing. Backward
recovery is associated with faults occurring in
situation where multiple services interact with
each other. It applies any of the exception han-
dling strategies like ignore, wait, retry, recom-
pose, retryUntil etc. Backward recovery means
rollback of the faulty service with the previous
healthy version of the same service. Forward
recovery is more optimized and has better per-
formance than backward recovery in service re-
composition and recreation. Forward recovery
technique either ignores the fault service and
goes forward to keep the rest of the system run-
ning with no harm or retries the faulty service
again or substitutes the faulty service with the
another service which would be sufficient to

fulfill the task of the current faulty service. Four
types of replication/repetition mechanisms [49]
can be used for fault tolerance system: passive
repetition, active repetition, N-version model,
and return to back/check-point model. Brief
explanations of local recovery strategies and
global recovery strategies are as follows.

6.1. Local Recovery Strategies

Local recovery strategies try to fix the fault in
the current state of error. After successful cor-
rection, the system tries to continue its normal
execution from the same state. Ignore, notify,
halt, terminate and redundancy are noticed as
local recovery strategies which are also shown
in Figure 6.

 ● Ignore: Ignore strategy just ignores the
identified faults that do not affect the whole
system, and does not violate the goal. It is
an effective action in case of performance
utilization and reliable system if the fault
is temporal.

 ● Replace: In case of service fault, replace
action replaces the faulty service by an al-
ternative equivalent service with the same
functioning. The replace action might call
for compensation or rollback to recover.

 ● Retry: It retries the fault generating service
repeatedly, till the maximum retry times
have been exhausted. Web server is state-
less between transactions; it does not main-
tain important state from first and last. The
requests being processed are effectively
dropped. A client may or may not receive
a response that completely relies upon the
in-process requests. The re-issuing of the
request can lead to further problems since
the same request may then be executed
multiple times.

 ● Reboot: Shorting down the system and
re-executing from the beginning to reduce
the unstable state problem in the same en-
vironment increases the cost. It is a time-
consuming process to reboot the whole
system so Candea et al. [50] have proposed
Microreboot as a technique to increase the
overall performance of the fault recovery
rather than whole system reboot. Rather
than rebooting the whole system Microre-
boot just reboots the particular module.Figure 5. Matrix representation of the proposed extended fault taxonomy.

248 249G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

5.3.2. SLA Fault

SLA (Service Level Agreement) is a commit-
ment between the service provider and the
service consumer confirming the minimum
levels of service to be expected from a partic-
ular product. Whenever SLA violation occurs
to a service it can impact dependent services.
SLA fault is also noticed in binding because,
while the service consumer is able to use the
service as defined in SLA, there can be SLA
fault. SLA claim fault, as defined by Kandukuri
et al. [31], false and repetitive claims by service
customers are also a violation of the terms of
service and may be subject to service suspen-
sion. A customer participating in malicious or
aggressive internet activities does not ensure
for SLA claims and shall be in violation of the
AUP (Acceptable Use Policy). There are some
studies conducted on handling SLA violation in
SBS as in [33].

5.3.3. QoS Not Satisfied

QoS (Quality of Service) is the measure of
transmission quality and service availability
of a network [47]. Service availability is a ma-
jor foundation element of QoS. The design of
high availability of the network infrastructure
ensures the QoS. Loss, delay, jitter, low band-

width etc. are the major parameters of network
traffic that can increase the downtime of the
SBS. Delay Variation (Jitter) between the end-
to-end services due to the unstable communi-
cation can generate the time-out fault [47]. A
system is said to be reliable if every packet in
the system experienced the bounded delay [48].
Due to a low bandwidth, message passing can
take undesirably long time. QoS not satisfied is
directly integrated with other faults.
In a network of services, failure of one service
can cause the other dependent services failure.
Lhaksmana et al. [36] have addressed cascad-
ing failure in the service network and provided
cascading failure tolerance approach. By means
of the cascading failure simulation they have
found that scale-free topology shows better tol-
erance, the effect of network topology on toler-
ance is more significant at a lower degree of al-
ternative services. The inverse of the degree of
alternative is increased as the number of nodes
experiencing cascading failure increases. The
number of nodes involved in cascading failure
is estimated linear to the average number of re-
quired component services. Luo et al. [37] have
proposed a temporal violation handling from
throughput consistency state verification and
selection of the violation handling point which
is able to determine the location of temporal vi-
olation in service and workflow.

Matrix representation of proposed extended fault
taxonomy is presented in Figure 5. It shows the
interaction between SOA faults and dimensions
where dimensions are adopted from Avizienis
et al. [6]. There are eight dimensions included
in our proposed fault taxonomy: development
and operational, internal and external, hardware
and software, and malicious and non-malicious,
as shown in rows. Ɵ symbol indicates that there
is an interaction between dimensions and the
corresponding fault in the column. If there is no
Ɵ symbol, then there is no interaction between
dimensions and the fault. One fault can occur
in several dimensions at a time. For example,
crash fault can be the operational fault, and/or
internal fault and/or hardware fault and/or ma-
licious fault. A fault taxonomy proposed in [9]
also tried this in same way adopting dimensions
from Avizienis [6] but their taxonomy has some
limitations on overlapping. In their work, there
is no overlapping on the dimensions of the same
group like time-out fault can be hardware fault
and software fault as well but their taxonomy is
unaware of this.

6. Fault Recovery Strategies for
SOA-based System

We have categorized fault recovery strategies
of service-oriented computing into two major
categories: local recovery strategies and global
recovery strategies, as shown in Figure 6. Inter-
nal recovery concerns the interactions among
parameters in a service. Forward recovery tech-
nique is related to the transactional behaviors of
the messages as results all or nothing. Backward
recovery is associated with faults occurring in
situation where multiple services interact with
each other. It applies any of the exception han-
dling strategies like ignore, wait, retry, recom-
pose, retryUntil etc. Backward recovery means
rollback of the faulty service with the previous
healthy version of the same service. Forward
recovery is more optimized and has better per-
formance than backward recovery in service re-
composition and recreation. Forward recovery
technique either ignores the fault service and
goes forward to keep the rest of the system run-
ning with no harm or retries the faulty service
again or substitutes the faulty service with the
another service which would be sufficient to

fulfill the task of the current faulty service. Four
types of replication/repetition mechanisms [49]
can be used for fault tolerance system: passive
repetition, active repetition, N-version model,
and return to back/check-point model. Brief
explanations of local recovery strategies and
global recovery strategies are as follows.

6.1. Local Recovery Strategies

Local recovery strategies try to fix the fault in
the current state of error. After successful cor-
rection, the system tries to continue its normal
execution from the same state. Ignore, notify,
halt, terminate and redundancy are noticed as
local recovery strategies which are also shown
in Figure 6.

 ● Ignore: Ignore strategy just ignores the
identified faults that do not affect the whole
system, and does not violate the goal. It is
an effective action in case of performance
utilization and reliable system if the fault
is temporal.

 ● Replace: In case of service fault, replace
action replaces the faulty service by an al-
ternative equivalent service with the same
functioning. The replace action might call
for compensation or rollback to recover.

 ● Retry: It retries the fault generating service
repeatedly, till the maximum retry times
have been exhausted. Web server is state-
less between transactions; it does not main-
tain important state from first and last. The
requests being processed are effectively
dropped. A client may or may not receive
a response that completely relies upon the
in-process requests. The re-issuing of the
request can lead to further problems since
the same request may then be executed
multiple times.

 ● Reboot: Shorting down the system and
re-executing from the beginning to reduce
the unstable state problem in the same en-
vironment increases the cost. It is a time-
consuming process to reboot the whole
system so Candea et al. [50] have proposed
Microreboot as a technique to increase the
overall performance of the fault recovery
rather than whole system reboot. Rather
than rebooting the whole system Microre-
boot just reboots the particular module.Figure 5. Matrix representation of the proposed extended fault taxonomy.

250 251G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

 ● Recompose: This action searches for the
alternative process with the same objec-
tive, discarding the current faulty process.
It may be the last option while repairing
the faulty service because it is the most
time-consuming fault handling strategy.
But this strategy is suitable for all fault
handling recovery cases.

 ● Replication: Replicating the same service
or process in several systems as a backup
is a common approach to fault recovery.
Fault service can be replaced by the same
version of service from the backup sys-
tem. N-version programming can be used
to implement replication. As identified
by Mohamed [51], there are two types of
replication: static replication and dynamic
replication. In static replication, the num-
ber and position of the replica are fixed
over time and do not change their behav-
ior during runtime. When a single replica
becomes unresponsive, this replica is still

considered a member of the replica com-
munication group. Dynamic replication
adapts to a dynamic flexibility with the
number of online replicas, their physical lo-
cations and selection of active replica dur-
ing runtime [51]. Replication technique, as
a pre-emptive strategy to reduce the SBS
fault, has some drawbacks. It increases the
time complexity and space complexity to
maintain the replicas for every request of
the client. Also it needs request synchroni-
zation between servers to be deterministic.

6.2. Global Recovery Strategies

Logging, transactional, checkpointing, cache,
crash-stop, hybrid strategies are considered
as global recovery strategies. Figure 6 shows
some of the popular global recovery strategies.
These are briefly explained in the following
subsections.

 ● Logging: Logging mechanism stores inter-
cepted message traces of every transaction
of service interactions. Later, if a fault oc-
curs, message traces can be used for fault
repairing purpose. Its main concept is to
redundantly store or log all the messages
delivered to the primary server on stable
storage or a replica.

 ● Transactional: Protocol design to do with
service atomicity using transaction in-
tegrity concept is used in this strategy. In
case of a fault, the current process returns
to the stable state before executing the in-
teraction protocol which is known as skip
processing strategy to accomplish the fault
recovery.

 ● Checkpointing: In the checkpointing ap-
proach, the server state is periodically
copied, either to a standby server(s) or to
a stable storage. There are basically two
checkpointing approaches as mentioned
by Ayari et al. [52] ‒ incremental check-
pointing and time-line checkpointing.
Incremental checkpointing tries to max-
imizing the consistency of the replicated
states by performing checkpoints each
time a critical state change occurs at the
primary code. This approach increases
the complexity. Another approach is time-
line based checkpointing where a state is
checkpointed each period of time. Time-
to-checkpoint value depends on the mea-
sured failure frequency.

 ● Cache: Possible state inconsistencies,
compensated by state-caching and retry-
ing only failed interactions ensures the
lower performance overhead on the scal-
able infrastructure. Wang et al. [24] firstly
proposed cache-based process transfor-
mation using Petri nets to find the circular
dependency. This strategy caches only the
response message to achieve robust client/
server interaction, unlike backup or n-ver-
sion programming.

 ● Crash-stop: SOA-based computing sys-
tems may fail permanently in an interre-
lated fashion at any random instant follow-
ing the so-called crash-stop failure model
where tasks cannot be recovered from a

failed server. If we leave the system un-
controlled, then the bad situation may be
worse and the amount of cost increases, so
in this condition, it is better to stop the cur-
rent functioning of the system.

 ● Hybrid strategies: In order to establish
more secure recovery, computing two or
more strategies can be combined to re-
cover faulty situation in SBSs. Many re-
searchers have practiced hybrid strategies
rather than optimizing a particular strategy.
A hybrid technique with application-level
logging and connection replication, named
CORAL (A Client-Transparent Fault-tol-
erant) mechanism is proposed in [53].
CORAL recovers in-process requests and
does not require deterministic servers,
or changes to the clients. To achieve the
fault tolerance goals, active replication of
the servers may be used, where every cli-
ent request is processed by two (or more)
server replicas. Logging of the request is
an alternative, but two different replies for
the same request may reach the client vio-
lating the requirement for transparent fault
tolerance. Their approach has assumed that
only one host at a time can be affected by
the fault and the impact of the fault can be
to either crash a process or crash or hang
the entire host. Rollback and compensation
are analogous to their usual definitions.

7. Challenges on SBS Fault Handling

In this section, we highlight some challenges ob-
served in the literature. Some major challenges
like security and interoperability have gained
a lot of attention by the researchers, whereas
others like interoperability, availability, per-
formance and scalability also require more at-
tention. Some fault handling approaches have
been tested in laboratories, some are just simu-
lated, but when they come to real applications,
any of the new challenges may arise. Wang
et al. [24] have mentioned consistency and ro-
bustness of the service as a challenge. Ismail
et al. [27] have mentioned maintainability as
a challenge in fault handling if some services
have to be suspended for a few reasons such
as maintenance purposes, unlike 24/7 availabil-
ity of services. Some might be available only

Figure 6. An effective summarization of fault recovery strategies.

250 251G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

 ● Recompose: This action searches for the
alternative process with the same objec-
tive, discarding the current faulty process.
It may be the last option while repairing
the faulty service because it is the most
time-consuming fault handling strategy.
But this strategy is suitable for all fault
handling recovery cases.

 ● Replication: Replicating the same service
or process in several systems as a backup
is a common approach to fault recovery.
Fault service can be replaced by the same
version of service from the backup sys-
tem. N-version programming can be used
to implement replication. As identified
by Mohamed [51], there are two types of
replication: static replication and dynamic
replication. In static replication, the num-
ber and position of the replica are fixed
over time and do not change their behav-
ior during runtime. When a single replica
becomes unresponsive, this replica is still

considered a member of the replica com-
munication group. Dynamic replication
adapts to a dynamic flexibility with the
number of online replicas, their physical lo-
cations and selection of active replica dur-
ing runtime [51]. Replication technique, as
a pre-emptive strategy to reduce the SBS
fault, has some drawbacks. It increases the
time complexity and space complexity to
maintain the replicas for every request of
the client. Also it needs request synchroni-
zation between servers to be deterministic.

6.2. Global Recovery Strategies

Logging, transactional, checkpointing, cache,
crash-stop, hybrid strategies are considered
as global recovery strategies. Figure 6 shows
some of the popular global recovery strategies.
These are briefly explained in the following
subsections.

 ● Logging: Logging mechanism stores inter-
cepted message traces of every transaction
of service interactions. Later, if a fault oc-
curs, message traces can be used for fault
repairing purpose. Its main concept is to
redundantly store or log all the messages
delivered to the primary server on stable
storage or a replica.

 ● Transactional: Protocol design to do with
service atomicity using transaction in-
tegrity concept is used in this strategy. In
case of a fault, the current process returns
to the stable state before executing the in-
teraction protocol which is known as skip
processing strategy to accomplish the fault
recovery.

 ● Checkpointing: In the checkpointing ap-
proach, the server state is periodically
copied, either to a standby server(s) or to
a stable storage. There are basically two
checkpointing approaches as mentioned
by Ayari et al. [52] ‒ incremental check-
pointing and time-line checkpointing.
Incremental checkpointing tries to max-
imizing the consistency of the replicated
states by performing checkpoints each
time a critical state change occurs at the
primary code. This approach increases
the complexity. Another approach is time-
line based checkpointing where a state is
checkpointed each period of time. Time-
to-checkpoint value depends on the mea-
sured failure frequency.

 ● Cache: Possible state inconsistencies,
compensated by state-caching and retry-
ing only failed interactions ensures the
lower performance overhead on the scal-
able infrastructure. Wang et al. [24] firstly
proposed cache-based process transfor-
mation using Petri nets to find the circular
dependency. This strategy caches only the
response message to achieve robust client/
server interaction, unlike backup or n-ver-
sion programming.

 ● Crash-stop: SOA-based computing sys-
tems may fail permanently in an interre-
lated fashion at any random instant follow-
ing the so-called crash-stop failure model
where tasks cannot be recovered from a

failed server. If we leave the system un-
controlled, then the bad situation may be
worse and the amount of cost increases, so
in this condition, it is better to stop the cur-
rent functioning of the system.

 ● Hybrid strategies: In order to establish
more secure recovery, computing two or
more strategies can be combined to re-
cover faulty situation in SBSs. Many re-
searchers have practiced hybrid strategies
rather than optimizing a particular strategy.
A hybrid technique with application-level
logging and connection replication, named
CORAL (A Client-Transparent Fault-tol-
erant) mechanism is proposed in [53].
CORAL recovers in-process requests and
does not require deterministic servers,
or changes to the clients. To achieve the
fault tolerance goals, active replication of
the servers may be used, where every cli-
ent request is processed by two (or more)
server replicas. Logging of the request is
an alternative, but two different replies for
the same request may reach the client vio-
lating the requirement for transparent fault
tolerance. Their approach has assumed that
only one host at a time can be affected by
the fault and the impact of the fault can be
to either crash a process or crash or hang
the entire host. Rollback and compensation
are analogous to their usual definitions.

7. Challenges on SBS Fault Handling

In this section, we highlight some challenges ob-
served in the literature. Some major challenges
like security and interoperability have gained
a lot of attention by the researchers, whereas
others like interoperability, availability, per-
formance and scalability also require more at-
tention. Some fault handling approaches have
been tested in laboratories, some are just simu-
lated, but when they come to real applications,
any of the new challenges may arise. Wang
et al. [24] have mentioned consistency and ro-
bustness of the service as a challenge. Ismail
et al. [27] have mentioned maintainability as
a challenge in fault handling if some services
have to be suspended for a few reasons such
as maintenance purposes, unlike 24/7 availabil-
ity of services. Some might be available only

Figure 6. An effective summarization of fault recovery strategies.

252 253G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

during certain operating hours. In our previous
work [54], from the literature review on the ba-
sis of distributions of papers in fault handling of
SBS, we observed performance and reliability
as major challenges in fault handling which is
as shown in Figure 7.
Dynamicity and adaptiveness limit the ability
of the tester to determine the WSs, that are in-
voked during the execution of a workflow [28],
[35], [55]. The adaptable system can adjust to
other environments at the real time. The ser-
vice-oriented system is also adaptable system.
Thus, it is expensive, time-consuming and re-
source-consuming to detect and correct fault in
different environments.
Interoperability is the key challenge [56], [57].
In SBS, interoperability always gets high con-
cern as a challenge. Interoperability becomes a
challenge as it needs to handle a large number
of heterogeneous services that may belong to
different, diversified platforms. Some research
models or projects have been found in the lit-
erature review like WSRel, WSCol [58]. They
have explored the challenges and drawbacks
of the SOA and provided the appropriate strat-
egies for fault handling. White-box testing is

also a challenge for SBS fault handling, due to
its inclusion of specific instructions, concur-
rency, fault compensation and dynamic service
discovery and invocation [59]. Service devel-
opers and service providers are responsible
stakeholders to consider this interoperability
issue to ensure the proper delivery of services
to all service customers, no matter on what
the hardware/software specifications are. The
following paragraphs give a brief discussion
about key challenges on fault handling of SBSs
facedin detection and development of faults of
SOA and identify reasons and models/projects
proposed by the researchers.
In general, reliability is the probability that a
system functions correctly for a given time pe-
riod. Overall system reliability increases with
service redundancy that increases the rate of
service delivery to the customer. Reliability of
services is related to security and service avail-
ability. Infrastructures like software, hardware
and network channel should be trustworthy to
enrich reliability throughout all the layers of
SOA. Unreliable communication may lead to
system failures, data loss, and long delays. Sev-
eral researchers in the studies [60], [61], [62],
[63] have proposed reliability checking models

Figure 7. Challenges on SBS fault handling.

to achieve service compositions. A paper [60]
has concentrated on reliability issue of SBS and
proposed a framework and prototype tool for
detecting anomalous services in Open Service
Gateway Initiation(OSGi)-based applications.
Anomalous services decrease the reliability.
Evaluating reliability is not an easy task be-
cause different vendors are usually black-box
components which lack source code and design
documents which makes it difficult to evaluate
their quality by static code analysis.
Scalability is another challenge in handling
faults for SBS. The scalability of the SBS means
the ability to add new services, components and
functions for service consumers, without nega-
tively affecting the quality of existing services.
Increasing the functionality is always a difficult
task in case of heterogeneous SBS platforms
and communication protocols, for example,
vertical service delivery. SBSs must provide
scalable mechanisms for registration, discovery
of service faults as well as service interoper-
ability.
Availability of service means the ability of
SBSs to provide services to service customers
anywhere and anytime. Several solutions [62],
[64], [51] to achieve high availability of SOA
services are to providing redundancy for ser-
vices, logging, and replacement. Service avail-
ability means availability of service for service
customer all the time. Some tools [63], [65],
[66] can help system to maximize the service
availability. Infrastructure availability means
24/7 hardware and software availability of SBS.
Due to heterogeneous systems [67], it is not
easy to ensure security and privacy of users. So
security is a significant challenge [25] for the
SBS fault handling. Lack of common standard
and architecture creates a problem in providing
security. One approach could be access control
on the application layer of SOA.
Mobility is another challenge for SBS realiza-
tion because most of the services are expected
to be delivered to mobile users. Mobile users
[67] can move from one place to another, which
may lead to temporary unavailability of service
due to the devices transfer from a gateway to
another gateway. For example, Internet of Ve-
hicles [67], Ad-hoc etc.
Observability analyses the SBS dynamics and
determines if the technology under consider-

ation requires extension or enhancements to
build scalable resource management solution
[68]. Observability addresses how fine-grained
the state of a system and its components can be
observed from the outside.
Autonomy: services are autonomous means ser-
vices exercise a high level of control over their
underlying runtime execution environment.
Service autonomy increases a service's runtime
reliability, performance and predictability, es-
pecially when being reused and composed [69].
A high level of control over how service logic
is designed and developed at implementation
level is required.

8. Conclusion

Since SOA (Service Oriented Architecture) is
a black-box in nature, the fault can be detected
only when it really executes. We proposed an
extended fault taxonomy that systematically
presents a brief description of possible faults in
SBS. The taxonomy also shows the interaction
among different faults, how a fault can cause
other ones. It divides the faults into three cat-
egories: SOA life cycle-specific faults, distrib-
uted system faults and non-functional faults.
The knowledge of fault taxonomy of SBS and
its associated challenges is essential for devel-
oping and testing fault-tolerant and dependable
systems. Practitioners and researchers can ob-
tain a general understanding of SBS depend-
ability. To enhance the dependability of SBS,
fault recovery techniques should also be con-
sidered inherently. Possible fault recovery strat-
egies are also presented in the paper. For further
work, we have a plan to extend our fault taxon-
omy to include possible faults in cloud comput-
ing and Internet of things.

Acknowledgment

The authors would like to thank ICCR, Min-
istry of Foreign Affairs, India (Silver Jubilee
Scholarship Scheme) for providing funds and
DST-CIMS, Institute of Science, BHU, India
for providing necessary infrastructure and fa-
cilities for undertaking this research work.

252 253G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

during certain operating hours. In our previous
work [54], from the literature review on the ba-
sis of distributions of papers in fault handling of
SBS, we observed performance and reliability
as major challenges in fault handling which is
as shown in Figure 7.
Dynamicity and adaptiveness limit the ability
of the tester to determine the WSs, that are in-
voked during the execution of a workflow [28],
[35], [55]. The adaptable system can adjust to
other environments at the real time. The ser-
vice-oriented system is also adaptable system.
Thus, it is expensive, time-consuming and re-
source-consuming to detect and correct fault in
different environments.
Interoperability is the key challenge [56], [57].
In SBS, interoperability always gets high con-
cern as a challenge. Interoperability becomes a
challenge as it needs to handle a large number
of heterogeneous services that may belong to
different, diversified platforms. Some research
models or projects have been found in the lit-
erature review like WSRel, WSCol [58]. They
have explored the challenges and drawbacks
of the SOA and provided the appropriate strat-
egies for fault handling. White-box testing is

also a challenge for SBS fault handling, due to
its inclusion of specific instructions, concur-
rency, fault compensation and dynamic service
discovery and invocation [59]. Service devel-
opers and service providers are responsible
stakeholders to consider this interoperability
issue to ensure the proper delivery of services
to all service customers, no matter on what
the hardware/software specifications are. The
following paragraphs give a brief discussion
about key challenges on fault handling of SBSs
facedin detection and development of faults of
SOA and identify reasons and models/projects
proposed by the researchers.
In general, reliability is the probability that a
system functions correctly for a given time pe-
riod. Overall system reliability increases with
service redundancy that increases the rate of
service delivery to the customer. Reliability of
services is related to security and service avail-
ability. Infrastructures like software, hardware
and network channel should be trustworthy to
enrich reliability throughout all the layers of
SOA. Unreliable communication may lead to
system failures, data loss, and long delays. Sev-
eral researchers in the studies [60], [61], [62],
[63] have proposed reliability checking models

Figure 7. Challenges on SBS fault handling.

to achieve service compositions. A paper [60]
has concentrated on reliability issue of SBS and
proposed a framework and prototype tool for
detecting anomalous services in Open Service
Gateway Initiation(OSGi)-based applications.
Anomalous services decrease the reliability.
Evaluating reliability is not an easy task be-
cause different vendors are usually black-box
components which lack source code and design
documents which makes it difficult to evaluate
their quality by static code analysis.
Scalability is another challenge in handling
faults for SBS. The scalability of the SBS means
the ability to add new services, components and
functions for service consumers, without nega-
tively affecting the quality of existing services.
Increasing the functionality is always a difficult
task in case of heterogeneous SBS platforms
and communication protocols, for example,
vertical service delivery. SBSs must provide
scalable mechanisms for registration, discovery
of service faults as well as service interoper-
ability.
Availability of service means the ability of
SBSs to provide services to service customers
anywhere and anytime. Several solutions [62],
[64], [51] to achieve high availability of SOA
services are to providing redundancy for ser-
vices, logging, and replacement. Service avail-
ability means availability of service for service
customer all the time. Some tools [63], [65],
[66] can help system to maximize the service
availability. Infrastructure availability means
24/7 hardware and software availability of SBS.
Due to heterogeneous systems [67], it is not
easy to ensure security and privacy of users. So
security is a significant challenge [25] for the
SBS fault handling. Lack of common standard
and architecture creates a problem in providing
security. One approach could be access control
on the application layer of SOA.
Mobility is another challenge for SBS realiza-
tion because most of the services are expected
to be delivered to mobile users. Mobile users
[67] can move from one place to another, which
may lead to temporary unavailability of service
due to the devices transfer from a gateway to
another gateway. For example, Internet of Ve-
hicles [67], Ad-hoc etc.
Observability analyses the SBS dynamics and
determines if the technology under consider-

ation requires extension or enhancements to
build scalable resource management solution
[68]. Observability addresses how fine-grained
the state of a system and its components can be
observed from the outside.
Autonomy: services are autonomous means ser-
vices exercise a high level of control over their
underlying runtime execution environment.
Service autonomy increases a service's runtime
reliability, performance and predictability, es-
pecially when being reused and composed [69].
A high level of control over how service logic
is designed and developed at implementation
level is required.

8. Conclusion

Since SOA (Service Oriented Architecture) is
a black-box in nature, the fault can be detected
only when it really executes. We proposed an
extended fault taxonomy that systematically
presents a brief description of possible faults in
SBS. The taxonomy also shows the interaction
among different faults, how a fault can cause
other ones. It divides the faults into three cat-
egories: SOA life cycle-specific faults, distrib-
uted system faults and non-functional faults.
The knowledge of fault taxonomy of SBS and
its associated challenges is essential for devel-
oping and testing fault-tolerant and dependable
systems. Practitioners and researchers can ob-
tain a general understanding of SBS depend-
ability. To enhance the dependability of SBS,
fault recovery techniques should also be con-
sidered inherently. Possible fault recovery strat-
egies are also presented in the paper. For further
work, we have a plan to extend our fault taxon-
omy to include possible faults in cloud comput-
ing and Internet of things.

Acknowledgment

The authors would like to thank ICCR, Min-
istry of Foreign Affairs, India (Silver Jubilee
Scholarship Scheme) for providing funds and
DST-CIMS, Institute of Science, BHU, India
for providing necessary infrastructure and fa-
cilities for undertaking this research work.

254 255G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

References

[1] H. J. La and S. D. Kim, ''Static and Dynamic Ad-
aptations for Service-based Systems", Inf. Softw.
Technol., vol. 53, no. 12, pp. 1275–1296, 2010.
https://doi.org/10.1016/j.infsof.2011.06.001

[2] Ieee, "IEEE Standard Glossary of Software Engi-
neering Terminology", Office, vol. 121990, no. 1,
pp. 1, 1990.
https://doi.org/10.1109/IEEESTD.1990.101064

[3] M. X. Wang et al., "Integrated Constraint Vio-
lation Handling for Dynamic Service Compo-
sition", SCC 2009 – 2009 IEEE Int. Conf. Serv.
Comput., pp. 168–175, 2009.
https://doi.org/10.1109/SCC.2009.31

[4] S. Brüning et al., "A Fault Taxonomy for Ser-
vice-oriented Architecture", Proc. IEEE Int.
Symp. High Assur. Syst. Eng., pp. 367–368, 2007.
https://doi.org/10.1109/HASE.2007.46

[5] D. W. Cheun et al., "A Taxonomic Framework
for Autonomous Service Management in Ser-
vice-Oriented Architecture", J. Zhejiang Univ.
Sci. C, vol. 13, no. 5, pp. 339–354, 2012.
https://doi.org/10.1631/jzus.C1100359

[6] A. Avižienis et al., "Basic Concepts and Tax-
onomy of Dependable and Secure Computing",
IEEE Trans. Dependable Secur. Comput., vol. 1,
no. 1, pp. 11–33, 2004.
https://doi.org/10.1109/TDSC.2004.2

[7] L. Mariani, "A Fault Taxonomy for Compo-
nent-based Software", Electron. Notes Theor.
Comput. Sci., vol. 82, no. 6, pp. 61–71, 2003.
https://doi.org/10.1016/S1571-0661(04)81025-9

[8] W. Hummer et al., "Deriving a Unified Fault Tax-
onomy for Event-based Systems", in Proceedings
of the 6th ACM International Conference on Dis-
tributed Event-Based Systems – DEBS '12, 2012,
pp. 167–178.

[9] K. S. M. Chan et al., "A Fault Taxonomy for Web
Service Composition", in International Confer-
ence on Service-Oriented Computing ICSOC
2007. Lecture Notes in Computer Science, 2007,
pp. 363–375.

[10] A. Avižienis et al., "Basic Concepts and Taxon-
omy of Dependable and Secure Computing", IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1,
pp. 11–33, 2004.
https://doi.org/10.1109/TDSC.2004.2

[11] T. Aslam et al., "Use of A Taxonomy of Security
Faults", Proc. of the 19th Natl. Inf. Syst. Secur.
Conf., pp. 551–560, 1996.

[12] G. Vijayaraghavan and C. Kaner, "Bug Taxono-
mies: Use them to Generate Better Tests", Softw.
Test. Anal. Rev., pp. 1–40, 2003.

[13] B. Kidwell and J. Hayes, "Toward a Learned
Project-specific Fault Taxonomy: Application of
Software Analytics", 2015 IEEE 1st Int. Work.
Softw. Anal., pp. 1–4, 2015.
https://doi.org/10.1109/SWAN.2015.7070479

[14] IBM, "Service Oriented Architecture(SOA): Sim-
ply good design", Ibm, 2016.

[15] Microsoft, "Chapter 1: Service Oriented Archi-
tecture (SOA)", Microsoft, 2016. [Online]. Avail-
able:
http://www.opengroup.org/soa/source-book/soa/
soa.htm

[16] Z. Huang et al., "Performance Diagnosis for SOA
on Hybrid Cloud using the Markov Network
Model", Proc. – IEEE 6th Int. Conf. Serv. Com-
put. Appl. SOCA 2013, pp. 17–24, 2013.
https://doi.org/10.1109/SOCA.2013.55

[17] W. Zhao, "Design and Implementation of a
Byzantine Fault Tolerance Framework for Web
Services", J. Syst. Softw., vol. 82, no. 6, pp.
1004–1015, 2009.
https://doi.org/10.1016/j.jss.2008.12.037

[18] F. Belli and M. Linschulte, "Event-driven Model-
ing and Testing of Real-time Web Services", Serv.
Oriented Comput. Appl., vol. 4, no. 1, pp. 3–15,
2010.
https://doi.org/10.1007/s11761-010-0056-5

[19] F. Balbastro et al., "Analysis and Frame-
work-based Design of a Fault-tolerant Web In-
formation System for M-health", Serv. Oriented
Comput. Appl., vol. 2, no. 2–3, pp. 111–144, 2008.
https://doi.org/10.1007/s11761-008-0026-3

[20] K. Zhai et al., "Prioritizing Test Cases for Regres-
sion Testing of Location-based Services: Metrics,
Techniques, and Case Study", IEEE Trans. Serv.
Comput., vol. 7, no. 1, pp. 54–67, 2014.
https://doi.org/10.1109/TSC.2012.40

[21] G. Friedrich et al., "Exception Handling for Re-
pair in Service-based Processes", IEEE Trans.
Softw. Eng., vol. 36, no. 2, pp. 198–215, 2010.
https://doi.org/10.1109/TSE.2010.8

[22] J. Chen et al., "A Web Services Vulnerability Test-
ing Approach Based on Combinatorial Mutation
and SOAP Message Mutation", Serv. Oriented
Comput. Appl., vol. 8, no. 1, pp. 1–13, 2014.
https://doi.org/10.1007/s11761-013-0139-1

[23] C. Ye and H. A. Jacobsen, "Whitening SOA Test-
ing via Event Exposure", IEEE Trans. Softw.
Eng., vol. 39, no. 10, pp. 1444–1465, 2013.
https://doi.org/10.1109/TSE.2013.20

[24] L. Wang et al., "Robust Client/Server Shared
State Interactions of Collaborative Process with
System Crash and Network Failures", Proc. –
IEEE 10th Int. Conf. Serv. Comput. SCC 2013,
pp. 192–199, 2013.
https://doi.org/10.1109/SCC.2013.39

[25] W. She et al., "Security-aware Service Compo-
sition with Fine-grained Information Flow Con-
trol", IEEE Trans. Serv. Comput., vol. 6, no. 3, pp.
330–343, 2013.
https://doi.org/10.1109/TSC.2012.3

[26] M. Bartoletti et al., "Semantics-based Design for
Secure Web Services", IEEE Trans. Softw. Eng.,
vol. 34, no. 1, pp. 33–49, 2008.
https://doi.org/10.1109/TSE.2007.70740

[27] A. Ismail et al., "Analyzing Fault-impact Region
of Composite Service for Supporting Fault Han-
dling Process", Proc. – 2011 IEEE Int. Conf. Serv.
Comput. SCC 2011, pp. 290–297, 2011.
https://doi.org/10.1109/SCC.2011.51

[28] V. Garousi et al., "Traffic-aware Stress Test-
ing of Distributed Real-time Systems based on
UML Models using Genetic Algorithms", J. Syst.
Softw., vol. 81, no. 2, pp. 161–185, 2008.
https://doi.org/10.1016/j.jss.2007.05.037

[29] W. L. Yeung, "Formalizing Exception Handling
in WS-CDL and WS-BPEL for Conformance
Verification", IEEE Int. Conf. Serv. Comput.
Appl. SOCA '09, vol. 0, no. c, pp. 262–269, 2009.
https://doi.org/10.1109/SOCA.2009.5410265

[30] A. Liu et al., "FACTS: A Framework for
Fault-tolerant Composition of Transactional Web
Services", IEEE Trans. Serv. Comput., vol. 3, no.
1, pp. 46–59, 2010.
https://doi.org/10.1109/TSC.2009.28

[31] B. R. Kandukuri et al., "Cloud Security Issues",
Proc. 2009 IEEE Int. Conf. Serv. Comput., pp.
517–520, 2009.
https://doi.org/10.1109/SCC.2009.84

[32] M. Sama et al., "Multi-layer Faults in the Ar-
chitectures of Mobile, Context-aware Adaptive
Applications", J. Syst. Softw., vol. 83, no. 6, pp.
906–914, 2010.
https://doi.org/10.1016/j.jss.2009.11.005

[33] A. Ismail et al., "Incremental Service Level
Agreements Violation Handling with Time Im-
pact Analysis", J. Syst. Softw., vol. 86, no. 6, pp.
1530–1544, 2013.
https://doi.org/10.1016/j.jss.2013.01.052

[34] R. Alsoghayer and K. Djemame, "Resource Fail-
ures Risk Assessment Modelling in Distributed
Environments", J. Syst. Softw., vol. 88, no. 1, pp.
42–53, 2014.
https://doi.org/10.1016/j.jss.2013.09.017

[35] H. Chai and W. Zhao, "Byzantine Fault Tolerance
for Services with Commutative Operations",
Proc. – 2014 IEEE Int. Conf. Serv. Comput. SCC
2014, pp. 219–226, 2014.
https://doi.org/10.1109/SCC.2014.37

[36] K. M. Lhaksmana et al., "Cascading Failure Tol-
erance in Large-Scale Service Networks", Proc.
– 2015 IEEE Int. Conf. Serv. Comput. SCC 2015,
pp. 1–8, 2015.
https://doi.org/10.1109/SCC.2015.11

[37] H. Luo et al., "Where to Fix Temporal Violations:
A Novel Handling Point Selection Strategy for
Business Cloud Workflows", Proc. – 2016 IEEE
Int. Conf. Serv. Comput. SCC 2016, pp. 155–162,
2016.
https://doi.org/10.1109/SCC.2016.27

[38] N. Menadjelia, "Towards a Formal Study of Au-
tomatic Failure Recovery in Protocol-based Web
Service Composition", Serv. Oriented Comput.
Appl., vol. 10, no. 2, pp. 173–184, 2016.
https://doi.org/10.1007/s11761-015-0176-z

[39] F. Montagut and R. Molva, "Bridging Security
and Fault Management within Distributed Work-
flow Management Systems", IEEE Trans. Serv.
Comput., vol. 1, no. 1, pp. 33–48, 2008.
https://doi.org/10.1109/TSC.2008.3

[40] G. Kola et al., "Faults in Large Distributed Sys-
tems and What We Can Do About Them", Eu-
ro-Par 2005 Parallel Process, 2005.

[41] S. Avedaño, "Safety and Dependability Analysis
to Complement Testing of Safety-critical Soft-
ware", Softcare, 2004.

[42] H. Chai et al., "Toward Trustworthy Coordina-
tion of Web Services Business Activities", IEEE
Trans. Serv. Comput., vol. 6, no. 2, pp. 276–288,
2013.
https://doi.org/10.1109/TSC.2011.57

[43] L. Shwartz et al., "Quality of IT Service Delivery
#x2014 – Analysis and Framework for Human
Error Prevention", Serv. Comput. Appl. (SOCA),
2010 IEEE Int. Conf., pp. 1–8, 2010.
https://doi.org/10.1109/SOCA.2010.5707161

[44] D. Nadkarni et al., "Failure Analysis for Com-
position of Web Services Represented as La-
beled Transition Systems", in Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2011, vol. 6551 LNCS, pp.
161–175.

[45] O. Bushehrian et al., "A Workflow-Based Fail-
ure Recovery in Web Services Composition", J.
Softw. Eng. Appl., vol. 5, no. 2, pp. 89–95, 2012.
https://doi.org/10.4236/jsea.2012.52014

[46] S. Varadi and G. A. Rao, "Quality of Service Cen-
tric Web Service Composition: Assessing Com-
position Impact Scale towards Fault Proneness",
Glob. J. Comput. Sci. Technol. C Softw. Data
Eng., vol. 14, no. 9, 2014.

[47] T. Szigeti et al., ''End-to-End QoS Network De-
sign: Quality of Service for Rich-Media & Cloud
Networks'', Second Edition, Video Enhanced Edi-
tion, Cisco Press, 2013.

[48] P. K. Mishra et al., "QoS Analysis in Data Net-
work : Stability , Reliability , QoS Invoke Rate
Perspectives", in ICEIT Conference on Advances
in Mobile Communications, Networking and
Computing February, 2017, pp. 107–111.

https://doi.org/10.1016/j.infsof.2011.06.001
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/SCC.2009.31
https://doi.org/10.1109/HASE.2007.46
https://doi.org/10.1631/jzus.C1100359
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1016/S1571-0661(04)81025-9
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/SWAN.2015.7070479
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm
https://doi.org/10.1109/SOCA.2013.55
https://doi.org/10.1016/j.jss.2008.12.037
https://doi.org/10.1007/s11761-010-0056-5
https://doi.org/10.1007/s11761-008-0026-3
https://doi.org/10.1109/TSC.2012.40
https://doi.org/10.1109/TSE.2010.8
https://doi.org/10.1007/s11761-013-0139-1
https://doi.org/10.1109/TSE.2013.20
https://doi.org/10.1109/SCC.2013.39
https://doi.org/10.1109/TSC.2012.3
https://doi.org/10.1109/TSE.2007.70740
https://doi.org/10.1109/SCC.2011.51
https://doi.org/10.1016/j.jss.2007.05.037
https://doi.org/10.1109/SOCA.2009.5410265
https://doi.org/10.1109/TSC.2009.28
https://doi.org/10.1109/SCC.2009.84
https://doi.org/10.1016/j.jss.2009.11.005
https://doi.org/10.1016/j.jss.2013.01.052
https://doi.org/10.1016/j.jss.2013.09.017
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1109/SCC.2015.11
https://doi.org/10.1109/SCC.2016.27
https://doi.org/10.1007/s11761-015-0176-z
https://doi.org/10.1109/TSC.2008.3
https://doi.org/10.1109/TSC.2011.57
https://doi.org/10.1109/SOCA.2010.5707161
https://doi.org/10.4236/jsea.2012.52014

254 255G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

References

[1] H. J. La and S. D. Kim, ''Static and Dynamic Ad-
aptations for Service-based Systems", Inf. Softw.
Technol., vol. 53, no. 12, pp. 1275–1296, 2010.
https://doi.org/10.1016/j.infsof.2011.06.001

[2] Ieee, "IEEE Standard Glossary of Software Engi-
neering Terminology", Office, vol. 121990, no. 1,
pp. 1, 1990.
https://doi.org/10.1109/IEEESTD.1990.101064

[3] M. X. Wang et al., "Integrated Constraint Vio-
lation Handling for Dynamic Service Compo-
sition", SCC 2009 – 2009 IEEE Int. Conf. Serv.
Comput., pp. 168–175, 2009.
https://doi.org/10.1109/SCC.2009.31

[4] S. Brüning et al., "A Fault Taxonomy for Ser-
vice-oriented Architecture", Proc. IEEE Int.
Symp. High Assur. Syst. Eng., pp. 367–368, 2007.
https://doi.org/10.1109/HASE.2007.46

[5] D. W. Cheun et al., "A Taxonomic Framework
for Autonomous Service Management in Ser-
vice-Oriented Architecture", J. Zhejiang Univ.
Sci. C, vol. 13, no. 5, pp. 339–354, 2012.
https://doi.org/10.1631/jzus.C1100359

[6] A. Avižienis et al., "Basic Concepts and Tax-
onomy of Dependable and Secure Computing",
IEEE Trans. Dependable Secur. Comput., vol. 1,
no. 1, pp. 11–33, 2004.
https://doi.org/10.1109/TDSC.2004.2

[7] L. Mariani, "A Fault Taxonomy for Compo-
nent-based Software", Electron. Notes Theor.
Comput. Sci., vol. 82, no. 6, pp. 61–71, 2003.
https://doi.org/10.1016/S1571-0661(04)81025-9

[8] W. Hummer et al., "Deriving a Unified Fault Tax-
onomy for Event-based Systems", in Proceedings
of the 6th ACM International Conference on Dis-
tributed Event-Based Systems – DEBS '12, 2012,
pp. 167–178.

[9] K. S. M. Chan et al., "A Fault Taxonomy for Web
Service Composition", in International Confer-
ence on Service-Oriented Computing ICSOC
2007. Lecture Notes in Computer Science, 2007,
pp. 363–375.

[10] A. Avižienis et al., "Basic Concepts and Taxon-
omy of Dependable and Secure Computing", IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1,
pp. 11–33, 2004.
https://doi.org/10.1109/TDSC.2004.2

[11] T. Aslam et al., "Use of A Taxonomy of Security
Faults", Proc. of the 19th Natl. Inf. Syst. Secur.
Conf., pp. 551–560, 1996.

[12] G. Vijayaraghavan and C. Kaner, "Bug Taxono-
mies: Use them to Generate Better Tests", Softw.
Test. Anal. Rev., pp. 1–40, 2003.

[13] B. Kidwell and J. Hayes, "Toward a Learned
Project-specific Fault Taxonomy: Application of
Software Analytics", 2015 IEEE 1st Int. Work.
Softw. Anal., pp. 1–4, 2015.
https://doi.org/10.1109/SWAN.2015.7070479

[14] IBM, "Service Oriented Architecture(SOA): Sim-
ply good design", Ibm, 2016.

[15] Microsoft, "Chapter 1: Service Oriented Archi-
tecture (SOA)", Microsoft, 2016. [Online]. Avail-
able:
http://www.opengroup.org/soa/source-book/soa/
soa.htm

[16] Z. Huang et al., "Performance Diagnosis for SOA
on Hybrid Cloud using the Markov Network
Model", Proc. – IEEE 6th Int. Conf. Serv. Com-
put. Appl. SOCA 2013, pp. 17–24, 2013.
https://doi.org/10.1109/SOCA.2013.55

[17] W. Zhao, "Design and Implementation of a
Byzantine Fault Tolerance Framework for Web
Services", J. Syst. Softw., vol. 82, no. 6, pp.
1004–1015, 2009.
https://doi.org/10.1016/j.jss.2008.12.037

[18] F. Belli and M. Linschulte, "Event-driven Model-
ing and Testing of Real-time Web Services", Serv.
Oriented Comput. Appl., vol. 4, no. 1, pp. 3–15,
2010.
https://doi.org/10.1007/s11761-010-0056-5

[19] F. Balbastro et al., "Analysis and Frame-
work-based Design of a Fault-tolerant Web In-
formation System for M-health", Serv. Oriented
Comput. Appl., vol. 2, no. 2–3, pp. 111–144, 2008.
https://doi.org/10.1007/s11761-008-0026-3

[20] K. Zhai et al., "Prioritizing Test Cases for Regres-
sion Testing of Location-based Services: Metrics,
Techniques, and Case Study", IEEE Trans. Serv.
Comput., vol. 7, no. 1, pp. 54–67, 2014.
https://doi.org/10.1109/TSC.2012.40

[21] G. Friedrich et al., "Exception Handling for Re-
pair in Service-based Processes", IEEE Trans.
Softw. Eng., vol. 36, no. 2, pp. 198–215, 2010.
https://doi.org/10.1109/TSE.2010.8

[22] J. Chen et al., "A Web Services Vulnerability Test-
ing Approach Based on Combinatorial Mutation
and SOAP Message Mutation", Serv. Oriented
Comput. Appl., vol. 8, no. 1, pp. 1–13, 2014.
https://doi.org/10.1007/s11761-013-0139-1

[23] C. Ye and H. A. Jacobsen, "Whitening SOA Test-
ing via Event Exposure", IEEE Trans. Softw.
Eng., vol. 39, no. 10, pp. 1444–1465, 2013.
https://doi.org/10.1109/TSE.2013.20

[24] L. Wang et al., "Robust Client/Server Shared
State Interactions of Collaborative Process with
System Crash and Network Failures", Proc. –
IEEE 10th Int. Conf. Serv. Comput. SCC 2013,
pp. 192–199, 2013.
https://doi.org/10.1109/SCC.2013.39

[25] W. She et al., "Security-aware Service Compo-
sition with Fine-grained Information Flow Con-
trol", IEEE Trans. Serv. Comput., vol. 6, no. 3, pp.
330–343, 2013.
https://doi.org/10.1109/TSC.2012.3

[26] M. Bartoletti et al., "Semantics-based Design for
Secure Web Services", IEEE Trans. Softw. Eng.,
vol. 34, no. 1, pp. 33–49, 2008.
https://doi.org/10.1109/TSE.2007.70740

[27] A. Ismail et al., "Analyzing Fault-impact Region
of Composite Service for Supporting Fault Han-
dling Process", Proc. – 2011 IEEE Int. Conf. Serv.
Comput. SCC 2011, pp. 290–297, 2011.
https://doi.org/10.1109/SCC.2011.51

[28] V. Garousi et al., "Traffic-aware Stress Test-
ing of Distributed Real-time Systems based on
UML Models using Genetic Algorithms", J. Syst.
Softw., vol. 81, no. 2, pp. 161–185, 2008.
https://doi.org/10.1016/j.jss.2007.05.037

[29] W. L. Yeung, "Formalizing Exception Handling
in WS-CDL and WS-BPEL for Conformance
Verification", IEEE Int. Conf. Serv. Comput.
Appl. SOCA '09, vol. 0, no. c, pp. 262–269, 2009.
https://doi.org/10.1109/SOCA.2009.5410265

[30] A. Liu et al., "FACTS: A Framework for
Fault-tolerant Composition of Transactional Web
Services", IEEE Trans. Serv. Comput., vol. 3, no.
1, pp. 46–59, 2010.
https://doi.org/10.1109/TSC.2009.28

[31] B. R. Kandukuri et al., "Cloud Security Issues",
Proc. 2009 IEEE Int. Conf. Serv. Comput., pp.
517–520, 2009.
https://doi.org/10.1109/SCC.2009.84

[32] M. Sama et al., "Multi-layer Faults in the Ar-
chitectures of Mobile, Context-aware Adaptive
Applications", J. Syst. Softw., vol. 83, no. 6, pp.
906–914, 2010.
https://doi.org/10.1016/j.jss.2009.11.005

[33] A. Ismail et al., "Incremental Service Level
Agreements Violation Handling with Time Im-
pact Analysis", J. Syst. Softw., vol. 86, no. 6, pp.
1530–1544, 2013.
https://doi.org/10.1016/j.jss.2013.01.052

[34] R. Alsoghayer and K. Djemame, "Resource Fail-
ures Risk Assessment Modelling in Distributed
Environments", J. Syst. Softw., vol. 88, no. 1, pp.
42–53, 2014.
https://doi.org/10.1016/j.jss.2013.09.017

[35] H. Chai and W. Zhao, "Byzantine Fault Tolerance
for Services with Commutative Operations",
Proc. – 2014 IEEE Int. Conf. Serv. Comput. SCC
2014, pp. 219–226, 2014.
https://doi.org/10.1109/SCC.2014.37

[36] K. M. Lhaksmana et al., "Cascading Failure Tol-
erance in Large-Scale Service Networks", Proc.
– 2015 IEEE Int. Conf. Serv. Comput. SCC 2015,
pp. 1–8, 2015.
https://doi.org/10.1109/SCC.2015.11

[37] H. Luo et al., "Where to Fix Temporal Violations:
A Novel Handling Point Selection Strategy for
Business Cloud Workflows", Proc. – 2016 IEEE
Int. Conf. Serv. Comput. SCC 2016, pp. 155–162,
2016.
https://doi.org/10.1109/SCC.2016.27

[38] N. Menadjelia, "Towards a Formal Study of Au-
tomatic Failure Recovery in Protocol-based Web
Service Composition", Serv. Oriented Comput.
Appl., vol. 10, no. 2, pp. 173–184, 2016.
https://doi.org/10.1007/s11761-015-0176-z

[39] F. Montagut and R. Molva, "Bridging Security
and Fault Management within Distributed Work-
flow Management Systems", IEEE Trans. Serv.
Comput., vol. 1, no. 1, pp. 33–48, 2008.
https://doi.org/10.1109/TSC.2008.3

[40] G. Kola et al., "Faults in Large Distributed Sys-
tems and What We Can Do About Them", Eu-
ro-Par 2005 Parallel Process, 2005.

[41] S. Avedaño, "Safety and Dependability Analysis
to Complement Testing of Safety-critical Soft-
ware", Softcare, 2004.

[42] H. Chai et al., "Toward Trustworthy Coordina-
tion of Web Services Business Activities", IEEE
Trans. Serv. Comput., vol. 6, no. 2, pp. 276–288,
2013.
https://doi.org/10.1109/TSC.2011.57

[43] L. Shwartz et al., "Quality of IT Service Delivery
#x2014 – Analysis and Framework for Human
Error Prevention", Serv. Comput. Appl. (SOCA),
2010 IEEE Int. Conf., pp. 1–8, 2010.
https://doi.org/10.1109/SOCA.2010.5707161

[44] D. Nadkarni et al., "Failure Analysis for Com-
position of Web Services Represented as La-
beled Transition Systems", in Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2011, vol. 6551 LNCS, pp.
161–175.

[45] O. Bushehrian et al., "A Workflow-Based Fail-
ure Recovery in Web Services Composition", J.
Softw. Eng. Appl., vol. 5, no. 2, pp. 89–95, 2012.
https://doi.org/10.4236/jsea.2012.52014

[46] S. Varadi and G. A. Rao, "Quality of Service Cen-
tric Web Service Composition: Assessing Com-
position Impact Scale towards Fault Proneness",
Glob. J. Comput. Sci. Technol. C Softw. Data
Eng., vol. 14, no. 9, 2014.

[47] T. Szigeti et al., ''End-to-End QoS Network De-
sign: Quality of Service for Rich-Media & Cloud
Networks'', Second Edition, Video Enhanced Edi-
tion, Cisco Press, 2013.

[48] P. K. Mishra et al., "QoS Analysis in Data Net-
work : Stability , Reliability , QoS Invoke Rate
Perspectives", in ICEIT Conference on Advances
in Mobile Communications, Networking and
Computing February, 2017, pp. 107–111.

https://doi.org/10.1016/j.infsof.2011.06.001
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/SCC.2009.31
https://doi.org/10.1109/HASE.2007.46
https://doi.org/10.1631/jzus.C1100359
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1016/S1571-0661(04)81025-9
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/SWAN.2015.7070479
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm
https://doi.org/10.1109/SOCA.2013.55
https://doi.org/10.1016/j.jss.2008.12.037
https://doi.org/10.1007/s11761-010-0056-5
https://doi.org/10.1007/s11761-008-0026-3
https://doi.org/10.1109/TSC.2012.40
https://doi.org/10.1109/TSE.2010.8
https://doi.org/10.1007/s11761-013-0139-1
https://doi.org/10.1109/TSE.2013.20
https://doi.org/10.1109/SCC.2013.39
https://doi.org/10.1109/TSC.2012.3
https://doi.org/10.1109/TSE.2007.70740
https://doi.org/10.1109/SCC.2011.51
https://doi.org/10.1016/j.jss.2007.05.037
https://doi.org/10.1109/SOCA.2009.5410265
https://doi.org/10.1109/TSC.2009.28
https://doi.org/10.1109/SCC.2009.84
https://doi.org/10.1016/j.jss.2009.11.005
https://doi.org/10.1016/j.jss.2013.01.052
https://doi.org/10.1016/j.jss.2013.09.017
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1109/SCC.2015.11
https://doi.org/10.1109/SCC.2016.27
https://doi.org/10.1007/s11761-015-0176-z
https://doi.org/10.1109/TSC.2008.3
https://doi.org/10.1109/TSC.2011.57
https://doi.org/10.1109/SOCA.2010.5707161
https://doi.org/10.4236/jsea.2012.52014

256 257G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

[49] F. Mahdian and V. Rafe, "Different Models of
Dependable Services in Service-oriented Archi-
tecture", in ICACTE 2010 – 2010 3rd Interna-
tional Conference on Advanced Computer The-
ory and Engineering, Proceedings, 2010, vol. 1,
pp. 217–220.

[50] E. A. Brewer, "Lessons from Giant-scale Ser-
vices", in IEEE Internet Computing, 2001, vol. 5,
no. 4, pp. 46–55.

[51] M. F. Mohamed, "Service Replication Taxonomy
in Distributed Environments", Serv. Oriented
Comput. Appl., vol. 10, no. 3, pp. 317–336, 2016.
https://doi.org/10.1007/s11761-015-0189-7

[52] N. Ayari et al., "Fault Tolerance for Highly Avail-
able Internet Services: Concepts, Approaches,
and Issues", IEEE Commun. Surv. Tutorials, vol.
10, no. 2, pp. 34–46, 2008.
https://doi.org/10.1109/COMST.2008.4564478

[53] N. Aghdaie and Y. Tamir, "CoRAL: A Transpar-
ent Fault-tolerant Web Service", J. Syst. Softw.,
vol. 82, no. 1, pp. 131–143, 2009.
https://doi.org/10.1016/j.jss.2008.06.036

[54] G. P. Bhandari and R. Gupta, "Fault Repairing
Strategy Selector for Service-Oriented Architec-
ture", I.J. Mod. Educ. Comput. Sci. Mod. Educ.
Comput. Sci., vol. 6, no. 6, pp. 32–39, 2017.
https://doi.org/10.5815/ijmecs.2017.06.05

[55] A. D. Brucker and J. Julliand, "Editorial: Edito-
rial for the Special Issue of STVR on Tests and
Proofs Volume 2: Tests and Proofs for Improv-
ing the Generation Time and Quality of Test Data
Suites", Softw. Test. Verif. Reliab., vol. 24, no. 8,
pp. 591–592, 2014.
https://doi.org/10.1002/stvr.1558

[56] M. Jensen, "A Fault Propagation Approach for
Highly Distributed Service Compositions", Proc.
– 2008 IEEE Int. Conf. Serv. Comput. SCC 2008,
vol. 2, pp. 507–510, 2008.
https://doi.org/10.1109/SCC.2008.38

[57] A. Benharref et al., "Efficient Traces' Collection
Mechanisms for Passive Testing of Web Ser-
vices", Inf. Softw. Technol., vol. 51, no. 2, pp.
362–374, 2009.
https://doi.org/10.1016/j.infsof.2008.04.007

[58] L. Baresi and S. Guinea, "Self-supervising BPEL
Processes", IEEE Trans. Softw. Eng., vol. 37,
no. 2, pp. 247–263, 2011.
https://doi.org/10.1109/TSE.2010.37

[59] Z. Zakaria et al., "Unit Ttesting Approaches for
BPEL: A Systematic Review", in Proceedings –
Asia-Pacific Software Engineering Conference,
APSEC, 2009, pp. 316–322.

[60] T. Wang et al., "A Framework for Detecting
Anomalous Services in OSGi-based Applica-
tions", Proc. – 2012 IEEE 9th Int. Conf. Serv.
Comput. SCC 2012, pp. 250–257, 2012.
https://doi.org/10.1109/SCC.2012.59

[61] M. S. Ali and S. Reiff-Marganiec, "Autonomous
Failure-handling Mechanism for WF Long Run-
ning Transactions", Proc. – 2012 IEEE 9th Int.
Conf. Serv. Comput. SCC 2012, pp. 562–569,
2012.
https://doi.org/10.1109/SCC.2012.50

[62] Z. Wu and N. Chu, "Efficient Service Re-com-
position Using Semantic Augmentation for Fast
Cloud Fault Recovery", Proc. – IEEE 10th Int.
Conf. Serv. Comput. SCC 2013, pp. 176–183,
2013.
https://doi.org/10.1109/SCC.2013.78

[63] E. Ruijters and M. Stoelinga, "Fault Tree Analy-
sis: A Survey of the State-of-the-art in Modeling,
Analysis and Tools", Comput. Sci. Rev., vol. 15,
pp. 29–62, 2015.
https://doi.org/10.1016/j.cosrev.2015.03.001

[64] P. Marcu et al., "Managing Faults in the Service
Delivery Process of Service Provider Coalitions",
SCC 2009 – 2009 IEEE Int. Conf. Serv. Comput.,
pp. 65–72, 2009.
https://doi.org/10.1109/SCC.2009.41

[65] N. Antunes and M. Vieira, "SOA-scanner: An
Integrated Tool to Detect Vulnerabilities in Ser-
vice-based Infrastructures", Proc. – IEEE 10th
Int. Conf. Serv. Comput. SCC 2013, pp. 280–287,
2013.
https://doi.org/10.1109/SCC.2013.28

[66] K. Goseva-Popstojanova and A. Perhinschi, "On
the Capability of Static Code Analysis to Detect
Security Vulnerabilities", Inf. Softw. Technol.,
vol. 68, pp. 18–33, 2015.
https://doi.org/10.1016/j.infsof.2015.08.002

[67] Z. Sanaei et al., "Heterogeneity in Mobile Cloud
Computing: Taxonomy and Open Challenges",
IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp.
369–392, 2014.
https://doi.org/10.1109/SURV.2013.050113.00090

[68] Ulrike Steffens, Ed., MDD, SOA and IT-Manage-
ment, GITO mbH Verlag, 2009.

[69] G. Lavanchy et al., ''Habitat Heterogeneity Favors
Asexual Reproduction in Natural Populations of
Grassthrips'', vol. 70, no. 8. 2016.

Received: March 2017
Revised: December 2017

Accepted: December 2017

Contact addresses:
Guru Prasad Bhandari

DST-CIMS, Institute of Science,
Banaras Hindu University,

Varanasi
India

guru.bhandari@gmail.com

Ratneshwer Gupta
School of Computer & Systems Sciences,

Jawaharlal Nehru University,
New Delhi

India
ratnesh@mail.jnu.ac.in

Guru Prasad Bhandari received his MCA (Master of Computer Ap-
plications) degree from the Department of Computer Science, Institute
of Science, Banaras Hindu University, Varanasi, India in 2015. His re-
search interest covers service-oriented computing, fault tolerance and
reliability analysis. He is currently doing research in the area of fault
analysis of service-oriented computing. He is pursuing his doctoral
work under the supervision of Dr. Ratneshwer.

dr. ratneshwer GuPta received his PhD in Component Based Soft-
ware Engineering from Indian Institute of Technology, Banaras Hindu
University, Varanasi (IIT-BHU), India. His research areas are Compo-
nent-Based Software Engineering and Service-Oriented Architectures.
He is serving as an Assistant Professor in the School of Computer &
Systems Sciences, JNU, New Delhi, India. He has been actively in-
volved in teaching and research for the last 8 years. He has published
16 research papers in international journals and 16 research papers in
international/national conference proceedings in his credit.

https://doi.org/10.1007/s11761-015-0189-7
https://doi.org/10.1109/COMST.2008.4564478
https://doi.org/10.1016/j.jss.2008.06.036
https://doi.org/10.5815/ijmecs.2017.06.05
https://doi.org/10.1002/stvr.1558
https://doi.org/10.1109/SCC.2008.38
https://doi.org/10.1016/j.infsof.2008.04.007
https://doi.org/10.1109/TSE.2010.37
https://doi.org/10.1109/SCC.2012.59
https://doi.org/10.1109/SCC.2012.50
https://doi.org/10.1109/SCC.2013.78
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/SCC.2009.41
https://doi.org/10.1109/SCC.2013.28
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1109/SURV.2013.050113.00090

256 257G. P. Bhandari and R. Gupta Extended Fault Taxonomy of SOA-Based Systems

[49] F. Mahdian and V. Rafe, "Different Models of
Dependable Services in Service-oriented Archi-
tecture", in ICACTE 2010 – 2010 3rd Interna-
tional Conference on Advanced Computer The-
ory and Engineering, Proceedings, 2010, vol. 1,
pp. 217–220.

[50] E. A. Brewer, "Lessons from Giant-scale Ser-
vices", in IEEE Internet Computing, 2001, vol. 5,
no. 4, pp. 46–55.

[51] M. F. Mohamed, "Service Replication Taxonomy
in Distributed Environments", Serv. Oriented
Comput. Appl., vol. 10, no. 3, pp. 317–336, 2016.
https://doi.org/10.1007/s11761-015-0189-7

[52] N. Ayari et al., "Fault Tolerance for Highly Avail-
able Internet Services: Concepts, Approaches,
and Issues", IEEE Commun. Surv. Tutorials, vol.
10, no. 2, pp. 34–46, 2008.
https://doi.org/10.1109/COMST.2008.4564478

[53] N. Aghdaie and Y. Tamir, "CoRAL: A Transpar-
ent Fault-tolerant Web Service", J. Syst. Softw.,
vol. 82, no. 1, pp. 131–143, 2009.
https://doi.org/10.1016/j.jss.2008.06.036

[54] G. P. Bhandari and R. Gupta, "Fault Repairing
Strategy Selector for Service-Oriented Architec-
ture", I.J. Mod. Educ. Comput. Sci. Mod. Educ.
Comput. Sci., vol. 6, no. 6, pp. 32–39, 2017.
https://doi.org/10.5815/ijmecs.2017.06.05

[55] A. D. Brucker and J. Julliand, "Editorial: Edito-
rial for the Special Issue of STVR on Tests and
Proofs Volume 2: Tests and Proofs for Improv-
ing the Generation Time and Quality of Test Data
Suites", Softw. Test. Verif. Reliab., vol. 24, no. 8,
pp. 591–592, 2014.
https://doi.org/10.1002/stvr.1558

[56] M. Jensen, "A Fault Propagation Approach for
Highly Distributed Service Compositions", Proc.
– 2008 IEEE Int. Conf. Serv. Comput. SCC 2008,
vol. 2, pp. 507–510, 2008.
https://doi.org/10.1109/SCC.2008.38

[57] A. Benharref et al., "Efficient Traces' Collection
Mechanisms for Passive Testing of Web Ser-
vices", Inf. Softw. Technol., vol. 51, no. 2, pp.
362–374, 2009.
https://doi.org/10.1016/j.infsof.2008.04.007

[58] L. Baresi and S. Guinea, "Self-supervising BPEL
Processes", IEEE Trans. Softw. Eng., vol. 37,
no. 2, pp. 247–263, 2011.
https://doi.org/10.1109/TSE.2010.37

[59] Z. Zakaria et al., "Unit Ttesting Approaches for
BPEL: A Systematic Review", in Proceedings –
Asia-Pacific Software Engineering Conference,
APSEC, 2009, pp. 316–322.

[60] T. Wang et al., "A Framework for Detecting
Anomalous Services in OSGi-based Applica-
tions", Proc. – 2012 IEEE 9th Int. Conf. Serv.
Comput. SCC 2012, pp. 250–257, 2012.
https://doi.org/10.1109/SCC.2012.59

[61] M. S. Ali and S. Reiff-Marganiec, "Autonomous
Failure-handling Mechanism for WF Long Run-
ning Transactions", Proc. – 2012 IEEE 9th Int.
Conf. Serv. Comput. SCC 2012, pp. 562–569,
2012.
https://doi.org/10.1109/SCC.2012.50

[62] Z. Wu and N. Chu, "Efficient Service Re-com-
position Using Semantic Augmentation for Fast
Cloud Fault Recovery", Proc. – IEEE 10th Int.
Conf. Serv. Comput. SCC 2013, pp. 176–183,
2013.
https://doi.org/10.1109/SCC.2013.78

[63] E. Ruijters and M. Stoelinga, "Fault Tree Analy-
sis: A Survey of the State-of-the-art in Modeling,
Analysis and Tools", Comput. Sci. Rev., vol. 15,
pp. 29–62, 2015.
https://doi.org/10.1016/j.cosrev.2015.03.001

[64] P. Marcu et al., "Managing Faults in the Service
Delivery Process of Service Provider Coalitions",
SCC 2009 – 2009 IEEE Int. Conf. Serv. Comput.,
pp. 65–72, 2009.
https://doi.org/10.1109/SCC.2009.41

[65] N. Antunes and M. Vieira, "SOA-scanner: An
Integrated Tool to Detect Vulnerabilities in Ser-
vice-based Infrastructures", Proc. – IEEE 10th
Int. Conf. Serv. Comput. SCC 2013, pp. 280–287,
2013.
https://doi.org/10.1109/SCC.2013.28

[66] K. Goseva-Popstojanova and A. Perhinschi, "On
the Capability of Static Code Analysis to Detect
Security Vulnerabilities", Inf. Softw. Technol.,
vol. 68, pp. 18–33, 2015.
https://doi.org/10.1016/j.infsof.2015.08.002

[67] Z. Sanaei et al., "Heterogeneity in Mobile Cloud
Computing: Taxonomy and Open Challenges",
IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp.
369–392, 2014.
https://doi.org/10.1109/SURV.2013.050113.00090

[68] Ulrike Steffens, Ed., MDD, SOA and IT-Manage-
ment, GITO mbH Verlag, 2009.

[69] G. Lavanchy et al., ''Habitat Heterogeneity Favors
Asexual Reproduction in Natural Populations of
Grassthrips'', vol. 70, no. 8. 2016.

Received: March 2017
Revised: December 2017

Accepted: December 2017

Contact addresses:
Guru Prasad Bhandari

DST-CIMS, Institute of Science,
Banaras Hindu University,

Varanasi
India

guru.bhandari@gmail.com

Ratneshwer Gupta
School of Computer & Systems Sciences,

Jawaharlal Nehru University,
New Delhi

India
ratnesh@mail.jnu.ac.in

Guru Prasad Bhandari received his MCA (Master of Computer Ap-
plications) degree from the Department of Computer Science, Institute
of Science, Banaras Hindu University, Varanasi, India in 2015. His re-
search interest covers service-oriented computing, fault tolerance and
reliability analysis. He is currently doing research in the area of fault
analysis of service-oriented computing. He is pursuing his doctoral
work under the supervision of Dr. Ratneshwer.

dr. ratneshwer GuPta received his PhD in Component Based Soft-
ware Engineering from Indian Institute of Technology, Banaras Hindu
University, Varanasi (IIT-BHU), India. His research areas are Compo-
nent-Based Software Engineering and Service-Oriented Architectures.
He is serving as an Assistant Professor in the School of Computer &
Systems Sciences, JNU, New Delhi, India. He has been actively in-
volved in teaching and research for the last 8 years. He has published
16 research papers in international journals and 16 research papers in
international/national conference proceedings in his credit.

https://doi.org/10.1007/s11761-015-0189-7
https://doi.org/10.1109/COMST.2008.4564478
https://doi.org/10.1016/j.jss.2008.06.036
https://doi.org/10.5815/ijmecs.2017.06.05
https://doi.org/10.1002/stvr.1558
https://doi.org/10.1109/SCC.2008.38
https://doi.org/10.1016/j.infsof.2008.04.007
https://doi.org/10.1109/TSE.2010.37
https://doi.org/10.1109/SCC.2012.59
https://doi.org/10.1109/SCC.2012.50
https://doi.org/10.1109/SCC.2013.78
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/SCC.2009.41
https://doi.org/10.1109/SCC.2013.28
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1109/SURV.2013.050113.00090

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20180201102714

 1
 1
 1
 1 1
 712
 278
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

