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This paper describes an image processing approach 
capable of estimating the pose of athletes exercising 
on indoor rowing machines in video sequences. The 
proposed algorithm finds and tracks the wrist, elbow, 
shoulder, ankle, knee, hip and head, and the line of the 
back also. Our contribution is twofold. The first contri-
bution is a new background subtraction method, which 
can reliably separate the silhouette of athletes under 
some assumptions related to the videos. Furthermore, 
the paper introduces – as the second contribution – a 
skeleton fitting method to find the joints of the athletes 
based on the results of the background subtraction. 
This algorithm is based on anthropometric data and 
special movement patterns. The overall solution works 
on a real time setting in the test environment. Compar-
ing the results, it is shown that our method surpasses 
the most accurate state-of-the-art general pose estima-
tion solution for indoor rowing specific videos based 
on two commonly used metrics, as well.
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→ Image processing
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1. Introduction

The automatic analysis of different sports spreads 
increasingly, because such systems can help the 
athletes, especially in competitive sports. In the 
past decades, vast amount of visual information 
was gathered about sport events, trainings and 
tournaments. However the utilization of this in-

formation has not started yet in an organized, 
consequent way, except for some professional 
clubs of popular ball games. Analyzing the im-
age content may help improve the motion pat-
terns, thus it could have a great impact in many 
sport disciplines, such as in rowing.
The idea of our work was to provide a support-
ing tool with certain techniques of image pro-
cessing, being part of a larger movement to-
wards automatic movement detection in sports. 
The goal of our research work was to design a 
system, which can identify major body parts of 
the human body, i.e. head, back, hip, knees, an-
kles, elbows and wrist in video sequences taken 
from side view of athletes practicing on indoor 
rowing machines.
The first step in this information getting pipeline 
is to separate the rowers from the background. 
The Related works section presents kernel and 
GMM (Gaussian Mixture Model) based algo-
rithms, which are compared with the suggested 
algorithm in the Results section. In this paper a 
new algorithm is presented, which takes advan-
tage of the specialty of human's motion and the 
circumstances, e.g. the motion is a cyclic activ-
ity and it is recorded from a side view of a rower.

2. Related Works

2.1. Related Works in Sports

Biomechanical analysis deals with the motion 
patterns of various sports, examining the me-
chanical properties of the motion and suggest-
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ing modifications in this motion patterns in or-
der to improve athletics performance. Although 
the field of sports analytics is quite young, basic 
biomechanical studies were carried out already 
in the 20th century [2]. Biomechanics is also of-
ten used in the sport of rowing, because rowing 
is a highly technical sport. Restrictions on the 
motion patterns lead to simple, but powerful 
mathematical models of rowing as suggested 
by [16].
There are various systems available for evalu-
ating rowing technique (and sport technique in 
general). We can distinguish sensor based and 
video based systems. The former ones use dif-
ferent sensors such as simple accelerometers 
and GPSs of cheap mobile phones (for exam-
ple: CrewNerd is a popular phone app) or more 
precise accelerometers and GPSs, with angle 
and force measurement tools (BioRow is the 
most popular system, at least in Europe). Video 
recordings are cheap alternatives, and they are 
often used in everyday coaching work (Wil-
son, 2008). Because of the huge interest in ball 
games, in other sports there was no significant 
research regarding complex processing of vid-
eos [17]. To the best of our knowledge, there 
are no available specialized video tools spe-
cially designed for rowing coaches. Kinovea 
is a free and open source software for multiple 
sports, which allows coaches to manually mark 
different points in videos. The disadvantage of 
this tool, that it needs manual assistance and it 
often "looses" the tracked points.
We can also distinguish the systems that pro-
vide immediate feedback from those enabling 
only later in-depth evaluation. A promising re-
search area for giving immediate feedback for 
rowers is to use acoustic feedback information 
like in Sofirow online system [22]. For such 
a system, the big question is which features 
should be mapped to acoustic signals. There is 
another new research using sequential forward 
feature selection to identify the features that are 
most discriminative for individual rowers [11]. 
This paper describes a new solution capable of 
automatically extracting key body part posi-
tions from pure video data. We do not deal with 
interpreting the extracted data and giving im-
mediate feedback, but as our system can work 
on a real time setting, we want to extend our 
system in the future.

2.2. Background Subtraction Problem

The first aim in our system is background sub-
traction. Separation of the background from 
foreground pixels in video sequences is a well 
established and heavily studied topic in video 
processing. This is a very important, but also 
a very difficult step in the processing pipeline. 
When the camera is fixed to a location, there is 
a reasonable supposition, that the background 
pixels of the image exhibit some regular be-
havior which can be described by statistical 
tools. The emerging foreground object moving 
through the scene will not fit into the model 
descibing behaviour of background pixels and 
is therefore detectable. After a parametric or 
nonparametric pixel based model (explained 
later) is applied, further improvements can be 
made using image based algorithms like mean-
shift [7], particle filters [19] or Kalman filters. 
The OpenCV 3.1 software library [15] provides 
some well-established statistical model based 
background subtraction algorithms as a built-in 
method.
Pixel based means that these algorithms con-
sider only the previous values of a pixel at a 
given location, to decide whether the current 
value should be labeled as background (BG) 
or foreground (FG). A pixel is more probably 
in the background if its condtitional probabil-
ity of beeing in the background is higher than 
the condition probability of beeing in the fore-
ground. Thus, the ratio of the probabilities is 
greater than 1, which can be rewritten using the 
Bayes rule (p (BG) is unconditional probability 
that the pixel belongs to background):
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We can then rearrange the inequality and intro-
duce a threshold value cthr to decide if a pixel is 
background or not:
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The left side of the equation is referred to as 
the underlying background model as suggested 
by [28] and can be estimated from a training 
set Dt = x (0), x (1), ..., x (t – 1) created from 

much memory and processor time for average 
computer. Thus only a random subset of the 
last M samples is used. Simple random sam-
pling would lead to too sparse sampling, thus 
a "short-term" and a "long-term" sample set is 
kept, and a denser and a sparser sampling are 
used respectively. The number of data samples 
can be controlled via a configurable parameter 
(e.g. half of the total number of samples in the 
subsample can be used as "short-term" and an-
other half as "long-term" samples).
The most frequently used method of parame-
trized method family is Gaussian Mixture 
Model (GMM), which uses normal distribution. 
Improved adaptive Gaussian mixture model for 
background subtraction was proposed by [27]. 
If we have estimations for mean, variance, and 
weights of normal distribution (large N in the 
next equation, where I is the identity matrix), 
then the probability estimation will be:
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2.3. State-of-the-Art Methods for Human 
Pose Estimation

The second aim in our system is the human pose 
estimation, where the problem is localizing an-
atomical landmarks. This aim focuses on find-
ing parts of individuals [23] and there are some 
new researches going on in this topic [4], [18], 
[20]. The method of the first paper [4] uses cas-
cade detection heatmaps by convolutional neu-
ral networks and regression on these heatmaps. 
The next paper [18] also utilizes convolutional 
network architecture for human pose estima-
tion, using various spatial relationships associ-
ated with the body. The authors of the third pa-
per [20] proposed ConvNet architecture that is 
able to benefit from temporal context by com-
bining information across the multiple frames 
using optical flow. Most approaches [14], [23] 
used a top-down strategy that first detects a 
person and then, on each detected region, the 
pose of the detected person is estimated. There 
is another recent method, Deepcut method [21], 
which gives good accuracy for this problem. 
Similarly to Deepcut, Insafutdinov et al. built 
a solution, the DeeperCut [13] with a stronger 
part detectors based on ResNet [12]. One of the 

the previous pixel values observed at this pixel 
location, and the pixel values x (t) are d dimen-
sional vectors.
There are two major techniques for estimating 
unknown statistical probability distributions:
(i) non-parametric and
(ii) parametric methods, which assume that 

the data follows a given probability distri-
bution like normal distribution [26].

In this case, the goal is to estimate the param-
eters (e.g. mean and variance) of this distribu-
tion. The parameters can vary depending on 
the type of underlying distribution. However, 
the non-parametric methods do not assume 
any type of distribution of the training data. 
The simplest non-parametric method is the his-
togram method, which classifies the data into 
different bins and estimates the probability as 
the ratio of the count of examples in one bin 
over the total count. The big difference between 
parametric and non-parametric techniques is 
that, while the parametric methods use fixed 
number of parameters, the parameter number 
of non-parametric methods can grow with the 
size of the training data set.
Kernel density estimation method is a non-para-
metric statistical estimation based background 
subtractor described in [28]. The density esti-
mation of a given vector x would be:
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where in the left part of the equation, the com-
mon model is inferred from the training data 
set Dt, also considering the background BG 
and foreground FG behavior. This probabil-
ity should be estimated since the true back-
ground and foreground classification is not 
known. K refers to the kernel function and h 
to the so called bandwidth, which will control 
the smoothness of the estimation. The kernel 
function can be of any type, the most common 
are Gaussian, uniform, triangular, biweight and 
triweight kernels, but the type of kernel has a 
minor impact on the performance of the overall 
background subtraction, as stated by [10].
In the practical implementation, if Dt is large 
(if the video is long), keeping the samples and 
calculating the estimations would require too 



30 31G. Szűcs and B. Tamás Body Part Extraction and Pose Estimation Method in Rowing Videos

ing modifications in this motion patterns in or-
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the field of sports analytics is quite young, basic 
biomechanical studies were carried out already 
in the 20th century [2]. Biomechanics is also of-
ten used in the sport of rowing, because rowing 
is a highly technical sport. Restrictions on the 
motion patterns lead to simple, but powerful 
mathematical models of rowing as suggested 
by [16].
There are various systems available for evalu-
ating rowing technique (and sport technique in 
general). We can distinguish sensor based and 
video based systems. The former ones use dif-
ferent sensors such as simple accelerometers 
and GPSs of cheap mobile phones (for exam-
ple: CrewNerd is a popular phone app) or more 
precise accelerometers and GPSs, with angle 
and force measurement tools (BioRow is the 
most popular system, at least in Europe). Video 
recordings are cheap alternatives, and they are 
often used in everyday coaching work (Wil-
son, 2008). Because of the huge interest in ball 
games, in other sports there was no significant 
research regarding complex processing of vid-
eos [17]. To the best of our knowledge, there 
are no available specialized video tools spe-
cially designed for rowing coaches. Kinovea 
is a free and open source software for multiple 
sports, which allows coaches to manually mark 
different points in videos. The disadvantage of 
this tool, that it needs manual assistance and it 
often "looses" the tracked points.
We can also distinguish the systems that pro-
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like in Sofirow online system [22]. For such 
a system, the big question is which features 
should be mapped to acoustic signals. There is 
another new research using sequential forward 
feature selection to identify the features that are 
most discriminative for individual rowers [11]. 
This paper describes a new solution capable of 
automatically extracting key body part posi-
tions from pure video data. We do not deal with 
interpreting the extracted data and giving im-
mediate feedback, but as our system can work 
on a real time setting, we want to extend our 
system in the future.

2.2. Background Subtraction Problem

The first aim in our system is background sub-
traction. Separation of the background from 
foreground pixels in video sequences is a well 
established and heavily studied topic in video 
processing. This is a very important, but also 
a very difficult step in the processing pipeline. 
When the camera is fixed to a location, there is 
a reasonable supposition, that the background 
pixels of the image exhibit some regular be-
havior which can be described by statistical 
tools. The emerging foreground object moving 
through the scene will not fit into the model 
descibing behaviour of background pixels and 
is therefore detectable. After a parametric or 
nonparametric pixel based model (explained 
later) is applied, further improvements can be 
made using image based algorithms like mean-
shift [7], particle filters [19] or Kalman filters. 
The OpenCV 3.1 software library [15] provides 
some well-established statistical model based 
background subtraction algorithms as a built-in 
method.
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sider only the previous values of a pixel at a 
given location, to decide whether the current 
value should be labeled as background (BG) 
or foreground (FG). A pixel is more probably 
in the background if its condtitional probabil-
ity of beeing in the background is higher than 
the condition probability of beeing in the fore-
ground. Thus, the ratio of the probabilities is 
greater than 1, which can be rewritten using the 
Bayes rule (p (BG) is unconditional probability 
that the pixel belongs to background):
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drawbacks of the pairwise representations used 
in [13], which are offset vectors between every 
pair of body parts, is that a precise regression is 
difficult, and thus a separate logistic regression 
is required to convert the pairwise features into 
a probability score. Another drawback of these 
methods is that they assume a single person set-
ting where the location and scale of the inter-
ested person are given.
In October 2016, there was a challenge called 
COCO 2016 Keypoint Challenge, that required 
localization of person keypoints in challenging, 
uncontrolled conditions. This keypoint compe-
tition involved simultaneously detecting peo-
ple and localizing their keypoints. In this chal-
lenge, the Part Affinity Fields (PAF) [5] method 
won the first prize in all test sets. This directly 
exposes the association between anatomical 
parts of persons in an image. In this method, a 
two-branch network is built upon convolutional 
pose machines (CPM) architecture proposed by 
Wei et al. [24] to iteratively refine both confi-
dence maps and PAFs with global image and 
spatial contexts. The architecture of the method 
is designed to jointly learn part locations and 
their association, via two branches of the same 
sequential prediction process. This prediction 
enables the part confidence maps and the as-
sociation fields to encode global context while 
allowing an efficient bottom-up parsing step. 
Using an optimization and Part Affinity Fields, 
the PAF method achieves better accuracy than 
a graphcut optimization formula based on fully 
connected graph structure as in [13], [14], [21] 
and outperforms all methods mentioned in the 
previous paragraph.

3. Demand for a New Method

We selected two methods, the non-paramet-
ric kernel density estimation (kernel method) 
and the parametric GMM, as described in the 
previous section, and we used them for extrac-
tion of human body parts of a rowing athlete. 
One of the drawbacks of these methods is that 
they mark the shadows projecting to the back-
ground as foreground. There is an additional 
mechanism for detecting shadows, which can 
be connected to both methods. The idea behind 
the implementation is suggested by Cucchiara 
[8], [9]. The algorithm works in the HSV color 
space, because the shadows have not signifi-

cant effect on hue values, but they will lower 
the value of the saturation. The next equation 
presents the calculation of the estimation of 
density function with kernels.
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For estimation of a density function different 
kernels can be used. Parameters of the kernel 
are d dimensional vectors, so these should be 
handled either by crossproduct separable kernel 
extension or (circle or sphere) symmetric ker-
nel extension. The type of the kernel functions 
has only a minor importance, however the value 
of the diameter h has a large impact on the esti-
mation. Elgammal [10] suggested that 

( )/ 0.68 2m ∗  is a good choice, where m de-
notes the median of the absolute differences be-
tween consecutive vectors.

We have tried these methods with different 
variants and improved versions (with sym-
metric kernel extension), but the accuracy of 
segmentation was weak because of general as-
sumptions in videos. So, the demand arised for 
a new method.

4. Suggested Methods for Rowing 
Detection

4.1. Preliminaries

In this section a real time video processing 
framework is presented, which is capable of 
reliable detection of an athlete performing a 
rowing workout on indoor rowing machines. 
The presented framework reports the position 
of the wrist, elbow, shoulder, ankle, knee, hip 
and head and the line of the back.
In our method we took advantage of the fact 
that rowing motion is a cyclic motion, which 
means that more or less the same motion is re-
peated several times. Rowing utilizes all body 
parts and all important muscle groups, result-
ing in complex patterns, and sometimes – in 
case of beginners – a lot of technique errors. 

Rowers sit on a sliding seat in order to ex-
tend the movement to legs too. The rowing 
stroke begins at the catch position, where the 
legs are in full flexion, shins are vertical, the 
body leans slightly forward and the arms are 
extended, the shoulders are relaxed. Then the 
driving phase begins by pushing with the legs 
backward, while maintaining the same body 
position and keeping the arms straight. When 
the legs are almost extended, the body begins 
to swing to carry on accelerating the boat. Fi-
nally, with arms pull, the rower arrives at the 
finish position. Here, the movement (compared 
to the boat) changes direction and the recovery 
phase begins, with doing all the movements in-
versely: first the arms are straightened, then the 
body swings forward and finally the legs begin 
to bend and the rower arrives at the catch posi-
tion again. Then this sequence is repeated sev-
eral times. An example of rowing sequence is 
presented in [16], where the whole cycle of the 
rowing motion with different positions can be 
seen. In a rowing boat, the wrists travel along 
an arc, while in the case of an indoor rowing 
machine, the wrists move along a straight line. 
Except that, there is no difference between the 
two motions. This paper considers the case of 
indoor rowing, but the elaborated method can 
be extended to the outdoor rowing as well.
The framework relies on a couple of assump-
tions regarding the video and the motion. These 
assumptions are summarized in Table 1. The 
most important one is related to the viewpoint: 
we assume, that the plane of motion is parallel 
with the camera plane and the recorder is fixed. 
Furthermore, it is important that colors of the 
rower and of the background are not the same, 
the background and the lighting conditions are 
not varying during the recording. All the time, 
the rower's full body is captured by the record-
ing, the rower is not too small in the images 
of the video (in order to able to detect all body 
parts), and the rower is not too close to the cam-
era (avoiding large distortion of camera lenses). 
Additionally, the rower's shadow should be 
light or small, and other shadows should not 
be cast to the rower's body. The athlete should 
row without any extraordinary large mistake in 
rowing technique or any incidental motion and 
he should maintain average stroke rate, which 
is measured in water sports by a common unit, 
the stroke/min, abbr. spm (e.g. between 15 and 
45 spm, which is actually not a strict require-
ment because rowers rarely do workouts below 

20 spm or exceed the 40 spm stroke rate). The 
last assumption is that there are no other large 
moving objects captured by the camera.
Our suggested method – after the initialization 
– consists of two large blocks, as can be seen in 
Figure 1. The first block is a new background 
subtraction method, which can reliably sep-
arate the silhouettes of athletes, under certain 
assumptions related to the videos. In the next 
section we describe this area based on the adap-
tive body part extraction.
In the next section we present our suggested 
method for pose estimation as the second large 
block. This involves a new skeleton fitting 
method to find the joints of the athletes, based 
on the results of the background subtraction. 
The algorithm is based on the anthropometric 
data and special movement patterns. In the pose 
estimation block (Figure 1) the body parts (as 
points) are implemented, and there is another 
smaller block where the back curvature is cal-
culated (as line). Both of them belong to the 
pose of the athlete's body.

4.2. Area Based Adaptive Body Part 
Extraction

The core idea behind the proposed method is 
that as the athlete moves on the scene, some 
of its points can be captured by subtracting the 
previous frame from the current frame, calcu-

Table 1.  Video assumptions for rowing detection.

Criterion Description/Status
lighting not varying too much

shadow by athlete no
shadow on athlete no

other shadow allowed

viewpoint side view (camera plane and 
motion planes are parallel)

viewpoint fixed
field of view athlete is fully captured

field of view bounding box area is not too 
small

rowing motion no large rowing technique errors
stroke rate between 15 and 45 spm

other objects no large moving objects
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drawbacks of the pairwise representations used 
in [13], which are offset vectors between every 
pair of body parts, is that a precise regression is 
difficult, and thus a separate logistic regression 
is required to convert the pairwise features into 
a probability score. Another drawback of these 
methods is that they assume a single person set-
ting where the location and scale of the inter-
ested person are given.
In October 2016, there was a challenge called 
COCO 2016 Keypoint Challenge, that required 
localization of person keypoints in challenging, 
uncontrolled conditions. This keypoint compe-
tition involved simultaneously detecting peo-
ple and localizing their keypoints. In this chal-
lenge, the Part Affinity Fields (PAF) [5] method 
won the first prize in all test sets. This directly 
exposes the association between anatomical 
parts of persons in an image. In this method, a 
two-branch network is built upon convolutional 
pose machines (CPM) architecture proposed by 
Wei et al. [24] to iteratively refine both confi-
dence maps and PAFs with global image and 
spatial contexts. The architecture of the method 
is designed to jointly learn part locations and 
their association, via two branches of the same 
sequential prediction process. This prediction 
enables the part confidence maps and the as-
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For estimation of a density function different 
kernels can be used. Parameters of the kernel 
are d dimensional vectors, so these should be 
handled either by crossproduct separable kernel 
extension or (circle or sphere) symmetric ker-
nel extension. The type of the kernel functions 
has only a minor importance, however the value 
of the diameter h has a large impact on the esti-
mation. Elgammal [10] suggested that 

( )/ 0.68 2m ∗  is a good choice, where m de-
notes the median of the absolute differences be-
tween consecutive vectors.

We have tried these methods with different 
variants and improved versions (with sym-
metric kernel extension), but the accuracy of 
segmentation was weak because of general as-
sumptions in videos. So, the demand arised for 
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rower and of the background are not the same, 
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20 spm or exceed the 40 spm stroke rate). The 
last assumption is that there are no other large 
moving objects captured by the camera.
Our suggested method – after the initialization 
– consists of two large blocks, as can be seen in 
Figure 1. The first block is a new background 
subtraction method, which can reliably sep-
arate the silhouettes of athletes, under certain 
assumptions related to the videos. In the next 
section we describe this area based on the adap-
tive body part extraction.
In the next section we present our suggested 
method for pose estimation as the second large 
block. This involves a new skeleton fitting 
method to find the joints of the athletes, based 
on the results of the background subtraction. 
The algorithm is based on the anthropometric 
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estimation block (Figure 1) the body parts (as 
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4.2. Area Based Adaptive Body Part 
Extraction

The core idea behind the proposed method is 
that as the athlete moves on the scene, some 
of its points can be captured by subtracting the 
previous frame from the current frame, calcu-

Table 1.  Video assumptions for rowing detection.

Criterion Description/Status
lighting not varying too much

shadow by athlete no
shadow on athlete no

other shadow allowed

viewpoint side view (camera plane and 
motion planes are parallel)

viewpoint fixed
field of view athlete is fully captured

field of view bounding box area is not too 
small

rowing motion no large rowing technique errors
stroke rate between 15 and 45 spm

other objects no large moving objects
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lating the absolute value, and then threshold-
ing it. This will result in a binary image, where 
one value will indicate a huge change between 
frames, and zero value will indicate no or neg-
ligible change. We developed a concept with 
non-deterministic finite state machine pre-
sented in Figure 2, which shows the process on 
a pixel level. On the top of the figure, there are 
four states, which cannot be observed based on 
the thresholded difference image. The names 
denote if the pixel belongs to foreground or to 
background of the scene.
For example BG ‒ FG is the state where the 
pixel is now background pixel, but at the previ-
ous frame, the pixel belonges to the foreground. 
The arrows with a1, a2, ..., a8 denote possible 

transition between the states and their probabil-
ities. Note, that we do not know possible proba-
bilities and do not have any method to estimate 
them.
The difference image encodes one of the two 
states from the bottom at every pixel. We do not 
know the probabilities of b1, b2, ..., b8, but based 
on the assumptions summarized in the previous 
section, we can deduce some inequalities. For 
example b1 is much larger than b5, because if a 
pixel belongs to foreground at both the previous 
and the current frames, then the likelihood of a 
contour is very small (only small body parts, 
such as little finger or a lock of hair may need a 
contour between two consecutive frames in the 
video when this point belongs to foreground, 
then background, then foreground again during 
a unit of time), and there is a large probability 
that this pixel is not a contour point. Based on 
similar arguments, we can deduce the following 
inequalities:

      1 5 2 6 3 7 4 8, , ,b b b b b b b b       (6)

The BG ‒ FG and FG ‒ BG changes will oc-
cur near the athlete's contour. These states will 
cause most of the contours. So now if we calcu-
late the center of the observed contour points, 
it is very likely that it will be in the bounding 
box of the rower. This is based on the assump-
tion that the athlete does not change large po-
sition between two frames, and this will hold 

since we restricted the stroke rate to less than 
45 spm, and a video recording contains at least 
24 frames per second.
Consider Figure 3 from another aspect. If the 
rower is moving at the speed v, its height on the 
image plane is h, the time difference between 
consecutive frames is Δt and we calculate the 
thresholded difference of frames i and i + N, 
where N is a small number, then the number of 
the contour points (changed pixels in the dif-
ference image) is roughly proportional to the 
height of the rower and the distance he or she 
has moved, so the number of contour points 
(pixels) is:

                    contour h v N t∆≈ ⋅ ⋅ ⋅                (7)

If we observe a large number of contour points, 
then it means that the athlete was moving; oth-
erwise, the rower did not change his position. 
In the latter case, we observe not only a small 
number of contour points, but these points are 
scattered and the order of magnitude of contour 
points is approximately equal to the magnitude 
of noise. In order to filter out these noisy ob-
servations, we will consider only appropriate 
(good) difference images where the number 
of contour points is high, due to a sufficiently 
large moving object (rower).
Based on these facts we suggest a new method, 
which is called area based adaptive body part 
extraction method consisting of two phases,
(i) producing an adaptive background image 

and

(ii) creating a rower's mask by background 
subtraction.

For the first phase we have elaborated two 
methods in order to get an adaptive background 
image – our aim was to get it because this pro-
vides a more general solution than a fixed back-
ground image does.
Our initially proposed method is contour based 
adaptive background image construction for 
the first phase. In this method we calculate dif-
ference images of frames i and i + N, where N 
is a small fixed number (so in the calculation of 
difference image, not only the current, but the 
previous frame is moving with i as well), and 
enumerate the number of the contour points. On 
the first predefined number of frames (FPS * 4 
would be enough, where FPS means frame per 
second) we measure the maximum number of 
contour pixels (maxcon) that appeared on the 
difference images. Let us consider the differ-
ent images with more than cthr * maxcon contour 
points, where cthr is an appropriate threshold 
(between 0 and 1). We call them good images, 
while the other images are bad images. The 
maxcon parameter can be continuously updated 
with an exponentially weighted moving aver-
age scheme in order to reflect the newer obser-
vation with more weight.
For every predefined number of frames (FPS * 4 
frames) an independent new max'con value is 
calculated. The cumulative cum_maxcon value 
can be computed from previous one:

( )_ max 1 _ max max 'con con concum cumα α= − ⋅ + ⋅
(8)

For the good images (considered for cumula-
tive cum_maxcon) we calculate the center of the 
contours as the mean of their horizontal and 
vertical coordinates. To the series we apply a 
denoising (exponentially weighted moving av-
erage with high α value).
With this piece of information we can construct 
the (contour based adaptive) background im-
age. We apply a morphological eroding oper-
ation (with a small rectangular structuring el-
ement to remove noise) to good images. Our 
method searches the catch position among these 
images automatically (based on extremum 
search in horizontal direction). Furthermore the 
method finds good image with finish position 
and stores this image.

Figure 3. The subtracted contours of the athlete. Here 
the athlete is moving at the velocity v to the right, and h 

is her/his pixel height on the image.

Figure 2. The states of our concept after the subtraction 
of neighboring frames at pixel level.

Figure 1. Block diagram of our suggested solution consisting of two contribution parts.
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background of the scene.
For example BG ‒ FG is the state where the 
pixel is now background pixel, but at the previ-
ous frame, the pixel belonges to the foreground. 
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ities. Note, that we do not know possible proba-
bilities and do not have any method to estimate 
them.
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section, we can deduce some inequalities. For 
example b1 is much larger than b5, because if a 
pixel belongs to foreground at both the previous 
and the current frames, then the likelihood of a 
contour is very small (only small body parts, 
such as little finger or a lock of hair may need a 
contour between two consecutive frames in the 
video when this point belongs to foreground, 
then background, then foreground again during 
a unit of time), and there is a large probability 
that this pixel is not a contour point. Based on 
similar arguments, we can deduce the following 
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The BG ‒ FG and FG ‒ BG changes will oc-
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late the center of the observed contour points, 
it is very likely that it will be in the bounding 
box of the rower. This is based on the assump-
tion that the athlete does not change large po-
sition between two frames, and this will hold 
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45 spm, and a video recording contains at least 
24 frames per second.
Consider Figure 3 from another aspect. If the 
rower is moving at the speed v, its height on the 
image plane is h, the time difference between 
consecutive frames is Δt and we calculate the 
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where N is a small number, then the number of 
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(pixels) is:
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If we observe a large number of contour points, 
then it means that the athlete was moving; oth-
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In the latter case, we observe not only a small 
number of contour points, but these points are 
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of noise. In order to filter out these noisy ob-
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of contour points is high, due to a sufficiently 
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Based on these facts we suggest a new method, 
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extraction method consisting of two phases,
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subtraction.
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vides a more general solution than a fixed back-
ground image does.
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age scheme in order to reflect the newer obser-
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can be computed from previous one:
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was that using only one frame may lead to a 
better localized estimation; because in contour 
based background creation method (where two 
frames are subtracted) the contour was more 
''scattered''. But we found that silhouette based 
solution did not improve the segmentation ac-
curacy.

4.3. Suggested Method for Pose 
Estimation

The whole estimation is based on the rower's 
foreground mask and does not use any other 
visual information. It heavily relies on the an-
thropometric measurements published in [6] 
and on other temporal, spatial, behavioral and 
viewpoint information. The algorithm outputs 
the 2D image coordinates of ankle, knee, hip, 
elbow and shoulder, wrist, the center of head 
and also the line of the back, represented as se-
ries of straight lines.
The mean proportion of the head and neck-
torso length in adult population is 0.339 [6]. To 
make sure that the whole head is captured, we 
use a slightly oversized, 0.38 proportion value, 
so we cut out the bottom region of the silhou-
ette's bounding box, and search the center of the 
head in the top region. We find this point by dis-
tance transform [3] and finding extremum on 
the resulted image; where distance transform 
calculate the Euclidean distance between the 
investigated foreground point and the nearest 
background point, and the algorithm found the 
maximum as extremum.
The x coordinate of the hip is determined with 
similar calculations. However, for y coordinates 
we scan the frame at finish position and take 
the center of thighs; since thighs are horizon-
tal, this is equal to the y coordinate of the hip, 
as demonstrated in Figure 5. The point of the 
shoulder can be determined in the same manner 
as in the case of head.
The ankle position can be determined as the 
bottom right foreground point at catch position. 
Since the ankle is fixed to the rowing machine, 
it moves only a little, and our method uses this 
estimation for all video frames.
For localizing the wrist, we crop the image 
above the thighs, then only the right side of the 
bounding box is kept. In this cropped image the 

center point is calculated by maximum point of 
distance transformed image.
Estimating the elbow and knee positions is 
more difficult. Because the wrist and shoulder 
or the ankle and hip positions are known and 
the elbow and knee move along a plane (this is 
true for the knee, but the elbow usually moves a 
little bit in perpendicular direction to the image 
plane which affects the accuracy of the estima-
tion), we can use a linear equation system.
Let us assume that the hip is at position 
(hip (t) x, hip (t) y), and the ankle is at (ankle (t) x, 
ankle (t) y). The length of the thigh is lthigh and 
the length of the shins is lshin and the total leg 
length is lleg. Now we can write

        
( ) ( )( ) ( ) ( )( )2 2

2
thigh hip knee hip knee

t t t tl x x y y= − + −
    

(9)

     
( ) ( )( ) ( ) ( )( )2 2

2
shin ankle knee ankle knee

t t t tl x x y y= − + −
  
(10)

                        leg thigh shinl l l= +                    (11)

From anthropometric measurements we get 
0.77 for the lshin / lthigh ratio. At the finish posi-
tion the legs are straight, so the leg length can 
be calculated:

( ) ( )( ) ( ) ( )( )2 2finish finish finish finish2
leg hip ankle hip anklel x x y y= − + −

(12)

Now we can solve the linear equation system 
and get the (knee (t) x , knee (t) y) location. The 
elbow location is calculated in a similar man-
ner, using the catch position for calculating the 
arm length.

After locating the leftmost pixel of the row-
ers' contour points (denote its x coordinate as 
xsplit), our method takes the left part of the 
chosen good image at catch position up to the 
coordinate xsplit and the right part of the stored 
good image at finish position beginning from 
the xsplit coordinate, and compose them. Note 
that, with this method, the shins still remain 
on the background image and cannot be elim-
inated, so the result will be noisy around them. 
As we acquired the background image, we can 
now get the foreground mask with a simple 
subtraction and a thresholding operation; this 
foreground mask will be the athlete's body. This 
process is shown in Figure 4, and the advantage 
of our method is the ability to detect the rower 
robustly when there are some small changes in 
the background.
If the rower is facing left instead of right, the 
described method would not allow so good seg-
mentation (in case the method has not informa-
tion about the direction), because the creation 
of background would be the same. To solve this 
issue avoiding the inaccurate background im-
age, our method tracks the head position. If the 
head is further from the left side of the rower's 
bounding box, than from the right side of the 
bounding box at the (hypothesized) catch po-
sition, then the rower is facing left. Hence, the 
image is flipped and the whole background sub-
traction process is repeated resulting in a better 
background image.

If the background image is already available, 
when a new frame arrives only a subtraction 
and a thresholding operation are needed to 
compute the segmentation. Our method contin-
uously recalculates the background image, so it 
can adopt to slow changes of the background. 
With the cost of more computation, even more 
sophisticated methods can be used, like model-
ing the background pixels with a normal distri-
bution, or even with GMM.
We have elaborated an extended version of 
contour based adaptive background image con-
struction, so called silhouette based adaptive 
background image construction, which consists 
of two steps:
(i) the first step is the contour based adaptive 

background image construction method it-
self, and

(ii) the second step uses the background image 
coming from the first step.

In the second step the method calculates the dif-
ference of the contour based background image 
(as the output of the first step) and the frame (in-
stead of the difference between two frames as 
in the contour based method) which will result 
in a body silhouette instead of contours. Having 
difference images the method calculates new 
xsplit and thereafter a new background image is 
combined based on the same process shown in 
Figure 4. The idea behind this extended version 

Figure 4. The process of background subtraction. On the left, good frames for catch and finish are acquired and the 
appropriate xsplit x coordinate is calculated. Then the two images are merged to form the background.  

With this background and the current frame a foreground mask is calculated.

Figure 5. Determining the hip position with horizontal 
line, which is equal to the y coordinate of the hip.
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process is shown in Figure 4, and the advantage 
of our method is the ability to detect the rower 
robustly when there are some small changes in 
the background.
If the rower is facing left instead of right, the 
described method would not allow so good seg-
mentation (in case the method has not informa-
tion about the direction), because the creation 
of background would be the same. To solve this 
issue avoiding the inaccurate background im-
age, our method tracks the head position. If the 
head is further from the left side of the rower's 
bounding box, than from the right side of the 
bounding box at the (hypothesized) catch po-
sition, then the rower is facing left. Hence, the 
image is flipped and the whole background sub-
traction process is repeated resulting in a better 
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If the background image is already available, 
when a new frame arrives only a subtraction 
and a thresholding operation are needed to 
compute the segmentation. Our method contin-
uously recalculates the background image, so it 
can adopt to slow changes of the background. 
With the cost of more computation, even more 
sophisticated methods can be used, like model-
ing the background pixels with a normal distri-
bution, or even with GMM.
We have elaborated an extended version of 
contour based adaptive background image con-
struction, so called silhouette based adaptive 
background image construction, which consists 
of two steps:
(i) the first step is the contour based adaptive 

background image construction method it-
self, and

(ii) the second step uses the background image 
coming from the first step.

In the second step the method calculates the dif-
ference of the contour based background image 
(as the output of the first step) and the frame (in-
stead of the difference between two frames as 
in the contour based method) which will result 
in a body silhouette instead of contours. Having 
difference images the method calculates new 
xsplit and thereafter a new background image is 
combined based on the same process shown in 
Figure 4. The idea behind this extended version 

Figure 4. The process of background subtraction. On the left, good frames for catch and finish are acquired and the 
appropriate xsplit x coordinate is calculated. Then the two images are merged to form the background.  

With this background and the current frame a foreground mask is calculated.

Figure 5. Determining the hip position with horizontal 
line, which is equal to the y coordinate of the hip.
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To estimate the line of the back our method 
simply takes the outline of the silhouette from 
the bottom of the head to the line of the hip (we 
call it outline method). But at finish position 
the elbow will uncover the back. To solve the 
issue, a middle line (as several middle points 
found by maximum points in the distance 
transformed image) is applied to the torso, so 
the line of the spine is acquired. Then this line 
is shifted left to the position of the back; this is 
shown in Figure 6.

5. Results

5.1. Results of the Background 
Subtraction

This section compares the proposed back-
ground subtraction algorithm with kernel and 
GMM background methods. The manual seg-
mentation in pixel level would be a laborious 
work in all frames in the video, thus instead of 
quantitative accuracy we give only a qualita-
tive comparison based on manual inspection of 
some sample videos.
Figure 7 presents an example of the foreground 
mask captured with the different methods. In the 

left, middle and right columns the area based 
adaptive body part extraction method, the 
GMM and the kernel method can be seen. The 
rows present different representative positions 
during the cyclic rowing activity. The middle 
images show bad, unrecognizable results made 
with GMM, especially in the top row. The ker-
nel also achieved poor result in this case (at top 
right), while the area based method performed 
well. Our method always gives fair results in 
the test video sequences, while the others cap-
ture only contours or only a part of the contours 
(on the top middle image, the GMM achieved 
very poor accuracy).

The only problem of our method is with the area 
near the shin. On the top left image, the shin is 
not captured, while on the bottom left image, 
"two shins" are detected, i. e. the white area be-
low the knee is the shin, as it was approximately 
one second earlier. This is due to the design of 
the algorithm, and it can also cause problems 
behind the buttocks of the athlete, which can 
negatively affect the back estimation accuracy. 
But this is the trade off for fast and in other 
regions good and robust segmentation. Based 
on the qualitative test, the proposed method is 
more accurate, and we conducted a quantitative 
test for speed comparison.
Table 2 summarizes the average processing 
time of one video frame using different meth-
ods and various videos. As described above, 
after the initial phase, the proposed algorithm 
can reset the background generation phase, or 

it can use the calculated background image for 
a faster segmentation. In the latter case, the ex-
tra time spent on the background calculation of 
the first few frames will be amortized amongst 
all video frames. The table shows running time 
for both cases. Our method is implemented in 
c++ (OpenCV version 3.1.0.), and we get the 
results running on Intel Core i3 CPU with no 
GPU support.

5.2. Results of the Pose Estimations on 
Different Videos

Results of the pose estimations on different vid-
eos can be seen in Figure 8. The top three videos 
do not satisfy all the assumptions described in 
the beginning, but the estimation is still reason-
ably acceptable. In these cases the estimation 

Figure 6. Determining the line of the back. If the elbow 
passes the back, instead of the original estimation (left 
thick line), a new estimation is used (middle thin line) 

with the help of the spine (right thick line).

 

 

 

Figure 7. The results of different background subtraction algorithm on a test video. From left to right: masks 
acquired with the area based, GMM and kernel algorithms.

Table 2.  Video assumptions for rowing detection.

Method 1 2 3 4 Average
Image resol. 206 × 168 320 × 240 212 × 117 270 × 152

Kernel 6.7 ms 17.9 ms 5.53 ms 9.49 ms 9.89 ms
GMM 1.15 ms 3.72 ms 1.15 ms 1.79 ms 1.16 ms

Our method 0.12 ms 0.29 ms 0.13 ms 0.18 ms 0.18 ms 
Our method (only subtraction) 0.06 ms 0.17 ms 0.07 ms 0.09 ms 0.09 ms 

Figure 8. Results of the pose estimations on different videos. The head is marked with empty circle, the shoulder 
with a line, the elbow with empty triangle, the wrist with empty square, the hip with full circle, the knee with full 

triangle and the ankle with full square.
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To estimate the line of the back our method 
simply takes the outline of the silhouette from 
the bottom of the head to the line of the hip (we 
call it outline method). But at finish position 
the elbow will uncover the back. To solve the 
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the line of the spine is acquired. Then this line 
is shifted left to the position of the back; this is 
shown in Figure 6.
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5.1. Results of the Background 
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This section compares the proposed back-
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GMM background methods. The manual seg-
mentation in pixel level would be a laborious 
work in all frames in the video, thus instead of 
quantitative accuracy we give only a qualita-
tive comparison based on manual inspection of 
some sample videos.
Figure 7 presents an example of the foreground 
mask captured with the different methods. In the 

left, middle and right columns the area based 
adaptive body part extraction method, the 
GMM and the kernel method can be seen. The 
rows present different representative positions 
during the cyclic rowing activity. The middle 
images show bad, unrecognizable results made 
with GMM, especially in the top row. The ker-
nel also achieved poor result in this case (at top 
right), while the area based method performed 
well. Our method always gives fair results in 
the test video sequences, while the others cap-
ture only contours or only a part of the contours 
(on the top middle image, the GMM achieved 
very poor accuracy).

The only problem of our method is with the area 
near the shin. On the top left image, the shin is 
not captured, while on the bottom left image, 
"two shins" are detected, i. e. the white area be-
low the knee is the shin, as it was approximately 
one second earlier. This is due to the design of 
the algorithm, and it can also cause problems 
behind the buttocks of the athlete, which can 
negatively affect the back estimation accuracy. 
But this is the trade off for fast and in other 
regions good and robust segmentation. Based 
on the qualitative test, the proposed method is 
more accurate, and we conducted a quantitative 
test for speed comparison.
Table 2 summarizes the average processing 
time of one video frame using different meth-
ods and various videos. As described above, 
after the initial phase, the proposed algorithm 
can reset the background generation phase, or 

it can use the calculated background image for 
a faster segmentation. In the latter case, the ex-
tra time spent on the background calculation of 
the first few frames will be amortized amongst 
all video frames. The table shows running time 
for both cases. Our method is implemented in 
c++ (OpenCV version 3.1.0.), and we get the 
results running on Intel Core i3 CPU with no 
GPU support.

5.2. Results of the Pose Estimations on 
Different Videos

Results of the pose estimations on different vid-
eos can be seen in Figure 8. The top three videos 
do not satisfy all the assumptions described in 
the beginning, but the estimation is still reason-
ably acceptable. In these cases the estimation 
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thick line), a new estimation is used (middle thin line) 

with the help of the spine (right thick line).

 

 

 

Figure 7. The results of different background subtraction algorithm on a test video. From left to right: masks 
acquired with the area based, GMM and kernel algorithms.

Table 2.  Video assumptions for rowing detection.

Method 1 2 3 4 Average
Image resol. 206 × 168 320 × 240 212 × 117 270 × 152

Kernel 6.7 ms 17.9 ms 5.53 ms 9.49 ms 9.89 ms
GMM 1.15 ms 3.72 ms 1.15 ms 1.79 ms 1.16 ms
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Figure 8. Results of the pose estimations on different videos. The head is marked with empty circle, the shoulder 
with a line, the elbow with empty triangle, the wrist with empty square, the hip with full circle, the knee with full 

triangle and the ankle with full square.
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of the elbows, knees and sometimes back can 
get wrong. In the bottom video the proposed al-
gorithm produces very accurate estimation. The 
head is marked with empty circle, the shoulder 
with a line, the elbow with empty triangle, the 
wrist with empty square, the hip with full circle, 
the knee with full triangle and the ankle with 
full square. In the second row, all points are 
marked with a circle, because of the colorful 
sticky notes put on the clothing. The line of the 
back is marked with a line (the left three pic-
tures in the second row are the results of outline 
based back estimation, and the right picture is 
achieved by distance transform method).
For evaluating our results, we have collected a 
small testing dataset, containing six 15 minute 
long indoor rowing workouts, at various stroke 
rates and intensities and with four different 
people and two different backgrounds. Exam-
ple frame from the video recording is shown 
in Figure 9. We have automatically collected 
the ground truth positions of the body parts 
using brisk sticky notes, as can be seen in the 
figure. The positions are derived from the im-
ages after a thresholding operation, separately 
for every individual color. These sticky notes 
do not affect the behavior and performance of 
our method, moreover, they enabled us to make 
an experimental dataset with ground truth po-
sitions. The colors had no impact on the pro-
cess, since the predictions rely more on shapes 
than colors. For comparison, we have tested 
our dataset with the PAF method [5], which is 
one of the most accurate state-of-the-art general 
pose estimation solutions, as mentioned in the 
previous, Related works section.

Table 3 shows the RMSE (root mean squared 
error) of the predictions on different body parts 
(video resolution was 584 × 276) both for our 
method and the method by Cao et al. [5]. The 
error is defined as the Euclidean distance of 
the prediction and ground truth value (note that 
the back estimation is not included). The val-
ues are presented in pixel values and also in 
"torso lengths", i.e. compared to the length of 
the torso, which gives normalized values (this 
is independent of the image size). The average 
RMSE is 6.3 px for our method, while it is 7.6 
px for Cao's method.
In order to compare the solution suggested in 
this paper with another one, we evaluated the 
results based on another metric, the so called 
PCK, as well. PCK (Percentage of Correct Key-
points) [1] is a widely used metric in the pose 
estimation literature. PCK@r is the percentage 
of predicted keypoints that lie within radius r 
of the ground truth value. It is usually also nor-
malized to ground truth torso length for more 
comparable results (typical value of parameter 

r is 0.2). In Table 4 our solution is compared 
with the method by Cao et al., and it can be 
seen that our method reaches better average 
PCK@0.2 value than Cao's solution. Further-
more, at 3 body parts it reaches the maximum 
1 value. Wrist and elbow can be important in 
the later analysis of the rowing, thus these body 
parts are investigated in more details, Figure 10 
(a) and (b) shows the PCK values of the wrist 
and elbow predictions respectively.

Experimental results show that our average error 
in the pose estimation is only 4.2% of the length 
of torso (i.e. 0.042 normalized value) compared 
to 5.1% of the method (PAF) developed by Cao 
et al. In the comparison we selected PAF as one 
of the most accurate methods and we measured 
the PCK@0.2 results at the pose estimation, 
and our solution exceeds the currently best re-
sults (0.958 vs. 0.924). Based on these results 
we can conclude that our method surpasses the 
state-of-the-art method for indoor rowing spe-
cific videos.

6. Conclusion

In competitive sports, tracking of human body's 
parts and the whole pose of athlete is essential. 
In this paper new methods are presented, which 
are ‒ under the given assumptions ‒ capable 
of extracting the head, shoulder, elbow, wrist, 
hip, knee, ankle and back positions of a row-
ing athlete from video sequences. We propose a 

problem specific, fast and accurate background 
subtraction method, which surpasses two other 
methods widely used in literature; we also 
present a pose estimation approach to extract 
the interested points. The first contribution is 
a new background subtraction method, which 
can reliably separate the silhouette of athletes. 
By adaptive background image our method is 
able to detect rower robustly when there are 
some small changings in the background. This 
is a large advantage compared to the solutions 
using fixed background image, and another 
benefit is the speed of our method. So com-
paring it with GMM and kernel methods, we 
can conclude that our rowing specific method 
performs better than general background sub-
traction methods. The second contribution is a 
skeleton fitting method to find the joints of the 
athletes based on the results of the background 
subtraction. Our estimation is based on the row-
er's foreground mask and on the anthropomet-
ric measurements of human body. We also in-
vestigated the best state-of-the-art human pose 
estimating method, the so called Part Affinity 
Fields (PAF) method which also uses anatom-

Figure 9. Example frame from the video recording for 
collect the ground truth positions.

Table 3.  Comparison of methods with measured RMSE of the pose estimation.

Body Part Cao et al. Our solution Cao normalized Our normalized
Ankle 3.09 8.80 0.021 0.059
Knee 3.63 5.54 0.024 0.037
Hip 8.18 6.45 0.055 0.043

Wrist 18.81 5.17 0.113 0.034
Elbow 7.23 7.99 0.048 0.054

Shoulder 5.83 7.74 0.039 0.052
Head 8.21 2.45 0.055 0.016

Average 7.57 6.31 0.051 0.042

Table 4.  Comparison PCK@0.2 results at the pose 
estimation.

Body Part Cao et al. Our solution
Ankle 0.999 1
Knee 0.998 0.984
Hip 0.879 1

Wrist 0.711 0.98
Elbow 0.931 0.918

Shoulder 1 0.825
Head 0.948 1

Average 0.924 0.958 Figure 10. PCK metrics for wrist and elbow evaluation.

(b)

(a)
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of the elbows, knees and sometimes back can 
get wrong. In the bottom video the proposed al-
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with a line, the elbow with empty triangle, the 
wrist with empty square, the hip with full circle, 
the knee with full triangle and the ankle with 
full square. In the second row, all points are 
marked with a circle, because of the colorful 
sticky notes put on the clothing. The line of the 
back is marked with a line (the left three pic-
tures in the second row are the results of outline 
based back estimation, and the right picture is 
achieved by distance transform method).
For evaluating our results, we have collected a 
small testing dataset, containing six 15 minute 
long indoor rowing workouts, at various stroke 
rates and intensities and with four different 
people and two different backgrounds. Exam-
ple frame from the video recording is shown 
in Figure 9. We have automatically collected 
the ground truth positions of the body parts 
using brisk sticky notes, as can be seen in the 
figure. The positions are derived from the im-
ages after a thresholding operation, separately 
for every individual color. These sticky notes 
do not affect the behavior and performance of 
our method, moreover, they enabled us to make 
an experimental dataset with ground truth po-
sitions. The colors had no impact on the pro-
cess, since the predictions rely more on shapes 
than colors. For comparison, we have tested 
our dataset with the PAF method [5], which is 
one of the most accurate state-of-the-art general 
pose estimation solutions, as mentioned in the 
previous, Related works section.
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(video resolution was 584 × 276) both for our 
method and the method by Cao et al. [5]. The 
error is defined as the Euclidean distance of 
the prediction and ground truth value (note that 
the back estimation is not included). The val-
ues are presented in pixel values and also in 
"torso lengths", i.e. compared to the length of 
the torso, which gives normalized values (this 
is independent of the image size). The average 
RMSE is 6.3 px for our method, while it is 7.6 
px for Cao's method.
In order to compare the solution suggested in 
this paper with another one, we evaluated the 
results based on another metric, the so called 
PCK, as well. PCK (Percentage of Correct Key-
points) [1] is a widely used metric in the pose 
estimation literature. PCK@r is the percentage 
of predicted keypoints that lie within radius r 
of the ground truth value. It is usually also nor-
malized to ground truth torso length for more 
comparable results (typical value of parameter 

r is 0.2). In Table 4 our solution is compared 
with the method by Cao et al., and it can be 
seen that our method reaches better average 
PCK@0.2 value than Cao's solution. Further-
more, at 3 body parts it reaches the maximum 
1 value. Wrist and elbow can be important in 
the later analysis of the rowing, thus these body 
parts are investigated in more details, Figure 10 
(a) and (b) shows the PCK values of the wrist 
and elbow predictions respectively.

Experimental results show that our average error 
in the pose estimation is only 4.2% of the length 
of torso (i.e. 0.042 normalized value) compared 
to 5.1% of the method (PAF) developed by Cao 
et al. In the comparison we selected PAF as one 
of the most accurate methods and we measured 
the PCK@0.2 results at the pose estimation, 
and our solution exceeds the currently best re-
sults (0.958 vs. 0.924). Based on these results 
we can conclude that our method surpasses the 
state-of-the-art method for indoor rowing spe-
cific videos.

6. Conclusion
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In this paper new methods are presented, which 
are ‒ under the given assumptions ‒ capable 
of extracting the head, shoulder, elbow, wrist, 
hip, knee, ankle and back positions of a row-
ing athlete from video sequences. We propose a 

problem specific, fast and accurate background 
subtraction method, which surpasses two other 
methods widely used in literature; we also 
present a pose estimation approach to extract 
the interested points. The first contribution is 
a new background subtraction method, which 
can reliably separate the silhouette of athletes. 
By adaptive background image our method is 
able to detect rower robustly when there are 
some small changings in the background. This 
is a large advantage compared to the solutions 
using fixed background image, and another 
benefit is the speed of our method. So com-
paring it with GMM and kernel methods, we 
can conclude that our rowing specific method 
performs better than general background sub-
traction methods. The second contribution is a 
skeleton fitting method to find the joints of the 
athletes based on the results of the background 
subtraction. Our estimation is based on the row-
er's foreground mask and on the anthropomet-
ric measurements of human body. We also in-
vestigated the best state-of-the-art human pose 
estimating method, the so called Part Affinity 
Fields (PAF) method which also uses anatom-

Figure 9. Example frame from the video recording for 
collect the ground truth positions.

Table 3.  Comparison of methods with measured RMSE of the pose estimation.

Body Part Cao et al. Our solution Cao normalized Our normalized
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Average 0.924 0.958 Figure 10. PCK metrics for wrist and elbow evaluation.

(b)

(a)



42 43G. Szűcs and B. Tamás Body Part Extraction and Pose Estimation Method in Rowing Videos

ical parts of the body, but this directly predicts 
them in the image. The test results show that our 
solution slightly outperforms the PAF method. 
Based on the comparison, the conclusion is 
that the whole procedure with our background-
foreground segmentation and solving the linear 
equation system for anatomical parts is impor-
tant and that these phases in the procedure can 
help each other (a good foreground mask can 
improve final results of the pose estimation as 
well).
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ical parts of the body, but this directly predicts 
them in the image. The test results show that our 
solution slightly outperforms the PAF method. 
Based on the comparison, the conclusion is 
that the whole procedure with our background-
foreground segmentation and solving the linear 
equation system for anatomical parts is impor-
tant and that these phases in the procedure can 
help each other (a good foreground mask can 
improve final results of the pose estimation as 
well).

References

[1] M. Andriluka et al. "2d Human Pose Estimation: 
New Benchmark and State of the Art Analysis",  
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 
2014, pp. 3686‒3693.
http://dx.doi.org/10.1109/CVPR.2014.471

[2] W. Baumann, "Basics of Biomechanics" (in Ger-
man), Verlag Karl Hofman, 1989.

[3] G. Borgefors, "Distance Transformations in Dig-
ital Images", Computer Vision, Graphics, and 
Image Processing, vol. 34, no. (3), pp. 344‒371, 
1986.
http://dx.doi.org/10.1016/S0734-189X(86)80047-0

[4] A. Bulat and G. Tzimiropoulos, "Human Pose 
Estimation via Convolutional Part Heatmap Re-
gression", in European Conference on Computer 
Vision (ECCV), 2016, pp. 717‒732.
http://dx.doi.org/10.1007/978-3-319-46478-7_44

[5] Z. Cao et al., "Realtime Multi-Person 2D Pose 
Estimation using Part Affinity Fields", CVPR 
2017.
http://dx.doi.org/10.1109/CVPR.2017.143

[6] E. Churchill et al., "Anthropometric Source 
Book", Volume I: Anthropometry for Designers. 
1978.

[7] D. Comaniciu and P. Meer, "Mean Shift: A Sobust 
Approach toward Feature Space Analysis", IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, vol. 24, no. 5, pp. 603‒619, 2002.
http://dx.doi.org/10.1109/34.1000236

[8] R. Cucchiara et al., "The Sakbot System for 
Moving Object Detection and Tracking", in Vid-
eo-Based Surveillance Systems, pp. 145‒157, 
2002.
http://dx.doi.org/10.1007/978-1-4615-0913-4_12

[9] R. Cucchiara et al., "Detecting Moving Objects, 
Ghosts, and Shadows in Video Streams", IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, vol. 25, no. 10, pp. 1337‒1342, 2003.
http://dx.doi.org/10.1109/TPAMI.2003.1233909

[10] A. M. Elgammal et al., "Non-parametric Model 
for Background Subtraction" in Proceedings of 
the 6th European Conference on Computer Vi-
sion, part II, 2000, pp. 751‒767.
http://dx.doi.org/10.1007/3-540-45053-X_48

[11] F. Gravenhorst et al., "Identifying Unique Bio-
mechanical Fingerprints for Rowers and Correla-
tions with Boat Speed-A Data-Driven Approach 
for Rowing Performance Analysis", International 
Journal of Computer Science in Sport, vol. 14, 
no. 1, 2015.

[12] K. He et al., "Deep Residual Learning for Image 
Recognition", in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (ICCV), 2016, pp. 770‒778.
http://dx.doi.org/10.1109/CVPR.2016.90

[13] E. Insafutdinov et al., "DeeperCut: A Deeper, 
Stronger, and Faster Multi-Person Pose Estima-
tion Model", in Proceedings of the European 
Conference on Computer Vision (ECCV), 2016, 
pp. 34‒50.
http://dx.doi.org/10.1007/978-3-319-46466-4_3

[14] U. Iqbal and J. Gall, "Multi-Person Pose Estima-
tion with Local Joint-to-Person Associations", in 
Proceedings of European Conference on Com-
puter Vision (ECCV), 2016, pp. 627‒642.
http://dx.doi.org/10.1007/978-3-319-48881-3_44

[15] A. Kaehler and G. Bradski, "Learning OpenCV", 
O'Reilly Media, Inc., 2014.

[16] V. Kleshnev, "Biomechanics of Rowing", 
Crowood Press Limited, 2016.

[17] T. W. Miller, "Sports Analytics and Data Science: 
Winning the Game with Methods and Models", 
FT Press, 2015.

[18] A. Newell et al., "Stacked Hourglass Networks 
for Human Pose Estimation" in Proceedings of 
the European Conference on Computer Vision 
(ECCV), 2016, pp. 483‒499.
http://dx.doi.org/10.1007/978-3-319-46484-8_29

[19] K. Nummiaro et al., "An Adaptive Color-based 
Particle Filter", Image and Vision Computing, 
vol. 21, no. 1, 99‒110, 2003.
http://dx.doi.org/10.1016/S0262-8856(02)00129-4

[20] T. Pfister et al., "Flowing Convnets for Human 
Pose Estimation in Videos", in Proceedings of the 
IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1913‒1921.
http://dx.doi.org/10.1109/ICCV.2015.222

[21] L. Pishchulin et al., "Deepcut: Joint Subset Par-
tition and Labeling for Multi Person Pose Esti-
mation", in Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR), 2016, pp. 4929‒4937.
http://dx.doi.org/10.1109/CVPR.2016.533

[22] N. Schaffert, and K. Mattes, "Designing an 
Acoustic Feedback System for On-Water Row-
ing Training", International Journal of Computer 
Science in Sport, vol. 10, no. 2, pp. 71‒76, 2011.

[23] M. Sun and S. Savarese, "Articulated Part-based 
Model for Joint Object Detection and Pose Es-
timation", in Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 
2011, pp. 723‒730.
http://dx.doi.org/10.1109/ICCV.2011.6126309

[24] S. E. Wei et al., "Convolutional Pose Machines", 
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 
2016, pp. 4724‒4732.
http://dx.doi.org/10.1109/CVPR.2016.511

[25] B. D. Wilson, "Development in Video Technol-
ogy for Coaching Sports Technology", vol. 1, no. 
1, pp. 34‒40, 2008.
http://dx.doi.org/10.1002/jst.9

[26] R. S. Witte and J. S. "Statistics", Wiley, 9th edi-
tion, 2009.

[27] Z. Zivkovic, "Improved Adaptive Gaussian Mix-
ture Model for Background Subtraction", in Pro-
ceedings of the Pattern Recognition, 17th Inter-
national Conference on (ICPR'04), 2004, vol. 2, 
pp. 28‒31.
http://dx.doi.org/10.1109/ICPR.2004.1333992

[28] Z. Zivkovic and F. van der Heijden, "Efficient 
Adaptive Density Estimation per Image Pixel for 
the Task of Background Subtraction", Pattern 
recognition letters, vol. 27, no. 7, pp. 773‒780, 
2006.
http://dx.doi.org/10.1016/j.patrec.2005.11.005

Received: October, 2017
Revised: April, 2018

Accepted: April, 2018

Contact addresses:
Gábor Szűcs

Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics,

Budapest, Hungary
e-mail: szucs@tmit.bme.hu

Bence Tamás
Department of Telecommunications and Media Informatics,

Budapest University of Technology and Economics,
Budapest, Hungary

e-mail: tamasbence92@gmail.com

Gábor SzűcS received the MSc in electrical engineering and PhD in 
computer science from the Budapest University of Technology and 
Economics (BME) in 1994 and in 2002, respectively. His research ar-
eas are data and multimedia mining, content based image retrieval, and 
semantic search, where he has published more than 100 publications. 
He is an associate professor at the Department of Telecommunications 
and Media Informatics of BME, and is the head of the research group 
DCLAB (Data Science and Content Technologies). Dr. Szűcs the rece-
pient of the János Bolyai Research Scholarship, which is awarded by 
the Hungarian Academy of Science.

bence TamáS is a graduate student at the Budapest University of Tech-
nology and Economics (BME), from which he received the BSc and 
MSc degrees in computer science (specialization in media informatics 
and later in data science). His research efforts cover image and video 
processing, sport analytics, IoT, and data science.

http://dx.doi.org/10.1109/CVPR.2014.471
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1007/978-3-319-46478-7_44
http://dx.doi.org/10.1109/CVPR.2017.143
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.1007/978-1-4615-0913-4_12
http://dx.doi.org/10.1109/TPAMI.2003.1233909
http://dx.doi.org/10.1007/3-540-45053-X_48
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1007/978-3-319-46466-4_3
http://dx.doi.org/10.1007/978-3-319-48881-3_44
http://dx.doi.org/10.1007/978-3-319-46484-8_29
http://dx.doi.org/10.1016/S0262-8856(02)00129-4
http://dx.doi.org/10.1109/ICCV.2015.222
http://dx.doi.org/10.1109/CVPR.2016.533
http://dx.doi.org/10.1109/ICCV.2011.6126309
http://dx.doi.org/10.1109/CVPR.2016.511
http://dx.doi.org/10.1002/jst.9
http://dx.doi.org/10.1109/ICPR.2004.1333992
http://dx.doi.org/10.1016/j.patrec.2005.11.005


 
 
    
   HistoryItem_V1
   Shuffle
        
     Create a new document
     Group size: 1
     Shuffle type: Normal, or perfect bound
     Rule: 1 1
      

        
     D:20180706092423
      

        
     1
     1
     1
     1 1
     712
     278
     2
     2
    
            
       CurrentAVDoc
          

     Normal
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0g
     Quite Imposing Plus 4
     1
      

   1
  

 HistoryList_V1
 qi2base



