
115CIT. Journal of Computing and Information Technology, Vol. 26, No. 2, June 2018, 115–129
doi: 10.20532/cit.2018.1004005

Transforming XML to RDF(S) with
Temporal Information

Dan Yang and Li Yan
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

The Resource Description Framework (RDF) is a
model for representing resources on the Web. With the
widespread acceptance of RDF in various applications
(e.g., knowledge graph), a huge amount of RDF data
is being proliferated. Therefore, transforming legacy
data resources into RDF data is of increasing impor-
tance. In addition, time information widely exists in
various real-world applications and temporal Web data
has been represented and managed in the context of
temporal XML. In this paper, we concentrate on trans-
formation of temporal XML (eXtensible Markup Lan-
guage) to temporal RDF data. We propose the mapping
rules and mapping algorithms which can transform the
temporal XML Schema and document into temporal
RDF Schema and temporal RDF triples, respectively.
We illustrate our mapping approach with an example
and implement a prototype system. It is demonstrated
that our mapping approach is valid.

ACM CCS (2012) Classification: Information sys-
tems → World Wide Web → Web data description
languages → Semantic web description languages →
Resource Description Framework (RDF)
Information systems → World Wide Web → Web
data description languages → Markup languages →
Extensible Markup Language (XML)
Information systems → Data management systems
→ Database design and models → Data model exten-
sions → Temporal data

Keywords: RDF, temporal RDF, temporal XML, map-
ping

1. Introduction

TRDF (Resource Description Framework) [1]
as well as RDF Schema (RDFS for short) rec-
ommended by the W3C (World Wide Web Con-

sortium) can be applied as a metadata model for
describing the semantics and reasoning about
resources on the Web. RDF and/or RDFS are
written as RDF(S). Nowadays RDF(S) has been
widely accepted and used by many fields (e.g.,
governments, organizations and companies) as
the data model and representation format, either
for semantic data search and processing [28],
or for representation of data from information
extraction and integration. With the increas-
ing amount of RDF data which is becoming
available, transforming legacy data resourc-
es into RDF data is of increasing importance.
Some efforts have been devoted to transforma-
tion of various data resources (e.g., relational
databases [2] and UML class diagrams [3]) to
RDF(S). Among various legacy data resources,
XML (eXtensible Markup Language) [4] rec-
ommended by the W3C is the de-facto standard
for data representation and exchange over the
Web. XML has been extensively applied in
many applications and a large volume of data
is managed today directly in XML format. For
this reason, some efforts have been made to
transform XML into RDF(S) [5] − [11].
Time information widely exists in various re-
al-world applications, including many web-
based applications. Actually, many web data
are typically time-related [12]. Some data on
the Web, for example, are valid only at a cer-
tain time point or in a given time interval. In
addition, some historical web data may need to
be recorded and managed [13], [14]. In order to
model and manage temporal information on the
Web, temporal XML model has been proposed,
because of the wide utilization of XML for data

116 117D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

representation and exchange on the Web (e.g.,
[15] − [20]). Note that XML cannot represent
semantic information of data, although XML
has been extensively used and a large volume
of XML data is available. With the widespread
acceptance and utilization of RDF as a metada-
ta model for semantic data representation and
processing on the Web, temporal RDF model-
ing has recently received more attention [22],
[24], [25].
In this paper, we concentrate on modeling tem-
poral information both in XML and RDF(S). In
particular, we introduce the formal definitions
of temporal XML model, including temporal
XML Schema and temporal XML document,
and temporal RDF(S) model. On this basis, we
propose the formal approach to mapping the
temporal XML model to the temporal RDF(S).
We present the mapping rules and mapping al-
gorithm. We apply an example and implement a
prototype system to demonstrate that our map-
ping approach is valid. With the mapping ap-
proach proposed in the paper, temporal XML
can be transformed into temporal RDF(S) and
this serves as automation construction of tem-
poral RDF(S) and further as semantic temporal
information extraction and integration.
The rest of this paper is organized as follows.
We present related work in Section 2. In Sec-
tion 3, we introduce temporal data models we
use in the paper, which are temporal XML mod-
el and temporal RDF model. We propose our
approach to mapping temporal XML model to
temporal RDF model in Section 4, including
the rules and algorithms of mapping temporal
XML Schema to temporal RDF Schema and
temporal XML document to temporal RDF tri-
ples, respectively. We design and implement a
prototype in Section 5. Section 6 concludes this
paper.

2. Related Work

The present work in this paper is closely related
to two issues, which are classical XML trans-
formation to RDF and temporal data modeling
in XML and RDF.

2.1. Temporal Data Modeling

Temporal data modeling has been earlier inves-
tigated in the context of databases (e.g., [26]).

With the wide utilization of XML for data rep-
resentation and exchange on the Web, temporal
XML modeling has received more attention.
Time information is first considered in manag-
ing changes of semi-structured data [13], [14].
The time dimensions of temporal XML main-
ly include valid time and/or transaction time.
In various temporal XML models proposed in
literature, timestamps are explicitly added to
nodes or/and edges of XML trees. In [15], two
physical implementation models are presented
for filling temporal data into XML documents.
XML-based bitemporal data model (XBiT)
proposed in [16] can manage valid time and
transaction time histories. Without temporal
information about XML Schema, the schemes
for timestamps in XML documents are con-
sidered in [18]. A complex framework named
τXSchema is presented in [17] to record the
time-varying elements and physical implemen-
tation position. Temporal constraints are added
to XML Schema in [19]. The issues of model-
ing, indexing, and querying temporal XML are
investigated in [20].
Temporal RDF model is proposed to represent
and manage temporal web data in a semantic
way. In [21], [22], temporal reasoning is in-
corporated into RDF, yielding temporal RDF
graphs. A temporal triple is defined as an RDF
triple with a time interval. The syntax and de-
ductive system for temporal RDF graphs are
presented in [21], [22]. A very different tempo-
ral RDF model is proposed in [25], in which a
temporal triple contains time information in its
property component instead of a whole triple in
[21], [22]. Several issues such as indexing [25],
reasoning [23] and query [24] are investigated
in the context of temporal RDF.

2.2. RDF Transformation from XML

Transformation of various data resources (e.g.,
relational databases [2] and UML class dia-
grams [3]) to classical RDF has been a crucial
issue in RDF data management. In particular,
some proposals establish the correspondences
from XML to RDF(S). In [5], a procedure that
transforms XML documents into RDF state-
ments via an RDF-Schema specification is pre-
sented. A unified model for both XML and RDF
by XML XQuery 1.0 and XPath 2.0 is provided
in [6].

that, for simplicity, only one time-dimension is
presented at a formal definition and the other
can be addressed in an analogous way.

3.1. Temporal XML Schema

XML Schema is used to define the structure of
XML documents shared between applications.
It always contains various elements and attri-
butes with different structures and types. Fol-
lowing the step of [22], we extend the XML
Schema model to support temporal information.
Definition 1. (temporal XML Schema mod-
el). A temporal XML Schema model is a tuple
(S, T, M), in which
1. S = {S1, …, Sn} is a set of XML Schemas

and an XML Schema (say Si Î S) is a tuple
(Ei, Ai, D, ρ, κ, τ) [11], in which Ei is a set
of elements, Ai is a set of attributes, and
D is a set of simple datatypes which con-
tains the built-in datatypes of XML Sche-
ma. The set of attributes of an element e
Î Ei is defined by ρ: Ei → 2Ai and κ: Ei È
Ai → D | ϵ specifies the simple types of
elements and attributes (ϵ is for the empty
type). Specifically, an element type may be
more complex and can be presented by τ =
ϵ | Order [e1 : τ1, …, en : τn], ej Î Ei, where
Order is an order indicator for (Sequence,
Choice, All) of XML Schema.

2. T is a set of times.
3. M : S → 2T is a timestamp function that

maps an XML Schema to a timestamp (a
set of times).

Definition 2. (snapshot of temporal XML Sche-
ma). Let TXS = (S, T, M) be a temporal XML
Schema model. For t Î T, snapshot (t, TXS) =
Si, in which Si Î S and t Î M (Si).

Transforming valid XML documents into RDF
via RDF Schema is discussed by utilizing DTD
(Document Type Definition) and XSD (XML
Schema Definition) in [7] and [8], respectively.
Considering the semantic similarity of dupli-
cate elements in XML schema (XSD or DTD),
in [10] a set of rules is presented, which derives
classes, properties, and data types from XML
schema and interprets XML data as RDF state-
ments by using RDF schema vocabularies. An
approach for automatic transformation from
XML to RDF via XML Schema is proposed in
[9].

3. Temporal Data Models

We concentrate in this paper on the temporal
XML and RDF data models containing two
time-dimensions: valid time and transaction
time. The valid time refers to the time when the
data is true in the modeled reality and the trans-
action time denotes the time at which the in-
formation is edited. We apply two special time
labels: now and UC, to indicate the current time
for valid and transaction, respectively. In addi-
tion, we apply the point-based time domain and
encode some continuous time points with time
intervals. We introduce two operations for time
intervals, which are interval union and interval
intersection (union and interval intersection,
for short), respectively. Let t1, t2, ... be time
intervals. Interval union, denoted È (t1, t2, …),
is applied to calculate the union of these time
intervals and interval intersection, denoted
Ç (t1, t2, …), is applied to calculate the intersec-
tion of these time intervals.
In this section, we present the temporal models
of XML Schema, XML document, RDF, and
RDFS, respectively. We introduce the formal
definitions of these temporal data models. Note

<TemporalSchema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <SchemaVersion path="../TemporalBook.xsd" vstart="x" vend="x" tstart="x" tend="x">
 <element target="/xs:schema/xs:element[1]" vstart="x" vend="x" tstart="x" tend="x" />
 <element target="/xs:schema/xs:element[2]" vstart="x" vend="x" tstart="x" tend="x" />
 ……
 </SchemaVersion>
 <SchemaVersion ..>
 ……
 </SchemaVersion>
</TemporalSchema>

Figure 1. An example of temporal XML Schema.

116 117D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

representation and exchange on the Web (e.g.,
[15] − [20]). Note that XML cannot represent
semantic information of data, although XML
has been extensively used and a large volume
of XML data is available. With the widespread
acceptance and utilization of RDF as a metada-
ta model for semantic data representation and
processing on the Web, temporal RDF model-
ing has recently received more attention [22],
[24], [25].
In this paper, we concentrate on modeling tem-
poral information both in XML and RDF(S). In
particular, we introduce the formal definitions
of temporal XML model, including temporal
XML Schema and temporal XML document,
and temporal RDF(S) model. On this basis, we
propose the formal approach to mapping the
temporal XML model to the temporal RDF(S).
We present the mapping rules and mapping al-
gorithm. We apply an example and implement a
prototype system to demonstrate that our map-
ping approach is valid. With the mapping ap-
proach proposed in the paper, temporal XML
can be transformed into temporal RDF(S) and
this serves as automation construction of tem-
poral RDF(S) and further as semantic temporal
information extraction and integration.
The rest of this paper is organized as follows.
We present related work in Section 2. In Sec-
tion 3, we introduce temporal data models we
use in the paper, which are temporal XML mod-
el and temporal RDF model. We propose our
approach to mapping temporal XML model to
temporal RDF model in Section 4, including
the rules and algorithms of mapping temporal
XML Schema to temporal RDF Schema and
temporal XML document to temporal RDF tri-
ples, respectively. We design and implement a
prototype in Section 5. Section 6 concludes this
paper.

2. Related Work

The present work in this paper is closely related
to two issues, which are classical XML trans-
formation to RDF and temporal data modeling
in XML and RDF.

2.1. Temporal Data Modeling

Temporal data modeling has been earlier inves-
tigated in the context of databases (e.g., [26]).

With the wide utilization of XML for data rep-
resentation and exchange on the Web, temporal
XML modeling has received more attention.
Time information is first considered in manag-
ing changes of semi-structured data [13], [14].
The time dimensions of temporal XML main-
ly include valid time and/or transaction time.
In various temporal XML models proposed in
literature, timestamps are explicitly added to
nodes or/and edges of XML trees. In [15], two
physical implementation models are presented
for filling temporal data into XML documents.
XML-based bitemporal data model (XBiT)
proposed in [16] can manage valid time and
transaction time histories. Without temporal
information about XML Schema, the schemes
for timestamps in XML documents are con-
sidered in [18]. A complex framework named
τXSchema is presented in [17] to record the
time-varying elements and physical implemen-
tation position. Temporal constraints are added
to XML Schema in [19]. The issues of model-
ing, indexing, and querying temporal XML are
investigated in [20].
Temporal RDF model is proposed to represent
and manage temporal web data in a semantic
way. In [21], [22], temporal reasoning is in-
corporated into RDF, yielding temporal RDF
graphs. A temporal triple is defined as an RDF
triple with a time interval. The syntax and de-
ductive system for temporal RDF graphs are
presented in [21], [22]. A very different tempo-
ral RDF model is proposed in [25], in which a
temporal triple contains time information in its
property component instead of a whole triple in
[21], [22]. Several issues such as indexing [25],
reasoning [23] and query [24] are investigated
in the context of temporal RDF.

2.2. RDF Transformation from XML

Transformation of various data resources (e.g.,
relational databases [2] and UML class dia-
grams [3]) to classical RDF has been a crucial
issue in RDF data management. In particular,
some proposals establish the correspondences
from XML to RDF(S). In [5], a procedure that
transforms XML documents into RDF state-
ments via an RDF-Schema specification is pre-
sented. A unified model for both XML and RDF
by XML XQuery 1.0 and XPath 2.0 is provided
in [6].

that, for simplicity, only one time-dimension is
presented at a formal definition and the other
can be addressed in an analogous way.

3.1. Temporal XML Schema

XML Schema is used to define the structure of
XML documents shared between applications.
It always contains various elements and attri-
butes with different structures and types. Fol-
lowing the step of [22], we extend the XML
Schema model to support temporal information.
Definition 1. (temporal XML Schema mod-
el). A temporal XML Schema model is a tuple
(S, T, M), in which
1. S = {S1, …, Sn} is a set of XML Schemas

and an XML Schema (say Si Î S) is a tuple
(Ei, Ai, D, ρ, κ, τ) [11], in which Ei is a set
of elements, Ai is a set of attributes, and
D is a set of simple datatypes which con-
tains the built-in datatypes of XML Sche-
ma. The set of attributes of an element e
Î Ei is defined by ρ: Ei → 2Ai and κ: Ei È
Ai → D | ϵ specifies the simple types of
elements and attributes (ϵ is for the empty
type). Specifically, an element type may be
more complex and can be presented by τ =
ϵ | Order [e1 : τ1, …, en : τn], ej Î Ei, where
Order is an order indicator for (Sequence,
Choice, All) of XML Schema.

2. T is a set of times.
3. M : S → 2T is a timestamp function that

maps an XML Schema to a timestamp (a
set of times).

Definition 2. (snapshot of temporal XML Sche-
ma). Let TXS = (S, T, M) be a temporal XML
Schema model. For t Î T, snapshot (t, TXS) =
Si, in which Si Î S and t Î M (Si).

Transforming valid XML documents into RDF
via RDF Schema is discussed by utilizing DTD
(Document Type Definition) and XSD (XML
Schema Definition) in [7] and [8], respectively.
Considering the semantic similarity of dupli-
cate elements in XML schema (XSD or DTD),
in [10] a set of rules is presented, which derives
classes, properties, and data types from XML
schema and interprets XML data as RDF state-
ments by using RDF schema vocabularies. An
approach for automatic transformation from
XML to RDF via XML Schema is proposed in
[9].

3. Temporal Data Models

We concentrate in this paper on the temporal
XML and RDF data models containing two
time-dimensions: valid time and transaction
time. The valid time refers to the time when the
data is true in the modeled reality and the trans-
action time denotes the time at which the in-
formation is edited. We apply two special time
labels: now and UC, to indicate the current time
for valid and transaction, respectively. In addi-
tion, we apply the point-based time domain and
encode some continuous time points with time
intervals. We introduce two operations for time
intervals, which are interval union and interval
intersection (union and interval intersection,
for short), respectively. Let t1, t2, ... be time
intervals. Interval union, denoted È (t1, t2, …),
is applied to calculate the union of these time
intervals and interval intersection, denoted
Ç (t1, t2, …), is applied to calculate the intersec-
tion of these time intervals.
In this section, we present the temporal models
of XML Schema, XML document, RDF, and
RDFS, respectively. We introduce the formal
definitions of these temporal data models. Note

<TemporalSchema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <SchemaVersion path="../TemporalBook.xsd" vstart="x" vend="x" tstart="x" tend="x">
 <element target="/xs:schema/xs:element[1]" vstart="x" vend="x" tstart="x" tend="x" />
 <element target="/xs:schema/xs:element[2]" vstart="x" vend="x" tstart="x" tend="x" />
 ……
 </SchemaVersion>
 <SchemaVersion ..>
 ……
 </SchemaVersion>
</TemporalSchema>

Figure 1. An example of temporal XML Schema.

118 119D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

The notion of temporal XML Schema is ap-
plied to record different versions of XML sche-
mas. Figure 1 depicts an example of temporal
XML Schema. Here element SchemaVersion
is used to record the version information of
XML Schema and its children can be elements
or other standard notations of XML Schema.
Each child contains an attribute target which is
used to record the location of the corresponding
XML Schema via XPath. Note that, in the tem-
poral Schema, the specified paths are the time
intervals.
In order to accommodate temporal informa-
tion in XML Schema, it is necessary to mod-
ify the corresponding XML Schema so that it
can support temporal XML documents. For this
purpose, we introduce several predefined struc-
tures which can be quoted to mark time varying
contents. Note that these predefined structures
can be contained in other schemas.
The first structure is an attributeGroup named
temporalAttr, which contains four temporal
attributes vStart, vEnd, tStart, and tEnd, repre-

senting the starting times and ending times of a
valid time and a transaction time, respectively
(Figure 2).
The second structure is a complexType named
temporalAttrType, which is used by time vary-
ing attribute element (Figure 3).
The third structure is an element named tem-
poralText, which can be contained by such el-
ements that their texts are changing with time.

3.2. Temporal XML Documents

An XML document tree contains four kinds of
nodes, which are root, element, attribute and
text nodes, respectively. Actually, a root node
is a special element node, which represents the
beginning of an XML document uniquely. Con-
necting nodes forms the edges of XML tree.
A temporal XML document is also represent-
ed as an XML tree. As shown in Figure 5, we
attach bi-temporal annotations to tree nodes
rather than to tree edges. Note that the valid or

transaction time of a child node is contained by
its parent node.
Definition 3. (Temporal XML document mod-
el). A temporal XML document model is a tuple
(X, T, M) [19], where
1. X = {X1, …, Xn} is a set of XML docu-

ments and an XML document (say Xi Î
X) is tuple (Ni, EDi, μ). Here Ni is a set
of nodes (including all types of nodes in
XML tree); EDi = {(n1, n2)} (n1, n2 Î Ni)
is a set of edges1; μ: Ni → ϵ | Ei È Ai maps
the nodes of the XML document model to
an element set Ei and an attribute set Ai of
an XML Schema.

2. T is a set of times.
3. M: X → 2T is a timestamp function that

maps an XML document to a timestamp (a
set of times).

Definition. (snapshot of temporal XML docu-
ment). Let TX = (X, T, M) be a temporal XML
document model. For t Î T, snapshot (t, TX) =
Xi, in where Xi Î X and t Î M (Xi).
An element of temporal XML documents is as-
signed with four special attributes vstart, vend,
tstart and tend, which represent the valid and

transaction interval of this element, respective-
ly. When the attribute or text of an element is
varying with time, we denote the element using
a special attribute isAttr and represent the attri-
bute or text with a subelement, in which the text
node is denoted by an element named TextNode.
Let us look at an example. Suppose that we
have a temporal element named phone, which
has a text node which changes with time. Then
we have a fragment of temporal XML docu-
ment shown in Figure 6.

3.3. Temporal RDF(S)

RDF can be used to express propositions using
precise formal vocabularies. W3C has given the
semantics of RDF with model theory, which is
regarded as "interpretation theory" in [27]. To
represent time information in RDF, we need to
add temporal information to this theory. In this
paper, we adopt the temporal RDF model pro-
posed in [22] with both valid and transaction
dimensions by labeling.
Definition 4. (Temporal RDF model). A sim-
ple temporal interpretation of RDF is a tuple
(I, T, M), in which

Figure 5. An example of temporal XML tree.

<xs:attributeGroup name="temporalAttr">
 <xs:attribute name="vStart" type="xs:date"/>
 <xs:attribute name="vEnd">……</xs:attribute>
 <xs:attribute name="tStart" type="xs:date"/>
 <xs:attribute name="tEnd">……</xs:attribute>
</xs:attributeGroup>

<xs:complexType name="temporalAttrType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="isAttr">……</xs:attribute>
 <xs:attributeGroup ref="temporalAttr"/></xs:extension>
 </xs:simpleContent>
</xs:complexType>

Figure 3. temporalAttrType structure.

Figure 2. temporalAttr structure.

<phone isAttr =" True" vstart= "2008/03/23" vend="now"
 tstart="2008/07/12" tend="UC">023-546887>
</phone>
<TextNode vstart= "2012/05/21" vend="now" tstart="2012/05/22" tend="UC">
 This is a text node changing with time.
</TextNode >

Figure 6. A fragment of temporal XML document.

<xs:element name="temporalText">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attributeGroup ref="temporalAttr"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Figure 4. temporalText structure.

118 119D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

The notion of temporal XML Schema is ap-
plied to record different versions of XML sche-
mas. Figure 1 depicts an example of temporal
XML Schema. Here element SchemaVersion
is used to record the version information of
XML Schema and its children can be elements
or other standard notations of XML Schema.
Each child contains an attribute target which is
used to record the location of the corresponding
XML Schema via XPath. Note that, in the tem-
poral Schema, the specified paths are the time
intervals.
In order to accommodate temporal informa-
tion in XML Schema, it is necessary to mod-
ify the corresponding XML Schema so that it
can support temporal XML documents. For this
purpose, we introduce several predefined struc-
tures which can be quoted to mark time varying
contents. Note that these predefined structures
can be contained in other schemas.
The first structure is an attributeGroup named
temporalAttr, which contains four temporal
attributes vStart, vEnd, tStart, and tEnd, repre-

senting the starting times and ending times of a
valid time and a transaction time, respectively
(Figure 2).
The second structure is a complexType named
temporalAttrType, which is used by time vary-
ing attribute element (Figure 3).
The third structure is an element named tem-
poralText, which can be contained by such el-
ements that their texts are changing with time.

3.2. Temporal XML Documents

An XML document tree contains four kinds of
nodes, which are root, element, attribute and
text nodes, respectively. Actually, a root node
is a special element node, which represents the
beginning of an XML document uniquely. Con-
necting nodes forms the edges of XML tree.
A temporal XML document is also represent-
ed as an XML tree. As shown in Figure 5, we
attach bi-temporal annotations to tree nodes
rather than to tree edges. Note that the valid or

transaction time of a child node is contained by
its parent node.
Definition 3. (Temporal XML document mod-
el). A temporal XML document model is a tuple
(X, T, M) [19], where
1. X = {X1, …, Xn} is a set of XML docu-

ments and an XML document (say Xi Î
X) is tuple (Ni, EDi, μ). Here Ni is a set
of nodes (including all types of nodes in
XML tree); EDi = {(n1, n2)} (n1, n2 Î Ni)
is a set of edges1; μ: Ni → ϵ | Ei È Ai maps
the nodes of the XML document model to
an element set Ei and an attribute set Ai of
an XML Schema.

2. T is a set of times.
3. M: X → 2T is a timestamp function that

maps an XML document to a timestamp (a
set of times).

Definition. (snapshot of temporal XML docu-
ment). Let TX = (X, T, M) be a temporal XML
document model. For t Î T, snapshot (t, TX) =
Xi, in where Xi Î X and t Î M (Xi).
An element of temporal XML documents is as-
signed with four special attributes vstart, vend,
tstart and tend, which represent the valid and

transaction interval of this element, respective-
ly. When the attribute or text of an element is
varying with time, we denote the element using
a special attribute isAttr and represent the attri-
bute or text with a subelement, in which the text
node is denoted by an element named TextNode.
Let us look at an example. Suppose that we
have a temporal element named phone, which
has a text node which changes with time. Then
we have a fragment of temporal XML docu-
ment shown in Figure 6.

3.3. Temporal RDF(S)

RDF can be used to express propositions using
precise formal vocabularies. W3C has given the
semantics of RDF with model theory, which is
regarded as "interpretation theory" in [27]. To
represent time information in RDF, we need to
add temporal information to this theory. In this
paper, we adopt the temporal RDF model pro-
posed in [22] with both valid and transaction
dimensions by labeling.
Definition 4. (Temporal RDF model). A sim-
ple temporal interpretation of RDF is a tuple
(I, T, M), in which

Figure 5. An example of temporal XML tree.

<xs:attributeGroup name="temporalAttr">
 <xs:attribute name="vStart" type="xs:date"/>
 <xs:attribute name="vEnd">……</xs:attribute>
 <xs:attribute name="tStart" type="xs:date"/>
 <xs:attribute name="tEnd">……</xs:attribute>
</xs:attributeGroup>

<xs:complexType name="temporalAttrType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="isAttr">……</xs:attribute>
 <xs:attributeGroup ref="temporalAttr"/></xs:extension>
 </xs:simpleContent>
</xs:complexType>

Figure 3. temporalAttrType structure.

Figure 2. temporalAttr structure.

<phone isAttr =" True" vstart= "2008/03/23" vend="now"
 tstart="2008/07/12" tend="UC">023-546887>
</phone>
<TextNode vstart= "2012/05/21" vend="now" tstart="2012/05/22" tend="UC">
 This is a text node changing with time.
</TextNode >

Figure 6. A fragment of temporal XML document.

<xs:element name="temporalText">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attributeGroup ref="temporalAttr"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Figure 4. temporalText structure.

120 121D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

1. I = {I1, …, In} is a set of simple interpreta-
tions. In Ii = (Ci, Pi, Ri, Ext, CExt) Î I, Ci is
a set of classes; Pi is a set of properties; Ri
is a set of all resources, which is actually
the universe of RDF(S), containing a dis-
tinguished subset Li called literal values;
Ext: Pi → Ri × Ri is used to express the
relationship between resources; CExt: Ci
→ 2Ri maps a class c Î Ci to a subset of Ri
(i.e., Ci = CExt (rdfs:Class), which means
each element of Ci is an extension of rdfs:-
Class).

2. T is a set of times.
3. M: I → 2T is a timestamp function that

maps an interpretation to a timestamp (a
set of times).

Definition 5. (Snapshot of temporal RDF mod-
el). Let TI = (I, T, M) be a simple interpretation.
Then for t Î T, snapshot (t, TI) = Ii, where Ii Î
I, t Î M (Ii).
A temporal triple is an RDF triple with tempo-
ral labels and the notation, denoted (a, b, c): [v]
[t]. Here (a, b, c) denotes a triple with subject
a, property b and object c, [v] denotes the val-
id time of triple, and [t] denotes the transaction
time of triple. Actually, the expression (a, b, c):
[v1, v2] [t1, t2] is a notation for {(a, b, c): [v] [t]
| v1 ≤ v ≤ v2, t1 ≤ t ≤ t2}. Note that the temporal
labels are applied at the level of triples, not the
level of the subject, property or object of triples.
We use the classical RDF graph with tempo-
ral vocabularies to represent temporal RDF. A
temporal RDF graph is a set of temporal triples,
which consists of a set of (a, b, c), (X, tsubj, a),
(X, tpred, b), (X, tobj, c) and (X, valid, V), (X,
trans, T). Here, X denotes the statement of tri-
ple (a, b, c), and V and T represent the valid and
transaction time, respectively.
Figure 7 shows an example of temporal RDF
graph with temporal triples, in which the triple
X is valid from time 3 to now. In other words,
it exists in the knowledge base from time 3 to
current time (UC). Here we use three labels of
interval, initial and final to describe a period of
time, the start time of the period and the end
time of the period, respectively. In Figure 6, Y
and Z represent the time intervals of valid time
([3, Now]) and transaction time ([3, UC]) of tri-
ple X, respectively.

4. Mapping Temporal XML
to Temporal RDF(S)

As we know, XML Schema defines all elements
and attributes with relevant structure and types
of XML documents, which generally contain
rich semantic information. So, transforming
temporal XML to temporal RDF(S) is conduct-
ed at two levels. The first level is to extract
temporal RDF Schema from temporal XML
Schema and the second level is to transform
temporal XML document to temporal RDF tri-
ples.
In this section, we propose the rules for map-
ping temporal XML to RDF(S) based on the
formal definitions of two temporal data models.
The detailed algorithm for mapping temporal
XML document to RDF triples will be clarified.
At last, we employ an example to illustrate the
complete transforming procedure.

4.1. Temporal XML Schema Mapping

Some generic mapping rules from non-tempo-
ral XML Schema to RDFS have been proposed.
But they cannot be directly applied to extract
temporal RDFS from temporal XML Schema.
For our purpose, we define a mapping function
f : XML Schema → RDFS, which maps a snap-
shot St = (Et, At, D, ρ, κ, τ) of temporal XML
Schema at time point t to the corresponding
RDF Schema It = (Ct, Pt, Rt, Ext, CExt), that is,

f (St) = f (Et, At, D, ρ, κ, τ)
 = (Ct, Pt, Rt, Ext, CExt) = It .

The common properties of RDF Schema are
presented as follows:

rdf: type, rdfs: domain, rdfs: range,
rdfs: subClassOf, rdfs: subPropertyOf.

Based on the formal definitions of temporal
XML Schema and temporal RDF(S) above, we
propose the following mapping rules, which es-
tablish the major correspondences of different
components in these two temporal data models.
1. For attribute @a Î At, we have f (@a) Î Pt;
2. Simple datatypes D of XML Schema are

mapped to resources of RDF. We have dt Î
D, 〈 f (dt), rdfs: Datatype 〉 Î Ext (rdf: type);

3. For attribute @a Î At and κ (@a) = dt, dt
Î D, we have 〈 f (@a), f (dt) 〉 Î Ext (rdfs:
range);

4. For element e Î Ei and κ (e) = dt, dt Î D,
we have f (e) Î Pt, 〈 f (e), f (dt) 〉 Ext (rdfs:
range);

5. For element e Î Ei and τ (e) ≠ ϵ , we have
f (e) Î Ct.

Temporal information in XML Schema is di-
rectly mapped to the corresponding temporal
RDFS. To ensure the correctness of RDFS,
snapshot mapping based on time points is ap-
plied with the function f. As we know, XML
Schema is made up of three main building
blocks: elements, attributes and type definitions
and it contains many built-in datatypes (e.g.,
xs: string and xs: decimal). First, RDFS does
not have built-in datatypes. Rule 2 can map the
built-in datatypes of XML Schema to the in-
stances of rdfs: Datatype, which is a predefined
class of RDFS. Second, the attributes of XML
Schema are usually used to describe the fea-
tures of elements which are similar to the prop-
erties of RDFS. We can interpret the attributes
of XML Schema as the properties of RDFS
with Rule 1 and get the range information with
Rule 3. Note that, however, the domain of a
property is related to the attribute's location in
the XML Schema, which can be extracted by
specific processing. Third, we identify two cat-
egories of elements: simple elements and com-
plex elements. The simple elements of XML
Schema contain only the text without any attri-
butes and subelements and can be directly inter-
preted as the properties of RDFS, which range
restrictions are obtained with Rule 4. The com-
plex elements of XML Schema, however, are
translated into the classes of RDFS with Rule

5, because they possess complex data structures
with attributes and subelements.
Based on the mapping rules above, we present
the following algorithm to map a temporal XML
Schema model into a temporal RDFS model.
For a snapshot of temporal XML Schema, it is
parsed in a depth-first order and then all ele-
ments, attributes and types are mapped with the
mapping rules above. Note that two declaration
types global and local in XML Schema cannot
be mapped directly by the formal definitions.
So, the algorithm proposed above does not deal
with the references themselves. The references
of complexTypes can be mapped to classes and
the elements which refer to the complexTypes
are further mapped to subclasses of the mapped
classes. In addition, we can exploit some do-
main information of properties by using posi-
tional relationship between elements and attri-
butes.

4.2. Temporal XML Document Mapping

With the RDF Schema mapped from the tem-
poral XML Schema, we can map the corre-
sponding temporal XML document to temporal
RDF. We define a mapping function g : XML
document → RDF, which maps a snapshot Xt =
(Nt, EDt, μ) of temporal XML document at time
point e to the corresponding RDF It = (Ct, Pt, Rt,
Ext, CExt), that is,

 g (Xt) = f (Nt, EDt, μ)
 = (Ct, Pt, Rt, Ext, CExt) = It .

Based on the formal definitions of temporal
XML document and temporal RDF above, we
propose the following mapping rules which es-
tablish the major correspondences among dif-
ferent components in these two temporal data
models.
1. If node n Î Nt and μ (n) = e Î Et and τ (e)

≠ ϵ, we have g (n) Î Rt, 〈 g (n), f (e) 〉 Î
Ext (rdf : type);

2. If node n Î Nt and μ (n) = e Î Et and κ (e)
≠ ϵ, for pair (p, n) Î EDt, we have 〈 g (p), g
(l) 〉 Î Ext (f (e)), where l is a string value;

3. If node n Î Nt and μ (n) = @a Î At, for
pair (p, n) Î EDt, we have 〈 g (p), g (l) 〉 Î
Ext (f (@a)), where l is a string value of
node n;

X

T

Figure 7. An example of temporal RDF graph.

120 121D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

1. I = {I1, …, In} is a set of simple interpreta-
tions. In Ii = (Ci, Pi, Ri, Ext, CExt) Î I, Ci is
a set of classes; Pi is a set of properties; Ri
is a set of all resources, which is actually
the universe of RDF(S), containing a dis-
tinguished subset Li called literal values;
Ext: Pi → Ri × Ri is used to express the
relationship between resources; CExt: Ci
→ 2Ri maps a class c Î Ci to a subset of Ri
(i.e., Ci = CExt (rdfs:Class), which means
each element of Ci is an extension of rdfs:-
Class).

2. T is a set of times.
3. M: I → 2T is a timestamp function that

maps an interpretation to a timestamp (a
set of times).

Definition 5. (Snapshot of temporal RDF mod-
el). Let TI = (I, T, M) be a simple interpretation.
Then for t Î T, snapshot (t, TI) = Ii, where Ii Î
I, t Î M (Ii).
A temporal triple is an RDF triple with tempo-
ral labels and the notation, denoted (a, b, c): [v]
[t]. Here (a, b, c) denotes a triple with subject
a, property b and object c, [v] denotes the val-
id time of triple, and [t] denotes the transaction
time of triple. Actually, the expression (a, b, c):
[v1, v2] [t1, t2] is a notation for {(a, b, c): [v] [t]
| v1 ≤ v ≤ v2, t1 ≤ t ≤ t2}. Note that the temporal
labels are applied at the level of triples, not the
level of the subject, property or object of triples.
We use the classical RDF graph with tempo-
ral vocabularies to represent temporal RDF. A
temporal RDF graph is a set of temporal triples,
which consists of a set of (a, b, c), (X, tsubj, a),
(X, tpred, b), (X, tobj, c) and (X, valid, V), (X,
trans, T). Here, X denotes the statement of tri-
ple (a, b, c), and V and T represent the valid and
transaction time, respectively.
Figure 7 shows an example of temporal RDF
graph with temporal triples, in which the triple
X is valid from time 3 to now. In other words,
it exists in the knowledge base from time 3 to
current time (UC). Here we use three labels of
interval, initial and final to describe a period of
time, the start time of the period and the end
time of the period, respectively. In Figure 6, Y
and Z represent the time intervals of valid time
([3, Now]) and transaction time ([3, UC]) of tri-
ple X, respectively.

4. Mapping Temporal XML
to Temporal RDF(S)

As we know, XML Schema defines all elements
and attributes with relevant structure and types
of XML documents, which generally contain
rich semantic information. So, transforming
temporal XML to temporal RDF(S) is conduct-
ed at two levels. The first level is to extract
temporal RDF Schema from temporal XML
Schema and the second level is to transform
temporal XML document to temporal RDF tri-
ples.
In this section, we propose the rules for map-
ping temporal XML to RDF(S) based on the
formal definitions of two temporal data models.
The detailed algorithm for mapping temporal
XML document to RDF triples will be clarified.
At last, we employ an example to illustrate the
complete transforming procedure.

4.1. Temporal XML Schema Mapping

Some generic mapping rules from non-tempo-
ral XML Schema to RDFS have been proposed.
But they cannot be directly applied to extract
temporal RDFS from temporal XML Schema.
For our purpose, we define a mapping function
f : XML Schema → RDFS, which maps a snap-
shot St = (Et, At, D, ρ, κ, τ) of temporal XML
Schema at time point t to the corresponding
RDF Schema It = (Ct, Pt, Rt, Ext, CExt), that is,

f (St) = f (Et, At, D, ρ, κ, τ)
 = (Ct, Pt, Rt, Ext, CExt) = It .

The common properties of RDF Schema are
presented as follows:

rdf: type, rdfs: domain, rdfs: range,
rdfs: subClassOf, rdfs: subPropertyOf.

Based on the formal definitions of temporal
XML Schema and temporal RDF(S) above, we
propose the following mapping rules, which es-
tablish the major correspondences of different
components in these two temporal data models.
1. For attribute @a Î At, we have f (@a) Î Pt;
2. Simple datatypes D of XML Schema are

mapped to resources of RDF. We have dt Î
D, 〈 f (dt), rdfs: Datatype 〉 Î Ext (rdf: type);

3. For attribute @a Î At and κ (@a) = dt, dt
Î D, we have 〈 f (@a), f (dt) 〉 Î Ext (rdfs:
range);

4. For element e Î Ei and κ (e) = dt, dt Î D,
we have f (e) Î Pt, 〈 f (e), f (dt) 〉 Ext (rdfs:
range);

5. For element e Î Ei and τ (e) ≠ ϵ , we have
f (e) Î Ct.

Temporal information in XML Schema is di-
rectly mapped to the corresponding temporal
RDFS. To ensure the correctness of RDFS,
snapshot mapping based on time points is ap-
plied with the function f. As we know, XML
Schema is made up of three main building
blocks: elements, attributes and type definitions
and it contains many built-in datatypes (e.g.,
xs: string and xs: decimal). First, RDFS does
not have built-in datatypes. Rule 2 can map the
built-in datatypes of XML Schema to the in-
stances of rdfs: Datatype, which is a predefined
class of RDFS. Second, the attributes of XML
Schema are usually used to describe the fea-
tures of elements which are similar to the prop-
erties of RDFS. We can interpret the attributes
of XML Schema as the properties of RDFS
with Rule 1 and get the range information with
Rule 3. Note that, however, the domain of a
property is related to the attribute's location in
the XML Schema, which can be extracted by
specific processing. Third, we identify two cat-
egories of elements: simple elements and com-
plex elements. The simple elements of XML
Schema contain only the text without any attri-
butes and subelements and can be directly inter-
preted as the properties of RDFS, which range
restrictions are obtained with Rule 4. The com-
plex elements of XML Schema, however, are
translated into the classes of RDFS with Rule

5, because they possess complex data structures
with attributes and subelements.
Based on the mapping rules above, we present
the following algorithm to map a temporal XML
Schema model into a temporal RDFS model.
For a snapshot of temporal XML Schema, it is
parsed in a depth-first order and then all ele-
ments, attributes and types are mapped with the
mapping rules above. Note that two declaration
types global and local in XML Schema cannot
be mapped directly by the formal definitions.
So, the algorithm proposed above does not deal
with the references themselves. The references
of complexTypes can be mapped to classes and
the elements which refer to the complexTypes
are further mapped to subclasses of the mapped
classes. In addition, we can exploit some do-
main information of properties by using posi-
tional relationship between elements and attri-
butes.

4.2. Temporal XML Document Mapping

With the RDF Schema mapped from the tem-
poral XML Schema, we can map the corre-
sponding temporal XML document to temporal
RDF. We define a mapping function g : XML
document → RDF, which maps a snapshot Xt =
(Nt, EDt, μ) of temporal XML document at time
point e to the corresponding RDF It = (Ct, Pt, Rt,
Ext, CExt), that is,

 g (Xt) = f (Nt, EDt, μ)
 = (Ct, Pt, Rt, Ext, CExt) = It .

Based on the formal definitions of temporal
XML document and temporal RDF above, we
propose the following mapping rules which es-
tablish the major correspondences among dif-
ferent components in these two temporal data
models.
1. If node n Î Nt and μ (n) = e Î Et and τ (e)

≠ ϵ, we have g (n) Î Rt, 〈 g (n), f (e) 〉 Î
Ext (rdf : type);

2. If node n Î Nt and μ (n) = e Î Et and κ (e)
≠ ϵ, for pair (p, n) Î EDt, we have 〈 g (p), g
(l) 〉 Î Ext (f (e)), where l is a string value;

3. If node n Î Nt and μ (n) = @a Î At, for
pair (p, n) Î EDt, we have 〈 g (p), g (l) 〉 Î
Ext (f (@a)), where l is a string value of
node n;

X

T

Figure 7. An example of temporal RDF graph.

122 123D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

4. If node n Î Nt and μ (n) = ϵ (it is a text
node), there are two possibilities for pair
(p, n) Î EDt. First, if μ (p) = e Î Et and τ (p)
≠ ϵ, we have 〈g (p), g (l)〉 Î Ext (rdf : value),
where l is the string value of node n. Sec-
ond, if μ (p) = e Î Et and κ (q) ≠ ϵ, we have
〈g (ancestor), g(l)〉 Î Ext (f (e)), where an-
cestor is the parent of node p.

The temporal information of XML document
can be directly mapped to the corresponding
temporal RDF. We map the snapshot of tem-
poral XML document with the function g. As
we know, XML Schema is used to constrain
the structure of XML documents. All elements
and attributes in XML documents come from
the corresponding XML Schema. The ele-
ments of XML document are the instances of
the elements of XML Schema. As mentioned
in Subsection 4.1, the elements of XML Sche-
ma may be parsed into classes or properties of
the RDFS. For the former elements of XML
Schema, the corresponding elements of XML
document are mapped into the instances of the
mapped classes with Rule 1. For the latter ele-
ments of XML Schema, the corresponding ele-
ments of XML document, which have concrete
values (say, l), are mapped to the predicates of
specific triples with object l. Rule 2 and Rule
3 are used to clarify the mappings of these el-
ements and attributes. In an XML tree, there is
a kind of nodes named text nodes, which are
presented as formatted strings. In Rule 4, two
situations in the parent nodes (say, p) of the text
nodes are discussed. If p is converted to an in-
stance of class, the text node is mapped to the
object of the triple with subject p and predicate
rdf: value. If p is parsed into a property, the
text node is mapped to an object of the triple
whose subject is the ancestor (the parent of p)
resource and the predicate is the property that p
is mapped to.
To map a temporal XML document to a tem-
poral RDF, the temporal XML document tree
is parsed in a depth-first order. Each node in
the XML document tree is identified if it is a
node for a property or a class. The validity of
nodes is verified via temporal information ac-
cording to the generated schema. In addition,
the resources described in RDF have unique
identifiers, denoted by URIs. So, we jointly
utilize the namespaces of the temporal XML
document and its location in the temporal XML
document, which is presented by XPath, to rep-

resent resources while generating the instances
of RDF classes. Based on the mapping rules
above, we present the following algorithm to
map a temporal XML document model into a
temporal RDF model.
In Algorithm 2, we use resource to represent
the current XML tree node and semi name-
space-qualifier "onto:" to denote the objects in
RDF Schema. In addition, we introduce new
RDF Schema properties rdfx: describes and
rdfx: hasClass to deal with two special cases.
Here rdfx: describes connects the resource of
the XML document itself (its URI) with the root
class it describes, and rdfx: hasClass is defined
to solve a problem when two directly connect-
ed labels in the XML tree are both identified
as classes. It can be observed from Algorithm
2 that time dimensions in the temporal XML
document are mapped to attributes of elements.
The time that limits the relationship between
two resources in RDF is presented as a label.
So, we use the intersection of time intervals in
resources to label the relevant triples.
Note that XML data is not always time vary-
ing and some data lack temporal information.
To handle this problem, we propose three ad-
ditional rules in order to apply the proposed al-
gorithm.
1. If an element (including non-temporal at-

tributes) lacks valid information, its tem-
poral information follows the time of the
schema.

2. The valid time of an element must be con-
tained by the valid time of its ancestors.

3. If a transaction time is absent, the algo-
rithm follows the transaction time of the
parents.

4.3. An Example Illustration

To illustrate the proposed approach in translat-
ing temporal XML into temporal RDF(S), we
present an example of temporal XML about
e-bookstore. The temporal XML Schema of the
example is presented in Figure 8.
According to the schema mapping rules and the
corresponding mapping algorithm, the tempo-
ral XML Schema shown in Figure 8 is mapped
to the classes and properties of temporal RDFS,
which are shown in Table 1.

Algorithm 1. Extracting temporal RDF Schema.

Input: stemporal XML Schema
Output: temporal RDFS
 for each element SchemaVersion of the root element TemporalSchema {
 schemaPath = getSchemaVersionPath();
 (sv,st) = getAttributeTimeVT();
 Map<String, Time> childNodesMap = createEmptyNodesPath();
 for each child of SchemaVersion {
 xpath = getAttributePath();
 (V, T) = getAttributeTimeVT();
 insertChildNodesMap(childNodesMap, xpath, (V, T)); }
 parseSchema(schemaPath, childNodesMap, (sv,st)); }
 parseSchema(path, map, (SV, ST)) {
 root = getSchemaRootElement(path);
 activeTime (AV, AT) = (SV, ST);
 visitNode(root, activeTime); }
 visitNode(node, activeTime (AV, AT)) {
 qname = getNodeQName();
 nodeName = getAttributeName();
 xpath = getNodeXpath();
 (V, T) = check(xpath,map);
 if (V, T) != null {
 set activeTime=(Ç (AV, V), Ç (AT, T)); }
 if checkIsExistInRDFS(nodeName) == true {
 (oldV, oldT) = getExistTime(nodeName);
 setNewTime(nodeName, (È (oldV, AV), È (oldT, AT))); }
 else {
 switch(qname) {
 case "element":
 if getAttributeRef() != null {
 if isComplexType(getAttributeRef()) == true {
 createClass(nodeName, activeTime);
 setParentClass(nodeName, getAttributeRef()); }
 break; } /*checked with mapping rules and map element to RDFS*/
 mapWithRules(xpath, activeTime);
 if checkIsClass(nodeName) == true { /* activeClass is a global variable to record current valid class*/
 set activeClass = nodeName; }
 else {
 setPropertyDomain(nodeName, activeClass); }
 break;
 case "attribute":
 if getAttributeRef() != null {
 break; } /* checked with mapping rules and map attribute to RDFS*/
 mapWithRules(xpath, activeTime);
 if isGlobal(xpath) == false {
 setPropertyDomain(nodeName, activeClass); }
 break;
 case "complexType":
 if isGlobal(xpath) == true & onlyTemporalAttribute(xpath) == false {
 createClass(nodeName, activeTime); }
 break;
 }}
 for each child of this node {
 visitNode(childNode, activeTime); }
 }

122 123D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

4. If node n Î Nt and μ (n) = ϵ (it is a text
node), there are two possibilities for pair
(p, n) Î EDt. First, if μ (p) = e Î Et and τ (p)
≠ ϵ, we have 〈g (p), g (l)〉 Î Ext (rdf : value),
where l is the string value of node n. Sec-
ond, if μ (p) = e Î Et and κ (q) ≠ ϵ, we have
〈g (ancestor), g(l)〉 Î Ext (f (e)), where an-
cestor is the parent of node p.

The temporal information of XML document
can be directly mapped to the corresponding
temporal RDF. We map the snapshot of tem-
poral XML document with the function g. As
we know, XML Schema is used to constrain
the structure of XML documents. All elements
and attributes in XML documents come from
the corresponding XML Schema. The ele-
ments of XML document are the instances of
the elements of XML Schema. As mentioned
in Subsection 4.1, the elements of XML Sche-
ma may be parsed into classes or properties of
the RDFS. For the former elements of XML
Schema, the corresponding elements of XML
document are mapped into the instances of the
mapped classes with Rule 1. For the latter ele-
ments of XML Schema, the corresponding ele-
ments of XML document, which have concrete
values (say, l), are mapped to the predicates of
specific triples with object l. Rule 2 and Rule
3 are used to clarify the mappings of these el-
ements and attributes. In an XML tree, there is
a kind of nodes named text nodes, which are
presented as formatted strings. In Rule 4, two
situations in the parent nodes (say, p) of the text
nodes are discussed. If p is converted to an in-
stance of class, the text node is mapped to the
object of the triple with subject p and predicate
rdf: value. If p is parsed into a property, the
text node is mapped to an object of the triple
whose subject is the ancestor (the parent of p)
resource and the predicate is the property that p
is mapped to.
To map a temporal XML document to a tem-
poral RDF, the temporal XML document tree
is parsed in a depth-first order. Each node in
the XML document tree is identified if it is a
node for a property or a class. The validity of
nodes is verified via temporal information ac-
cording to the generated schema. In addition,
the resources described in RDF have unique
identifiers, denoted by URIs. So, we jointly
utilize the namespaces of the temporal XML
document and its location in the temporal XML
document, which is presented by XPath, to rep-

resent resources while generating the instances
of RDF classes. Based on the mapping rules
above, we present the following algorithm to
map a temporal XML document model into a
temporal RDF model.
In Algorithm 2, we use resource to represent
the current XML tree node and semi name-
space-qualifier "onto:" to denote the objects in
RDF Schema. In addition, we introduce new
RDF Schema properties rdfx: describes and
rdfx: hasClass to deal with two special cases.
Here rdfx: describes connects the resource of
the XML document itself (its URI) with the root
class it describes, and rdfx: hasClass is defined
to solve a problem when two directly connect-
ed labels in the XML tree are both identified
as classes. It can be observed from Algorithm
2 that time dimensions in the temporal XML
document are mapped to attributes of elements.
The time that limits the relationship between
two resources in RDF is presented as a label.
So, we use the intersection of time intervals in
resources to label the relevant triples.
Note that XML data is not always time vary-
ing and some data lack temporal information.
To handle this problem, we propose three ad-
ditional rules in order to apply the proposed al-
gorithm.
1. If an element (including non-temporal at-

tributes) lacks valid information, its tem-
poral information follows the time of the
schema.

2. The valid time of an element must be con-
tained by the valid time of its ancestors.

3. If a transaction time is absent, the algo-
rithm follows the transaction time of the
parents.

4.3. An Example Illustration

To illustrate the proposed approach in translat-
ing temporal XML into temporal RDF(S), we
present an example of temporal XML about
e-bookstore. The temporal XML Schema of the
example is presented in Figure 8.
According to the schema mapping rules and the
corresponding mapping algorithm, the tempo-
ral XML Schema shown in Figure 8 is mapped
to the classes and properties of temporal RDFS,
which are shown in Table 1.

Algorithm 1. Extracting temporal RDF Schema.

Input: stemporal XML Schema
Output: temporal RDFS
 for each element SchemaVersion of the root element TemporalSchema {
 schemaPath = getSchemaVersionPath();
 (sv,st) = getAttributeTimeVT();
 Map<String, Time> childNodesMap = createEmptyNodesPath();
 for each child of SchemaVersion {
 xpath = getAttributePath();
 (V, T) = getAttributeTimeVT();
 insertChildNodesMap(childNodesMap, xpath, (V, T)); }
 parseSchema(schemaPath, childNodesMap, (sv,st)); }
 parseSchema(path, map, (SV, ST)) {
 root = getSchemaRootElement(path);
 activeTime (AV, AT) = (SV, ST);
 visitNode(root, activeTime); }
 visitNode(node, activeTime (AV, AT)) {
 qname = getNodeQName();
 nodeName = getAttributeName();
 xpath = getNodeXpath();
 (V, T) = check(xpath,map);
 if (V, T) != null {
 set activeTime=(Ç (AV, V), Ç (AT, T)); }
 if checkIsExistInRDFS(nodeName) == true {
 (oldV, oldT) = getExistTime(nodeName);
 setNewTime(nodeName, (È (oldV, AV), È (oldT, AT))); }
 else {
 switch(qname) {
 case "element":
 if getAttributeRef() != null {
 if isComplexType(getAttributeRef()) == true {
 createClass(nodeName, activeTime);
 setParentClass(nodeName, getAttributeRef()); }
 break; } /*checked with mapping rules and map element to RDFS*/
 mapWithRules(xpath, activeTime);
 if checkIsClass(nodeName) == true { /* activeClass is a global variable to record current valid class*/
 set activeClass = nodeName; }
 else {
 setPropertyDomain(nodeName, activeClass); }
 break;
 case "attribute":
 if getAttributeRef() != null {
 break; } /* checked with mapping rules and map attribute to RDFS*/
 mapWithRules(xpath, activeTime);
 if isGlobal(xpath) == false {
 setPropertyDomain(nodeName, activeClass); }
 break;
 case "complexType":
 if isGlobal(xpath) == true & onlyTemporalAttribute(xpath) == false {
 createClass(nodeName, activeTime); }
 break;
 }}
 for each child of this node {
 visitNode(childNode, activeTime); }
 }

124 125D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

Figure 9 presents a temporal XML document
which has the temporal XML Schema shown
in Figure 8.
Using the document mapping rules and the cor-
responding mapping algorithm, the temporal

XML document shown in Figure 8 is mapped
to the temporal RDF triples shown in Table
2, which have the temporal RDFS shown in
Table 1.

Algorithm 2. Interpreting temporal XML document to temporal RDF.

Input: doc_Uri, the uri of temporal XML document
Output: temporal RDF triples
 root = getRootElement(doc_Uri);
 activeRes = getNodeXpath();
 set activeTime(AV, AT) = (infinite, (doc_CreationTime, UC));
 visitNode(root, activeTime);
 visitNode(node, activeTime(AV, AT)) {
 nodeName = getNodeName();
 resource = getNodeXpath();
 (V, T) = getAttributeTimeVT();
 if (V, T) == null {
 set (V, T) = (infinite,infinite) }
 (XV, XT) = getSchemaTime(nodeName);
 switch(getNodeType) {
 case "class":
 if node == root {
 createTriple(doc_Uri, rdfx:describes, resource, (Ç (AV, XV, V), Ç (AT, T))); }
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(), resource, (Ç (LV, XV, V), Ç (LT, T))); }
 else {
 createTriple(activeRes, rdfx:hasClass, resource, (Ç (AV, XV, V), Ç (AT, T)));
 }
 onto:Class = getClass(nodeName);
 createTriple(resource, rdf:type, onto:Class, (Ç (AV, XV, V), Ç (AT, T)));
 set activeRes = resource;
 set activeTime = (Ç (AV, XV, V), Ç (AT, T));
 break;
 case "property":
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(),activeRes, (Ç (LV, AV), Ç (LT, AT))); }
 onto:Prop = getProperty(nodeName);
 createTriple(activeRes, onto:Prop, null, (Ç (AV, XV, V), Ç (AT, T)));
 break;
 default:
 text = getText();
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(), text, (Ç (LV, AV), Ç (LT, AT))); }
 else {
 createTriple(activeRes, rdf:value, text, (Ç (AV, V), Ç (AT, T))); }
 }
 for each child of this node {
 visitNode(childNode, activeTime); }
 }

BookStore_TemporalSchema.xml:
<TemporalSchema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <SchemaVersion path="../BookStore.xsd" vstart="2010-07-18" vend="now"
 tstart="2010-08-01" tend="UC">
 <element target="//xs:element[@name='book']//xs:element[@name='cost']"
 vstart="2010-07-18" vend="2013-03-21" tstart="2013-04-01" tend="UC"/>
 <element target="//xs:element[@name='book']//xs:element[@name='price']"
 vstart="2013-03-22" vend="now" tstart="2013-04-01" tend="UC"/>
 </SchemaVersion>
</TemporalSchema>

BookStore.xsd:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="bookStore">
 <xs:complexType><xs:sequence>
 <xs:element name="owner" type="xs:string"/>
 <xs:element name="book" maxOccurs="unbounded">
 <xs:complexType><xs:sequence>
 <xs:element ref="temporalText" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="name" type="temporalAttrType" maxOccurs="unbounded"/>
 <xs:element name="cost" type="xs:decimal" minOccurs="0"/>
 <xs:element name="price" type="priceType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name=" isbn " type="xs:string"/>
 <xs:attributeGroup ref="temporalAttr"/></xs:complexType></xs:element>
 </xs:sequence>
 </xs:element>
 <xs:complexType name="priceType">
 <xs:simpleContent><xs:extension base="xs:decimal">
 <xs:attributeGroup ref="temporalAttr"/></xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:attributeGroup name="temporalAttr">……</xs:attributeGroup>
 <xs:element name="temporalText">……</xs:element>
 <xs:complexType name="temporalAttrType">……</xs:complexType>
</xs:schema>

Figure 8. A fragment of temporal XML Schema.

Figure 9. An example of temporal RDF.

BookStore.xml (2011-03-11)
<bookStore xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BookStore.xsd">
 This bookstore supplies books about computer.
 <owner>July</owner>
 <book isbn="978-7-302-40864-2" vStart="2011-06-10"
 vEnd="now" tStart="2011-06-12" tEnd="UC">
 <name isAttr="true" vStart="2011-06-10" vEnd="now" tStart="2011-06-12"
 tEnd="2013-08-19">Computer Organization </name>
 <name isAttr="true" vStart="2011-06-10" vEnd="now" tStart="2013-08-20"
 tEnd="UC">Computer Organization and Architecture</name>
 <cost>38</cost>
 <price vStart="2011-06-10" vEnd="now" tStart="2013-08-20"
 tEnd="2014-02-27">38</price>
 <price vStart="2014-02-28" vEnd="now" tStart="2014-02-28" tEnd="UC">42.5</price>
 </book>
</bookStore>

124 125D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

Figure 9 presents a temporal XML document
which has the temporal XML Schema shown
in Figure 8.
Using the document mapping rules and the cor-
responding mapping algorithm, the temporal

XML document shown in Figure 8 is mapped
to the temporal RDF triples shown in Table
2, which have the temporal RDFS shown in
Table 1.

Algorithm 2. Interpreting temporal XML document to temporal RDF.

Input: doc_Uri, the uri of temporal XML document
Output: temporal RDF triples
 root = getRootElement(doc_Uri);
 activeRes = getNodeXpath();
 set activeTime(AV, AT) = (infinite, (doc_CreationTime, UC));
 visitNode(root, activeTime);
 visitNode(node, activeTime(AV, AT)) {
 nodeName = getNodeName();
 resource = getNodeXpath();
 (V, T) = getAttributeTimeVT();
 if (V, T) == null {
 set (V, T) = (infinite,infinite) }
 (XV, XT) = getSchemaTime(nodeName);
 switch(getNodeType) {
 case "class":
 if node == root {
 createTriple(doc_Uri, rdfx:describes, resource, (Ç (AV, XV, V), Ç (AT, T))); }
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(), resource, (Ç (LV, XV, V), Ç (LT, T))); }
 else {
 createTriple(activeRes, rdfx:hasClass, resource, (Ç (AV, XV, V), Ç (AT, T)));
 }
 onto:Class = getClass(nodeName);
 createTriple(resource, rdf:type, onto:Class, (Ç (AV, XV, V), Ç (AT, T)));
 set activeRes = resource;
 set activeTime = (Ç (AV, XV, V), Ç (AT, T));
 break;
 case "property":
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(),activeRes, (Ç (LV, AV), Ç (LT, AT))); }
 onto:Prop = getProperty(nodeName);
 createTriple(activeRes, onto:Prop, null, (Ç (AV, XV, V), Ç (AT, T)));
 break;
 default:
 text = getText();
 if isfinished(getLastTriple()) == false {
 (LV, LT) = getTime(getLastTriple());
 finshTriple(getLastTriple(), text, (Ç (LV, AV), Ç (LT, AT))); }
 else {
 createTriple(activeRes, rdf:value, text, (Ç (AV, V), Ç (AT, T))); }
 }
 for each child of this node {
 visitNode(childNode, activeTime); }
 }

BookStore_TemporalSchema.xml:
<TemporalSchema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <SchemaVersion path="../BookStore.xsd" vstart="2010-07-18" vend="now"
 tstart="2010-08-01" tend="UC">
 <element target="//xs:element[@name='book']//xs:element[@name='cost']"
 vstart="2010-07-18" vend="2013-03-21" tstart="2013-04-01" tend="UC"/>
 <element target="//xs:element[@name='book']//xs:element[@name='price']"
 vstart="2013-03-22" vend="now" tstart="2013-04-01" tend="UC"/>
 </SchemaVersion>
</TemporalSchema>

BookStore.xsd:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="bookStore">
 <xs:complexType><xs:sequence>
 <xs:element name="owner" type="xs:string"/>
 <xs:element name="book" maxOccurs="unbounded">
 <xs:complexType><xs:sequence>
 <xs:element ref="temporalText" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="name" type="temporalAttrType" maxOccurs="unbounded"/>
 <xs:element name="cost" type="xs:decimal" minOccurs="0"/>
 <xs:element name="price" type="priceType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name=" isbn " type="xs:string"/>
 <xs:attributeGroup ref="temporalAttr"/></xs:complexType></xs:element>
 </xs:sequence>
 </xs:element>
 <xs:complexType name="priceType">
 <xs:simpleContent><xs:extension base="xs:decimal">
 <xs:attributeGroup ref="temporalAttr"/></xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:attributeGroup name="temporalAttr">……</xs:attributeGroup>
 <xs:element name="temporalText">……</xs:element>
 <xs:complexType name="temporalAttrType">……</xs:complexType>
</xs:schema>

Figure 8. A fragment of temporal XML Schema.

Figure 9. An example of temporal RDF.

BookStore.xml (2011-03-11)
<bookStore xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BookStore.xsd">
 This bookstore supplies books about computer.
 <owner>July</owner>
 <book isbn="978-7-302-40864-2" vStart="2011-06-10"
 vEnd="now" tStart="2011-06-12" tEnd="UC">
 <name isAttr="true" vStart="2011-06-10" vEnd="now" tStart="2011-06-12"
 tEnd="2013-08-19">Computer Organization </name>
 <name isAttr="true" vStart="2011-06-10" vEnd="now" tStart="2013-08-20"
 tEnd="UC">Computer Organization and Architecture</name>
 <cost>38</cost>
 <price vStart="2011-06-10" vEnd="now" tStart="2013-08-20"
 tEnd="2014-02-27">38</price>
 <price vStart="2014-02-28" vEnd="now" tStart="2014-02-28" tEnd="UC">42.5</price>
 </book>
</bookStore>

126 127D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

5. Prototype Implementation

Based on the mapping rules and algorithms pro-
posed above, we design and implement a proto-
type system called TX-TR as proof-of-concept,

which can map temporal XML Schema and
documents into temporal RDF(S). In the fol-
lowing, we briefly discuss the design and im-
plementation of the prototype system.

The core of TX-TR is to automatically map tem-
poral XML into temporal RDF(S). Before the
mapping is carried out, TX-TR needs to read
in temporal XML Schema as its input, which
is used to extract temporal RDFS. Then, tem-
poral XML document needs to be read in and
mapped, which is done to obtain temporal RDF
triples. TX-TR displays temporal RDF triples
as its output after the mapping is completed.
The overall architecture of TX-TR is shown in
Figure 10, which includes three main modules,
namely, Parse module, Mapping module and
Interface module.
1. Parse module. This module parses inputs

of temporal XML Schema, temporal XML
document and stores the parsed schema in-
formation. Schema information (e.g., file-
Path, temporal information, element con-
straints) of XML Schema can be extracted
and represented.

2. Mapping module. This module transforms
the parsed results into the corresponding
temporal RDF(S) by using the mapping
rules and algorithms proposed above.

3. Interface module. This module provides an
interface to users, which mainly produces
and finally displays the resulting RDF.

Implementation of TX-TR is based on Java with
the API of dom4j and XPath over Eclipse plat-
form, and the Graphical User Interface (GUI)
is exploited over eclipse platform. TX-TR is
implemented and run with a PC (CPU 2.5GHz,
RAM 8GB and Windows 10 system).
The screen snapshot of TX-TR running one
of the case studies is shown in Figure 11 and
Figure 12. It can be seen from Figure 11 and
Figure 12 that the graphical user interface of
TX-TR contains two parts: "Temporal Schema
→ RDFS" and "Temporal XML document →
RDF". Figure 10 shows the first part that maps
temporal XML Schema into temporal RDFS, in
which "Location" is used to import a file of tem-
poral XML Schema and "Export RDFS" is used
to export the corresponding temporal RDFS
transformed the imported temporal XML Sche-
ma. Figure 11 shows the second part that maps
temporal XML document into temporal RDF
triples, in which "Location" is used to import
a file of temporal XML document and "Export
RDF" is used to export the corresponding tem-
poral RDF transformed the imported temporal
XML document.

6. Conclusions

In this paper, we present how to map tempo-
ral XML document with Schema into tempo-
ral RDF(S). The mapping is conducted at two
levels. The first level of mapping is to map the
temporal XML Schema into temporal RDF
Schema and the second level of mapping is to
map the temporal XML document into tempo-
ral RDF triples. For each level of mapping, we

Table 2. An example of temporal XML.

sub pred obj validTime transactionTime
../BookStore.xml rdfx:describes /bookStore (2010-7-18, now) (2011-03-11, UC)

/bookStore rdf:type onto:bookStore (2010-7-18, now) (2011-03-11, UC)
/bookStore rdfx:value This bookstore supplie…. (2010-7-18, now) (2011-03-11, UC)
/bookStore onto:owner July (2010-7-18, now) (2011-03-11, UC)
/bookStore rdfx:hasClass /bookStore/book (2011-06-10, now) (2011-06-12, UC)

/bookStore/book rdf:type onto:book (2011-06-10, now) (2011-06-12, UC)
/bookStore/book onto:isbn 978-7-302-40864-2 (2011-06-10, now) (2011-06-12, UC)
/bookStore/book onto:name Computer Organization (2011-06-10, now) (2011-06-12, 2013-08-19)
/bookStore/book onto:name Computer Organization and... (2011-06-10, now) (2013-08-20, UC)
/bookStore/book onto:cost 38 (2011-06-10, 2013-03-21) (2011-06-12, UC)
/bookStore/book onto:price 38 (2013-03-22, now) (2013-08-20, 2014-02-27)
/bookStore/book onto:price 42.5 (2014-02-28, now) (2014-02-28, UC)

Parse
Module

Temporal
Schema

Temporal
XML

Schema
Information

Mapping
Module

Temporal
RDF(S)

Interface
Module User

Figure 10. Architecture of TX-TR.

Figure 11. Screen snapshot of temporal RDF schema
mapping.

Figure 12. Screen snapshot of temporal RDF triple
mapping.

Table 1. An example of classes and properties in temporal RDFS.

property domain range validTime transactionTime
owner bookStore xs:string (2010-7-18, now) (2010-08-01, UC)
name book xs:string (2010-7-18, now) (2010-08-01, UC)
cost book xs:decimal (2010-07-18, 2013-03-21) (2013-04-01, UC)
price book xs:decimal (2013-03-22, now) (2013-04-01, UC)
isbn book xs:string (2010-7-18, now) (2010-08-01, UC)

126 127D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

5. Prototype Implementation

Based on the mapping rules and algorithms pro-
posed above, we design and implement a proto-
type system called TX-TR as proof-of-concept,

which can map temporal XML Schema and
documents into temporal RDF(S). In the fol-
lowing, we briefly discuss the design and im-
plementation of the prototype system.

The core of TX-TR is to automatically map tem-
poral XML into temporal RDF(S). Before the
mapping is carried out, TX-TR needs to read
in temporal XML Schema as its input, which
is used to extract temporal RDFS. Then, tem-
poral XML document needs to be read in and
mapped, which is done to obtain temporal RDF
triples. TX-TR displays temporal RDF triples
as its output after the mapping is completed.
The overall architecture of TX-TR is shown in
Figure 10, which includes three main modules,
namely, Parse module, Mapping module and
Interface module.
1. Parse module. This module parses inputs

of temporal XML Schema, temporal XML
document and stores the parsed schema in-
formation. Schema information (e.g., file-
Path, temporal information, element con-
straints) of XML Schema can be extracted
and represented.

2. Mapping module. This module transforms
the parsed results into the corresponding
temporal RDF(S) by using the mapping
rules and algorithms proposed above.

3. Interface module. This module provides an
interface to users, which mainly produces
and finally displays the resulting RDF.

Implementation of TX-TR is based on Java with
the API of dom4j and XPath over Eclipse plat-
form, and the Graphical User Interface (GUI)
is exploited over eclipse platform. TX-TR is
implemented and run with a PC (CPU 2.5GHz,
RAM 8GB and Windows 10 system).
The screen snapshot of TX-TR running one
of the case studies is shown in Figure 11 and
Figure 12. It can be seen from Figure 11 and
Figure 12 that the graphical user interface of
TX-TR contains two parts: "Temporal Schema
→ RDFS" and "Temporal XML document →
RDF". Figure 10 shows the first part that maps
temporal XML Schema into temporal RDFS, in
which "Location" is used to import a file of tem-
poral XML Schema and "Export RDFS" is used
to export the corresponding temporal RDFS
transformed the imported temporal XML Sche-
ma. Figure 11 shows the second part that maps
temporal XML document into temporal RDF
triples, in which "Location" is used to import
a file of temporal XML document and "Export
RDF" is used to export the corresponding tem-
poral RDF transformed the imported temporal
XML document.

6. Conclusions

In this paper, we present how to map tempo-
ral XML document with Schema into tempo-
ral RDF(S). The mapping is conducted at two
levels. The first level of mapping is to map the
temporal XML Schema into temporal RDF
Schema and the second level of mapping is to
map the temporal XML document into tempo-
ral RDF triples. For each level of mapping, we

Table 2. An example of temporal XML.

sub pred obj validTime transactionTime
../BookStore.xml rdfx:describes /bookStore (2010-7-18, now) (2011-03-11, UC)

/bookStore rdf:type onto:bookStore (2010-7-18, now) (2011-03-11, UC)
/bookStore rdfx:value This bookstore supplie…. (2010-7-18, now) (2011-03-11, UC)
/bookStore onto:owner July (2010-7-18, now) (2011-03-11, UC)
/bookStore rdfx:hasClass /bookStore/book (2011-06-10, now) (2011-06-12, UC)

/bookStore/book rdf:type onto:book (2011-06-10, now) (2011-06-12, UC)
/bookStore/book onto:isbn 978-7-302-40864-2 (2011-06-10, now) (2011-06-12, UC)
/bookStore/book onto:name Computer Organization (2011-06-10, now) (2011-06-12, 2013-08-19)
/bookStore/book onto:name Computer Organization and... (2011-06-10, now) (2013-08-20, UC)
/bookStore/book onto:cost 38 (2011-06-10, 2013-03-21) (2011-06-12, UC)
/bookStore/book onto:price 38 (2013-03-22, now) (2013-08-20, 2014-02-27)
/bookStore/book onto:price 42.5 (2014-02-28, now) (2014-02-28, UC)

Parse
Module

Temporal
Schema

Temporal
XML

Schema
Information

Mapping
Module

Temporal
RDF(S)

Interface
Module User

Figure 10. Architecture of TX-TR.

Figure 11. Screen snapshot of temporal RDF schema
mapping.

Figure 12. Screen snapshot of temporal RDF triple
mapping.

Table 1. An example of classes and properties in temporal RDFS.

property domain range validTime transactionTime
owner bookStore xs:string (2010-7-18, now) (2010-08-01, UC)
name book xs:string (2010-7-18, now) (2010-08-01, UC)
cost book xs:decimal (2010-07-18, 2013-03-21) (2013-04-01, UC)
price book xs:decimal (2013-03-22, now) (2013-04-01, UC)
isbn book xs:string (2010-7-18, now) (2010-08-01, UC)

128 129D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

propose the mapping rules and mapping algo-
rithm. We illustrate our mapping approach with
an example and implement a prototype system.
In our mapping approach, we apply the inter-
val operations for time calculation. We also
apply snapshots to describe the relation be-
tween theoretical models. Note that obtaining
a snapshot is time-consuming. So, we propose
some rules and constraints to ensure the effec-
tiveness of extracting time information. In ad-
dition, in our mapping approach, we fully con-
sider the semantics of the temporal XML and
try to preserve the semantics in the mapping
as much as possible. However, the cardinality
constraint in XML cannot be directly repre-
sented by RDF(S). Also, the order indicators in
XML Schema are mapped into the containers
or collections of RDF in literature, but the con-
tainers and collections are only used to describe
instances and cannot describe the inclusion re-
lationship between classes of RDFS. We will
dedicate ourselves to deal with their mapping
in our future work.

Acknowledgement

This work was supported in part by Na-
tional Natural Science Foundation of China
(61772269).

References

[1] F. Manola and E. Miller, "RDF Primer", W3C
Recommendation, 2004.
https://www.w3.org/TR/rdf-primer/

[2] J. F. Sequeda et al., "On Directly Mapping Re-
lational Databases to RDF and OWL", in Proc.
World Wide Web Conference, 2012, pp. 649–658
https://doi.org/10.1145/2187836.2187924

[3] Q. Tong et al., "Construction of RDF(S) from
UML Class Diagrams", Journal of Computing
and Information Technology, vol. 22, no. 4, pp.
237–250, 2014.
https://doi.org/10.2498/cit.1002459

[4] T. Bray et al., "Extensible Markup Language
(XML) 1.0", W3C Recommendation, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210

[5] M. Klein, "Interpreting XML Documents via an
RDF Schema Ontology", in Proc. International
Workshop on Database and Expert Systems Ap-
plications, 2002, pp. 889–894.

https://doi.org/10.1109/DEXA.2002.1046008
[6] P. F. Patel-Schneider and A. Simeon, "The Yin/

Yang Web: a Unified Model for XML Syntax
and RDF Semantics", IEEE Transactions on
Knowledge & Data Engineering, vol. 15, no. 4,
pp. 797–812, 2003.
https://doi.org/10.1109/TKDE.2003.1209000

[7] P. T. T. Thuy et. al., "Transforming Valid XML
Documents into RDF via RDF Schema", in Proc.
International Conference on Next Generation
Web Services Practices, 2007, pp. 35–40.
https://doi.org/10.1109/NWESP.2007.23

[8] P. T. T. Thuy et. al., "Exploiting XML Schema for
Interpreting XML Documents as RDF", in Proc.
IEEE International Conference on Services Com-
puting, 2008, pp. 555–558.
https://doi.org/10.1109/SCC.2008.93

[9] Y. Q. Yang et al., "An Automatic Semantic Ex-
traction Algorithm for XML Document", in Proc.
International Conference on Machine Vision and
Human-machine Interface, 2010, pp. 41–44.
https://doi.org/10.1109/MVHI.2010.82

[10] P. T. T. Thuy et al., "A Semantic Approach for
Transforming XML Data into RDF Ontology",
Wireless Personal Communications, vol. 73,
no. 4, pp. 1387–1402, 2013.
https://doi.org/10.1007/s11277-013-1256-z

[11] Y. An et al., "Constructing Complex Semantic
Mappings between XML Data and Ontologies",
in Proc. International Semantic Web Conference,
2005, pp. 6–20.
https://doi.org/10.1007/11574620_4

[12] F. Grandi and F. Mandreoli, "The Valid Web: an
XML/XSL Infrastructure for Temporal Manage-
ment of Web Documents", in Proc. Advances in
Information Systems, 2000, pp. 294–303.
https://doi.org/10.1007/3-540-40888-6_28

[13] S. S. Chawathe et al., "Representing and Query-
ing Changes in Semistructured Data", in Proc.
International Conference on Data Engineering,
1998, pp. 4–13.
https://doi.org/10.1109/ICDE.1998.655752

[14] M. Gergatsoulis and Y. Stavrakas, "Representing
Changes in XML Documents using Dimensions",
in Proc. International XML Database Sympo-
sium, 2003, pp. 208–222
https://doi.org/10.1007/978-3-540-39429-7_14

[15] T. Amagasa et al., "A Data Model for Temporal
XML Documents", in Proc. International Confer-
ence on Database and Expert Systems Applica-
tions, 2000, pp. 334–344.
https://doi.org/10.1007/3-540-44469-6_31

[16] F. Wang and C. Zaniolo, "XBiT: an XML-based
Btemporal Data Model", in Proc. Internation-
al Conference on Conceptual Modeling, 2004,
pp. 810–824.
https://doi.org/10.1007/978-3-540-30464-7_60

[17] F. Currim et al., "A Tale of Two Schemas: Cre-
ating a Temporal XML Schema from a Snapshot
Schema with τXSchema", in Proc. International
Conference on Extending Database Technology,
2004, pp. 348–365.
https://doi.org/10.1007/978-3-540-24741-8_21

[18] F. Grandi et al., "Temporal Modelling and Man-
agement of Normative Documents in XML For-
mat", Data & Knowledge Engineering, vol. 54,
no. 3, pp. 327–354, 2005.
https://doi.org/10.1016/j.datak.2004.11.002

[19] F. A. Currim et. al., "Adding Temporal Con-
straints to XML Schema", IEEE Transactions on
Knowledge & Data Engineering, vol. 24, no. 8,
pp. 1361–1377, 2012.
https://doi.org/10.1109/TKDE.2011.74

[20] F. Rizzolo and A. A. Vaisman, "Temporal XML:
Modeling, Indexing, and Query Processing", The
VLDB Journal, vol. 17, no. 5, pp. 1179–1212,
2008.
https://doi.org/10.1007/s00778-007-0058-x

[21] C. Gutierrez et al., "Temporal RDF", in Proc.
European Semantic Web Conference, 2005,
pp. 93–107.
https://doi.org/10.1007/11431053_7

[22] C. Gutierrez et al., "Introducing Time into RDF",
IEEE Transactions on Knowledge & Data Engi-
neering, vol. 19, no. 2, pp. 207–218, 2007.
https://doi.org/10.1109/TKDE.2007.34

[23] C. Hurtado and A. Vaisman, "Reasoning with
Temporal Constraints in RDF", in Proc. Interna-
tional Conference on Principles and Practice of
Semantic Web Reasoning, 2006, pp. 164–178.
https://doi.org/10.1007/11853107_12

[24] J. Tappolet and A. Bernstein, "Applied Temporal
RDF: Efficient Temporal Querying of RDF Data
with SPARQL", in Proc. European Semantic Web
Conference, 2009, pp. 308–322.
https://doi.org/10.1007/978-3-642-02121-3_25

[25] A. Pugliese et al., "Scaling RDF with Time", in
Proc. International Conference on World Wide
Web, 2008, pp. 605–614.
https://doi.org/10.1145/1367497.1367579

[26] A. Tansel et al., "Temporal Databases: Theory,
Design and Implementation", Benjamin/Cum-
mings, 1993.

[27] P. Hayes, "RDF Semantics", W3C Recommenda-
tion, 2004.
https://www.w3.org/TR/2004/REC-rdf-mt-2004
0210/

[28] R. Ma et al., "SPARQL Queries on RDF with
Fuzzy Constraints and Preferences", Journal of
Intelligent and Fuzzy Systems, vol. 30, no. 1, pp.
183–195, 2016.
http://dx.doi.org/10.3233/IFS-151745

Received: February 2017
Revised: June 2018

Accepted: June 2018

Contact addresses:
Dan Yang

College of Computer Science and Technology
Nanjing University of Aeronautics and Astronautics

Nanjing, 211106
China

e-mail: july283629790@163.com

Li Yan*
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
Nanjing, 211106

China
e-mail: yanli@nuaa.edu.cn

*Corresponding author

Dan Yang is currently a master candidate in the College of Computer
Science and Technology at the Nanjing University of Aeronautics and
Astronautics, China. Her research interests include RDF and XML data
management.

Li Yan received her PhD degree from the Northeastern University,
China and is a full professor in the College of Computer Science and
Technology at the Nanjing University of Aeronautics and Astronautics,
China. Her current research interests include XML, RDF and the Se-
mantic Web.

https://www.w3.org/TR/rdf-primer/
https://doi.org/10.1145/2187836.2187924
https://doi.org/10.2498/cit.1002459
http://www.w3.org/TR/1998/REC-xml-19980210
https://doi.org/10.1109/DEXA.2002.1046008
https://doi.org/10.1109/TKDE.2003.1209000
https://doi.org/10.1109/NWESP.2007.23
https://doi.org/10.1109/SCC.2008.93
https://doi.org/10.1109/MVHI.2010.82
https://doi.org/10.1007/s11277-013-1256-z
https://doi.org/10.1007/11574620_4
https://doi.org/10.1007/3-540-40888-6_28
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1007/978-3-540-39429-7_14
https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.1007/978-3-540-30464-7_60
https://doi.org/10.1007/978-3-540-24741-8_21
https://doi.org/10.1016/j.datak.2004.11.002
https://doi.org/10.1109/TKDE.2011.74
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1007/11431053_7
https://doi.org/10.1109/TKDE.2007.34
https://doi.org/10.1007/11853107_12
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1145/1367497.1367579
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://dx.doi.org/10.3233/IFS-151745

128 129D. Yang and L. Yan Transforming XML to RDF(S) with Temporal Information

propose the mapping rules and mapping algo-
rithm. We illustrate our mapping approach with
an example and implement a prototype system.
In our mapping approach, we apply the inter-
val operations for time calculation. We also
apply snapshots to describe the relation be-
tween theoretical models. Note that obtaining
a snapshot is time-consuming. So, we propose
some rules and constraints to ensure the effec-
tiveness of extracting time information. In ad-
dition, in our mapping approach, we fully con-
sider the semantics of the temporal XML and
try to preserve the semantics in the mapping
as much as possible. However, the cardinality
constraint in XML cannot be directly repre-
sented by RDF(S). Also, the order indicators in
XML Schema are mapped into the containers
or collections of RDF in literature, but the con-
tainers and collections are only used to describe
instances and cannot describe the inclusion re-
lationship between classes of RDFS. We will
dedicate ourselves to deal with their mapping
in our future work.

Acknowledgement

This work was supported in part by Na-
tional Natural Science Foundation of China
(61772269).

References

[1] F. Manola and E. Miller, "RDF Primer", W3C
Recommendation, 2004.
https://www.w3.org/TR/rdf-primer/

[2] J. F. Sequeda et al., "On Directly Mapping Re-
lational Databases to RDF and OWL", in Proc.
World Wide Web Conference, 2012, pp. 649–658
https://doi.org/10.1145/2187836.2187924

[3] Q. Tong et al., "Construction of RDF(S) from
UML Class Diagrams", Journal of Computing
and Information Technology, vol. 22, no. 4, pp.
237–250, 2014.
https://doi.org/10.2498/cit.1002459

[4] T. Bray et al., "Extensible Markup Language
(XML) 1.0", W3C Recommendation, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210

[5] M. Klein, "Interpreting XML Documents via an
RDF Schema Ontology", in Proc. International
Workshop on Database and Expert Systems Ap-
plications, 2002, pp. 889–894.

https://doi.org/10.1109/DEXA.2002.1046008
[6] P. F. Patel-Schneider and A. Simeon, "The Yin/

Yang Web: a Unified Model for XML Syntax
and RDF Semantics", IEEE Transactions on
Knowledge & Data Engineering, vol. 15, no. 4,
pp. 797–812, 2003.
https://doi.org/10.1109/TKDE.2003.1209000

[7] P. T. T. Thuy et. al., "Transforming Valid XML
Documents into RDF via RDF Schema", in Proc.
International Conference on Next Generation
Web Services Practices, 2007, pp. 35–40.
https://doi.org/10.1109/NWESP.2007.23

[8] P. T. T. Thuy et. al., "Exploiting XML Schema for
Interpreting XML Documents as RDF", in Proc.
IEEE International Conference on Services Com-
puting, 2008, pp. 555–558.
https://doi.org/10.1109/SCC.2008.93

[9] Y. Q. Yang et al., "An Automatic Semantic Ex-
traction Algorithm for XML Document", in Proc.
International Conference on Machine Vision and
Human-machine Interface, 2010, pp. 41–44.
https://doi.org/10.1109/MVHI.2010.82

[10] P. T. T. Thuy et al., "A Semantic Approach for
Transforming XML Data into RDF Ontology",
Wireless Personal Communications, vol. 73,
no. 4, pp. 1387–1402, 2013.
https://doi.org/10.1007/s11277-013-1256-z

[11] Y. An et al., "Constructing Complex Semantic
Mappings between XML Data and Ontologies",
in Proc. International Semantic Web Conference,
2005, pp. 6–20.
https://doi.org/10.1007/11574620_4

[12] F. Grandi and F. Mandreoli, "The Valid Web: an
XML/XSL Infrastructure for Temporal Manage-
ment of Web Documents", in Proc. Advances in
Information Systems, 2000, pp. 294–303.
https://doi.org/10.1007/3-540-40888-6_28

[13] S. S. Chawathe et al., "Representing and Query-
ing Changes in Semistructured Data", in Proc.
International Conference on Data Engineering,
1998, pp. 4–13.
https://doi.org/10.1109/ICDE.1998.655752

[14] M. Gergatsoulis and Y. Stavrakas, "Representing
Changes in XML Documents using Dimensions",
in Proc. International XML Database Sympo-
sium, 2003, pp. 208–222
https://doi.org/10.1007/978-3-540-39429-7_14

[15] T. Amagasa et al., "A Data Model for Temporal
XML Documents", in Proc. International Confer-
ence on Database and Expert Systems Applica-
tions, 2000, pp. 334–344.
https://doi.org/10.1007/3-540-44469-6_31

[16] F. Wang and C. Zaniolo, "XBiT: an XML-based
Btemporal Data Model", in Proc. Internation-
al Conference on Conceptual Modeling, 2004,
pp. 810–824.
https://doi.org/10.1007/978-3-540-30464-7_60

[17] F. Currim et al., "A Tale of Two Schemas: Cre-
ating a Temporal XML Schema from a Snapshot
Schema with τXSchema", in Proc. International
Conference on Extending Database Technology,
2004, pp. 348–365.
https://doi.org/10.1007/978-3-540-24741-8_21

[18] F. Grandi et al., "Temporal Modelling and Man-
agement of Normative Documents in XML For-
mat", Data & Knowledge Engineering, vol. 54,
no. 3, pp. 327–354, 2005.
https://doi.org/10.1016/j.datak.2004.11.002

[19] F. A. Currim et. al., "Adding Temporal Con-
straints to XML Schema", IEEE Transactions on
Knowledge & Data Engineering, vol. 24, no. 8,
pp. 1361–1377, 2012.
https://doi.org/10.1109/TKDE.2011.74

[20] F. Rizzolo and A. A. Vaisman, "Temporal XML:
Modeling, Indexing, and Query Processing", The
VLDB Journal, vol. 17, no. 5, pp. 1179–1212,
2008.
https://doi.org/10.1007/s00778-007-0058-x

[21] C. Gutierrez et al., "Temporal RDF", in Proc.
European Semantic Web Conference, 2005,
pp. 93–107.
https://doi.org/10.1007/11431053_7

[22] C. Gutierrez et al., "Introducing Time into RDF",
IEEE Transactions on Knowledge & Data Engi-
neering, vol. 19, no. 2, pp. 207–218, 2007.
https://doi.org/10.1109/TKDE.2007.34

[23] C. Hurtado and A. Vaisman, "Reasoning with
Temporal Constraints in RDF", in Proc. Interna-
tional Conference on Principles and Practice of
Semantic Web Reasoning, 2006, pp. 164–178.
https://doi.org/10.1007/11853107_12

[24] J. Tappolet and A. Bernstein, "Applied Temporal
RDF: Efficient Temporal Querying of RDF Data
with SPARQL", in Proc. European Semantic Web
Conference, 2009, pp. 308–322.
https://doi.org/10.1007/978-3-642-02121-3_25

[25] A. Pugliese et al., "Scaling RDF with Time", in
Proc. International Conference on World Wide
Web, 2008, pp. 605–614.
https://doi.org/10.1145/1367497.1367579

[26] A. Tansel et al., "Temporal Databases: Theory,
Design and Implementation", Benjamin/Cum-
mings, 1993.

[27] P. Hayes, "RDF Semantics", W3C Recommenda-
tion, 2004.
https://www.w3.org/TR/2004/REC-rdf-mt-2004
0210/

[28] R. Ma et al., "SPARQL Queries on RDF with
Fuzzy Constraints and Preferences", Journal of
Intelligent and Fuzzy Systems, vol. 30, no. 1, pp.
183–195, 2016.
http://dx.doi.org/10.3233/IFS-151745

Received: February 2017
Revised: June 2018

Accepted: June 2018

Contact addresses:
Dan Yang

College of Computer Science and Technology
Nanjing University of Aeronautics and Astronautics

Nanjing, 211106
China

e-mail: july283629790@163.com

Li Yan*
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
Nanjing, 211106

China
e-mail: yanli@nuaa.edu.cn

*Corresponding author

Dan Yang is currently a master candidate in the College of Computer
Science and Technology at the Nanjing University of Aeronautics and
Astronautics, China. Her research interests include RDF and XML data
management.

Li Yan received her PhD degree from the Northeastern University,
China and is a full professor in the College of Computer Science and
Technology at the Nanjing University of Aeronautics and Astronautics,
China. Her current research interests include XML, RDF and the Se-
mantic Web.

https://www.w3.org/TR/rdf-primer/
https://doi.org/10.1145/2187836.2187924
https://doi.org/10.2498/cit.1002459
http://www.w3.org/TR/1998/REC-xml-19980210
https://doi.org/10.1109/DEXA.2002.1046008
https://doi.org/10.1109/TKDE.2003.1209000
https://doi.org/10.1109/NWESP.2007.23
https://doi.org/10.1109/SCC.2008.93
https://doi.org/10.1109/MVHI.2010.82
https://doi.org/10.1007/s11277-013-1256-z
https://doi.org/10.1007/11574620_4
https://doi.org/10.1007/3-540-40888-6_28
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1007/978-3-540-39429-7_14
https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.1007/978-3-540-30464-7_60
https://doi.org/10.1007/978-3-540-24741-8_21
https://doi.org/10.1016/j.datak.2004.11.002
https://doi.org/10.1109/TKDE.2011.74
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1007/11431053_7
https://doi.org/10.1109/TKDE.2007.34
https://doi.org/10.1007/11853107_12
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1145/1367497.1367579
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://dx.doi.org/10.3233/IFS-151745

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

