
235CIT. Journal of Computing and Information Technology, Vol. 26, No. 4, December 2018, 235–250
doi: 10.20532/cit.2018.1004174

Ravdeep Singh Boparai, Anastasios Alexandridis and Zeljko Zilic
McGill University, Montreal, Canada

Multi-point Security by a
Multiplatform-compatible
Multifunctional Authentication and
Encryption Board

Securing the access in networks is a first-order concern
that only gains importance with the advent of Internet
of Things (IoT). In this paper, a security system is pre-
sented for password-free access over the secured link.
It makes the connection faster than manual authenti-
cation and facilitates Machine-to-Machine (M2M) se-
cure interactions, as required for IoT. The authentica-
tion procedure includes the exchange of certificate and
challenge/response pairs, which are stored and com-
puted in an external security coprocessor. The system
enforces the authentication protocol, includes error
detection, and handles multiple devices according to
their Operating Systems (OS) through their connec-
tions/disconnections. It also performs encryption, if
necessary. It is applicable on application level for de-
vices, including IoT based devices, sensors, Android,
and iOS-based smartphones. The devices that have the
correct certificate and can solve the challenge can con-
nect to the network linked with the security system.
The system security is hardened because the sensitive
authentication elements such as keys, certificates, and
challenge responses are invisible to users and are ex-
changed only using strong hashing algorithms that are
irreversible. The proposed hardware security system
can augment any supporting network, converting the
entire insecure network into a secured one, as well as
retrofit existing insecure Bluetooth devices for secure
access. The system incurs low overhead in time and
energy by performing security operations in an ASIC
coprocessor, and can be shared to secure access to
multiple devices, which reduces both energy and cost.

ACM CCS (2012) Classification: Security and priva-
cy → Security in hardware → Embedded systems
security
Computer systems organization → Embedded and cy-
ber-physical systems → Sensor networks

Keywords: multiplatform, secure channel, IoT, wire-
less, multiple devices, Bluetooth

1. Introduction

In 2020, billions of Internet of Thing (IoT) de-
vices will be available [1], turning this world
into a hub of wireless networks consisting of
"things" such as sensors, home appliances, and
computing devices. In turn, security becomes
an important factor, as any such thing becomes
accessible and vulnerable to attacks.
The existing methods, such as authentication by
passwords can mitigate the issues only partial-
ly. The passwords can be cracked through com-
putation and by means of deceiving the users.
Passwords are also tedious as they must be re-
membered and entered by users, making them
time-consuming in most cases. More impor-
tantly, the IoT world is becoming essentially a
Machine-to-Machine (M2M) domain, in which
intervention by humans is prohibitively expen-
sive, if not impossible.
In certain critical cases, additional devices can
produce authentication tokens, often in a way
applicable to the specific authentication scenar-
io. In the past decade, two-factor authentication
systems have been introduced. They employ an
additional personal device [2], such as a phone
or a tablet, to produce an authentication token.
The scheme is fairly simple to use; howev-
er, it also comes with disadvantages. The use
of passwords is still one of the problems, and
the time it takes to authenticate becomes worse
than when using the passwords alone.
To address these issues, a hardware-based se-
curity system that can authenticate and encrypt

236 237R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

the communication between multiple devices
or between devices and peripherals is proposed.
The proposed system performs password-free
authentication, which increases the authenti-
cation speed and eliminates human errors. It
is compatible across different computing plat-
forms and is capable of securing peripherals
such as sensors that are either wireless or wired.
Similar to two-factor authentication, there are
two steps to execute. With the system, a proto-
col was designed that allows the authentication
for accessing multiple devices and encrypting
the raw data of peripherals or sensors, in a way
compatible with connection-oriented or con-
nectionless communications. Hence the chan-
nel between user devices and security system
is authenticated and encrypted. The details of
packet formation, handling the timeout, ac-
knowledgments, sequences, size, payloads, and
checksums, are all carefully addressed in the
proposed solution as well.
The hardware-based security system is de-
signed and deployed for both leading smart-
phone platforms that can perform authentication
compatible with an X.509v3 certificate-based
authentication, and a challenge-response ex-
change based on hash-based message authenti-
cation code (HMAC) ‒ Secure Hash Algorithm
(SHA256) was used as the underlying hashing
algorithm, which is deemed secure for the time
being [3]. For encryption, an Elliptic Curve
Cryptography (ECC) is used, with dynamically
generated asymmetric keys used to establish a
secure connection. Using this connection, the
system exchanges a shared key used to perform
Advanced Encryption Standard (AES) encryp-
tion, as specified by the National Institute of
Standards and Technology (NIST).
The remainder of this paper is outlined as fol-
lows. Section 2 presents the previous related
work on hardware-based security, as well as
authentication and encryption of IoT based sys-
tems. In Section 3, the proposed system archi-
tecture and design, as well as the parts that it is
composed of, can be found, whereas in Section
4 the core of the system, a coprocessor, is out-
lined. System advantages and applications are
given in Section 5. The implementation and
evaluation of the security system can be seen in
Section 6. The last section concludes the paper
and discusses any potential future work for the
system.

2. Related Work

Wireless sensor networks (WSN) for IoT require
strong cryptography to protect data from the at-
tacks in which intruders could be anywhere in
the world. The most common methods of pro-
tection will be outlined here. The Two-factor au-
thentication system developed by Das [4] needs
the user to login during the Registration phase,
followed by Authentication phase that employs
most commonly another consumer electronic
device. The Controller-based security includes
a security manager, a link and network layer se-
curity – there is additional need for the security
at application layer. TinyPK, an authentication
protocol based on RSA and Diffie-Hellman al-
gorithms was proposed by Watro et al. [5]. The
credentials are stored in the device, therefore
they can be extracted using a stolen verifier at-
tack. The use of user login exposes the keys as
well as makes it vulnerable to the man-in-the-
middle (MITM) attack, and significantly slows
down the authentication procedure. A protocol
was proposed by Shi et al. [6] for WSNs that
uses elliptic curve cryptography for providing
a secure communication between sensor de-
vices and user devices. The solution presented
by Salman et al. in [7] uses the Montgomery
multiplier hardware and pairing software which
requires additional computation and power for
pairing-based cryptography.
Gao and Gang [8] used fingerprinting, digital
watermarking along with device authentica-
tion, and encryption, which increases the secu-
rity using hardware, but at the same time needs
additional (e.g., biometric) hardware devices.
Another approach by Lesjak et al. in [9] used
hardware-rooted snapshots for transparent and
secure communication for Industrial IoT. It
uses schemes such as Broker-based messaging
infrastructure and hybrid encryption.
The security attacks can take many forms, such
as physical, side-channel, network, or software
attacks. Certain security frameworks were built
to provide security against some of such attacks
[10]. Wireless systems have been more vulner-
able as the secret encryption key can be extract-
ed from the packets through statistical analysis.
By using attack methods such as side-channel
attacks, various approaches were made by Zhen
et al. [11]. Blockchain-based frameworks were
also proposed that provide a decentralized se-
curity system having additional features, such

smith's factorization was discovered by a re-
search team, which allows attackers to compute
a private key from a public key in a realistic
amount of time [16], [17], [18]. For reference, a
512 bit key generated with a low entropy prime
can be factorized in less than two CPU hours,
whereas a 1024 bit key can take less than 100
CPU days, both very feasible with rented cloud
CPU instances, whereas a 2048 bit key could
take just over 140 CPU years, a rather large but
still not infeasible requirement [18].
USB Type-C supports authentication through
the C-AUTH specification. C-AUTH is an
authentication specification standard that pro-
vides one-way authentication to authenticate
USB devices, power supplies, and cables. Au-
thentication is performed with the use of the
certificates which are signed using private keys
and hashed for means of verifying them by the
authenticating party. The cryptographic meth-
ods used are widely available, such as X.509v3
certificate format and SHA256 hashing algo-
rithm. Certificate chains may be used if needed,
such as a device certificate that is being signed
by the manufacturer, who relies on a root cer-
tificate signed by a trusted certificate authority
[19]. C-AUTH allows only a single device au-
thentication at a time.
In the Web software world, the W3C con-
sortium is introducing a Web Authentication
(WebAuthn) API, which is an add-on for web
browsers to generate public key-based creden-
tials which can be accessed by only the origin
of key [20]. The WebAuthn performs signature
and attestation of a key with the relying party.
These are the two steps followed:
(i) registration, in which the authenticator

generates the key using its user account
and associates with the reply party, and

(ii) authentication, in which the key is offered
by the replying party to the authenticator.

The device is registered by signing in an ac-
count or creating a new one in a website opened
in the browser; the user can add login methods
such as passwords/PINs or biometric. The Web-
Authn can establish a connection between web
browser and server systems, but the connection
between sensor and user device has not been
explored. Furthermore, the WebAuthn needs
a browser whereas IoT based systems usually
interface at lower protocol layers, the authen-
tication system should be able to run over the

as fault tolerance and scalability by Varshney
et al. [12].
The YubiKey commercial product implements
"Security keys" as a second factor device to
protect the user from MITM, or phishing, at-
tacks [13]. The device acts as a hardware-based
login system that has been deployed by Google,
Dropbox and many more. It follows the Uni-
versal Second Factor (U2F) open standard for
the Security key protocol, which uses key pairs
explicitly tied to systems in order to authenti-
cate. YubiKey also supports simple passwords
to automate input, and one-time challenge or
time-based responses. Once registered and
configured for two-factor authentication, the
YubiKey is inserted into USB and a button on
the key is pressed, or it is simply tapped against
Near-field communication (NFC) enabled An-
droid smartphones to perform authentication.
In the software, the YubiKey first registers in
which a pair of Security keys is generated, and
public key is returned which is now linked to
user account. There is also a key handle, which
ties the key to a specific origin, for example a
server. When authenticating, the key will match
the key handle to the correct pair of keys, and
send a signature created using the private key,
which is verified by the server to authenticate
the user [14].
However, the YubiKey is limited to only one
type of interface, a USB connector, with NFC
also supported in one model. Moreover, Yu-
biKey can perform authentication on only a sin-
gle device at any given moment, with physical
action required to authenticate a different de-
vice (that is, connecting it to the other device).
Further, the YubiKey does not support securing
the other concurrently used devices and periph-
erals, such as sensors. It requires a fully func-
tional system in place that both supports U2F
and features device logic that can handle data
formatting and communication. Last but not
least, even though YubiKey initially featured
open-source components, it has transitioned
to closed-source in the latest models, which
cannot be reviewed independently for security
vulnerabilities [15]. This approach that reintro-
duces the 'security through obscurity' concept
eventually led to a flaw in the underlying cryp-
tographic library, which generated primes with
low entropy. A practical factorization attack
(ROCA vulnerability, which stands for Return
Of Coppersmith Attack), based on Copper-

236 237R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

the communication between multiple devices
or between devices and peripherals is proposed.
The proposed system performs password-free
authentication, which increases the authenti-
cation speed and eliminates human errors. It
is compatible across different computing plat-
forms and is capable of securing peripherals
such as sensors that are either wireless or wired.
Similar to two-factor authentication, there are
two steps to execute. With the system, a proto-
col was designed that allows the authentication
for accessing multiple devices and encrypting
the raw data of peripherals or sensors, in a way
compatible with connection-oriented or con-
nectionless communications. Hence the chan-
nel between user devices and security system
is authenticated and encrypted. The details of
packet formation, handling the timeout, ac-
knowledgments, sequences, size, payloads, and
checksums, are all carefully addressed in the
proposed solution as well.
The hardware-based security system is de-
signed and deployed for both leading smart-
phone platforms that can perform authentication
compatible with an X.509v3 certificate-based
authentication, and a challenge-response ex-
change based on hash-based message authenti-
cation code (HMAC) ‒ Secure Hash Algorithm
(SHA256) was used as the underlying hashing
algorithm, which is deemed secure for the time
being [3]. For encryption, an Elliptic Curve
Cryptography (ECC) is used, with dynamically
generated asymmetric keys used to establish a
secure connection. Using this connection, the
system exchanges a shared key used to perform
Advanced Encryption Standard (AES) encryp-
tion, as specified by the National Institute of
Standards and Technology (NIST).
The remainder of this paper is outlined as fol-
lows. Section 2 presents the previous related
work on hardware-based security, as well as
authentication and encryption of IoT based sys-
tems. In Section 3, the proposed system archi-
tecture and design, as well as the parts that it is
composed of, can be found, whereas in Section
4 the core of the system, a coprocessor, is out-
lined. System advantages and applications are
given in Section 5. The implementation and
evaluation of the security system can be seen in
Section 6. The last section concludes the paper
and discusses any potential future work for the
system.

2. Related Work

Wireless sensor networks (WSN) for IoT require
strong cryptography to protect data from the at-
tacks in which intruders could be anywhere in
the world. The most common methods of pro-
tection will be outlined here. The Two-factor au-
thentication system developed by Das [4] needs
the user to login during the Registration phase,
followed by Authentication phase that employs
most commonly another consumer electronic
device. The Controller-based security includes
a security manager, a link and network layer se-
curity – there is additional need for the security
at application layer. TinyPK, an authentication
protocol based on RSA and Diffie-Hellman al-
gorithms was proposed by Watro et al. [5]. The
credentials are stored in the device, therefore
they can be extracted using a stolen verifier at-
tack. The use of user login exposes the keys as
well as makes it vulnerable to the man-in-the-
middle (MITM) attack, and significantly slows
down the authentication procedure. A protocol
was proposed by Shi et al. [6] for WSNs that
uses elliptic curve cryptography for providing
a secure communication between sensor de-
vices and user devices. The solution presented
by Salman et al. in [7] uses the Montgomery
multiplier hardware and pairing software which
requires additional computation and power for
pairing-based cryptography.
Gao and Gang [8] used fingerprinting, digital
watermarking along with device authentica-
tion, and encryption, which increases the secu-
rity using hardware, but at the same time needs
additional (e.g., biometric) hardware devices.
Another approach by Lesjak et al. in [9] used
hardware-rooted snapshots for transparent and
secure communication for Industrial IoT. It
uses schemes such as Broker-based messaging
infrastructure and hybrid encryption.
The security attacks can take many forms, such
as physical, side-channel, network, or software
attacks. Certain security frameworks were built
to provide security against some of such attacks
[10]. Wireless systems have been more vulner-
able as the secret encryption key can be extract-
ed from the packets through statistical analysis.
By using attack methods such as side-channel
attacks, various approaches were made by Zhen
et al. [11]. Blockchain-based frameworks were
also proposed that provide a decentralized se-
curity system having additional features, such

smith's factorization was discovered by a re-
search team, which allows attackers to compute
a private key from a public key in a realistic
amount of time [16], [17], [18]. For reference, a
512 bit key generated with a low entropy prime
can be factorized in less than two CPU hours,
whereas a 1024 bit key can take less than 100
CPU days, both very feasible with rented cloud
CPU instances, whereas a 2048 bit key could
take just over 140 CPU years, a rather large but
still not infeasible requirement [18].
USB Type-C supports authentication through
the C-AUTH specification. C-AUTH is an
authentication specification standard that pro-
vides one-way authentication to authenticate
USB devices, power supplies, and cables. Au-
thentication is performed with the use of the
certificates which are signed using private keys
and hashed for means of verifying them by the
authenticating party. The cryptographic meth-
ods used are widely available, such as X.509v3
certificate format and SHA256 hashing algo-
rithm. Certificate chains may be used if needed,
such as a device certificate that is being signed
by the manufacturer, who relies on a root cer-
tificate signed by a trusted certificate authority
[19]. C-AUTH allows only a single device au-
thentication at a time.
In the Web software world, the W3C con-
sortium is introducing a Web Authentication
(WebAuthn) API, which is an add-on for web
browsers to generate public key-based creden-
tials which can be accessed by only the origin
of key [20]. The WebAuthn performs signature
and attestation of a key with the relying party.
These are the two steps followed:
(i) registration, in which the authenticator

generates the key using its user account
and associates with the reply party, and

(ii) authentication, in which the key is offered
by the replying party to the authenticator.

The device is registered by signing in an ac-
count or creating a new one in a website opened
in the browser; the user can add login methods
such as passwords/PINs or biometric. The Web-
Authn can establish a connection between web
browser and server systems, but the connection
between sensor and user device has not been
explored. Furthermore, the WebAuthn needs
a browser whereas IoT based systems usually
interface at lower protocol layers, the authen-
tication system should be able to run over the

as fault tolerance and scalability by Varshney
et al. [12].
The YubiKey commercial product implements
"Security keys" as a second factor device to
protect the user from MITM, or phishing, at-
tacks [13]. The device acts as a hardware-based
login system that has been deployed by Google,
Dropbox and many more. It follows the Uni-
versal Second Factor (U2F) open standard for
the Security key protocol, which uses key pairs
explicitly tied to systems in order to authenti-
cate. YubiKey also supports simple passwords
to automate input, and one-time challenge or
time-based responses. Once registered and
configured for two-factor authentication, the
YubiKey is inserted into USB and a button on
the key is pressed, or it is simply tapped against
Near-field communication (NFC) enabled An-
droid smartphones to perform authentication.
In the software, the YubiKey first registers in
which a pair of Security keys is generated, and
public key is returned which is now linked to
user account. There is also a key handle, which
ties the key to a specific origin, for example a
server. When authenticating, the key will match
the key handle to the correct pair of keys, and
send a signature created using the private key,
which is verified by the server to authenticate
the user [14].
However, the YubiKey is limited to only one
type of interface, a USB connector, with NFC
also supported in one model. Moreover, Yu-
biKey can perform authentication on only a sin-
gle device at any given moment, with physical
action required to authenticate a different de-
vice (that is, connecting it to the other device).
Further, the YubiKey does not support securing
the other concurrently used devices and periph-
erals, such as sensors. It requires a fully func-
tional system in place that both supports U2F
and features device logic that can handle data
formatting and communication. Last but not
least, even though YubiKey initially featured
open-source components, it has transitioned
to closed-source in the latest models, which
cannot be reviewed independently for security
vulnerabilities [15]. This approach that reintro-
duces the 'security through obscurity' concept
eventually led to a flaw in the underlying cryp-
tographic library, which generated primes with
low entropy. A practical factorization attack
(ROCA vulnerability, which stands for Return
Of Coppersmith Attack), based on Copper-

238 239R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

firmware. The proposed system allows in the
core of the sensor interfacing hence, the data
along the processing pathway can be kept more
secure. Further, the authentication system is in
the firmware of the control module, making it
invisible or inaccessible to user.
The security systems studied and reviewed
above require human intervention or are lim-
ited to a particular network, either Internet or
WSN. The IoT not only connects computers but
also connects smartphones with peripherals or
sensors. The system should be capable of se-
curing any kind of platform such as Android,
iOS, Windows; therefore, it has to be above the
OS, at the application layer, while at the same
time the authentication procedure should be au-
tomatic. If no human intervention is required,
then the process is invisible and fast, which pro-
tects the system from several types of attacks. It
should have a low overhead, as well as it should
work with low-powered devices.
To the best of our knowledge, there is no oth-
er hardware system providing simultaneous
multi-point security between a wide range of
devices and technologies, and without human
input. YubiKey for instance offers some vari-
ety in technologies (USB, NFC), however it is
point to point and requires human input [14].
C-AUTH on the other hand is more automated
and supports M2M, however it is exclusive to
USB-C and also point to point [19]. Our pro-
posed system can act between multiple devices,
including connectivity with sensor nodes that
often appear in IoT. The presented system per-
forms the authentication, controls the connec-
tivity, and builds an IoT based secured network,
surpassing the existing systems that deal with
only one device.

3. System Architecture

In this section, the system architecture of a de-
vice designed to facilitate secure connection of
multiple types of devices in IoT setups is de-
scribed.

3.1. System overview

The proposed security system is composed of
several modules. The main part is the security
coprocessor module, which is a "coprocessor",

that offers authentication and encryption. The
system is also composed of a communication
module, which enables the different systems
to communicate with each other, while it fol-
lows the defined protocol. In addition, there is
a control module that controls all modules and
enables the system to function. It is responsible
for the information exchanged, the protocol be-
ing followed, and performs authentication and
encryption as required, by controlling the co-
processor.
Finally, a dedicated application is installed on
the user device based on the platform such as
iOS, Android or Windows. It performs the pro-
tocol specific steps with the security system.
Figure 1 presents the architecture of the system.

For the purpose of clarifying, the practical im-
plementation of the system comprises the con-
trol module that is a microcontroller, the securi-
ty coprocessor module is simply a coprocessor,
peripherals are devices whose data is to be se-
cured connected to microcontroller via I2C &
UART such as sensors, and the communication
module is Bluegiga Bluetooth chip. USB based
user systems are wired user devices and wire-
less devices are the user smartphones including
wireless sensors. For consistency purposes, the
modules will be referred to with their specific
names rather than the abstracted module names,
unless necessary. The entire arrangement is
termed as a security system that can connect to
any device, node, or peripheral that needs data
authentication and encryption features. It can
be used in several use cases and configurations,
such as authenticating peripherals for devices,
devices for devices, or even devices for differ-
ent systems, on either one or both ends. If the
system authenticating another system is trusted,

then it may not be necessary to authenticate on
both ends. In any case, an end to end encryption
will be performed if necessary.

3.2. Coprocessor Module

The coprocessor found in the system can au-
thenticate and encrypt communications [21].
The authentication is performed in two steps.
First, an X.509v3 certificate is sent to the au-
thenticating device from the coprocessor. The
authenticating device can verify the certificate
owner by checking the certificate, and verifying
that the signer of the certificate is an entity that
is trusted by both. This concludes the first step.
For the second step of the authentication, a ran-
domly generated challenge is submitted by the
authenticating device. The challenge, together
with a secret key known to both parties, under-
goes a hash-based message authentication code
(HMAC) procedure, based on the SHA256
hashing algorithm, which produces an irrevers-
ible response.
The combination of these two steps ensures the
device or peripheral is secure and can be trust-
ed, as successful authentication may only be
performed by the genuine device or peripheral
that is connected through the security system.
Following authentication, if the information ex-
changed between devices and peripherals needs
to remain private, the coprocessor can addition-
ally encrypt it.

3.3. Communication Module

The communication module in the system can
support various wired interfaces, e.g., Universal
Serial Bus (USB) or Universal Asynchronous
Receiver-Transmitter (UART), and wireless
links, such as Bluetooth, between wireless de-
vices and control module. The communication
module includes any hardware that is necessary
for the communications, such as UART con-
trollers or Bluetooth radios, and extends into
the control module. For the purpose of evalua-
tion, a wireless device with Bluetooth function-
ality (Bluegiga) was used in conjunction with
the UART interface in the microcontroller. Typ-
ically, the security system will connect to one or
more devices wirelessly and, on the other side,
it connects with peripherals or sensors and for-
wards traffic between each other, by forming

packets for the defined protocol, and does all
the authentication and encryption.
The defined protocol mandates that commu-
nication may take place over any existing link
that can send data in a raw form, be it in one or
multiple packets, as long as all the data is pre-
served and reaches the destination. It will con-
struct packets that must contain a header, and
optionally a payload, whereas both the header
and payload need to be followed by a checksum
of the bytes, for error detection purpose. The
header of the packet contains information such
as packet length, or sequence and acknowledge-
ment numbers. The payload of the packet is op-
tional, for example, the packet may be sent only
to acknowledge and needn't contain one. The
payload itself contains its own header, which
features information such as message type, and
may contain one or multiple sub-packets.

3.4. Control Module

The microcontroller is responsible for the sys-
tem operation, and ensures that everything
goes smoothly. The control module is an ST-
M32L432 microcontroller which has all the re-
quired interfaces (UART, I2C) to communicate
with the communication module, coprocessor,
external nonvolatile memory and other inter-
faces. It performs authentication and encryp-
tion when and as needed, by communicating
with the coprocessor. It follows the communi-
cation protocol and forms packets which it then
orders the communication module to transmit,
or receives packets from it, which it then decap-
sulates and processes. It is also responsible to
start the systems operating and communicating.
The microcontroller follows a sequence, from
power up to communicating meaningful infor-
mation between devices. The sequence of the
commands sent and received via the microcon-
troller to the user device and coprocessor are
shown in Figure 2(a) and 2(b). The sequence of
steps is as follows:
1. Initialize system and check with all the pe-

ripherals for their successful boot-up.
2. Initialize communication module: Start

interfaces, perform configurations such as
setting transmission power on wireless ra-
dios, or data packet size configurations.

3. Check wired and wireless interfaces for in-
coming connections.

Figure 1. System architecture.

238 239R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

firmware. The proposed system allows in the
core of the sensor interfacing hence, the data
along the processing pathway can be kept more
secure. Further, the authentication system is in
the firmware of the control module, making it
invisible or inaccessible to user.
The security systems studied and reviewed
above require human intervention or are lim-
ited to a particular network, either Internet or
WSN. The IoT not only connects computers but
also connects smartphones with peripherals or
sensors. The system should be capable of se-
curing any kind of platform such as Android,
iOS, Windows; therefore, it has to be above the
OS, at the application layer, while at the same
time the authentication procedure should be au-
tomatic. If no human intervention is required,
then the process is invisible and fast, which pro-
tects the system from several types of attacks. It
should have a low overhead, as well as it should
work with low-powered devices.
To the best of our knowledge, there is no oth-
er hardware system providing simultaneous
multi-point security between a wide range of
devices and technologies, and without human
input. YubiKey for instance offers some vari-
ety in technologies (USB, NFC), however it is
point to point and requires human input [14].
C-AUTH on the other hand is more automated
and supports M2M, however it is exclusive to
USB-C and also point to point [19]. Our pro-
posed system can act between multiple devices,
including connectivity with sensor nodes that
often appear in IoT. The presented system per-
forms the authentication, controls the connec-
tivity, and builds an IoT based secured network,
surpassing the existing systems that deal with
only one device.

3. System Architecture

In this section, the system architecture of a de-
vice designed to facilitate secure connection of
multiple types of devices in IoT setups is de-
scribed.

3.1. System overview

The proposed security system is composed of
several modules. The main part is the security
coprocessor module, which is a "coprocessor",

that offers authentication and encryption. The
system is also composed of a communication
module, which enables the different systems
to communicate with each other, while it fol-
lows the defined protocol. In addition, there is
a control module that controls all modules and
enables the system to function. It is responsible
for the information exchanged, the protocol be-
ing followed, and performs authentication and
encryption as required, by controlling the co-
processor.
Finally, a dedicated application is installed on
the user device based on the platform such as
iOS, Android or Windows. It performs the pro-
tocol specific steps with the security system.
Figure 1 presents the architecture of the system.

For the purpose of clarifying, the practical im-
plementation of the system comprises the con-
trol module that is a microcontroller, the securi-
ty coprocessor module is simply a coprocessor,
peripherals are devices whose data is to be se-
cured connected to microcontroller via I2C &
UART such as sensors, and the communication
module is Bluegiga Bluetooth chip. USB based
user systems are wired user devices and wire-
less devices are the user smartphones including
wireless sensors. For consistency purposes, the
modules will be referred to with their specific
names rather than the abstracted module names,
unless necessary. The entire arrangement is
termed as a security system that can connect to
any device, node, or peripheral that needs data
authentication and encryption features. It can
be used in several use cases and configurations,
such as authenticating peripherals for devices,
devices for devices, or even devices for differ-
ent systems, on either one or both ends. If the
system authenticating another system is trusted,

then it may not be necessary to authenticate on
both ends. In any case, an end to end encryption
will be performed if necessary.

3.2. Coprocessor Module

The coprocessor found in the system can au-
thenticate and encrypt communications [21].
The authentication is performed in two steps.
First, an X.509v3 certificate is sent to the au-
thenticating device from the coprocessor. The
authenticating device can verify the certificate
owner by checking the certificate, and verifying
that the signer of the certificate is an entity that
is trusted by both. This concludes the first step.
For the second step of the authentication, a ran-
domly generated challenge is submitted by the
authenticating device. The challenge, together
with a secret key known to both parties, under-
goes a hash-based message authentication code
(HMAC) procedure, based on the SHA256
hashing algorithm, which produces an irrevers-
ible response.
The combination of these two steps ensures the
device or peripheral is secure and can be trust-
ed, as successful authentication may only be
performed by the genuine device or peripheral
that is connected through the security system.
Following authentication, if the information ex-
changed between devices and peripherals needs
to remain private, the coprocessor can addition-
ally encrypt it.

3.3. Communication Module

The communication module in the system can
support various wired interfaces, e.g., Universal
Serial Bus (USB) or Universal Asynchronous
Receiver-Transmitter (UART), and wireless
links, such as Bluetooth, between wireless de-
vices and control module. The communication
module includes any hardware that is necessary
for the communications, such as UART con-
trollers or Bluetooth radios, and extends into
the control module. For the purpose of evalua-
tion, a wireless device with Bluetooth function-
ality (Bluegiga) was used in conjunction with
the UART interface in the microcontroller. Typ-
ically, the security system will connect to one or
more devices wirelessly and, on the other side,
it connects with peripherals or sensors and for-
wards traffic between each other, by forming

packets for the defined protocol, and does all
the authentication and encryption.
The defined protocol mandates that commu-
nication may take place over any existing link
that can send data in a raw form, be it in one or
multiple packets, as long as all the data is pre-
served and reaches the destination. It will con-
struct packets that must contain a header, and
optionally a payload, whereas both the header
and payload need to be followed by a checksum
of the bytes, for error detection purpose. The
header of the packet contains information such
as packet length, or sequence and acknowledge-
ment numbers. The payload of the packet is op-
tional, for example, the packet may be sent only
to acknowledge and needn't contain one. The
payload itself contains its own header, which
features information such as message type, and
may contain one or multiple sub-packets.

3.4. Control Module

The microcontroller is responsible for the sys-
tem operation, and ensures that everything
goes smoothly. The control module is an ST-
M32L432 microcontroller which has all the re-
quired interfaces (UART, I2C) to communicate
with the communication module, coprocessor,
external nonvolatile memory and other inter-
faces. It performs authentication and encryp-
tion when and as needed, by communicating
with the coprocessor. It follows the communi-
cation protocol and forms packets which it then
orders the communication module to transmit,
or receives packets from it, which it then decap-
sulates and processes. It is also responsible to
start the systems operating and communicating.
The microcontroller follows a sequence, from
power up to communicating meaningful infor-
mation between devices. The sequence of the
commands sent and received via the microcon-
troller to the user device and coprocessor are
shown in Figure 2(a) and 2(b). The sequence of
steps is as follows:
1. Initialize system and check with all the pe-

ripherals for their successful boot-up.
2. Initialize communication module: Start

interfaces, perform configurations such as
setting transmission power on wireless ra-
dios, or data packet size configurations.

3. Check wired and wireless interfaces for in-
coming connections.

Figure 1. System architecture.

240 241R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

4. Advertise to allow new connections.
5. Connect to the available paired devices

and peripherals.
6. Detect devices/peripheral types requiring

authentication and those that need to au-
thenticate.

7. Initialize the protocol and configure it for
the connected devices and peripherals.

8. Initialize authentication procedure.
9. Certificate exchange and validation.
10. Challenge exchange and response verifica-

tion.
11. Establish trusted connection.
12. Configure secure link and encryption if

necessary.
13. Tabulate each connected device and pe-

ripheral status and characteristics.
14. Poll for data between connected user devic-

es and peripherals in multiplexing mode.
15. Generate packets for protocol and parame-

ters supported by each device.
16. Parse and decapsulate the incoming pack-

ets, and respond accordingly.
The security system acts as a gateway between
the devices and the peripherals, therefore han-
dles the connections, packet formation and
parsing. All the authentication validation and
response generation and encryption of data are
done by the coprocessor.

4. Security Coprocessor

The security coprocessor is a fairly complex
module ‒ its structure, its components, and
functionality regarding the incorporation in
our board are outlined in this section. A more
detailed architecture of the coprocessor design
is contained in [21]. The coprocessor is imple-
mented in an ASIC, which is synthesized using
the SIMC 65nm CMOS technology.

4.1. Coprocessor Overview

The coprocessor comprises two main sub-mod-
ules: the authentication and the encryption
modules. The sub-modules may operate inde-

pendently or together, depending on the secu-
rity requirements of the communication. One
sub-module performs the authentication in two
steps, whereas the other sub-module performs
encryption online as needed. The coprocessor
is interfaced directly to the microcontroller and
operates with command codes. An Inter-Inte-
grated Circuit (I2C) is used for communication
between the two. The steps of interactions be-
tween the coprocessor and the microcontroller
are shown in Figure 2(a), while the complete
interactions of microcontroller with a remote
mobile device are presented in Figure 2(b). Fur-
ther, Figure 3 shows a more detailed description
of the coprocessor, which will also be described
in the subsections below.

4.2. Authentication Sub-module

The authentication sub-module performs au-
thentication in two steps. The first step in-
volves an X.509v3 certificate, which is stored
in a read-only memory. The certificate is sent
to the authenticating device, where it is veri-
fied and validated. The authenticating device
achieves validity by using the certification path
validation algorithm specified in RFC 5280
[22]. The algorithm requires that a certificate is
signed by the authorities of higher trust, which
is then trusted by both parties. Should that not
be the case, there will be a certificate chain,
where each certificate signs another, at the end
of which an entity trusted by both parties will
be present. In that case, the authenticated party
will need to provide all the certificates leading
up to the known and trusted one. By following
the chain, the authenticating party can ensure
that the certificate of the authenticated party is
legitimate, and the device or peripheral is gen-
uine.
The second step involves the challenge/response
exchange. A random, 64-bit long challenge, is
generated by the authenticating party, and sent
to the authenticated party where it is processed
together with a 256-bit long secret key, also
stored in the ROM. The secret key is known
to both parties, and the procedure followed is
HMAC-SHA256 that utilizes SHA256 which
produces irreversible messages. The HMAC-
SHA256 procedure computes a 256-bit long
response, which is transmitted to the authenti-
cating device. As the procedure is irreversible,
the authenticating device has to compute the Figure 2. Protocol steps between microcontroller and (a) coprocessor (b) user devices.

240 241R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

4. Advertise to allow new connections.
5. Connect to the available paired devices

and peripherals.
6. Detect devices/peripheral types requiring

authentication and those that need to au-
thenticate.

7. Initialize the protocol and configure it for
the connected devices and peripherals.

8. Initialize authentication procedure.
9. Certificate exchange and validation.
10. Challenge exchange and response verifica-

tion.
11. Establish trusted connection.
12. Configure secure link and encryption if

necessary.
13. Tabulate each connected device and pe-

ripheral status and characteristics.
14. Poll for data between connected user devic-

es and peripherals in multiplexing mode.
15. Generate packets for protocol and parame-

ters supported by each device.
16. Parse and decapsulate the incoming pack-

ets, and respond accordingly.
The security system acts as a gateway between
the devices and the peripherals, therefore han-
dles the connections, packet formation and
parsing. All the authentication validation and
response generation and encryption of data are
done by the coprocessor.

4. Security Coprocessor

The security coprocessor is a fairly complex
module ‒ its structure, its components, and
functionality regarding the incorporation in
our board are outlined in this section. A more
detailed architecture of the coprocessor design
is contained in [21]. The coprocessor is imple-
mented in an ASIC, which is synthesized using
the SIMC 65nm CMOS technology.

4.1. Coprocessor Overview

The coprocessor comprises two main sub-mod-
ules: the authentication and the encryption
modules. The sub-modules may operate inde-

pendently or together, depending on the secu-
rity requirements of the communication. One
sub-module performs the authentication in two
steps, whereas the other sub-module performs
encryption online as needed. The coprocessor
is interfaced directly to the microcontroller and
operates with command codes. An Inter-Inte-
grated Circuit (I2C) is used for communication
between the two. The steps of interactions be-
tween the coprocessor and the microcontroller
are shown in Figure 2(a), while the complete
interactions of microcontroller with a remote
mobile device are presented in Figure 2(b). Fur-
ther, Figure 3 shows a more detailed description
of the coprocessor, which will also be described
in the subsections below.

4.2. Authentication Sub-module

The authentication sub-module performs au-
thentication in two steps. The first step in-
volves an X.509v3 certificate, which is stored
in a read-only memory. The certificate is sent
to the authenticating device, where it is veri-
fied and validated. The authenticating device
achieves validity by using the certification path
validation algorithm specified in RFC 5280
[22]. The algorithm requires that a certificate is
signed by the authorities of higher trust, which
is then trusted by both parties. Should that not
be the case, there will be a certificate chain,
where each certificate signs another, at the end
of which an entity trusted by both parties will
be present. In that case, the authenticated party
will need to provide all the certificates leading
up to the known and trusted one. By following
the chain, the authenticating party can ensure
that the certificate of the authenticated party is
legitimate, and the device or peripheral is gen-
uine.
The second step involves the challenge/response
exchange. A random, 64-bit long challenge, is
generated by the authenticating party, and sent
to the authenticated party where it is processed
together with a 256-bit long secret key, also
stored in the ROM. The secret key is known
to both parties, and the procedure followed is
HMAC-SHA256 that utilizes SHA256 which
produces irreversible messages. The HMAC-
SHA256 procedure computes a 256-bit long
response, which is transmitted to the authenti-
cating device. As the procedure is irreversible,
the authenticating device has to compute the Figure 2. Protocol steps between microcontroller and (a) coprocessor (b) user devices.

242 243R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

response as well, using the known secret key,
then compare it to the received one [21]. If the
two match, then the secret key is correct, while
the hashed response ensures that the commu-
nication is immune to the "man in the middle"
MITM attacks, and the secret key cannot be ex-
tracted. The random challenge generation also
ensures that reproducing the response to a new
challenge will not be correct, thus countering
replay attacks.

4.3. Encryption Sub-module

The encryption sub-module utilizes Elliptic
Curve Cryptography (ECC) that achieves re-
sults similar to older asymmetric key cryptog-
raphy methods using a shorter key size [23],
[24], [25]. Using ECC as an alternative security
approach was proposed decades ago, the reason
being that popular approaches such as Rivest,
Shamir, and Adelman (RSA) and Digital Sig-
nature Algorithm (DSA) rely on the integer fac-
torization and discrete logarithms, which might
take sub-exponential time. As a result, to ensure
that an encryption is sufficiently secure, an ev-
er-increasing key size is needed. Currently, the
National Institute of Standards and Technol-
ogy (NIST) suggests the use of 1024-bit long
keys [26], which are equivalent to 160-bit long
keys when using ECC [27]. For resource-con-
strained devices and peripherals, this advantage
is critical.
However, symmetric key cryptography is more
efficient and fast, and for this reason, fast Ad-
vanced Encryption Standard (AES) encryption

ensues. Therefore, a combination of ECC and
AES is utilized in the encryption. The procedure
performed is as follows: at first, an ECC private
key is dynamically generated and the equivalent
public key is calculated and exchanged. Using
the secure channel, a shared key is then generat-
ed and exchanged. Finally, with the shared key,
fast encryption is performed and the communi-
cation is secured.

5. System Advantages and
Applications

While the existing systems are mainly limited
to Wi-Fi or wired access, the proposed module
can connect via Bluetooth as well. The Blue-
tooth-based networks are less secure, especially
for Android, so the system is capable of con-
necting sensors and Android devices using a
secure protocol at the same time. Further, Blue-
tooth connections utilize a combination of Sim-
ple Secure Pairing (SSP) and LE Secure Con-
nections (LE SC) for pairing. Pairing by itself
uses some form of encryption relying on ellip-
tic curves, however it has been recently proven
that it is vulnerable to fixed coordinate invalid
curve attacks [28]. Therefore, pairing by itself
is not as secure, and, if intercepted, the com-
munication will be vulnerable to MITM attacks
on certain devices. Further authentication can
prevent this.
The microcontroller is aware of the device
types (peripheral or user device), OS (Android,
iOS, Windows) and of a link (wired or wire-

less). Consequently, communication channels
are established to comply with the protocols,
such as SPP for Bluetooth connectivity with
Android, iAP2 for iOS based devices, or TCP/
IP followed by protocol-based communication
for WiFi, File Transfer Protocol (FTP) or USB-
based user devices.
The coprocessor has the certificate and key
which are permanently programmed by the
manufacturer, therefore the chip has to be re-
placed if the key or certificate has to be changed
and it is one of the advantages of having the
authentication/encryption task outside the main
microcontroller. The multipurpose smartphones
always have dedicated processors for special
tasks such as pedometer step count. The micro-
controller has to deal with interrupts and pe-
ripherals, Input/Output registers, buffers which
require switching between tasks frequently,
therefore the performance and processing is
improved if the real time tasks are handled by
coprocessors.
This system can find its use in many applica-
tions, including the securing of pico networks,
and in poor coverage areas, such as the base-
ments or underground metros. In a hospital, a
doctor can continuously monitor sensors placed
over the patient's body from anywhere in the
network over the secured link. Here the sensors
send data to the security system which authen-
ticates and encrypts the data and forwards it to
the user application on the doctor's smartphone.
The data can only be accessed by the user who
has the Protocol Specific Application which re-
sponds to the challenge and unique key. Anoth-
er application of the security system is in under-
ground metros, where the satellite signals are
extremely weak, therefore the security system
with GPS sensor as peripheral can be placed
where it can have line-of-sight with satellites
while it extends the range by forwarding the
data to designated user devices within the area
over the wireless link.

6. The Implementation

To evaluate the system, an implementation
where IoT sensors transmit data to user person-
al devices is demonstrated. All IoT based devic-
es require a wireless link to connect to the net-
work, but the sensors provide raw data which
is required to be encapsulated. Along with it,
the setup of a secured link is also a crucial part

before the exchange of data. Therefore, imple-
mentation of the system involves sequential
steps which are required to be followed before
transmission of data from peripherals to the
user devices.
The test was done using the Bluetooth technol-
ogy which does not implement security aspects
that wireless networks do. The system acts as a
bidirectional gateway between multiple nodes.
It implements a star topology, and all the de-
vices follow the authentication protocol. The
sensors or peripherals can be connected to the
gateway via a wired or wireless link. The Blue-
tooth technology used in the system is the most
compatible Bluetooth 2.1 + EDR, using the Sil-
icon Labs Bluegiga radio with a line of sight
range of up to 1000 meters, the highest of all
Bluetooth radios [29]. Furthermore, it is based
on Enhanced Data Rate (EDR) mode that has a
higher throughput, as a requirement for multi-
node systems.
The system is completely automatic ‒ once
powered, it automatically connects and config-
ures itself with all available paired devices. The
user needs to perform pairing between wireless
user devices and security system for the first
time and the security system stores the authen-
ticated devices into non-volatile auto-connect
list, while wired devices need plugging in.
Upon security system power up, it connects
with each auto-connect listed device available
within wireless range and the ones connected
over wired link simultaneously, and performs
authentication and encryption using the pro-
tocol procedure provided, with a dedicated
protocol compatible application installed on
user devices. The data from all the connected
peripherals is sent to the user devices over the
same link saving a huge bandwidth. The pack-
et headers and payload headers contain the in-
formation of the peripheral device from which
the data is received. Addition or elimination of
nodes does not affect other devices connected
to the system. The devices receive notifications
about the eliminated node and the fact that no
more data will be exchanged, or the addition of
a new node.

6.1. Connection Capabilities

The system can support 7 simultaneous wire-
less connections, and multiple master-slave
based devices can be connected via UART and

Figure 3. The security coprocessor.

242 243R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

response as well, using the known secret key,
then compare it to the received one [21]. If the
two match, then the secret key is correct, while
the hashed response ensures that the commu-
nication is immune to the "man in the middle"
MITM attacks, and the secret key cannot be ex-
tracted. The random challenge generation also
ensures that reproducing the response to a new
challenge will not be correct, thus countering
replay attacks.

4.3. Encryption Sub-module

The encryption sub-module utilizes Elliptic
Curve Cryptography (ECC) that achieves re-
sults similar to older asymmetric key cryptog-
raphy methods using a shorter key size [23],
[24], [25]. Using ECC as an alternative security
approach was proposed decades ago, the reason
being that popular approaches such as Rivest,
Shamir, and Adelman (RSA) and Digital Sig-
nature Algorithm (DSA) rely on the integer fac-
torization and discrete logarithms, which might
take sub-exponential time. As a result, to ensure
that an encryption is sufficiently secure, an ev-
er-increasing key size is needed. Currently, the
National Institute of Standards and Technol-
ogy (NIST) suggests the use of 1024-bit long
keys [26], which are equivalent to 160-bit long
keys when using ECC [27]. For resource-con-
strained devices and peripherals, this advantage
is critical.
However, symmetric key cryptography is more
efficient and fast, and for this reason, fast Ad-
vanced Encryption Standard (AES) encryption

ensues. Therefore, a combination of ECC and
AES is utilized in the encryption. The procedure
performed is as follows: at first, an ECC private
key is dynamically generated and the equivalent
public key is calculated and exchanged. Using
the secure channel, a shared key is then generat-
ed and exchanged. Finally, with the shared key,
fast encryption is performed and the communi-
cation is secured.

5. System Advantages and
Applications

While the existing systems are mainly limited
to Wi-Fi or wired access, the proposed module
can connect via Bluetooth as well. The Blue-
tooth-based networks are less secure, especially
for Android, so the system is capable of con-
necting sensors and Android devices using a
secure protocol at the same time. Further, Blue-
tooth connections utilize a combination of Sim-
ple Secure Pairing (SSP) and LE Secure Con-
nections (LE SC) for pairing. Pairing by itself
uses some form of encryption relying on ellip-
tic curves, however it has been recently proven
that it is vulnerable to fixed coordinate invalid
curve attacks [28]. Therefore, pairing by itself
is not as secure, and, if intercepted, the com-
munication will be vulnerable to MITM attacks
on certain devices. Further authentication can
prevent this.
The microcontroller is aware of the device
types (peripheral or user device), OS (Android,
iOS, Windows) and of a link (wired or wire-

less). Consequently, communication channels
are established to comply with the protocols,
such as SPP for Bluetooth connectivity with
Android, iAP2 for iOS based devices, or TCP/
IP followed by protocol-based communication
for WiFi, File Transfer Protocol (FTP) or USB-
based user devices.
The coprocessor has the certificate and key
which are permanently programmed by the
manufacturer, therefore the chip has to be re-
placed if the key or certificate has to be changed
and it is one of the advantages of having the
authentication/encryption task outside the main
microcontroller. The multipurpose smartphones
always have dedicated processors for special
tasks such as pedometer step count. The micro-
controller has to deal with interrupts and pe-
ripherals, Input/Output registers, buffers which
require switching between tasks frequently,
therefore the performance and processing is
improved if the real time tasks are handled by
coprocessors.
This system can find its use in many applica-
tions, including the securing of pico networks,
and in poor coverage areas, such as the base-
ments or underground metros. In a hospital, a
doctor can continuously monitor sensors placed
over the patient's body from anywhere in the
network over the secured link. Here the sensors
send data to the security system which authen-
ticates and encrypts the data and forwards it to
the user application on the doctor's smartphone.
The data can only be accessed by the user who
has the Protocol Specific Application which re-
sponds to the challenge and unique key. Anoth-
er application of the security system is in under-
ground metros, where the satellite signals are
extremely weak, therefore the security system
with GPS sensor as peripheral can be placed
where it can have line-of-sight with satellites
while it extends the range by forwarding the
data to designated user devices within the area
over the wireless link.

6. The Implementation

To evaluate the system, an implementation
where IoT sensors transmit data to user person-
al devices is demonstrated. All IoT based devic-
es require a wireless link to connect to the net-
work, but the sensors provide raw data which
is required to be encapsulated. Along with it,
the setup of a secured link is also a crucial part

before the exchange of data. Therefore, imple-
mentation of the system involves sequential
steps which are required to be followed before
transmission of data from peripherals to the
user devices.
The test was done using the Bluetooth technol-
ogy which does not implement security aspects
that wireless networks do. The system acts as a
bidirectional gateway between multiple nodes.
It implements a star topology, and all the de-
vices follow the authentication protocol. The
sensors or peripherals can be connected to the
gateway via a wired or wireless link. The Blue-
tooth technology used in the system is the most
compatible Bluetooth 2.1 + EDR, using the Sil-
icon Labs Bluegiga radio with a line of sight
range of up to 1000 meters, the highest of all
Bluetooth radios [29]. Furthermore, it is based
on Enhanced Data Rate (EDR) mode that has a
higher throughput, as a requirement for multi-
node systems.
The system is completely automatic ‒ once
powered, it automatically connects and config-
ures itself with all available paired devices. The
user needs to perform pairing between wireless
user devices and security system for the first
time and the security system stores the authen-
ticated devices into non-volatile auto-connect
list, while wired devices need plugging in.
Upon security system power up, it connects
with each auto-connect listed device available
within wireless range and the ones connected
over wired link simultaneously, and performs
authentication and encryption using the pro-
tocol procedure provided, with a dedicated
protocol compatible application installed on
user devices. The data from all the connected
peripherals is sent to the user devices over the
same link saving a huge bandwidth. The pack-
et headers and payload headers contain the in-
formation of the peripheral device from which
the data is received. Addition or elimination of
nodes does not affect other devices connected
to the system. The devices receive notifications
about the eliminated node and the fact that no
more data will be exchanged, or the addition of
a new node.

6.1. Connection Capabilities

The system can support 7 simultaneous wire-
less connections, and multiple master-slave
based devices can be connected via UART and

Figure 3. The security coprocessor.

244 245R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

I2C. As seen in Figure 4, a wired sensor was
connected to the system using UART while the
coprocessor and a non-volatile memory were
connected via I2C multi-master/slave mode.
The very first step when a new device connects
is the exchange of a protocol signal packet as
shown in Figure 2(b), first packet between mi-
crocontroller and user device. This packet de-
fines that both ends follow the same protocol,
failing of which leads to termination of the con-
nection.
The protocol signal is sent by the microcontrol-
ler and is responded by the application installed
on the user device. The acknowledgment by
user device defines the availability of proto-
col dedicated application on the user device. It
follows a configuration of all the channels, and
negotiation of data-related requirements, which
include protocol details, payload sizes, time-
outs, and cumulative acknowledgments. The
configuration is exchanged between connected
nodes, and feasible configurations are followed
throughout the communication. Thereafter, the
authentication procedure shown in Figure 2(a)
is performed, in which certificate and chal-
lenge are exchanged. The user devices request
challenges from the microcontroller and the
microcontroller removes the protocol header
and sends the payload to the coprocessor. In re-
sponse, the coprocessor generates the challenge
by hashing a key, as explained previously. The
response is encapsulated in the protocol pack-
et by the microcontroller and forwarded to the

user device. The same procedure is followed for
the certificate exchange between user device,
microcontroller, and coprocessor. The flow of
requests and responses is shown in Figures 2(a)
and 2(b). The entire protocol procedure is re-
peated for each user device. The user device
applications (Android/iOS) initiate the request
while microcontroller responds to the request.
The user application executes all the protocol
steps as listed in Figure 2(b) under user device.
Upon correct acceptance of a certificate and a
response to the challenge, the procedure initi-
ates data exchange mode. In this mode, poll-
ing of data between devices and peripherals is
performed, along with inquiry of new incoming
connections or disconnections. The data from
the peripheral is encapsulated in the protocol
payload and forwarded to the devices, while
the devices either acknowledge each or multi-
ple packets, or send back data along with the
acknowledgement. The data from devices is in
protocol-derived packets, which are parsed and
the relevant data is forwarded to peripherals.
The data sent over wireless link needs a suit-
able User Interface (UI) to display the data and
a smartphone application based on the protocol
running on the security system. The user de-
vices look for a Bluetooth Universally Unique
Identifier (UUID) for the very sole purpose of
connecting with the system. The user applica-
tions follow the same procedure as the system
does and counter-reply the protocol packets
from the system. The application allows the

users to send the data to the system which can
be used to configure the sensor or peripheral
settings such as power mode, intervals etc. In
the background, the application follows au-
thentication steps at first, and then initializes
the encrypted data channel. The incoming pro-
tocol-based packets are acknowledged depend-
ing on the configurations. The UI of the devices
displays the parsed data and also displays the
source of the incoming data, as shown in Figure
5. The security system is programmed to con-
nect with both Android and iOS-based devices
using the same generic protocol; hence, it is a
multiplatform-compatible system that connects
to both platforms using a virtual serial port and
the Serial Port Profile (SPP) of Bluetooth [30].
Furthermore, it supports connections with wire-
less sensors, which could possibly be near the
range devices that have a short communication
range, whose raw data is required to be secured.

A multiplexing mode is required when there
are multiple connections and there could be the
possibility of passing commands to one device
or configuring the Bluetooth module while the
other device is exchanging a data stream. The
multiplexing mode (MUX) can handle both

commands and data in one mode. For the prop-
er distinction between data and connection re-
lated commands to Bluegiga Bluetooth Chip
and further to the device that is currently dealt
with, a special syntax is followed. The syntax is
the same for both sending data over UART by
the host, and receiving data from the iWRAP
firmware [31]. The mode provides a distinction
between packets to and from multiple devic-
es. The MUX frame encapsulates the proto-
col packet of the authentication system. After
authentication, the procedure enters a polling
loop and the loop runs infinitely, continuous-
ly forwarding data in both directions. Using
multiplexing, multiple devices are secured by
authenticating/encrypting separately and then
sending data over the secured links.

6.2. Hardware

The circuit consists of sub-modules which in-
clude coprocessor, Bluegiga(BG) Bluetooth
Module and user interface LEDs, buttons and
Sensor interface via UART. The BG WT41u,
which is a Bluetooth module, is connected to an
STM32L432 microprocessor via UART.
The UART to USB debugger terminal RXs
are connected to both TX and RX wires of the
microcontroller for performance computation.
The power pins of the BG module are connect-
ed to the power and ground as stated by the
Bluegiga WT41u datasheet. The coprocessor
whose architecture is explained in Section 4, is
connected to the microcontroller via I2C pins
along with an FRAM. The board, designed in
Cadence Allegro PCB Editor, is shown in Fig-
ure 6.

Figure 4. Schematic of security system.

Figure 5. Android user interface.

Figure 6. Assembled PCB.

244 245R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

I2C. As seen in Figure 4, a wired sensor was
connected to the system using UART while the
coprocessor and a non-volatile memory were
connected via I2C multi-master/slave mode.
The very first step when a new device connects
is the exchange of a protocol signal packet as
shown in Figure 2(b), first packet between mi-
crocontroller and user device. This packet de-
fines that both ends follow the same protocol,
failing of which leads to termination of the con-
nection.
The protocol signal is sent by the microcontrol-
ler and is responded by the application installed
on the user device. The acknowledgment by
user device defines the availability of proto-
col dedicated application on the user device. It
follows a configuration of all the channels, and
negotiation of data-related requirements, which
include protocol details, payload sizes, time-
outs, and cumulative acknowledgments. The
configuration is exchanged between connected
nodes, and feasible configurations are followed
throughout the communication. Thereafter, the
authentication procedure shown in Figure 2(a)
is performed, in which certificate and chal-
lenge are exchanged. The user devices request
challenges from the microcontroller and the
microcontroller removes the protocol header
and sends the payload to the coprocessor. In re-
sponse, the coprocessor generates the challenge
by hashing a key, as explained previously. The
response is encapsulated in the protocol pack-
et by the microcontroller and forwarded to the

user device. The same procedure is followed for
the certificate exchange between user device,
microcontroller, and coprocessor. The flow of
requests and responses is shown in Figures 2(a)
and 2(b). The entire protocol procedure is re-
peated for each user device. The user device
applications (Android/iOS) initiate the request
while microcontroller responds to the request.
The user application executes all the protocol
steps as listed in Figure 2(b) under user device.
Upon correct acceptance of a certificate and a
response to the challenge, the procedure initi-
ates data exchange mode. In this mode, poll-
ing of data between devices and peripherals is
performed, along with inquiry of new incoming
connections or disconnections. The data from
the peripheral is encapsulated in the protocol
payload and forwarded to the devices, while
the devices either acknowledge each or multi-
ple packets, or send back data along with the
acknowledgement. The data from devices is in
protocol-derived packets, which are parsed and
the relevant data is forwarded to peripherals.
The data sent over wireless link needs a suit-
able User Interface (UI) to display the data and
a smartphone application based on the protocol
running on the security system. The user de-
vices look for a Bluetooth Universally Unique
Identifier (UUID) for the very sole purpose of
connecting with the system. The user applica-
tions follow the same procedure as the system
does and counter-reply the protocol packets
from the system. The application allows the

users to send the data to the system which can
be used to configure the sensor or peripheral
settings such as power mode, intervals etc. In
the background, the application follows au-
thentication steps at first, and then initializes
the encrypted data channel. The incoming pro-
tocol-based packets are acknowledged depend-
ing on the configurations. The UI of the devices
displays the parsed data and also displays the
source of the incoming data, as shown in Figure
5. The security system is programmed to con-
nect with both Android and iOS-based devices
using the same generic protocol; hence, it is a
multiplatform-compatible system that connects
to both platforms using a virtual serial port and
the Serial Port Profile (SPP) of Bluetooth [30].
Furthermore, it supports connections with wire-
less sensors, which could possibly be near the
range devices that have a short communication
range, whose raw data is required to be secured.

A multiplexing mode is required when there
are multiple connections and there could be the
possibility of passing commands to one device
or configuring the Bluetooth module while the
other device is exchanging a data stream. The
multiplexing mode (MUX) can handle both

commands and data in one mode. For the prop-
er distinction between data and connection re-
lated commands to Bluegiga Bluetooth Chip
and further to the device that is currently dealt
with, a special syntax is followed. The syntax is
the same for both sending data over UART by
the host, and receiving data from the iWRAP
firmware [31]. The mode provides a distinction
between packets to and from multiple devic-
es. The MUX frame encapsulates the proto-
col packet of the authentication system. After
authentication, the procedure enters a polling
loop and the loop runs infinitely, continuous-
ly forwarding data in both directions. Using
multiplexing, multiple devices are secured by
authenticating/encrypting separately and then
sending data over the secured links.

6.2. Hardware

The circuit consists of sub-modules which in-
clude coprocessor, Bluegiga(BG) Bluetooth
Module and user interface LEDs, buttons and
Sensor interface via UART. The BG WT41u,
which is a Bluetooth module, is connected to an
STM32L432 microprocessor via UART.
The UART to USB debugger terminal RXs
are connected to both TX and RX wires of the
microcontroller for performance computation.
The power pins of the BG module are connect-
ed to the power and ground as stated by the
Bluegiga WT41u datasheet. The coprocessor
whose architecture is explained in Section 4, is
connected to the microcontroller via I2C pins
along with an FRAM. The board, designed in
Cadence Allegro PCB Editor, is shown in Fig-
ure 6.

Figure 4. Schematic of security system.

Figure 5. Android user interface.

Figure 6. Assembled PCB.

246 247R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

6.3. Working Model and Experimental
Results

The assembled project, with all the components
and modules soldered on the PCB, were able to
connect and authenticate the devices paired to
the module. Two tests were conducted for per-
formance evaluation. In Test 1, one device and
one wired sensor were used, while Test 2 was
conducted using 2 Android and 2 iOS devices
with one wireless SensorTag (in this case, it was
implemented as an Android device that sends
the unsecured data) and one wired sensor. Test
1 uses normal mode, while Test 2 uses MUX
enhanced algorithm which lets the user handle
data and control simultaneously. All user de-
vices continuously accept and acknowledge in-
coming data. In the test, the complete states of
the protocol were explored and the system was
shown to work for days without failure.
The working model in Figure 7 demonstrates
the transfer of the location data via the standard
NMEA sequences. As one built-in feature of
iOS is that the location data cannot be provided
to the mobile device without the proper authen-
tication, as this demonstrated interoperability
with iOS is readily included in our system. In

contrast, the YubiKey device does not support
the iOS operation due to the stated "incompati-
bility" by YubiKey.
In IoT applications, the sensor-based systems
feature two characteristics; low power and la-
tency. The low power operation is achieved
by putting the system to sleep when no data is
being transmitted. The typical sensor update is
received after 1 second from the location-based
SensorTags, whereas high throughput is neces-
sary for the systems which require continuous
monitoring in real-time, while low power con-
sumption is not a priority.
The project was tested for its performance in
which the time taken was computed between
every sensor data transmission packet by us-
ing a very precise Systick timer of the micro-
controller, and timer difference was sent to the
Debug window via debug UART. The project
is BR/EDR based, therefore the throughput is
required to be very high. In Test 1, with MUX
feature disabled, it was found that the time
difference between each packet transmitted to
BG was around 10 milliseconds, where packet
sizes were from 40 to 90 bytes. For 3562 data
bytes (28496 bits) it took 500 ms, bringing the
throughput to 57 kbps. With 18 bytes per header,

per packet, there are a total of 918 header bytes
making a total packet of 4480 bytes (35840
bits) giving 71 kbps throughput with a baud rate
of 115200 bps, which is proven to be the high
throughput of about 61.7% over the wireless
link as compared to the wired link baud rate be-
tween microcontroller and Bluegiga Bluetooth
chip. The throughput for certain time duration
is encapsulated in Table 1. Test 2 computed the
performance of the system with the multiple
devices, the MUX was enabled which required
different algorithm to handle UART communi-
cation. From the experiment, it was found that
the time taken in updating each device in mul-
tiple device communication is increased by n
times the time required for communication be-
tween the security system and one device while
throughput decreases by n times for each device
where n is the number of devices.
The Bluegiga Bluetooth module supports serial
communication with devices, therefore it does
time division multiplexing. Table 2 shows the
computation of time taken and throughput for
each device based on total 3596 data bytes,
where each packet has 18 header bytes and
along with it, 5 MUX bytes, which are only sent
between microcontroller and Bluegiga. There-
fore, the MUX bytes are not sent over the wire-
less link. The complete header is of 1150 bytes,
making the packets of 4496 bytes (35968 bits)
excluding MUX bytes, make the throughput of
the security system as high as 75.7 kbps that
excludes MUX bytes. Table 2 is the actual per-
formance between the system and each device
when implemented using MUX algorithm.

The test results were perfectly close to the nat-
ural number multiplier, since the average time
is stable either for one device or for many de-
vices. Hence, there is no gain or loss of time
between sending a packet to one device or to
many devices by the microcontroller because
each packet is independently sent by microcon-
troller, irrespective of the number of devices.
The result of throughput for communication
with one device in Test 2 is higher than in Test
1 because the algorithms were different for both
cases. Test 2 is based on MUX that implements
dual DMA for Sensor/Peripheral and communi-
cation module, which makes the system perfor-
mance much faster and robust.
The multiplexing also reduces the power con-
sumption by the factor of number of devices
connected, since the same security system can
secure multiple nodes using one microcon-
troller, one coprocessor and one wireless chip,
whereas all other studied systems are point to
point such as USB Type-C [19], where every
device uses a separate system.
Further, the latency of the coprocessor sub
modules was tested. The authentication module
has a latency of 0.95 ms, that is the time it takes
to retrieve the X.509v3 certificate and com-
pute the challenge response with the HMAC-
SHA256 procedure. The encryption module has
a latency of 1.75 ms for the setup phase, that is
the ECC key generation and AES key computa-
tion. Encryption by itself only takes 0.01 ms per
packet, which is not very significant [21]. The
coprocessor is active for only a tiny fraction of
the total time, which can be in the hundreds of
milliseconds. However, the communication be-
tween that and the microcontroller introduces
overhead. As such, any time saved by outsourc-
ing the security operations to the coprocessor is
lost to that overhead. It can be safely estimated
that if the microcontroller alone were to handle
the security operations, the difference would
not be noticeable and the throughput would be
unaffected.
While the system is secure by design, vulnera-
bilities can exist. For instance, there can exist
non-secure communication between a wireless,
or even a wired sensor and the microcontroller.
If the physical control of the interface or sen-
sor is lost, the unsecured side of the communi-
cation can be then intercepted – it is assumed Figure 7. Working model.

Table 1. Throughput of the system.

Time Data
bits

Header
bits

Total
bits Throughput

500 ms 28496 7344 35840 71 kbps

Table 2. Throughput and time taken between system
and each device for 4496 bytes.

Number of
devices Time taken (ms) Throughput of

each device
1 475 75.7 kbps
2 931 38.6 kbps
3 1430 25.1 kbps
4 1806 19.9 kbps

246 247R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

6.3. Working Model and Experimental
Results

The assembled project, with all the components
and modules soldered on the PCB, were able to
connect and authenticate the devices paired to
the module. Two tests were conducted for per-
formance evaluation. In Test 1, one device and
one wired sensor were used, while Test 2 was
conducted using 2 Android and 2 iOS devices
with one wireless SensorTag (in this case, it was
implemented as an Android device that sends
the unsecured data) and one wired sensor. Test
1 uses normal mode, while Test 2 uses MUX
enhanced algorithm which lets the user handle
data and control simultaneously. All user de-
vices continuously accept and acknowledge in-
coming data. In the test, the complete states of
the protocol were explored and the system was
shown to work for days without failure.
The working model in Figure 7 demonstrates
the transfer of the location data via the standard
NMEA sequences. As one built-in feature of
iOS is that the location data cannot be provided
to the mobile device without the proper authen-
tication, as this demonstrated interoperability
with iOS is readily included in our system. In

contrast, the YubiKey device does not support
the iOS operation due to the stated "incompati-
bility" by YubiKey.
In IoT applications, the sensor-based systems
feature two characteristics; low power and la-
tency. The low power operation is achieved
by putting the system to sleep when no data is
being transmitted. The typical sensor update is
received after 1 second from the location-based
SensorTags, whereas high throughput is neces-
sary for the systems which require continuous
monitoring in real-time, while low power con-
sumption is not a priority.
The project was tested for its performance in
which the time taken was computed between
every sensor data transmission packet by us-
ing a very precise Systick timer of the micro-
controller, and timer difference was sent to the
Debug window via debug UART. The project
is BR/EDR based, therefore the throughput is
required to be very high. In Test 1, with MUX
feature disabled, it was found that the time
difference between each packet transmitted to
BG was around 10 milliseconds, where packet
sizes were from 40 to 90 bytes. For 3562 data
bytes (28496 bits) it took 500 ms, bringing the
throughput to 57 kbps. With 18 bytes per header,

per packet, there are a total of 918 header bytes
making a total packet of 4480 bytes (35840
bits) giving 71 kbps throughput with a baud rate
of 115200 bps, which is proven to be the high
throughput of about 61.7% over the wireless
link as compared to the wired link baud rate be-
tween microcontroller and Bluegiga Bluetooth
chip. The throughput for certain time duration
is encapsulated in Table 1. Test 2 computed the
performance of the system with the multiple
devices, the MUX was enabled which required
different algorithm to handle UART communi-
cation. From the experiment, it was found that
the time taken in updating each device in mul-
tiple device communication is increased by n
times the time required for communication be-
tween the security system and one device while
throughput decreases by n times for each device
where n is the number of devices.
The Bluegiga Bluetooth module supports serial
communication with devices, therefore it does
time division multiplexing. Table 2 shows the
computation of time taken and throughput for
each device based on total 3596 data bytes,
where each packet has 18 header bytes and
along with it, 5 MUX bytes, which are only sent
between microcontroller and Bluegiga. There-
fore, the MUX bytes are not sent over the wire-
less link. The complete header is of 1150 bytes,
making the packets of 4496 bytes (35968 bits)
excluding MUX bytes, make the throughput of
the security system as high as 75.7 kbps that
excludes MUX bytes. Table 2 is the actual per-
formance between the system and each device
when implemented using MUX algorithm.

The test results were perfectly close to the nat-
ural number multiplier, since the average time
is stable either for one device or for many de-
vices. Hence, there is no gain or loss of time
between sending a packet to one device or to
many devices by the microcontroller because
each packet is independently sent by microcon-
troller, irrespective of the number of devices.
The result of throughput for communication
with one device in Test 2 is higher than in Test
1 because the algorithms were different for both
cases. Test 2 is based on MUX that implements
dual DMA for Sensor/Peripheral and communi-
cation module, which makes the system perfor-
mance much faster and robust.
The multiplexing also reduces the power con-
sumption by the factor of number of devices
connected, since the same security system can
secure multiple nodes using one microcon-
troller, one coprocessor and one wireless chip,
whereas all other studied systems are point to
point such as USB Type-C [19], where every
device uses a separate system.
Further, the latency of the coprocessor sub
modules was tested. The authentication module
has a latency of 0.95 ms, that is the time it takes
to retrieve the X.509v3 certificate and com-
pute the challenge response with the HMAC-
SHA256 procedure. The encryption module has
a latency of 1.75 ms for the setup phase, that is
the ECC key generation and AES key computa-
tion. Encryption by itself only takes 0.01 ms per
packet, which is not very significant [21]. The
coprocessor is active for only a tiny fraction of
the total time, which can be in the hundreds of
milliseconds. However, the communication be-
tween that and the microcontroller introduces
overhead. As such, any time saved by outsourc-
ing the security operations to the coprocessor is
lost to that overhead. It can be safely estimated
that if the microcontroller alone were to handle
the security operations, the difference would
not be noticeable and the throughput would be
unaffected.
While the system is secure by design, vulnera-
bilities can exist. For instance, there can exist
non-secure communication between a wireless,
or even a wired sensor and the microcontroller.
If the physical control of the interface or sen-
sor is lost, the unsecured side of the communi-
cation can be then intercepted – it is assumed Figure 7. Working model.

Table 1. Throughput of the system.

Time Data
bits

Header
bits

Total
bits Throughput

500 ms 28496 7344 35840 71 kbps

Table 2. Throughput and time taken between system
and each device for 4496 bytes.

Number of
devices Time taken (ms) Throughput of

each device
1 475 75.7 kbps
2 931 38.6 kbps
3 1430 25.1 kbps
4 1806 19.9 kbps

248 249R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

that physical control is guaranteed. The wired
sensor is in general harder to break in, however
it is still possible to gain access to the wired in-
terfaces within the system. The sensor could be
accessed by an impersonating microcontroller,
which could retrieve all raw sensor data should
that be the case. This can be mitigated by using
programmable sensors where the platform spe-
cific protocol application can be implemented.
Finally, the security coprocessor found within
the system could be attacked. While the co-
processor by design is using inherently secure
algorithms, and features tamper evidence, it
could still be attacked on a hardware level, with
information extracted out of the chip, or worse,
the secure algorithms could be compromised
(i.e. SHA collision). For all intents and purpos-
es, the system can be considered secure but not
virtually impenetrable.

7. Conclusion and Future Work

An authentication and encryption board was de-
signed in such way that it extends and surpasses
the security authentication scheme present for
iOS devices to Android and other computing
systems. The board can be used in a variety of
scenarios to facilitate secure access to the com-
mon computing platforms and wired/wireless
peripherals. The system is energy-efficient, be-
cause of the simultaneous securing ot the access
between different devices. It is unique in that
it provides multi-point functionality, in other
words it can secure multiple communications
without requiring a separate module for each
communication channel, which also reduces
the cost. The system has high throughput along
with high-security level protection and can be
implemented in the new or already existing sys-
tem. Since iOS secures the access at OS level,
which is proprietary, the proposed scheme can
be used at an application level with all the de-
vices, but due to the open-source nature of An-
droid, the authentication hardware provisions,
and even the encryption support could be easily
incorporated at OS level.
The present-day industries still have a lot of
wired sensors and peripherals (via the existing
UART, SPI, or I2C interfaces) in which the sys-
tem can be integrated to fetch the readings over
the secured wireless link and even send com-

mands back to them. An addition such as cloud
upload via one of the connected Bluetooth de-
vices can serve the further IoT purpose. The de-
sign can also be extended further to low-power
systems that require high throughput, including
the real-time systems.

References

[1] V. Pureswaran and P. Brody, "Device Democracy:
Saving the Future of the Internet of Things", IBM
Corporation (2015). Available:
http://public.dhe.ibm.com/common/ssi/ecm/
gb/en/gbe03620usen/mc_asset_3314565__
gbe03620usen-04_GBE03620USEN.pdf

[2] V. P. Kafle et al. "Internet of Things Standardiza-
tion in ITU and Prospective Networking Technol-
ogies", IEEE Communications Magazine, vol. 54,
no. 9, pp. 43–49, 2016.
http://dx.doi.org/10.1109/mcom.2016.7565271

[3] M. Stevens et al. "The First Collision for Full
SHA-1", Advances in Cryptology – CRYPTO
2017 Lecture Notes in Computer Science, 2017,
pp. 570–596.
http://dx.doi.org/10.1007/978-3-319-63688-7_19

[4] M. L. Das, "Two-Factor User Authentication
in Wireless Sensor Networks", IEEE Transac-
tions on Wireless Communications, vol. 8, no. 3,
pp. 1086–1090, 2009.
http://dx.doi.org/10.1109/twc.2008.080128

[5] R. Watro et al., "TinyPK: Securing Sensor Net-
works with Public Key Technology", Proceed-
ings of the 2nd ACM workshop on Security of ad
hoc and sensor networks, ACM, 2004.
http://dx.doi.org/10.1145/1029102.1029113

[6] W. Shi et al., "A New User Authentication Pro-
tocol for Wireless Sensor Networks Using Ellip-
tic Curves Cryptography", International Journal
of Distributed Sensor Networks, vol. 9, no. 4,
pp. 730831, 2013.
http://dx.doi.org/10.1155/2013/730831

[7] A. Salman et al., "A Light-Weight Hardware/
Software Co-Design for Pairing-Based Cryptog-
raphy with Low Power and Energy Consump-
tion", IEEE International Conference on Field
Programmable Technology (ICFPT), 2017.
http://dx.doi.org/10.1109/fpt.2017.8280149

[8] M. Gao and Q. Gang, "A Novel Approximate
Computing Based Security Primitive for the In-
ternet of Things", IEEE International Symposium
on Circuits and Systems (ISCAS), 2017.
http://dx.doi.org/10.1109/iscas.2017.8050360

[9] Ch. Lesjak et al., "Hardware-secured and Trans-
parent Multi-Stakeholder Data Exchange for In-
dustrial IoT", IEEE 14th International Confer-

ence on Industrial Informatics (INDIN), 2016.
http://dx.doi.org/10.1109/indin.2016.7819251

[10] S. Babar et al., "Proposed Embedded Security
Framework for Internet of Things (IoT)", IEEE
2nd International Conference on Wireless Com-
munication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems
Technology (Wireless VITAE), 2011.
http://dx.doi.org/10.1109/wirelessvitae.2011.
5940923

[11] X. Zheng et al., "Design and Implementation of
a DPA Resistant AES Coprocessor", IEEE 4th
International Conference on Wireless Commu-
nications, Networking and Mobile Computing,
WiCOM'08, 2008.
http://dx.doi.org/10.1109/wicom.2008.1087

[12] G. Varshney et al., "A Security Framework for
IOT Devices Against Wireless Threats", IEEE
2nd International Conference on Telecommuni-
cation and Networks (TEL-NET), 2017.
http://dx.doi.org/10.1109/tel-net.2017.8343548

[13] S. Srinivas, "Security Keys: Practical Cryp-
tographic Second Factors for the Modern Web",
Financial Cryptography and Data Security:
20th International Conference, FC 2016, Christ
Church, Barbados, February 22–26, 2016, Re-
vised Selected Papers. vol. 9603. Springer, 2017.

[14] D. Nilsson, "Yubico's Take On U2F Key Wrap-
ping", 2014.
https://www.yubico.com/2014/11/yubicos-u2f-
key-wrapping/

[15] J. Ehrensvärd, "Secure Hardware vs. Open
Source", yubico blog[online], May 16, 2016.

[16] P. Švenda et al., "The Million-Key Question –
Investigating the Origins of RSA Public Keys",
Proceedings of the 25th USENIX Security Sym-
posium, 2016.

[17] D. J. Bernstein et al., "Factoring RSA Keys from
Certified Smart Cards: Coppersmith in the Wild",
International Conference on the Theory and Ap-
plication of Cryptology and Information Security,
Springer, Berlin, Heidelberg, 2013.
https://doi.org/10.1007/978-3-642-42045-0_18

[18] M. Nemec et al., "The Return of Coppersmith's
Attack: Practical Factorization of Widely Used
RSA Moduli", Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Commu-
nications Security, ACM, 2017.
https://doi.org/10.1145/3133956.3133969

[19] S. Wallick and Intel, "USB Type-C™ Authentica-
tion" USB Implementers Forum © 2017, Taipei,
Taiwan, October 24 – 25, 2017. Available:
http://www.usb.org/developers/presentations/
U S B _ D e v D a y s _ Ta i p e i _ 2 0 1 7 _ U S B - C _
Authentication_USB_PD_Firmware_Update.pdf

[20] D. Balfanz et al. "Web Authentication: An API
for accessing Public Key Credentials Level 1",

in W3C Candidate Recommendation, 20 March
2018.
https://www.w3.org/TR/2018/CR-webauthn-
20180320/

[21] J. Wang et al., "An ASIC Implementation of Se-
curity Scheme for Body Area Networks," IEEE
International Symposium on Circuits and Sys-
tems(ISCAS), Florence, 2018.
http://dx.doi.org/10.1109/ISCAS.2018.8351098

[22] D. Cooper, "Internet X.509 Public Key Infra-
structure Certificate and Certificate Revocation
List (CRL) Profile", 2008.
http://dx.doi.org/10.17487/rfc5280

[23] N. Koblitz, "Elliptic Curve Cryptosystems",
Mathematics of Computation, vol. 48, no. 177,
pp. 203‒209, 1987.
http://dx.doi.org/10.2307/2007884

[24] I. Blake et al. "Elliptic Curves in Cryptography",
vol. 265, Cambridge University Press, 1999.

[25] L. C. Washington, "Elliptic Curves: Number The-
ory and Cryptography", Chapman and Hall/CRC,
2003.

[26] R. Gallant et al., "Improving the Parallelized
Pollard Lambda Search on Anomalous Binary
Curves", Mathematics of Computation of the
American Mathematical Society, vol. 69, no. 232,
pp. 1699‒1705, 2000.
http://dx.doi.org/10.1090/s0025-5718-99-01119-9

[27] E. B. Barker et al., "Recommendation for Key
Management Part 3: Application-Specific Key
Management Guidance", No. Special Publication
(NIST SP)-800-57 Pt3 Rev 1. 2015.
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1

[28] E. Biham and L. Neumann, "Breaking the Blue-
tooth Pairing – Fixed Coordinate Invalid Curve
Attack", Technion – Israel Institute of Technolo-
gy. Available:
https://www.cs.technion.ac.il/~biham/BT/
bt-fixed-coordinate-invalid-curve-attack.pdf

[29] Silicon Laboratories Inc., "WT41u Data Sheet",
2017. Available:
https://www.silabs.com/documents/login/
data-sheets/wt41u-datasheet.pdf

[30] Silicon Laboratories Inc., "AN990: Bluetooth Se-
rial Port Profile", 2012, datasheet. Available:
https://www.silabs.com/documents/login/
application-notes/AN990.pdf

[31] Silicon Laboratories Inc., "iWRAP 5.7.0, iWRAP
6.2.0 and iWRAP 6.1.1", 2017, datasheet. Avail-
able:
https://www.silabs.com/documents/login/
reference-manuals/iWRAP6-API-RM.pdf

http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://dx.doi.org/10.1109/mcom.2016.7565271
http://dx.doi.org/10.1007/978-3-319-63688-7_19
http://dx.doi.org/10.1109/twc.2008.080128
http://dx.doi.org/10.1145/1029102.1029113
http://dx.doi.org/10.1155/2013/730831
http://dx.doi.org/10.1109/fpt.2017.8280149
http://dx.doi.org/10.1109/iscas.2017.8050360
http://dx.doi.org/10.1109/indin.2016.7819251
http://dx.doi.org/10.1109/wirelessvitae.2011.5940923
http://dx.doi.org/10.1109/wirelessvitae.2011.5940923
http://dx.doi.org/10.1109/wicom.2008.1087
http://dx.doi.org/10.1109/tel-net.2017.8343548
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1145/3133956.3133969
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
http://dx.doi.org/10.1109/ISCAS.2018.8351098
http://dx.doi.org/10.17487/rfc5280
http://dx.doi.org/10.2307/2007884
http://dx.doi.org/10.1090/s0025-5718-99-01119-9
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
https://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.silabs.com/documents/login/data-sheets/wt41u-datasheet.pdf
https://www.silabs.com/documents/login/data-sheets/wt41u-datasheet.pdf
https://www.silabs.com/documents/login/application-notes/AN990.pdf
https://www.silabs.com/documents/login/application-notes/AN990.pdf
https://www.silabs.com/documents/login/reference-manuals/iWRAP6-API-RM.pdf
https://www.silabs.com/documents/login/reference-manuals/iWRAP6-API-RM.pdf

248 249R. Singh Boparai et al. Multi-point Security by a Multiplatform-compatible Multifunctional Authentication and...

that physical control is guaranteed. The wired
sensor is in general harder to break in, however
it is still possible to gain access to the wired in-
terfaces within the system. The sensor could be
accessed by an impersonating microcontroller,
which could retrieve all raw sensor data should
that be the case. This can be mitigated by using
programmable sensors where the platform spe-
cific protocol application can be implemented.
Finally, the security coprocessor found within
the system could be attacked. While the co-
processor by design is using inherently secure
algorithms, and features tamper evidence, it
could still be attacked on a hardware level, with
information extracted out of the chip, or worse,
the secure algorithms could be compromised
(i.e. SHA collision). For all intents and purpos-
es, the system can be considered secure but not
virtually impenetrable.

7. Conclusion and Future Work

An authentication and encryption board was de-
signed in such way that it extends and surpasses
the security authentication scheme present for
iOS devices to Android and other computing
systems. The board can be used in a variety of
scenarios to facilitate secure access to the com-
mon computing platforms and wired/wireless
peripherals. The system is energy-efficient, be-
cause of the simultaneous securing ot the access
between different devices. It is unique in that
it provides multi-point functionality, in other
words it can secure multiple communications
without requiring a separate module for each
communication channel, which also reduces
the cost. The system has high throughput along
with high-security level protection and can be
implemented in the new or already existing sys-
tem. Since iOS secures the access at OS level,
which is proprietary, the proposed scheme can
be used at an application level with all the de-
vices, but due to the open-source nature of An-
droid, the authentication hardware provisions,
and even the encryption support could be easily
incorporated at OS level.
The present-day industries still have a lot of
wired sensors and peripherals (via the existing
UART, SPI, or I2C interfaces) in which the sys-
tem can be integrated to fetch the readings over
the secured wireless link and even send com-

mands back to them. An addition such as cloud
upload via one of the connected Bluetooth de-
vices can serve the further IoT purpose. The de-
sign can also be extended further to low-power
systems that require high throughput, including
the real-time systems.

References

[1] V. Pureswaran and P. Brody, "Device Democracy:
Saving the Future of the Internet of Things", IBM
Corporation (2015). Available:
http://public.dhe.ibm.com/common/ssi/ecm/
gb/en/gbe03620usen/mc_asset_3314565__
gbe03620usen-04_GBE03620USEN.pdf

[2] V. P. Kafle et al. "Internet of Things Standardiza-
tion in ITU and Prospective Networking Technol-
ogies", IEEE Communications Magazine, vol. 54,
no. 9, pp. 43–49, 2016.
http://dx.doi.org/10.1109/mcom.2016.7565271

[3] M. Stevens et al. "The First Collision for Full
SHA-1", Advances in Cryptology – CRYPTO
2017 Lecture Notes in Computer Science, 2017,
pp. 570–596.
http://dx.doi.org/10.1007/978-3-319-63688-7_19

[4] M. L. Das, "Two-Factor User Authentication
in Wireless Sensor Networks", IEEE Transac-
tions on Wireless Communications, vol. 8, no. 3,
pp. 1086–1090, 2009.
http://dx.doi.org/10.1109/twc.2008.080128

[5] R. Watro et al., "TinyPK: Securing Sensor Net-
works with Public Key Technology", Proceed-
ings of the 2nd ACM workshop on Security of ad
hoc and sensor networks, ACM, 2004.
http://dx.doi.org/10.1145/1029102.1029113

[6] W. Shi et al., "A New User Authentication Pro-
tocol for Wireless Sensor Networks Using Ellip-
tic Curves Cryptography", International Journal
of Distributed Sensor Networks, vol. 9, no. 4,
pp. 730831, 2013.
http://dx.doi.org/10.1155/2013/730831

[7] A. Salman et al., "A Light-Weight Hardware/
Software Co-Design for Pairing-Based Cryptog-
raphy with Low Power and Energy Consump-
tion", IEEE International Conference on Field
Programmable Technology (ICFPT), 2017.
http://dx.doi.org/10.1109/fpt.2017.8280149

[8] M. Gao and Q. Gang, "A Novel Approximate
Computing Based Security Primitive for the In-
ternet of Things", IEEE International Symposium
on Circuits and Systems (ISCAS), 2017.
http://dx.doi.org/10.1109/iscas.2017.8050360

[9] Ch. Lesjak et al., "Hardware-secured and Trans-
parent Multi-Stakeholder Data Exchange for In-
dustrial IoT", IEEE 14th International Confer-

ence on Industrial Informatics (INDIN), 2016.
http://dx.doi.org/10.1109/indin.2016.7819251

[10] S. Babar et al., "Proposed Embedded Security
Framework for Internet of Things (IoT)", IEEE
2nd International Conference on Wireless Com-
munication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems
Technology (Wireless VITAE), 2011.
http://dx.doi.org/10.1109/wirelessvitae.2011.
5940923

[11] X. Zheng et al., "Design and Implementation of
a DPA Resistant AES Coprocessor", IEEE 4th
International Conference on Wireless Commu-
nications, Networking and Mobile Computing,
WiCOM'08, 2008.
http://dx.doi.org/10.1109/wicom.2008.1087

[12] G. Varshney et al., "A Security Framework for
IOT Devices Against Wireless Threats", IEEE
2nd International Conference on Telecommuni-
cation and Networks (TEL-NET), 2017.
http://dx.doi.org/10.1109/tel-net.2017.8343548

[13] S. Srinivas, "Security Keys: Practical Cryp-
tographic Second Factors for the Modern Web",
Financial Cryptography and Data Security:
20th International Conference, FC 2016, Christ
Church, Barbados, February 22–26, 2016, Re-
vised Selected Papers. vol. 9603. Springer, 2017.

[14] D. Nilsson, "Yubico's Take On U2F Key Wrap-
ping", 2014.
https://www.yubico.com/2014/11/yubicos-u2f-
key-wrapping/

[15] J. Ehrensvärd, "Secure Hardware vs. Open
Source", yubico blog[online], May 16, 2016.

[16] P. Švenda et al., "The Million-Key Question –
Investigating the Origins of RSA Public Keys",
Proceedings of the 25th USENIX Security Sym-
posium, 2016.

[17] D. J. Bernstein et al., "Factoring RSA Keys from
Certified Smart Cards: Coppersmith in the Wild",
International Conference on the Theory and Ap-
plication of Cryptology and Information Security,
Springer, Berlin, Heidelberg, 2013.
https://doi.org/10.1007/978-3-642-42045-0_18

[18] M. Nemec et al., "The Return of Coppersmith's
Attack: Practical Factorization of Widely Used
RSA Moduli", Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Commu-
nications Security, ACM, 2017.
https://doi.org/10.1145/3133956.3133969

[19] S. Wallick and Intel, "USB Type-C™ Authentica-
tion" USB Implementers Forum © 2017, Taipei,
Taiwan, October 24 – 25, 2017. Available:
http://www.usb.org/developers/presentations/
U S B _ D e v D a y s _ Ta i p e i _ 2 0 1 7 _ U S B - C _
Authentication_USB_PD_Firmware_Update.pdf

[20] D. Balfanz et al. "Web Authentication: An API
for accessing Public Key Credentials Level 1",

in W3C Candidate Recommendation, 20 March
2018.
https://www.w3.org/TR/2018/CR-webauthn-
20180320/

[21] J. Wang et al., "An ASIC Implementation of Se-
curity Scheme for Body Area Networks," IEEE
International Symposium on Circuits and Sys-
tems(ISCAS), Florence, 2018.
http://dx.doi.org/10.1109/ISCAS.2018.8351098

[22] D. Cooper, "Internet X.509 Public Key Infra-
structure Certificate and Certificate Revocation
List (CRL) Profile", 2008.
http://dx.doi.org/10.17487/rfc5280

[23] N. Koblitz, "Elliptic Curve Cryptosystems",
Mathematics of Computation, vol. 48, no. 177,
pp. 203‒209, 1987.
http://dx.doi.org/10.2307/2007884

[24] I. Blake et al. "Elliptic Curves in Cryptography",
vol. 265, Cambridge University Press, 1999.

[25] L. C. Washington, "Elliptic Curves: Number The-
ory and Cryptography", Chapman and Hall/CRC,
2003.

[26] R. Gallant et al., "Improving the Parallelized
Pollard Lambda Search on Anomalous Binary
Curves", Mathematics of Computation of the
American Mathematical Society, vol. 69, no. 232,
pp. 1699‒1705, 2000.
http://dx.doi.org/10.1090/s0025-5718-99-01119-9

[27] E. B. Barker et al., "Recommendation for Key
Management Part 3: Application-Specific Key
Management Guidance", No. Special Publication
(NIST SP)-800-57 Pt3 Rev 1. 2015.
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1

[28] E. Biham and L. Neumann, "Breaking the Blue-
tooth Pairing – Fixed Coordinate Invalid Curve
Attack", Technion – Israel Institute of Technolo-
gy. Available:
https://www.cs.technion.ac.il/~biham/BT/
bt-fixed-coordinate-invalid-curve-attack.pdf

[29] Silicon Laboratories Inc., "WT41u Data Sheet",
2017. Available:
https://www.silabs.com/documents/login/
data-sheets/wt41u-datasheet.pdf

[30] Silicon Laboratories Inc., "AN990: Bluetooth Se-
rial Port Profile", 2012, datasheet. Available:
https://www.silabs.com/documents/login/
application-notes/AN990.pdf

[31] Silicon Laboratories Inc., "iWRAP 5.7.0, iWRAP
6.2.0 and iWRAP 6.1.1", 2017, datasheet. Avail-
able:
https://www.silabs.com/documents/login/
reference-manuals/iWRAP6-API-RM.pdf

http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/mc_asset_3314565__gbe03620usen-04_GBE03620USEN.pdf
http://dx.doi.org/10.1109/mcom.2016.7565271
http://dx.doi.org/10.1007/978-3-319-63688-7_19
http://dx.doi.org/10.1109/twc.2008.080128
http://dx.doi.org/10.1145/1029102.1029113
http://dx.doi.org/10.1155/2013/730831
http://dx.doi.org/10.1109/fpt.2017.8280149
http://dx.doi.org/10.1109/iscas.2017.8050360
http://dx.doi.org/10.1109/indin.2016.7819251
http://dx.doi.org/10.1109/wirelessvitae.2011.5940923
http://dx.doi.org/10.1109/wirelessvitae.2011.5940923
http://dx.doi.org/10.1109/wicom.2008.1087
http://dx.doi.org/10.1109/tel-net.2017.8343548
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1145/3133956.3133969
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
http://www.usb.org/developers/presentations/USB_DevDays_Taipei_2017_USB-C_Authentication_USB_PD_Firmware_Update.pdf
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
http://dx.doi.org/10.1109/ISCAS.2018.8351098
http://dx.doi.org/10.17487/rfc5280
http://dx.doi.org/10.2307/2007884
http://dx.doi.org/10.1090/s0025-5718-99-01119-9
http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1
https://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.silabs.com/documents/login/data-sheets/wt41u-datasheet.pdf
https://www.silabs.com/documents/login/data-sheets/wt41u-datasheet.pdf
https://www.silabs.com/documents/login/application-notes/AN990.pdf
https://www.silabs.com/documents/login/application-notes/AN990.pdf
https://www.silabs.com/documents/login/reference-manuals/iWRAP6-API-RM.pdf
https://www.silabs.com/documents/login/reference-manuals/iWRAP6-API-RM.pdf

250 R. Singh Boparai et al.

Received: May 2018
Revised: January 2019

Accepted: February 2019

Contact addresses:
Ravdeep Singh Boparai

McGill University
Montreal

Canada
e-mail: ravdeep.boparai@mail.mcgill.ca

Anastasios Alexandridis
McGill University

Montreal
Canada

e-mail: anastasios.alexandridis@mail.mcgill.ca

Zeljko Zilic
McGill University

Montreal
Canada

e-mail: zeljko.zilic@mcgill.ca

Ravdeep Singh BopaRai received his degree of Bachelor in Technology
in Electronics and Communication Engineering from I.K. Gujral Pun-
jab Technical University, Jalandhar, India in 2016 and Master in Elec-
trical Engineering, with specialisation in Integrated Circuits and Sys-
tems in 2018 from McGill University, Montreal, Canada. He worked
as Research Professional on VoIP based Gateways. He works on the
Networking and Security Protocols at the Research and Development
Department of Paradox Security Systems, Canada. His research inter-
ests are in the design, development and applications of embedded sys-
tems, Internet of Things (IoT), wireless communications, and security
systems.

anaStaSioS alexandRidiS was born in Volos, Greece, in 1990. He re-
ceived the B.Sc. degree in Computer Engineering from Frederick
University, Nicosia, Cyprus, in 2015, and the M.Sc. degree in Analog
Electronics from the University of Edinburgh, Edinburgh, UK, in 2016.
He is currently pursuing his Ph.D. degree working together with the
Integrated Microsystems Laboratory at McGill University, Montreal,
Canada. His current research interests include but are not limited to
embedded systems, Internet of Things (IoT), blockchains, body area
networks, mesh networks, and smart cities.

Zeljko Zilic received the B.Eng. degree from the University of Zagreb,
Croatia, and the M.Sc. and Ph.D. degrees from the University of To-
ronto, Canada. From 1996 till 1997, he worked for Lucent Microelec-
tronics on the design, test, and verification of Orca FPGAs. His current
research interests include the design of deeply embedded systems that
most notably deal with wellness and health. He has published more
than 300 papers, for which he received a dozen of Best Paper or Hon-
orary Mention Awards. He has supervised more than 80 M.Eng. and
Ph.D. students, who have moved on to leading industrial and academic
institutions. Prof. Zilic has been granted the Chercheur Strategique Re-
search Chair from Quebec. He is a Senior Member of IEEE and ACM.

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

