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Multi-Agent Pursuit-Evasion Game 
Based on Organizational Architecture

Multi-agent coordination mechanisms are frequent-
ly used in pursuit-evasion games with the aim of 
enabling the coalitions of the pursuers and unifying 
their individual skills to deal with the complex tasks 
encountered. In this paper, we propose a coalition for-
mation algorithm based on organizational principles 
and applied to the pursuit-evasion problem. In order to 
allow the alliances of the pursuers in different pursuit 
groups, we have used the concepts forming an organi-
zational modeling framework known as YAMAM (Yet 
Another Multi Agent Model). Specifically, we have 
used the concepts Agent, Role, Task, and Skill, pro-
posed in this model to develop a coalition formation 
algorithm to allow the optimal task sharing. To control 
the pursuers' path planning in the environment as well 
as their internal development during the pursuit, we 
have used a Reinforcement learning method (Q-learn-
ing). Computer simulations reflect the impact of the 
proposed techniques.
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cial intelligence → Multi-agent systems
Theory of computation → Theory and algorithms for 
application domains → Algorithmic game theory and 
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1. Introduction

Pursuit-Evasion (PE) games are considered as 
one of distinctive distributed artificial intelli-
gence areas treating the cooperative decision 
problem in Multi-Agent Systems (MAS). It 
mainly focuses on the cooperative approaches 
used to connect many autonomous agents play-

ing the role of pursuers to capture the mobile 
evaders. In fact, the pursuit problem requires  
coordination of the pursuers' actions. It is wide-
ly used in relation to the different types of co-
ordination mechanisms and coalition formation 
algorithms since it came into being.
With the aim of describing this problem, several 
kinds of environment have been used in the re-
cent research activities. For example, in [1] the 
authors used an m-dimensional Euclidean space 
where the evaders and pursuers can move at the 
same speed. Noting that, for each evader there 
exists a finite set of pursuers trying to capture 
it. They have proved through a simple construc-
tive method that a k-capture is always achiev-
able when the pursuer lies inside the pursuers' 
k-hull (The k-hull is defined as a set of all points 
p such that any line passing through p divides 
the given points into two sets of k points each 
at least). In [2], the problem was studied under 
the wireless sensor and actor networks (planar 
environment) where a novel multi-step cooper-
ative pursuit based on Daisy-Chain Formation 
algorithm and a sliding mode-based method 
were used to control the pursuit process. More-
over, the game was introduced in two cases. In 
the first one, the evader is always assumed to 
be static in the environment. In the other one, 
the evader will move once it detects the pursu-
ers. In [3], the pursuit game was presented in 
an environment totally based on graph theory, 
in which the main objective was to localize the 
node containing the evader. For this purpose, 
the Iterative Greedy Node Search (IGNS) al-
gorithm was undertaken to enable offline guar-
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anteed search. In this paper, we are focused on 
two-dimensional grid of cells environment [4], 
[5], in which the evader is considered as cap-
tured when the expected locations (cells) are 
occupied by the pursuers or by static obstacles.
Coordination is a part of multi-agent systems, in 
which the interdependencies between activities 
of the agents might rise from the need to have 
shared resources or to unify efforts to solve a 
more complex problem. Division of a task into 
sub-tasks, processing with overlapping sub-
tasks, or even impossibility of dividing a task to 
appropriate sub-tasks [6], [7] need having ac-
cess to efficient process to select which agent, 
when, and how to assign tasks to. Durfee [8] 
determines coordination of agent as "an agent's 
fundamental capability to take the decision re-
garding its own actions in the context of activi-
ties of other agents around it". The coordination 
allows the agents to intentionally join their ef-
forts and resources to resolve global goals.  In 
this paper we have focused on organizational 
structuring framework, which is considered 
as coordination mechanism's type. Indeed, we 
have used the different concepts proposed in 
YAMAM organizational model [9] as well as 
the relations between them in order to propose a 
pursuit coalition formation algorithm enabling 
optimal grouping of the pursuers to achieve the 
capture of different evaders detected.
Regarding the pursuers' path planning, we have 
applied the reinforcement learning (RL) meth-
od known as Q-learning to optimize the move-
ment of the agents during the pursuit. RL al-
gorithm is regarded as a simple framing of the 
learning problem based on the environmental 
interactions in order to reach a specific objec-
tive [10]. In RL, each agent characterized by 
a level of skills enabling the interactions with 
the environment is called the decision-maker. 
Information generated in the environment is 
communicated to the agent through interactions 
between each other. In fact, the agent selects an 
action to execute in the environment from the 
received information. The environment chang-
es provoked in different ways by the actions 
are transmitted to the agent via a scalar rein-
forcement signal. The actions of the agent are 
performed to maximize the rewards generated 
by the environment as special numerical val-
ues. The temporal difference learning methods, 

the dynamic programming, and Monte-Carlo 
represent the three main methods used in RL.  
Indeed, temporal difference learning methods 
are based on different concepts extracted from 
both dynamic programming methods and Mon-
te Carlo techniques [11].
The paper is organized as follows: The prob-
lem formulation and the description of the en-
vironmental elements are defined in Section 3. 
Section 4 contains the principles of YAMAM 
organizational model as well as the relations 
between their different concepts and informa-
tion how the coalition formation algorithm is 
extracted from this organizational model. In the 
same section, we highlight the motion strategy 
of the agent based on RL method. Section 5 re-
veals the positive impact imposed by this prop-
osition in relation to some relevant work.

2. Related work

There are several benefits regarding the appli-
cation of multi agent systems. One of the most 
important benefits is the parallel resolution of 
the problems [7]. This fact aims to model clas-
sical artificial intelligence to simultaneously 
execute several tasks. We can note this point in 
the PE problem when the pursuit of the detect-
ed pursuers is effectuated in parallel way. The 
second benefit is the distributed resolution of 
the problems [10]. This principle is reflected by 
the agents' autonomy. We can note that in PE 
problem through the communication of the pur-
suers with each other and with the environment 
during the pursuit. Multi-agent based simula-
tion can also be considered as a great benefit, 
it easily allows the implementation of different 
social phenomena on micro and macro levels 
(flexible number of used agents). We can de-
duce this fact in PE problem through the flexi-
bility of the used pursuers and evaders.
The Organization concept is often used in MAS 
in different ways such as in Holonic multi-
agent manufacturing systems [12], in which a 
two-dimensional self-organization mechanism 
was conceived taking into account structural 
and behavioural vectors to achieve truly evo-
lutionary and flexible systems. Moreover, other 
works use an underlying organization to lead 
the coalition formation of the agents [13], [14].

provement of the alliance decision making as 
well as its dynamism to develop a cooperative 
pursuit algorithm based on the dynamism of the 
formed alliances.
RL is usually used in multi-agent path plan-
ning. Q-learning can be used through several 
approaches, not requesting the agent to have ac-
cess to the information on the functioning of the 
environment. Q-learning evaluates state-action 
values (Q values), which are numerical evalu-
ators of quality for a given action to transit be-
tween two different states [23]. Also, there are 
several interesting works based on RL and treat-
ing PE games in grid of cells environment [24], 
[25] with the aim of finding the optimal path 
of the pursuers during the pursuit process.  In 
[26], the authors introduced a Stochastic Short-
est path-based Q-learning (SSPQL) method 
improving the convergence speed in compari-
son with Q-learning. Moreover, SSPQL works 
very well when the state transitions are stochas-
tic. However, it needs considerable memory 
consumption in order to store the state-transi-
tion probabilities as well as stochastic shortest 
paths. In [27], they presented a Reinforcement 
Learning algorithm regarding the problems in 
which a poissonian stochastic time delay is en-
countered in the agents' reinforcement signal. 
This algorithm can design an adapted control 
policy for the agents' environment despite the 
presence of environment noise.

3. Pursuit-evasion Problem 
Description

In this section, we depict the pursuit evasion 
setting considered. The environment is repre-
sented by a limitary rectangular grid of cells of 
the same size and shape [28]. Knowing that, this 
approach is also applicable to any other type of 
environment. There are three types of cells in 
the environment: free cells, cells occupied by 
agents, and cells occupied by obstacles. The 
agents are equipped with environmental sensors 
permitting avoidance of the different obstacles 
as well as detection of each other's location in 
the environment. Moreover, we note that the 
environment is assumed to be fixed with stat-
ic obstacles. Pursuer and evader reflect the two 
types of agent used. Both agents can only move 

Application of the pursuit coalition formation 
process based on MAS organizational models is 
a recent research activity regarding the distrib-
uted artificial intelligence. In [15], the authors 
focused on Agent Group Role (AGR) organiza-
tional model [16] in order to extract a coalition 
formation algorithm allowing the alliances of 
the pursuers in different pursuit groups. Also, 
they demonstrated effects of the pursuit groups' 
stability on the capturing time as well on the 
pursuers' development during execution of the 
tasks. In the same context, they proposed a flex-
ible organizational model extended from AGR 
through the application of fuzzy logic princi-
ples in order to equip each pursuit group with 
a membership function used to determine the 
membership degree of each pursuer. This mod-
el is known as Agent Group Role Membership 
Function (AGRMF) [17], [18], [19]. In addi-
tion, they showcased the impact of this fuzzy 
access mechanism on the roles' attribution and 
on the dynamism of coalition formation.
In relation to game theory, a pursuit coalition 
formation algorithm based on the iterated elim-
ination of dominated strategy (IEDS) model 
was proposed to provide a pursuit task coordi-
nation mechanism [20]. This coalition forma-
tion algorithm is based on the iterated elimina-
tion of the dominated pursuit groups, causing a 
certain equilibrium between the pursuit groups 
selected and excluding any problem related to 
the negative externalities. Furthermore, this ap-
proach showcases an interesting decentralized 
calculation of the possible coalition formations.
Application of coalition formation in PE games 
is very common, such as in [21] where the au-
thors proposed a pursuers' coalition formation 
algorithm to improve the real-time computa-
tion of the optimal coalition. Knowing that, this 
computation exponentially increases in relation 
to the number of the pretending pursuers. Spe-
cifically, this algorithm is based on greedy opti-
mal gains, allowing assignment of the pursuers 
in different coalitions.
Also, there are other types of coordination mech-
anisms such as Contract Net Protocol (CNP) 
applied to the pursuit-evasion games where a 
cooperation mechanism of multiple agents used 
to form the pursuit alliance to capture different 
kinds of evaders is introduced [22]. Specifical-
ly, they have extended CNP through the im-
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tive [10]. In RL, each agent characterized by 
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horizontally and vertically to the adjacent cells. 
The pursuer and the evader act at discrete time 
steps and execute pursuit and evasion iterations 
respectively at each pursuit-evasion step. The 
evaders differ according to the number of the 
pursuers required to accomplish their capture. 
When the evader's adjacent cells are occupied, 
we deduce that the capture is performed. The 
pursuers are characterized by different dynamic 
skills allowing their differentiation during for-
mation of the pursuit coalitions:

3.1.	Task	Processing	Degree	(Ω)

In pursuit-evasion game, the pursuers are 
equipped with the skills enabling performance 
of the different tasks required. The task pro-
cessing degree determines the achievement's 
probability of the pursuers' set in relation to 
the evader concerned. Denoting the number of 
pursuers required to perform the pursuit of one 
evader (E) with Ψ, and Gr = {P1, P2, …, PΨ}, 
this factor is computed as follows:
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where tS is the number of tasks achieved by the 
pursuer and ta is the number of tasks affected to 
the pursuer.

3.2. The Average Goal Distance

The distance from the evader to the pursuers in 
the environment involves a significant impact on 
the pursuit processing. More precisely, it enables 
calculation of the minimum average distance 
between the set of pursuers and the purchased 
evader. The position Pos is computed as follows:
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where (CorPx, CorPy) are the coordinates of a 
specific pursuer and (CorEx, CorEy) are the co-
ordinates of the evader concerned.

3.3.	The	Task	Acquaintance	(Tying)

The pursuit coalition is formed at the beginning 
of the task execution, and it dissolves when the 
task is performed. Next time when the same 
group of agents is assigned to the same task, 
it is obligatory to repeat the interactions and 
reconstitute a new coalition. The factor of the 
task acquaintance is introduced here with the 
aim of reducing the communication rate as well 
as avoiding the repeated information in interac-
tions. Tying, denoted by Tyingij is the level of 
experience for a group of agentsi in relation to 
the task Tj. The initial value of this dynamic pa-
rameter is zero, and when the task is performed, 
it will be updated as follows:
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Figure 1 describes the environment proposed. 
It determines how the agents move between the 
cells, and how the pursuers intercept the evad-
ers to perform the capture. Different colors of 
the pursuers mean that they belong to different 
pursuit groups.

4. The Proposed Solution

In this section we will explain the different 
concepts forming YAMAM organization model 

and also describe how they are used in order to 
allow the coalition of pursuers in different pur-
suit groups to chase the detected evaders in the 
environment (Task planning). In addition, we 
will explain the proposed stochastic Q-Learn-
ing method allowing the pursuers to move in 
the direction of the evader concerned after the 
groups' formation (Path planning).

4.1. YAMAM Organizational Modeling 
Framework:

The YAMAM organizational model [9] is an al-
ternative to other models based on agents such 
as AGR [16], and AGRMF [17]. The main ad-
vantages of this model can be summarized on 
its good modularity, and possible scalability. 
Also, it can be interfaced with task planning 
tools, as it will be used in this paper. YAMAM 
is based on four different concepts: Agent, Skill, 
Role and Task. In this model, the organization 
is described by its inherent structure. Therefore, 
relations between the agents are primordial in 
relation to the agents and their behavior.

4.1.1. Agent

In this organizational structure, an agent is de-
fined as an autonomous and communicating 
entity situated in an explicit or implicit envi-
ronment. In fact, the agent is built on reactive 
proprieties, thus implying that the skills cannot 
be added dynamically. However, it is possible 
to instantiate a cognitive agent able to use reac-
tive and cognitive skills so as to evaluate over 
time.

4.1.2. Role

The role reflects a service or an agent identifi-
cation form. The agent can manage with one or 
several roles regarding a specific environment. 
Moreover, the role is based on a set of tasks to 
perform in different ways. It is supposed that an 
agent can play a role only if it is able to execute 
the tasks involved, and thus if it possesses the 
skills required. Usually, the role requires execu-
tion capacity of several tasks. Consequently, an 
agent must be characterized by the skills related 
the tasks concerned. In this paper, this concept 
is used to attribute the role "Pursuer" which dif-

fers from one pursuit group to another. More-
over, we note that each agent cannot play the 
role "Pursuer" in more than one pursuit group.

4.1.3. Skill

The skill is a necessary unit of knowledge in 
the processing of a given task. There are two 
types of skills: the cognitive skill, which could 
be received only by the cognitive agents, and 
the reactive skill, which could be also received 
by the reactive agents. An agent can aggregate 
several skills in order to execute the set of ex-
pected tasks required to play a specific role. In 
this paper, the pursuer's skills are represented 
by the task processing degree (Ω), the distance 
separating the pursuer from the target (Dist), 
and the task acquaintance (Tying) as detailed in 
Section 3.

4.1.4. Task

In order to be achieved the task can be regarded  
as the operation of a skill or as an action requiring 
one or several skills. In pursuit-evasion game, the 
different pursuits represent the tasks to execute. 
Also, each evader requires a specific number and 
type of pursuers to be captured (skills).
Figure 2 details the different relations between 
the concepts constituting YAMAM organiza-
tional model. However, unlike AGR organiza-
tional model, the concept group is not physical-
ly implemented in this model. In other words, 
the agents have no vision regarding the existing 
groups and totally ignore their membership in-
formation. In our proposal, the groups will be 
represented by the different coalition forma-
tions formed to capture the detected evaders.

Figure 1. Grid of cells simulation environment. Figure 2. YAMAM meta-model.
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horizontally and vertically to the adjacent cells. 
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pursuers required to accomplish their capture. 
When the evader's adjacent cells are occupied, 
we deduce that the capture is performed. The 
pursuers are characterized by different dynamic 
skills allowing their differentiation during for-
mation of the pursuit coalitions:
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cells, and how the pursuers intercept the evad-
ers to perform the capture. Different colors of 
the pursuers mean that they belong to different 
pursuit groups.

4. The Proposed Solution

In this section we will explain the different 
concepts forming YAMAM organization model 

and also describe how they are used in order to 
allow the coalition of pursuers in different pur-
suit groups to chase the detected evaders in the 
environment (Task planning). In addition, we 
will explain the proposed stochastic Q-Learn-
ing method allowing the pursuers to move in 
the direction of the evader concerned after the 
groups' formation (Path planning).

4.1. YAMAM Organizational Modeling 
Framework:

The YAMAM organizational model [9] is an al-
ternative to other models based on agents such 
as AGR [16], and AGRMF [17]. The main ad-
vantages of this model can be summarized on 
its good modularity, and possible scalability. 
Also, it can be interfaced with task planning 
tools, as it will be used in this paper. YAMAM 
is based on four different concepts: Agent, Skill, 
Role and Task. In this model, the organization 
is described by its inherent structure. Therefore, 
relations between the agents are primordial in 
relation to the agents and their behavior.

4.1.1. Agent

In this organizational structure, an agent is de-
fined as an autonomous and communicating 
entity situated in an explicit or implicit envi-
ronment. In fact, the agent is built on reactive 
proprieties, thus implying that the skills cannot 
be added dynamically. However, it is possible 
to instantiate a cognitive agent able to use reac-
tive and cognitive skills so as to evaluate over 
time.

4.1.2. Role

The role reflects a service or an agent identifi-
cation form. The agent can manage with one or 
several roles regarding a specific environment. 
Moreover, the role is based on a set of tasks to 
perform in different ways. It is supposed that an 
agent can play a role only if it is able to execute 
the tasks involved, and thus if it possesses the 
skills required. Usually, the role requires execu-
tion capacity of several tasks. Consequently, an 
agent must be characterized by the skills related 
the tasks concerned. In this paper, this concept 
is used to attribute the role "Pursuer" which dif-

fers from one pursuit group to another. More-
over, we note that each agent cannot play the 
role "Pursuer" in more than one pursuit group.

4.1.3. Skill

The skill is a necessary unit of knowledge in 
the processing of a given task. There are two 
types of skills: the cognitive skill, which could 
be received only by the cognitive agents, and 
the reactive skill, which could be also received 
by the reactive agents. An agent can aggregate 
several skills in order to execute the set of ex-
pected tasks required to play a specific role. In 
this paper, the pursuer's skills are represented 
by the task processing degree (Ω), the distance 
separating the pursuer from the target (Dist), 
and the task acquaintance (Tying) as detailed in 
Section 3.

4.1.4. Task

In order to be achieved the task can be regarded  
as the operation of a skill or as an action requiring 
one or several skills. In pursuit-evasion game, the 
different pursuits represent the tasks to execute. 
Also, each evader requires a specific number and 
type of pursuers to be captured (skills).
Figure 2 details the different relations between 
the concepts constituting YAMAM organiza-
tional model. However, unlike AGR organiza-
tional model, the concept group is not physical-
ly implemented in this model. In other words, 
the agents have no vision regarding the existing 
groups and totally ignore their membership in-
formation. In our proposal, the groups will be 
represented by the different coalition forma-
tions formed to capture the detected evaders.

Figure 1. Grid of cells simulation environment. Figure 2. YAMAM meta-model.
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4.2. Pursuers' Coalition Formations Based 
on YAMAM Organizational Model

The coalition formation problem attracts the 
efforts of recent researches in multi-agent 
systems [27], [29]. The problem implicates 
exchange of information amongst collaborat-
ing agents to form mutually profitable coali-
tions. The main objective of this section is to 
showcase how the coalition formations of the 
pursuers are performed through the different 
concepts proposed in YAMAM organizational 
model. In other words, we explain how the pur-
suers integrate the pursuit groups (playing the 
role) according to their skills' degree in order to 
execute the existing tasks (capture of the evad-
ers). The pseudo-code of the algorithm's steps 
can be summarized as follows:

Different steps shown in the algorithm above 
are explained in the following manner: after the 
detection of the different evaders in the envi-
ronment, the possible coalitions to perform the 
pursuits at the same time will be determined. 

Noting that each coalition enrolls the supposed 
number of pursuers required to capture all the 
evaders detected. The number of possible coali-
tions is computed as follows:
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X = ψ1 + ψ2 + ... + ψm, ψ0 = 0,
where m is the number of evaders detected and 
y is the number of pursuers existing in the en-
vironment.
Secondly, the generated coalitions will be frag-
mented into several pursuit groups in which 
each one of them represents the alliance to cap-
ture only one evader. Specifically, in each coa-
lition the pursuer can only belong to one pursuit 
group, that is to say, it plays only one role:
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Where Gr is the pursuit group concerning the 
capture of one evader, while cl is the set of pur-
suit groups.
After the specification of the coalitions, the 
task's skill degree of each one will be comput-
ed. This calculation is totally based on the pur-
suers' ability factors (pursuers' skills) explained 
in Section 3:
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where η is the pursuer skill's factor.
According to the obtained degrees, the maxi-
mum value will be selected in order to choose 
the optimal coalition. Also, the supposed roles 
of the agents belonging to the optimal coalition 
will be confirmed.
After the implementation of the coordination 
mechanism, the pursuits will start simultane-

ously and will last for a specific time. Their du-
ration is unified and determined by a temporal 
variable "life".
The task processing degrees of the pursuers 
are updated after each pursuit step (iteration) is 
completed, as defined by the agents' displace-
ment in the environment which follows the mo-
tion strategy explained in the next subsection. 
Otherwise, the task acquaintance will be updat-
ed in case of successful capture at the end of 
the pursuit life cycle. Figure 3 shows how the 
concepts forming YAMAM are implemented 
to model the pursuit processing (group access 
mechanism, roles attribution, and the task defi-
nition). In other words, the concept Role is re-
flected by the two roles Pursuer and Evader. The 
concept Task is reflected by the agents playing 
the role Pursuer (should be captured during the 
pursuit). The concept Skill is reflected by the 
task processing degree (Ω), the average goal 
distance, and the task acquaintance (Tying) ex-
plained in Section 3. These parameters are used 
in order to determine if an agent is able to inte-
grate a pursuit group.

4.3. Motion Planning Control Based on 
Q-learning

The goal of this section is to highlight how the 
motion strategy of the pursuers is implemented 
after their coalition according to a reinforce-
ment learning method. Multi-Agent Q-learning 

is an extension of QL to multi-agent environ-
ments. It concerns the problems in relation with 
the learning of optimal behaviour from the point 
of view of an agent acting in a multi-agent en-
vironment. At the beginning, the environmental 
dynamics and the algorithms undertaken by the 
other players are unknown to the given agent. 
All agents select their actions independent-
ly and concurrently, execute them in parallel, 
and observe the same reward related to the 
joint action. In this single-agent case, the RL 
can usually be described by Markov decision 
process MDP, in which an agent must select 
the sequence of actions that maximizes some 
reward-based optimization criterion. MDP is 
defined as follows:

, , ,MDP S A T R=

S determines the finite set of the environment 
states S = {s1, s2 ,..., sn}, A determines the finite 
set of the actions A = {a1, a2, ..., an}, T: S × A 
× S → [0, 1] defines the transition probabilities 
between the states s and s' through the execu-
tion of the action a, R: S × A × S → R defines the 
reward function returning the immediate payoff 
obtained via each possible transition.
In order to implement the greedy strategy, each 
pursuer must select its actions with the aim of 
maximizing the value function defined as fol-
lows:
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where rf determines the payoff obtained during 
the transition from s to s', and the scalar (λ ∈  
[0,1]) represents the discount factor. The reso-
lution of MDP consists of finding a mapping 
from state to action. This mapping is known as 
Policy π: S × A → [0, 1]. π (s, a) represents the 
probability of selecting the action a in state s. In 
the case of finite MDP, there exists at least one 
optimal policy π* which is consistent with the 
following rule:

                          ( ) ( )V s V sπ π∗ ≥                   (7)

Q-learning enables values to be approximated 
from empirical samples occurred during the ac-
tual experiences. The agent launches with ar-
bitrary Q-values and updates them as follows:

Algorithm 1.  Pursuit coalition based on YAMAM.

Input: Evaders detected
Output: Optimal_coalition
Evaders_Detection ();
Nbrcl ← Np! / (Np – X)!;
while coalition_list ≠ end do
    Coalition-fragmentation (i);
    Roles-supposition (i);
    TSD (i) ← Average (Ω, Dist, Tying);
end while;
while coalition_list ≠ end do
       if TSD (i) = max then
Optimal_coalition ← coalition (i);
end if;
end while;
while pursuers-list ≠ end do
       if p (i) ∈ Optimal_coalition then
Role_confirmation (p (i));
       end if;
while life > 0 do
Pursuit_iteration;
      Update (Ω);
end while;
Update (tying);
end.

Figure 3. YAMAM concepts applied to the pursuit-
evasion game.



6 7M. El Habib Souidi et al. Multi-Agent Pursuit-Evasion Game Based on Organizational Architecture

4.2. Pursuers' Coalition Formations Based 
on YAMAM Organizational Model

The coalition formation problem attracts the 
efforts of recent researches in multi-agent 
systems [27], [29]. The problem implicates 
exchange of information amongst collaborat-
ing agents to form mutually profitable coali-
tions. The main objective of this section is to 
showcase how the coalition formations of the 
pursuers are performed through the different 
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model. In other words, we explain how the pur-
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role) according to their skills' degree in order to 
execute the existing tasks (capture of the evad-
ers). The pseudo-code of the algorithm's steps 
can be summarized as follows:

Different steps shown in the algorithm above 
are explained in the following manner: after the 
detection of the different evaders in the envi-
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X = ψ1 + ψ2 + ... + ψm, ψ0 = 0,
where m is the number of evaders detected and 
y is the number of pursuers existing in the en-
vironment.
Secondly, the generated coalitions will be frag-
mented into several pursuit groups in which 
each one of them represents the alliance to cap-
ture only one evader. Specifically, in each coa-
lition the pursuer can only belong to one pursuit 
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Where Gr is the pursuit group concerning the 
capture of one evader, while cl is the set of pur-
suit groups.
After the specification of the coalitions, the 
task's skill degree of each one will be comput-
ed. This calculation is totally based on the pur-
suers' ability factors (pursuers' skills) explained 
in Section 3:
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where η is the pursuer skill's factor.
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After the implementation of the coordination 
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ously and will last for a specific time. Their du-
ration is unified and determined by a temporal 
variable "life".
The task processing degrees of the pursuers 
are updated after each pursuit step (iteration) is 
completed, as defined by the agents' displace-
ment in the environment which follows the mo-
tion strategy explained in the next subsection. 
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ed in case of successful capture at the end of 
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flected by the two roles Pursuer and Evader. The 
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task processing degree (Ω), the average goal 
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plained in Section 3. These parameters are used 
in order to determine if an agent is able to inte-
grate a pursuit group.
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The goal of this section is to highlight how the 
motion strategy of the pursuers is implemented 
after their coalition according to a reinforce-
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is an extension of QL to multi-agent environ-
ments. It concerns the problems in relation with 
the learning of optimal behaviour from the point 
of view of an agent acting in a multi-agent en-
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dynamics and the algorithms undertaken by the 
other players are unknown to the given agent. 
All agents select their actions independent-
ly and concurrently, execute them in parallel, 
and observe the same reward related to the 
joint action. In this single-agent case, the RL 
can usually be described by Markov decision 
process MDP, in which an agent must select 
the sequence of actions that maximizes some 
reward-based optimization criterion. MDP is 
defined as follows:
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where rf determines the payoff obtained during 
the transition from s to s', and the scalar (λ ∈  
[0,1]) represents the discount factor. The reso-
lution of MDP consists of finding a mapping 
from state to action. This mapping is known as 
Policy π: S × A → [0, 1]. π (s, a) represents the 
probability of selecting the action a in state s. In 
the case of finite MDP, there exists at least one 
optimal policy π* which is consistent with the 
following rule:
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Q-learning enables values to be approximated 
from empirical samples occurred during the ac-
tual experiences. The agent launches with ar-
bitrary Q-values and updates them as follows:

Algorithm 1.  Pursuit coalition based on YAMAM.

Input: Evaders detected
Output: Optimal_coalition
Evaders_Detection ();
Nbrcl ← Np! / (Np – X)!;
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    Roles-supposition (i);
    TSD (i) ← Average (Ω, Dist, Tying);
end while;
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       if TSD (i) = max then
Optimal_coalition ← coalition (i);
end if;
end while;
while pursuers-list ≠ end do
       if p (i) ∈ Optimal_coalition then
Role_confirmation (p (i));
       end if;
while life > 0 do
Pursuit_iteration;
      Update (Ω);
end while;
Update (tying);
end.

Figure 3. YAMAM concepts applied to the pursuit-
evasion game.
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αi is Step-size sequence, Qi (s, a) is the i-th es-
timation of Q*(s, a).Under the standard RL hy-
potheses, the sequence Qi probably converges 
to Q* , and the optimal policy is simply select-
ing the action to maximize Qi +1 (s, a) at any 
state s.

5. Computer Simulations

To test the performance of the proposed ap-
proach, some simulation results are presented 
in this section. We conduct our simulation ex-
periments using an open source agent-based 
modeling development platform, NetLogo 
[30]. The pursuit-evasion game is illustrated in 
80 × 80 grid of cells provided with some static 
obstacle in which the pursuers are clustered in 
several groups to capture the different evaders 
detected. Noting that, both pursuers and evaders 
have the same speed and information regarding 
each other provided by the environment. We 
use the same initial conditions (environment 
and agents' position) to compare our algorithm 
explained in subsection 4.2 with a recent re-
search activity [15] treating the pursuit-evasion 
problem through the use of an organizational 
coordination mechanism. Indeed, the concepts 
Agent, Group and Role presented in AGR orga-
nizational model were simultaneously used to 
allow the coalition of the pursuers as explained 
in Section 2 of this paper. Knowing that, the 
pursuers' path planning in AGR case is totally 
based on MDP principles. Specifically, our case 
study is based on ten agents able to play the role 
"Pursuer" allowing them to purchase two mo-
bile evaders.
Figure 4 reflects the average evaders' capturing 
time achieved after different pursuit episodes. 
In relation to the pursuit based on AGR, the re-
sults obtained via the application of our coali-
tion formation algorithm (YAMAM) decrease 
until 33.88% in relation to the other case. This 
fact is due to the optimal coalitions formed in 
the beginning of the pursuit through the appli-
cation of the access mechanism.

To highlight the internal development of the 
pursuers during tasks' executions, we have cal-
culated the pursuers' tasks processing degree 
(Ω) during each pursuit step performance as 
shown in Figure 5. This skill is calculated in 
accordance to the Equation 1 as detailed in sub-
section 3.1. The results obtained through the 
proposed algorithm in this paper reveal an esti-
mated increase of 15.38% in comparison to the 
results achieved through AGR model.
To test the effectiveness of the motion planning 
proposed, we have also calculated the pursuers' 
rewards development as returned in Figure 6. 
The immediate application of the access mech-

anism provokes an interesting increase in com-
parison to AGR at the first pursuit step. More-
over, we note certain positivity in the rewards' 
development in both cases during the pursuit 
processing, which is mainly caused by the sta-
bility of the coalitions formed as well as the 
greedy strategy provided by Q-Learning in YA-
MAM case and MDP principles in AGR case. 
Knowing that, the pursuers' rewards are totally 
based on the distance (Dist) separating the pur-
suers from the evader concerned. This distance 
(Skill) is calculated in accordance to the Equa-
tion 2 given in Section 3 of this paper.
Otherwise, we have seen the usefulness to 
showcase the evaders' utility decrease until 
the capture is performed in both cases. The re-
sults shown in Figure 7 confirm that the access 
mechanism provided by our algorithm allows 

optimal execution of the tasks with aim to swift-
ly reach the requirements through the increase 
of the pursuers' goal orientation regarding the 
evaders' capture, when compared with the case 
based on AGR.
During these experiments, we have noted that 
the path planning methods used in the compared 
approaches provide approximately the same re-
sults regarding the pursuers' trajectories in this 
case study. By this fact, we can deduce that the 
main result's improvement is due to the pursuit 
group access mechanism based on YAMAM.
Table 1 summarizes the main results acquired 
during the simulation experiments concern-
ing the average evaders' capturing time, the 
pursuers' internal development as well as the 
achievement of the evaders' requirements. We 
can deduce that the method proposed in this pa-
per improves the pursuit processing in compar-
ison to the AGR approach.

6. Conclusion

In this paper, we presented a new variant of 
the classical pursuit-evasion game in a two-di-
mensional grid of cells environment, which 
requires multiple pursuers to simultaneously 
block the movement of the evaders for capture. 
In order to enable coalition of the pursuers, we 
proposed a coordination mechanism based on 
YAMAM organizational model. Different con-
cepts composing this model allow the defini-
tion of the groups' access mechanism provid-
ing certain optimality during the pursuers' roles 
attribution. Knowing that in AGR there is no 
predefined mechanism allowing the agents' ac-
cess to the groups. Also, we have implemented 
a Reinforcement Learning method (Q-learning) 

Figure 4. The average capturing time achieved during 
forty (40) pursuit episodes.

Figure 5. Tasks processing degree acquired by the 
pursuers during consecutive pursuit steps.

Figure 6. The average learning development of the 
pursuers during a specific pursuit part.

Figure 7. Evaders' utility decrease during a complete 
pursuit.

Table 1.  The main results achieved.

Average 
Capturing 

time 
(Iterations)

Average 
Task 

processing 
degree

Average 
expected 
evaders' 
utility

AGR 111.925 0.44 67.09%

YAMAM 74 0.52 65.81%
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During these experiments, we have noted that 
the path planning methods used in the compared 
approaches provide approximately the same re-
sults regarding the pursuers' trajectories in this 
case study. By this fact, we can deduce that the 
main result's improvement is due to the pursuit 
group access mechanism based on YAMAM.
Table 1 summarizes the main results acquired 
during the simulation experiments concern-
ing the average evaders' capturing time, the 
pursuers' internal development as well as the 
achievement of the evaders' requirements. We 
can deduce that the method proposed in this pa-
per improves the pursuit processing in compar-
ison to the AGR approach.

6. Conclusion

In this paper, we presented a new variant of 
the classical pursuit-evasion game in a two-di-
mensional grid of cells environment, which 
requires multiple pursuers to simultaneously 
block the movement of the evaders for capture. 
In order to enable coalition of the pursuers, we 
proposed a coordination mechanism based on 
YAMAM organizational model. Different con-
cepts composing this model allow the defini-
tion of the groups' access mechanism provid-
ing certain optimality during the pursuers' roles 
attribution. Knowing that in AGR there is no 
predefined mechanism allowing the agents' ac-
cess to the groups. Also, we have implemented 
a Reinforcement Learning method (Q-learning) 

Figure 4. The average capturing time achieved during 
forty (40) pursuit episodes.

Figure 5. Tasks processing degree acquired by the 
pursuers during consecutive pursuit steps.

Figure 6. The average learning development of the 
pursuers during a specific pursuit part.

Figure 7. Evaders' utility decrease during a complete 
pursuit.

Table 1.  The main results achieved.

Average 
Capturing 

time 
(Iterations)

Average 
Task 

processing 
degree

Average 
expected 
evaders' 
utility

AGR 111.925 0.44 67.09%

YAMAM 74 0.52 65.81%
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to control the action selection of the pursuers as 
well as to make their behaviour "greedy" during 
the rewards acquisition. Furthermore, we have 
compared the proposed method with a recent 
research based on organizational principles and 
treating the same problem. The results achieved 
reflect the positive impact imposed through the 
application of the access mechanism imple-
mented on the pursuers' internal development 
as well as the evaders' capturing time. To im-
prove these parameters, our future work will 
focus on the dynamism of the pursuit groups 
formed. Also, to prove the flexibility of our re-
search activities, the simulation environment 
will be totally based on graph theory where the 
agents can move from one node to another.
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to control the action selection of the pursuers as 
well as to make their behaviour "greedy" during 
the rewards acquisition. Furthermore, we have 
compared the proposed method with a recent 
research based on organizational principles and 
treating the same problem. The results achieved 
reflect the positive impact imposed through the 
application of the access mechanism imple-
mented on the pursuers' internal development 
as well as the evaders' capturing time. To im-
prove these parameters, our future work will 
focus on the dynamism of the pursuit groups 
formed. Also, to prove the flexibility of our re-
search activities, the simulation environment 
will be totally based on graph theory where the 
agents can move from one node to another.
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