
59CIT. Journal of Computing and Information Technology, Vol. 28, No. 1, March 2020, 59–72
doi: 10.20532/cit.2020.1004374

Mahdi Zargayouna1 and Besma Zeddini2

1Gustave Eiffel University, IFSTTAR, COSYS, GRETTIA, Champs sur Marne, France
2SATIE, UMR CNRS 8029 ENS Cachan, CY Tech, Cergy-Pontoise, France

Dispatching Requests for Agent-Based
Online Vehicle Routing Problems with
Time Windows

Vehicle routing problems are highly complex prob-
lems. The proposals to solve them traditionally concern
the optimization of conventional criteria, such as the
number of mobilized vehicles and the total costs. How-
ever, in online vehicle routing problems, the optimiza-
tion of the response time to the connected travelers is
at least as important as the optimization of the classi-
cal criteria. Multi-agent systems on the one hand and
greedy insertion heuristics on the other are among the
most promising approaches to this end. In this paper,
we propose a multi-agent system coupled with a re-
gret insertion heuristic. We focus on the real-time dis-
patching of the travelers' requests to the vehicles and
its efficiency. A dispatching protocol determines which
agents perform the computation to answer the travelers'
requests. We evaluate three dispatching protocols: cen-
tralized, decentralized and hybrid. We compare them
experimentally based on their response time to online
travelers. Two computational types are implemented: a
sequential implementation and a distributed implemen-
tation. The results show the superiority of the central-
ized dispatching protocol in the sequential implemen-
tation (32.80% improvement in average compared to
the distributed dispatching protocol) and the superior-
ity of the hybrid dispatching protocol in the distribut-
ed implementation (59.66% improvement in average,
compared with the centralized dispatching protocol).

ACM CCS (2012) Classification: Theory of computa-
tion → Design and analysis of algorithms → Online
algorithms → Online learning algorithms → Sched-
uling algorithms
Computing methodologies → Modeling and simula-
tion → Simulation types and techniques → Agent /
discrete models
Computing methodologies → Artificial intelligence
→ Distributed artificial intelligence → Multi-agent
systems

Keywords: vehicle routing problems, Multi-agent sys-
tems, Insertion heuristics

1. Introduction

Many of the most successful mass-market mod-
ern transportation applications, such as dynamic
ridesharing or online food delivery, are instanti-
ations of a theoretical problem called the vehicle
routing problem (VRP). In a VRP, a number of
nodes have to be visited only once by a num-
ber of capacitated vehicles. The objectives of
the problem are, generally, first to minimize the
number of mobilized vehicles, then to minimize
the total incurred costs. Solving these problems
has high practical usefulness and they are chal-
lenging optimization problems with stimulating
issues. The problem with time constraints is
one of the most widely studied variants of VRP
(vehicle routing problem with time windows,
VRPTW henceforth [1]). In this variant, the
nodes must be visited inside time windows.
Vehicle routing problems can be divided in two
categories: static problems and dynamic prob-
lems. In the static problems, all the problem
data are available before the start of the opti-
mization process. In the dynamic problems, the
problem data are incomplete before the start of
execution, and they are gradually discovered
while the optimization is progressing. The in-
complete data may concern any element of the
problem, such as the traffic data or the available
vehicles. However, the dynamic aspect usually
refers to the travelers to be transported, which
are unknown before execution (like in ride-
sharing and dial-a-ride systems). Operational
problems are never completely static and it is

60 61M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

For the reasons that we have given in the in-
troduction, we choose a multi-agent modeling
to solve the dynamic VRPTW. We opted for a
solution based on insertion heuristics for their
fast execution times and their adaptation to dy-
namic settings. As far as we are aware, none of
the previous proposals have focused on the re-
sponse time of the system to online travelers. In
this paper, we propose three dispatching proto-
cols and compare them based on their response
time.

3. Dispatching Protocols

The three protocols for dispatching travelers'
requests that we propose in this article are de-
fined within the framework of a multi-agent
system. Three main types of agents are defined
in the system: traveler agents, vehicle agents,
and interface agents. When a human user logs
into the system, an interface agent creates a
traveler agent representing him. Also, exclu-
sively for the centralized protocol, we defined
an additional agent, called the planner agent,
which is responsible for executing all routings.
In online problems, system response time is es-
sential, and only very fast approaches can com-
pete. The fastest and most popular approach is
the greedy insertion approach, initially proposed
by Marius M. Solomon [26] in this context. The
principle is to gradually insert travelers, one by
one, into the vehicle's itineraries. To do this, the
price of inserting a traveler into vehicle's itin-
eraries is calculated, and the vehicle with the
minimum insertion cost is chosen to insert the
traveler. To calculate this insertion price for a
vehicle, we compute the marginal cost between
his current route and his new route.
When solving this problem with a multi-agent
system, there are several alternatives regarding
the entities processing the request. Each alter-
native is called a "dispatching protocol". In this
section, we describe three possible dispatching
protocols that we have designed, implemented
and compared to model the online VRPTW:
centralized dispatching, decentralized dispatch-
ing and hybrid dispatching. In the centralized
protocol, the planner agent performs most of
the computation. In the decentralized protocol,
the vehicle agents perform most of the compu-
tation in a collaborative way. Finally, in the hy-

proach for the dynamic VRPTW (e.g. [12, 13,
14, 15]). Insertion heuristics are, in their orig-
inal version, greedy algorithms, in the sense
that the decision to insert a given traveler into
a vehicle's itinerary is not reconsidered. In-
sertion heuristics are usually associated with
metaheuristics to improve the quality of solu-
tions. The advantage of using insertion heu-
ristics is that they are both intuitive and fast.
However, their resolution process is said to be
short-sighted. Indeed, by definition, the system
does not know which travelers will appear once
it has assigned known travelers to the vehicles.
Therefore, even if it happens to have a current
optimal assignment of known travelers, the ap-
pearance of a new traveler could make the old
assignment sub-optimal.
A vast majority of agent-based approaches in
the literature are based, at least partially, on
insertion heuristics. In [16] for instance, the
authors propose a multi-agent architecture to
solve a VRP and a multi-depot VRP. In [17],
the authors propose a multi-agent architecture
to solve a dial-a-ride problem. The principle
of these two proposals is the same: distribute
an insertion heuristic, followed by a post-opti-
mization step. In [16], travelers are processed
sequentially. They are distributed to all vehi-
cles, which in turn offer insertion offers and
the best offer is chosen by the traveler. In the
second step, the vehicles exchange travelers to
improve their solutions, each vehicle knowing
all the other agents of the system. Since the ve-
hicles operate in parallel, the authors plan to ap-
ply different heuristics for the vehicles. In-Time
[17] is a system composed of traveler agents
and vehicle agents. The traveler agent advertis-
es himself and all vehicle agents calculate his
insertion price in their itineraries. The traveler
agent chooses the cheapest offer. The authors
propose a distributed local search method to
improve the solutions. They allow a traveler
to stochastically request to cancel his current
assignment and re-enter the system, hoping to
get a better offer from another vehicle. MARS
[18] models cooperative planning in a shipping
company as a multi-agent system. The solution
to the global scheduling problem emerges from
local decisions. The system benefits from an a
priori structuring of agents, since each vehicle
is associated with a particular company and can
only serve the travelers of that company.

reasonable to assume that a static system does
not meet current operational configurations. In-
deed, in real vehicle routing problems, and even
when all travelers are known in advance (with
a reservation system for example), there is al-
ways an element that makes the problem dy-
namic. These elements may include no-shows,
delays, breakdowns, etc.
Online vehicle routing problems could be con-
sidered as an extreme case of dynamic vehicle
routing problems. Indeed, not only the problem
data are not completely known before the start
of the optimization, but the travelers connect in
real time to the system and expect almost im-
mediate responses to their requests. The sys-
tem response time in this type of problems is
therefore vital. If the optimization system needs
two additional minutes to improve its current
solution, it should immediately provide the cur-
rent solution to the traveler, since the latter will
likely not wait that long to get an answer to his
request.
To meet the requirement for short response
times, we rely on the multi-agent paradigm
to solve online vehicle routing problems. An
agent is an intelligent entity, located in an envi-
ronment and that applies autonomous actions to
achieve its objectives [2, 3]. Multi-agent mod-
eling of the online VRPTW is relevant for the
following reasons. On the one hand, the choice
of a model allowing the distribution of calcu-
lations should make it possible to shorten the
response times to travelers' requests. On the
other hand, nowadays, vehicles are more and
more connected and have on-board computing
capacities. In this context, the transportation
system is de facto distributed and requires ap-
propriate modeling to take advantage of these
facilities. The multi-agent system (MAS) that
we propose in this article is composed of ve-
hicle agents, traveler agents, interface agents
and planner agents. The MAS simulates a dis-
tributed version of the so-called "insertion heu-
ristics". Insertion heuristics are methods that
involve inserting travelers individually in the
vehicle routes. Each traveler is inserted in the
route of the vehicle with the minimum marginal
cost (the cost could refer to the incurred detour,
for example). This is the fastest known heuris-
tic, since there is no reconsideration of previous
insertion decisions. When coupling insertion
heuristics and multi-agent systems, there is a

choice to be made regarding the location of the
calculations of the best routes. In this context,
we propose three classic dispatching protocols
and compare them according to their ability to
provide better response times to travelers. The
dispatching protocol determines which agents
perform the calculation to insert the travelers in
the vehicle routes. In the centralized protocol,
the planner performs most of the calculation. In
the decentralized protocol, the vehicle agents
perform most of the calculation in a collabora-
tive way. Finally, in the hybrid protocol, work
is shared between traveler agents and vehicle
agents.
The remainder of this paper is structured as fol-
lows. In Section 2, we discuss previous propos-
als for the dynamic VRPTW. The multi-agent
system and the three dispatching protocols of
the MAS are presented in Section 3. The regret
insertion heuristic is described in Section 4. We
provide our experimental results in Section 5
and then conclude with a few remarks in Sec-
tion 6.

2. Related Work

Operational settings of VRPTW are hard to
be met using purely exact approaches, and it
is hard to find optimal solutions to all of 56
benchmarking problems proposed in [26] for
instance. A formal definition of the VRPTW
problem can be found in [25] and interested
readers of optimization approaches can refer to,
e.g. [4] for a survey.
In fact, most of the proposed solution methods
are heuristic or metaheuristic methods which
provide good results in non-exponential times.
These approaches have presented good re-
sults with benchmark problems. For instance,
large-neighborhood local search [5], simulated
annealing [6], evolutive strategies [7] and ant
colonies [8, 9] present excellent performances
with static problems.
When dealing with dynamic VRPTW, most of
the approaches are more or less direct adapta-
tions of static methods. For example, local re-
search in large neighbourhoods is adapted to a
dynamic context in [10] and genetic algorithms
are adapted to dynamic settings in [11]. Inser-
tion heuristics are the most widely adapted ap-

60 61M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

For the reasons that we have given in the in-
troduction, we choose a multi-agent modeling
to solve the dynamic VRPTW. We opted for a
solution based on insertion heuristics for their
fast execution times and their adaptation to dy-
namic settings. As far as we are aware, none of
the previous proposals have focused on the re-
sponse time of the system to online travelers. In
this paper, we propose three dispatching proto-
cols and compare them based on their response
time.

3. Dispatching Protocols

The three protocols for dispatching travelers'
requests that we propose in this article are de-
fined within the framework of a multi-agent
system. Three main types of agents are defined
in the system: traveler agents, vehicle agents,
and interface agents. When a human user logs
into the system, an interface agent creates a
traveler agent representing him. Also, exclu-
sively for the centralized protocol, we defined
an additional agent, called the planner agent,
which is responsible for executing all routings.
In online problems, system response time is es-
sential, and only very fast approaches can com-
pete. The fastest and most popular approach is
the greedy insertion approach, initially proposed
by Marius M. Solomon [26] in this context. The
principle is to gradually insert travelers, one by
one, into the vehicle's itineraries. To do this, the
price of inserting a traveler into vehicle's itin-
eraries is calculated, and the vehicle with the
minimum insertion cost is chosen to insert the
traveler. To calculate this insertion price for a
vehicle, we compute the marginal cost between
his current route and his new route.
When solving this problem with a multi-agent
system, there are several alternatives regarding
the entities processing the request. Each alter-
native is called a "dispatching protocol". In this
section, we describe three possible dispatching
protocols that we have designed, implemented
and compared to model the online VRPTW:
centralized dispatching, decentralized dispatch-
ing and hybrid dispatching. In the centralized
protocol, the planner agent performs most of
the computation. In the decentralized protocol,
the vehicle agents perform most of the compu-
tation in a collaborative way. Finally, in the hy-

proach for the dynamic VRPTW (e.g. [12, 13,
14, 15]). Insertion heuristics are, in their orig-
inal version, greedy algorithms, in the sense
that the decision to insert a given traveler into
a vehicle's itinerary is not reconsidered. In-
sertion heuristics are usually associated with
metaheuristics to improve the quality of solu-
tions. The advantage of using insertion heu-
ristics is that they are both intuitive and fast.
However, their resolution process is said to be
short-sighted. Indeed, by definition, the system
does not know which travelers will appear once
it has assigned known travelers to the vehicles.
Therefore, even if it happens to have a current
optimal assignment of known travelers, the ap-
pearance of a new traveler could make the old
assignment sub-optimal.
A vast majority of agent-based approaches in
the literature are based, at least partially, on
insertion heuristics. In [16] for instance, the
authors propose a multi-agent architecture to
solve a VRP and a multi-depot VRP. In [17],
the authors propose a multi-agent architecture
to solve a dial-a-ride problem. The principle
of these two proposals is the same: distribute
an insertion heuristic, followed by a post-opti-
mization step. In [16], travelers are processed
sequentially. They are distributed to all vehi-
cles, which in turn offer insertion offers and
the best offer is chosen by the traveler. In the
second step, the vehicles exchange travelers to
improve their solutions, each vehicle knowing
all the other agents of the system. Since the ve-
hicles operate in parallel, the authors plan to ap-
ply different heuristics for the vehicles. In-Time
[17] is a system composed of traveler agents
and vehicle agents. The traveler agent advertis-
es himself and all vehicle agents calculate his
insertion price in their itineraries. The traveler
agent chooses the cheapest offer. The authors
propose a distributed local search method to
improve the solutions. They allow a traveler
to stochastically request to cancel his current
assignment and re-enter the system, hoping to
get a better offer from another vehicle. MARS
[18] models cooperative planning in a shipping
company as a multi-agent system. The solution
to the global scheduling problem emerges from
local decisions. The system benefits from an a
priori structuring of agents, since each vehicle
is associated with a particular company and can
only serve the travelers of that company.

reasonable to assume that a static system does
not meet current operational configurations. In-
deed, in real vehicle routing problems, and even
when all travelers are known in advance (with
a reservation system for example), there is al-
ways an element that makes the problem dy-
namic. These elements may include no-shows,
delays, breakdowns, etc.
Online vehicle routing problems could be con-
sidered as an extreme case of dynamic vehicle
routing problems. Indeed, not only the problem
data are not completely known before the start
of the optimization, but the travelers connect in
real time to the system and expect almost im-
mediate responses to their requests. The sys-
tem response time in this type of problems is
therefore vital. If the optimization system needs
two additional minutes to improve its current
solution, it should immediately provide the cur-
rent solution to the traveler, since the latter will
likely not wait that long to get an answer to his
request.
To meet the requirement for short response
times, we rely on the multi-agent paradigm
to solve online vehicle routing problems. An
agent is an intelligent entity, located in an envi-
ronment and that applies autonomous actions to
achieve its objectives [2, 3]. Multi-agent mod-
eling of the online VRPTW is relevant for the
following reasons. On the one hand, the choice
of a model allowing the distribution of calcu-
lations should make it possible to shorten the
response times to travelers' requests. On the
other hand, nowadays, vehicles are more and
more connected and have on-board computing
capacities. In this context, the transportation
system is de facto distributed and requires ap-
propriate modeling to take advantage of these
facilities. The multi-agent system (MAS) that
we propose in this article is composed of ve-
hicle agents, traveler agents, interface agents
and planner agents. The MAS simulates a dis-
tributed version of the so-called "insertion heu-
ristics". Insertion heuristics are methods that
involve inserting travelers individually in the
vehicle routes. Each traveler is inserted in the
route of the vehicle with the minimum marginal
cost (the cost could refer to the incurred detour,
for example). This is the fastest known heuris-
tic, since there is no reconsideration of previous
insertion decisions. When coupling insertion
heuristics and multi-agent systems, there is a

choice to be made regarding the location of the
calculations of the best routes. In this context,
we propose three classic dispatching protocols
and compare them according to their ability to
provide better response times to travelers. The
dispatching protocol determines which agents
perform the calculation to insert the travelers in
the vehicle routes. In the centralized protocol,
the planner performs most of the calculation. In
the decentralized protocol, the vehicle agents
perform most of the calculation in a collabora-
tive way. Finally, in the hybrid protocol, work
is shared between traveler agents and vehicle
agents.
The remainder of this paper is structured as fol-
lows. In Section 2, we discuss previous propos-
als for the dynamic VRPTW. The multi-agent
system and the three dispatching protocols of
the MAS are presented in Section 3. The regret
insertion heuristic is described in Section 4. We
provide our experimental results in Section 5
and then conclude with a few remarks in Sec-
tion 6.

2. Related Work

Operational settings of VRPTW are hard to
be met using purely exact approaches, and it
is hard to find optimal solutions to all of 56
benchmarking problems proposed in [26] for
instance. A formal definition of the VRPTW
problem can be found in [25] and interested
readers of optimization approaches can refer to,
e.g. [4] for a survey.
In fact, most of the proposed solution methods
are heuristic or metaheuristic methods which
provide good results in non-exponential times.
These approaches have presented good re-
sults with benchmark problems. For instance,
large-neighborhood local search [5], simulated
annealing [6], evolutive strategies [7] and ant
colonies [8, 9] present excellent performances
with static problems.
When dealing with dynamic VRPTW, most of
the approaches are more or less direct adapta-
tions of static methods. For example, local re-
search in large neighbourhoods is adapted to a
dynamic context in [10] and genetic algorithms
are adapted to dynamic settings in [11]. Inser-
tion heuristics are the most widely adapted ap-

62 63M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

sponse time, which is the main concern in the
online VRPTW. On the other hand, a failure of
the planner would result in a complete system
failure. Nevertheless, the centralized dispatch-
ing protocol has the advantage of minimizing
communications between the agents, which are
limited to the notification of the travelers and
vehicles of the computation outcome. The num-
ber of messages is N (1 + V), with N being the
number of travelers and V being the number of
vehicles.

3.2. Decentralized Dispatching

Decentralized dispatching is illustrated in Fig-
ure 2. Following this protocol, there is no bot-
tleneck for route calculation. Following the
principle of the greedy insertion heuristic, each
vehicle agent tries to insert the new traveler in
his route, and proposes an insertion price, cor-
responding to the "most economical" position
where he can insert the traveler. The chosen ve-
hicle will be the one with the minimum inser-
tion price to transport the traveler.
In this dispatching protocol, the choice of the
vehicle with the minimum price, the calculation
of the price and the choice of the vehicle that
will serve the traveler, are all carried out in a
distributed way. Indeed, the scenario is as fol-
lows. When a new traveler appears, he sends
his request to all the vehicles in the system.
Upon receipt of the request, each vehicle cal-
culates an insertion price for him. When it has
completed his calculation, each vehicle issues
a message to all vehicles with his ID and price.
For the processing of these messages and deter-
mination of the winning agent vehicle, we pro-
pose the following process. Each vehicle agent
broadcasts his own calculated price to other ve-
hicle agents. When he receives a new message
containing a price calculated by another agent,
he sorts the received offers, including his own
offer, following their associated prices. When
all the other vehicle agents have offered their
prices, the vehicle agent checks to see which
one is the winner. Then he updates his itinerary
with the new inserted traveler and informs the
concerned traveler agent accordingly.
This scheduling has the advantage of fully dis-
tributing the processing and being fault-toler-
ant. With a decentralized dispatching protocol,

the entire system is not blocked following an
agent's failure, as it would be the case with the
centralized dispatching. In this protocol, for
each new traveler, vehicles must cooperate to
choose the one that is most appropriate to serve
him. However, the number of exchanged mes-
sages could increase considerably, which is
usually the price to pay for a processing dis-
tribution. The number of messages exchanged
between vehicles with this dispatching pro-
tocol is equal to N × V

2. The overall number
of messages between all the agents is equal to
N (1 + V (1 + V)).

3.3. Hybrid Dispatching

Hybrid dispatching is a compromise between
the centralized and decentralized approach. In
the hybrid approaches (see Figure 3), the travel-
er agent acts as a dispatcher. The traveler agent
disseminates the request, collects the insertion
prices of the vehicle agents and chooses the one
who proposes the minimum price.

Figure 3. Hybrid dispatching protocol.

The hybrid approach applies the following pro-
tocol. A new human user provides the interface
agent with the information about his transport
request. The interface agent creates a traveler
agent who represents him. Then, the new trav-
eler agent sends a message to all the vehicles
in the system. Each vehicle agent checks if he
can insert the traveler in his route. The vehicle
agent then sends his insertion price to the travel-
er agent. The traveler agent collects the answers
from the vehicles and chooses the vehicle that

brid protocol the work is split between travelers
and vehicles. Our objective is to verify which
dispatching protocol is the most effective, in
terms of response time to travelers' requests.
The comparison of the different protocols does
not take into account the traditional optimiza-
tion criteria (number of vehicles mobilized and
total costs incurred). Indeed, in terms of optimi-
zation, the three dispatching protocols follow
the same algorithm and use the same insertion
price (described in the next section). The only
difference concerns the response time, i.e. the
time that takes the system to decide which vehi-
cle will visit the traveler. The three dispatching
protocols are described in the following subsec-
tions.

3.1. Centralized Dispatching Protocol

In the centralized protocol, all processing is
performed by a central entity which creates the
vehicle routes. One of the main advantages of
this protocol is that it allows online optimiza-
tion techniques to be used in a centralized fash-
ion. Online optimization (e.g. in [19]) provides
benefits of the exact optimization techniques
while also reducing response times. The princi-
ple is to discretize the processing time into time
intervals. During each interval, an optimization
is carried out with known travelers. New travel-
ers are queued up, waiting for the next interval.
Known travelers who could not be served and
new travelers are submitted for the new optimi-
zation round.

Our objective is to maintain the same resolu-
tion approach while comparing response times;
the centralized approach therefore mimics the
same insertion heuristic as the other two dis-
patching protocols. In our proposal (see Figure
1), all travelers' requests are processed by the
same planner agent. The planner agent has all
the necessary information on each vehicle and
traveler, as well as their current status. With this
information, it places the current traveler in the
position incurring the minimum marginal cost.
The scenario is as follows. A user appears and
an interface agent creates a traveler agent to
represent him. The traveler immediately sends
a request to the planner agent, who tries to insert
it into the route of each vehicle in the system, in
all possible positions. To do so, it sequentially
performs, for each vehicle, a procedure for cal-
culating the insertion price of the vehicle, and
chooses the vehicle and the insertion position
with the minimum price. If no vehicle can in-
sert the traveler, a new vehicle agent is created,
with an empty route, and the traveler is inserted
in the only possible position. Finally, the plan-
ner informs the traveler and the vehicle of the
outcome of the procedure. Vehicle agents in the
centralized dispatching protocol do not perform
any calculations and only acknowledge the up-
dates in their routes, decided by the planner
agent.
Centralized dispatching has two main disad-
vantages. On the one hand, it is not possible
to distribute the execution over several calcu-
lation units in order to limit the system's re-

Figure 1. Centralized dispatching protocol. Figure 2. Decentralized dispatching protocol.

62 63M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

sponse time, which is the main concern in the
online VRPTW. On the other hand, a failure of
the planner would result in a complete system
failure. Nevertheless, the centralized dispatch-
ing protocol has the advantage of minimizing
communications between the agents, which are
limited to the notification of the travelers and
vehicles of the computation outcome. The num-
ber of messages is N (1 + V), with N being the
number of travelers and V being the number of
vehicles.

3.2. Decentralized Dispatching

Decentralized dispatching is illustrated in Fig-
ure 2. Following this protocol, there is no bot-
tleneck for route calculation. Following the
principle of the greedy insertion heuristic, each
vehicle agent tries to insert the new traveler in
his route, and proposes an insertion price, cor-
responding to the "most economical" position
where he can insert the traveler. The chosen ve-
hicle will be the one with the minimum inser-
tion price to transport the traveler.
In this dispatching protocol, the choice of the
vehicle with the minimum price, the calculation
of the price and the choice of the vehicle that
will serve the traveler, are all carried out in a
distributed way. Indeed, the scenario is as fol-
lows. When a new traveler appears, he sends
his request to all the vehicles in the system.
Upon receipt of the request, each vehicle cal-
culates an insertion price for him. When it has
completed his calculation, each vehicle issues
a message to all vehicles with his ID and price.
For the processing of these messages and deter-
mination of the winning agent vehicle, we pro-
pose the following process. Each vehicle agent
broadcasts his own calculated price to other ve-
hicle agents. When he receives a new message
containing a price calculated by another agent,
he sorts the received offers, including his own
offer, following their associated prices. When
all the other vehicle agents have offered their
prices, the vehicle agent checks to see which
one is the winner. Then he updates his itinerary
with the new inserted traveler and informs the
concerned traveler agent accordingly.
This scheduling has the advantage of fully dis-
tributing the processing and being fault-toler-
ant. With a decentralized dispatching protocol,

the entire system is not blocked following an
agent's failure, as it would be the case with the
centralized dispatching. In this protocol, for
each new traveler, vehicles must cooperate to
choose the one that is most appropriate to serve
him. However, the number of exchanged mes-
sages could increase considerably, which is
usually the price to pay for a processing dis-
tribution. The number of messages exchanged
between vehicles with this dispatching pro-
tocol is equal to N × V

2. The overall number
of messages between all the agents is equal to
N (1 + V (1 + V)).

3.3. Hybrid Dispatching

Hybrid dispatching is a compromise between
the centralized and decentralized approach. In
the hybrid approaches (see Figure 3), the travel-
er agent acts as a dispatcher. The traveler agent
disseminates the request, collects the insertion
prices of the vehicle agents and chooses the one
who proposes the minimum price.

Figure 3. Hybrid dispatching protocol.

The hybrid approach applies the following pro-
tocol. A new human user provides the interface
agent with the information about his transport
request. The interface agent creates a traveler
agent who represents him. Then, the new trav-
eler agent sends a message to all the vehicles
in the system. Each vehicle agent checks if he
can insert the traveler in his route. The vehicle
agent then sends his insertion price to the travel-
er agent. The traveler agent collects the answers
from the vehicles and chooses the vehicle that

brid protocol the work is split between travelers
and vehicles. Our objective is to verify which
dispatching protocol is the most effective, in
terms of response time to travelers' requests.
The comparison of the different protocols does
not take into account the traditional optimiza-
tion criteria (number of vehicles mobilized and
total costs incurred). Indeed, in terms of optimi-
zation, the three dispatching protocols follow
the same algorithm and use the same insertion
price (described in the next section). The only
difference concerns the response time, i.e. the
time that takes the system to decide which vehi-
cle will visit the traveler. The three dispatching
protocols are described in the following subsec-
tions.

3.1. Centralized Dispatching Protocol

In the centralized protocol, all processing is
performed by a central entity which creates the
vehicle routes. One of the main advantages of
this protocol is that it allows online optimiza-
tion techniques to be used in a centralized fash-
ion. Online optimization (e.g. in [19]) provides
benefits of the exact optimization techniques
while also reducing response times. The princi-
ple is to discretize the processing time into time
intervals. During each interval, an optimization
is carried out with known travelers. New travel-
ers are queued up, waiting for the next interval.
Known travelers who could not be served and
new travelers are submitted for the new optimi-
zation round.

Our objective is to maintain the same resolu-
tion approach while comparing response times;
the centralized approach therefore mimics the
same insertion heuristic as the other two dis-
patching protocols. In our proposal (see Figure
1), all travelers' requests are processed by the
same planner agent. The planner agent has all
the necessary information on each vehicle and
traveler, as well as their current status. With this
information, it places the current traveler in the
position incurring the minimum marginal cost.
The scenario is as follows. A user appears and
an interface agent creates a traveler agent to
represent him. The traveler immediately sends
a request to the planner agent, who tries to insert
it into the route of each vehicle in the system, in
all possible positions. To do so, it sequentially
performs, for each vehicle, a procedure for cal-
culating the insertion price of the vehicle, and
chooses the vehicle and the insertion position
with the minimum price. If no vehicle can in-
sert the traveler, a new vehicle agent is created,
with an empty route, and the traveler is inserted
in the only possible position. Finally, the plan-
ner informs the traveler and the vehicle of the
outcome of the procedure. Vehicle agents in the
centralized dispatching protocol do not perform
any calculations and only acknowledge the up-
dates in their routes, decided by the planner
agent.
Centralized dispatching has two main disad-
vantages. On the one hand, it is not possible
to distribute the execution over several calcu-
lation units in order to limit the system's re-

Figure 1. Centralized dispatching protocol. Figure 2. Decentralized dispatching protocol.

64 65M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

to wait until e). More precisely, the current time
t, plus the travel time between the depot and n
has to be less than or equal to l. Starting from
this observation, we define the action zone of
a vehicle agent as the set of pairs <n, t > of the
space-time network that remain valid given his
current route (n can be visited by the vehicle at
t). The action zone of a vehicle agent with an
empty route is illustrated by the conic shadow
in Figure 5.
When a vehicle agent inserts a traveler in his
route, his action zone is recomputed, since some
<node, time> pairs become not feasible. In Fig-
ure 6, a new traveler is inserted in the route of
the vehicle. The action zone of the vehicle agent
after inserting the traveler is represented by the
interior of the contour of the bold lines which
represent the space-time nodes that remain fea-
sible after the insertion of the traveler.

Figure 6. Action zone after the insertion of a traveler.

The insertion price sent from a vehicle agent
v to a traveler agent c corresponds to the hy-
pothetical decrease of the action zone of v fol-
lowing the insertion of c in his route, i.e. the
number of space-time nodes that would not be
feasible anymore.
The idea is that the chosen vehicle for the inser-
tion of a traveler is the one that maintains the
maximum chance to be candidate for the inser-
tion of future travelers. Thus, the criterion that
is maximized by the society of vehicle agents is
the sum of their action zones, i.e. the capacity
of the MAS to react to the appearance of travel-
er agents, without mobilizing new vehicles.
To illustrate the action zones and their dynam-
ics, we present the version of the measure that
is related to a Euclidean problem, i.e. where
travel times are computed following the Euclid-
ean metric. The following paragraphs detail the
measure as well as its dynamics.

4.3. The Computation of Action Zones

In the Euclidean case, the transportation net-
work is a plane, and the travel times between two
points i (described by (xi, yi)) and j (described

by (xj, yj)) is equal to () ()2 2
i j i jx x y y− + − .

Therefore, if a vehicle is in i at the mo-
ment ti, it cannot be in j earlier than ti +

() ()2 2
i j i jx x y y− + − .

Figure 4. Space-time network. Figure 5. Initial space-time action zone.

offers the minimum price. Once he has chosen
the best vehicle that can serve him (if there is at
least one that can insert the traveler), he issues a
new message to the vehicles to inform them of
his decision and asks the winning vehicle agent
to insert him in his route and subsequently serve
him. When the vehicle agent receives the trav-
eler's message informing him that he is the win-
ner, he updates his route and inserts the traveler.
Thus, the objective of the hybrid approach is to
relax the planner of all calculations, and to limit
the communication between vehicles. The total
number of messages in the hybrid dispatching
protocol is equal to 3VN.
In the three dispatching protocols presented in
this section, the planner agent, or vehicle agent,
calculates a price for the insertion of a given
traveler. The price calculation is the same for
all three protocols. It is an original measure and
can be qualified as a kind of regret heuristic
that tries to overcome the disadvantages of tra-
ditional insertion price measures. The heuristic
is described in the following section.

4. Space-Time Regret Insertion
Heuristic

In the heuristics and multi-agent methods re-
ferred to in the literature, the hierarchical ob-
jective of minimizing the number of mobilized
vehicles is considered as priority w.r.t the gen-
eral costs (including the distance traveled by all
the vehicles). A majority of the literature heu-
ristics are, as a consequence, based on a two-
phase approach: minimization of the number
of vehicles followed by the minimization of
the traveled distance [20]. The model that we
propose in this section has the objective of min-
imizing the number of used vehicles in priority,
while keeping the use of a ''pure'' insertion heu-
ristics, i.e. without any further improvements to
meet response time requirements. To this end,
our heuristic encourages the vehicle agents to
cover a maximal space-time area of the trans-
portation network, avoiding the mobilization of
a new vehicle if a new traveler appears in an
uncovered zone.
A space-time pair <i, t> – with i being a node
and t being a time – is said to be ''covered'' by
a vehicle agent v if v can be in i at t. The set of

space-time nodes that are covered by the vehicle
agent is called ''action zone of the vehicle''. In the
context of the online VRPTW, the maximization
of the vehicle agents' action zones gives them
the maximum chance to satisfy the demand of a
future (unknown) traveler. Through the model-
ing of vehicle agents' space-time action zones,
we propose a new method to compute the travel-
er's insertion price in the route of a vehicle. This
proposal is a kind of regret insertion heuristic.
Regret insertion heuristics, instead of choosing
the vehicle that has the minimal marginal cost,
choose the vehicle and the traveler with the larg-
est ''regret''. The regret is a measure of the po-
tential price to be paid if a given traveler were
not immediately inserted in the route of a given
vehicle. There are several methods to compute
the regret, such as the the sum of the differences
between all the available prices and the mini-
mum price (cf. [21] for instance).

4.1. Environment Modeling

Provided the network spatial graph G, we build
the MAS environment in the form of a space-
time network, inferred from the spatial graph.
For each node of the graph we create pairs
< space, time>, each representing the ''state'' of
a node at a discrete time period. The space-time
network is made of several spatial subgraphs.
Each subgraph is a copy of G and corresponds to
the state of the G at a certain period of time (cf.
Figure 4). We index the nodes of the subgraphs
as follows: <0, t >, ..., < N, t >, with t ∈ {1, ..., h},
where 0, ..., N are the nodes of the network and
h is the number of considered discrete time pe-
riods. The total number of nodes in the space-
time network is then equal to h × N. The edges
linking the nodes of a subgraph are those of the
spatial graph, and the costs are the travel times.

4.2. Intuition of the Space-Time Action
Zones

Consider a vehicle agent v that has an empty
route. Consider also a new traveler c described
by: n a node, [e, l] a time window, s a service
time, and q a quantity. In order for v to be able
to insert c in his schedule, l has to be big enough
to allow v to be in n without violating his time
constraints (if e is too small, v will simply have

64 65M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

to wait until e). More precisely, the current time
t, plus the travel time between the depot and n
has to be less than or equal to l. Starting from
this observation, we define the action zone of
a vehicle agent as the set of pairs <n, t > of the
space-time network that remain valid given his
current route (n can be visited by the vehicle at
t). The action zone of a vehicle agent with an
empty route is illustrated by the conic shadow
in Figure 5.
When a vehicle agent inserts a traveler in his
route, his action zone is recomputed, since some
<node, time> pairs become not feasible. In Fig-
ure 6, a new traveler is inserted in the route of
the vehicle. The action zone of the vehicle agent
after inserting the traveler is represented by the
interior of the contour of the bold lines which
represent the space-time nodes that remain fea-
sible after the insertion of the traveler.

Figure 6. Action zone after the insertion of a traveler.

The insertion price sent from a vehicle agent
v to a traveler agent c corresponds to the hy-
pothetical decrease of the action zone of v fol-
lowing the insertion of c in his route, i.e. the
number of space-time nodes that would not be
feasible anymore.
The idea is that the chosen vehicle for the inser-
tion of a traveler is the one that maintains the
maximum chance to be candidate for the inser-
tion of future travelers. Thus, the criterion that
is maximized by the society of vehicle agents is
the sum of their action zones, i.e. the capacity
of the MAS to react to the appearance of travel-
er agents, without mobilizing new vehicles.
To illustrate the action zones and their dynam-
ics, we present the version of the measure that
is related to a Euclidean problem, i.e. where
travel times are computed following the Euclid-
ean metric. The following paragraphs detail the
measure as well as its dynamics.

4.3. The Computation of Action Zones

In the Euclidean case, the transportation net-
work is a plane, and the travel times between two
points i (described by (xi, yi)) and j (described

by (xj, yj)) is equal to () ()2 2
i j i jx x y y− + − .

Therefore, if a vehicle is in i at the mo-
ment ti, it cannot be in j earlier than ti +

() ()2 2
i j i jx x y y− + − .

Figure 4. Space-time network. Figure 5. Initial space-time action zone.

offers the minimum price. Once he has chosen
the best vehicle that can serve him (if there is at
least one that can insert the traveler), he issues a
new message to the vehicles to inform them of
his decision and asks the winning vehicle agent
to insert him in his route and subsequently serve
him. When the vehicle agent receives the trav-
eler's message informing him that he is the win-
ner, he updates his route and inserts the traveler.
Thus, the objective of the hybrid approach is to
relax the planner of all calculations, and to limit
the communication between vehicles. The total
number of messages in the hybrid dispatching
protocol is equal to 3VN.
In the three dispatching protocols presented in
this section, the planner agent, or vehicle agent,
calculates a price for the insertion of a given
traveler. The price calculation is the same for
all three protocols. It is an original measure and
can be qualified as a kind of regret heuristic
that tries to overcome the disadvantages of tra-
ditional insertion price measures. The heuristic
is described in the following section.

4. Space-Time Regret Insertion
Heuristic

In the heuristics and multi-agent methods re-
ferred to in the literature, the hierarchical ob-
jective of minimizing the number of mobilized
vehicles is considered as priority w.r.t the gen-
eral costs (including the distance traveled by all
the vehicles). A majority of the literature heu-
ristics are, as a consequence, based on a two-
phase approach: minimization of the number
of vehicles followed by the minimization of
the traveled distance [20]. The model that we
propose in this section has the objective of min-
imizing the number of used vehicles in priority,
while keeping the use of a ''pure'' insertion heu-
ristics, i.e. without any further improvements to
meet response time requirements. To this end,
our heuristic encourages the vehicle agents to
cover a maximal space-time area of the trans-
portation network, avoiding the mobilization of
a new vehicle if a new traveler appears in an
uncovered zone.
A space-time pair <i, t> – with i being a node
and t being a time – is said to be ''covered'' by
a vehicle agent v if v can be in i at t. The set of

space-time nodes that are covered by the vehicle
agent is called ''action zone of the vehicle''. In the
context of the online VRPTW, the maximization
of the vehicle agents' action zones gives them
the maximum chance to satisfy the demand of a
future (unknown) traveler. Through the model-
ing of vehicle agents' space-time action zones,
we propose a new method to compute the travel-
er's insertion price in the route of a vehicle. This
proposal is a kind of regret insertion heuristic.
Regret insertion heuristics, instead of choosing
the vehicle that has the minimal marginal cost,
choose the vehicle and the traveler with the larg-
est ''regret''. The regret is a measure of the po-
tential price to be paid if a given traveler were
not immediately inserted in the route of a given
vehicle. There are several methods to compute
the regret, such as the the sum of the differences
between all the available prices and the mini-
mum price (cf. [21] for instance).

4.1. Environment Modeling

Provided the network spatial graph G, we build
the MAS environment in the form of a space-
time network, inferred from the spatial graph.
For each node of the graph we create pairs
< space, time>, each representing the ''state'' of
a node at a discrete time period. The space-time
network is made of several spatial subgraphs.
Each subgraph is a copy of G and corresponds to
the state of the G at a certain period of time (cf.
Figure 4). We index the nodes of the subgraphs
as follows: <0, t >, ..., < N, t >, with t ∈ {1, ..., h},
where 0, ..., N are the nodes of the network and
h is the number of considered discrete time pe-
riods. The total number of nodes in the space-
time network is then equal to h × N. The edges
linking the nodes of a subgraph are those of the
spatial graph, and the costs are the travel times.

4.2. Intuition of the Space-Time Action
Zones

Consider a vehicle agent v that has an empty
route. Consider also a new traveler c described
by: n a node, [e, l] a time window, s a service
time, and q a quantity. In order for v to be able
to insert c in his schedule, l has to be big enough
to allow v to be in n without violating his time
constraints (if e is too small, v will simply have

66 67M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

vehicle agent is the one with the minimum loss
in his space-time action zone. Therefore, the
new regret heuristic encourages to choose the
vehicle with the highest marginal probability to
be candidate for future travelers.

Figure 8. Space-time action zone after the
insertion of c1.

4.5. Coordination of Action Zones

The objective of the space-time organization
model is to allow better space-time coverage
of the transportation network. This improve-
ment is materialized by a minimal mobilization
of vehicles when confronted with the appear-
ance of new travelers. With the mechanism de-
scribed above, every vehicle agent tries to max-
imize his own action zone independently from
the other agents. However, it would be more
interesting that the agents cover the network in
coordination. More precisely, for a vehicle, to
lose space-time nodes that he is the only one to
cover should be more costly than to lose nodes
that are covered by other vehicle agents.
To this end, we associate with every node of the
space-time network the list of vehicles covering
it. Every vehicle notifies the space-time nodes
that they are part of his action zone and every
node continuously updates its list. Similarly,
when the action zone of a vehicle agent loses a
node, the node is notified and its list of vehicles
is updated.
Now, when the insertion price of a traveler is
computed, every vehicle agent starts by deter-

mining the space-time nodes that it would lose
if it had to insert the new traveler. Then, it in-
terrogates each of these nodes about the ''price
to pay'' if it were not covering it anymore. This
price is inversely proportional to the number of
vehicles covering this node. More precisely, the
price to pay is equal to

,

1

n tv< >

with v<n, t > denoting the vehicle agents covering
the space-time node <n, t > and |v<n, t >| the num-
ber of such vehicles.
This method associates a higher penalty with
a decision to stop covering a node that is less
covered by the others. Therefore, the vehicle
agents are indirectly incited to cover the whole
network in a coordinated way.

5. Experiments

In this section, we provide the experimental re-
sults of our simulations. First, we provide op-
timization costs for the three dispatching pro-
tocols, which are the same since they use the
same regret heuristic. Then we compare the
three dispatching protocols in terms of the re-
sponse time.
Marius M. Solomon [26] has created a set of
different static problems for the VRPTW. These
challenging and diverse problems can be used
as the benchmark examples for comparing
different proposed vehicle routing methods.
In Solomon's benchmarks, six different sets
of problems have been defined: C1, C2, R1,
R2, RC1 and RC2. From geographical point
of view, the travelers are uniformly distribut-
ed in the problems of type R, clustered in the
problems of type C, and a mix of travelers, uni-
formly distributed and clustered, is used in the
problems of type RC. The problems of type 1
have narrow time windows (very few travelers
can coexist in the same vehicle's route) and the
problems of type 2 have wide time windows.
Finally, a constant service time is associated
with each traveler, which is equal to 10 in the
problems of type R and RC, and to 90 in the
problems of type C. Short service times would
represent a problem where the loading and un-

We can compute at any time, from the current
position of a vehicle, the set of triples (x, y, t)
where it can be in the future. Indeed, consider-
ing a plane with an x-axis in [xmin, xmax] and a
y-axis in [ymin, ymax], the set of space-time posi-
tions is the set of points in the cube delimited by
[xmin, xmax], [ymin, ymax] and [e0, l0] (e0 and l0 are
the scheduling horizon and are the minimal and
maximal values for the time windows). Consid-
er a vehicle in the depot (x0, y0) at t0. The set of
points (x, y, t) that are accessible by this vehicle
are described by the following inequality:

() () ()2 2
0 0 0x x y y t t− + − ≤ − .

The (x, y, t) satisfying this inequality are
those that are positioned inside the cone C
of vertex (x0, y0, t0) and with the equation

() () ()2 2
0 0 0x x y y t t− + − ≤ − (cf. Figure 7).

This cone represents the action zone of a vehi-
cle agent, with an empty route, in the Euclidean
case. It represents all possible space-time po-
sitions that this vehicle agent is able to have in
the future.

Figure 7. Initial action zone.

We use the action zone of the vehicle agents
when a traveler agent has to choose between
several vehicle agents for his insertion. We
have to be able to compare the action zones of
different vehicle agents. To do so, we propose
to quantify it, by computing the volume of the
cone C representing the future possible posi-
tions of the vehicle:

()30 0
1() .3Volume C l eπ= × × −

This is the quantification of the initial action
zone of any new vehicle agent joining the MAS
(volume0). When a new traveler agent appears,
each vehicle agent computes his new action
zone and its volume (volume1). The price that
it proposes to the traveler agent is the differ-
ence between his old action zone and his new
one (volume0 - volume1). The new action zone
computation is detailed in the following para-
graph.

4.4. Dynamics of the Action Zones

Consider a traveler c1 (of coordinates (x1, y1)
and with a time window [e1, l1]) that joins the
system, and suppose that v is currently the only
available vehicle agent which has an empty
route. The agent v has to infer his new space-
time action zone, i.e. the space-time nodes that
it can still reach without violating the time con-
straints of c1. The new action zone answers the
following questions: ''if v had to be in (x1, y1)
at l1, where would it have been before? And if
it had to be there at e1, where would it be after
e1 + s1?'' (the service time is the time needed to
load or unload the travelers). The triples (x, y, t)
where the vehicle agent can be before visiting
c1 are described by the inequality (3), and the
triples (x, y, t) where it can be after visiting c1
are described by the inequality (4).

() () ()2 2
1 1 1x x y y l t− − − ≤ − (3)

() () ()2 2
1 1 1 1x x y y t e s− − − ≤ − + (4)

The new action zone is illustrated by Figure 8:
the new measure consists of the volume of the
intersection of the initial cone C with the union
of the two new cones described by the inequal-
ities (3) and (4) (denoted respectively by C1
and C2). The new measure of the action zone
is equal to the volume of the intersection of C
with the union of C1 and C2.
The insertion price of a traveler in the route
of a vehicle is equal to the measure associated
with the old action zone of the vehicle minus
the measure of the new action zone, after the
insertion of the traveler. The measured quantity
represents the space-time positions that would
not be feasible anymore for the vehicle, if it had
to insert this traveler in his route. The winner

66 67M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

vehicle agent is the one with the minimum loss
in his space-time action zone. Therefore, the
new regret heuristic encourages to choose the
vehicle with the highest marginal probability to
be candidate for future travelers.

Figure 8. Space-time action zone after the
insertion of c1.

4.5. Coordination of Action Zones

The objective of the space-time organization
model is to allow better space-time coverage
of the transportation network. This improve-
ment is materialized by a minimal mobilization
of vehicles when confronted with the appear-
ance of new travelers. With the mechanism de-
scribed above, every vehicle agent tries to max-
imize his own action zone independently from
the other agents. However, it would be more
interesting that the agents cover the network in
coordination. More precisely, for a vehicle, to
lose space-time nodes that he is the only one to
cover should be more costly than to lose nodes
that are covered by other vehicle agents.
To this end, we associate with every node of the
space-time network the list of vehicles covering
it. Every vehicle notifies the space-time nodes
that they are part of his action zone and every
node continuously updates its list. Similarly,
when the action zone of a vehicle agent loses a
node, the node is notified and its list of vehicles
is updated.
Now, when the insertion price of a traveler is
computed, every vehicle agent starts by deter-

mining the space-time nodes that it would lose
if it had to insert the new traveler. Then, it in-
terrogates each of these nodes about the ''price
to pay'' if it were not covering it anymore. This
price is inversely proportional to the number of
vehicles covering this node. More precisely, the
price to pay is equal to

,

1

n tv< >

with v<n, t > denoting the vehicle agents covering
the space-time node <n, t > and |v<n, t >| the num-
ber of such vehicles.
This method associates a higher penalty with
a decision to stop covering a node that is less
covered by the others. Therefore, the vehicle
agents are indirectly incited to cover the whole
network in a coordinated way.

5. Experiments

In this section, we provide the experimental re-
sults of our simulations. First, we provide op-
timization costs for the three dispatching pro-
tocols, which are the same since they use the
same regret heuristic. Then we compare the
three dispatching protocols in terms of the re-
sponse time.
Marius M. Solomon [26] has created a set of
different static problems for the VRPTW. These
challenging and diverse problems can be used
as the benchmark examples for comparing
different proposed vehicle routing methods.
In Solomon's benchmarks, six different sets
of problems have been defined: C1, C2, R1,
R2, RC1 and RC2. From geographical point
of view, the travelers are uniformly distribut-
ed in the problems of type R, clustered in the
problems of type C, and a mix of travelers, uni-
formly distributed and clustered, is used in the
problems of type RC. The problems of type 1
have narrow time windows (very few travelers
can coexist in the same vehicle's route) and the
problems of type 2 have wide time windows.
Finally, a constant service time is associated
with each traveler, which is equal to 10 in the
problems of type R and RC, and to 90 in the
problems of type C. Short service times would
represent a problem where the loading and un-

We can compute at any time, from the current
position of a vehicle, the set of triples (x, y, t)
where it can be in the future. Indeed, consider-
ing a plane with an x-axis in [xmin, xmax] and a
y-axis in [ymin, ymax], the set of space-time posi-
tions is the set of points in the cube delimited by
[xmin, xmax], [ymin, ymax] and [e0, l0] (e0 and l0 are
the scheduling horizon and are the minimal and
maximal values for the time windows). Consid-
er a vehicle in the depot (x0, y0) at t0. The set of
points (x, y, t) that are accessible by this vehicle
are described by the following inequality:

() () ()2 2
0 0 0x x y y t t− + − ≤ − .

The (x, y, t) satisfying this inequality are
those that are positioned inside the cone C
of vertex (x0, y0, t0) and with the equation

() () ()2 2
0 0 0x x y y t t− + − ≤ − (cf. Figure 7).

This cone represents the action zone of a vehi-
cle agent, with an empty route, in the Euclidean
case. It represents all possible space-time po-
sitions that this vehicle agent is able to have in
the future.

Figure 7. Initial action zone.

We use the action zone of the vehicle agents
when a traveler agent has to choose between
several vehicle agents for his insertion. We
have to be able to compare the action zones of
different vehicle agents. To do so, we propose
to quantify it, by computing the volume of the
cone C representing the future possible posi-
tions of the vehicle:

()30 0
1() .3Volume C l eπ= × × −

This is the quantification of the initial action
zone of any new vehicle agent joining the MAS
(volume0). When a new traveler agent appears,
each vehicle agent computes his new action
zone and its volume (volume1). The price that
it proposes to the traveler agent is the differ-
ence between his old action zone and his new
one (volume0 - volume1). The new action zone
computation is detailed in the following para-
graph.

4.4. Dynamics of the Action Zones

Consider a traveler c1 (of coordinates (x1, y1)
and with a time window [e1, l1]) that joins the
system, and suppose that v is currently the only
available vehicle agent which has an empty
route. The agent v has to infer his new space-
time action zone, i.e. the space-time nodes that
it can still reach without violating the time con-
straints of c1. The new action zone answers the
following questions: ''if v had to be in (x1, y1)
at l1, where would it have been before? And if
it had to be there at e1, where would it be after
e1 + s1?'' (the service time is the time needed to
load or unload the travelers). The triples (x, y, t)
where the vehicle agent can be before visiting
c1 are described by the inequality (3), and the
triples (x, y, t) where it can be after visiting c1
are described by the inequality (4).

() () ()2 2
1 1 1x x y y l t− − − ≤ − (3)

() () ()2 2
1 1 1 1x x y y t e s− − − ≤ − + (4)

The new action zone is illustrated by Figure 8:
the new measure consists of the volume of the
intersection of the initial cone C with the union
of the two new cones described by the inequal-
ities (3) and (4) (denoted respectively by C1
and C2). The new measure of the action zone
is equal to the volume of the intersection of C
with the union of C1 and C2.
The insertion price of a traveler in the route
of a vehicle is equal to the measure associated
with the old action zone of the vehicle minus
the measure of the new action zone, after the
insertion of the traveler. The measured quantity
represents the space-time positions that would
not be feasible anymore for the vehicle, if it had
to insert this traveler in his route. The winner

68 69M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

92 < 107, 53 < 60, 150 < 181, 108 < 121). The
average improvement of the space-time mod-
el compared to the classic model is 13.26%.
These results validate the intuition of the mod-
el, which implies maximizing the future inser-
tion possibilities for a vehicle agent.
Once this result has been validated, it is inter-
esting to check the results with respect to the
total distance traveled by all the vehicles. Ta-
ble 2 summarizes the results1. With respect to
this criterion, the space-time model is more
efficient for two problem classes (C1 25 trav-
elers and R1 100 travelers), with 1.80% im-
provement on average. It is less efficient for
four problem classes (R1 25 travelers, R1 50
travelers, C1 50 travelers and C1 100 travelers),
with 1.39% improvement for the classic model.
The fact remains that our results provide better
results than the traditional heuristic, provided
that the primary objective of the problem is to
minimize the number of vehicles mobilized by
the system.

Table 2. Results summary
(Criterion: Total Traveled Distance).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 6372 6561

C1 25 travelers 3167 3152

R1 50 travelers 12036 12089

C1 50 travelers 6712 7093

R1 100 travelers 17907 17348

C1 100 travelers 16011 16512

The two following subsections provide the re-
sults in terms of response time for the three dis-
patching protocols.

5.2. Sequential Implementation
Experiments

Table 3 provides the values in terms of aver-
age response times (in milliseconds) of every
dispatching protocols in the centralized imple-
mentation. The response time for a traveler is
the difference between the moment when the
traveler agent is created and the moment when
a vehicle is chosen by the traveler. The central-

ized protocol provides the best results (32.80%
improvement, in average, compared to the dis-
tributed protocol), followed by the hybrid proto-
col (24.13% improvement, in average) and the
decentralized protocol. This is due to the fact
that the centralized approach does not generate
communication between agents and does not
assume any concurrency management. The hy-
brid approach provides results that are close to
the centralized dispatching protocol. However,
it provides results of worse quality for two rea-
sons. On the one side, it generates more messag-
es (linear with the number of vehicles) between
the traveler agent and the vehicle agents. On the
other side, the management of concurrent pro-
cesses of the vehicles and travelers, and the fact
that their contexts have to be restored every time
the scheduler executes them, increases the ex-
hibited response times for the travelers. Finally,
the decentralized approach suffers from the two
drawbacks: it generates a quadratic number of
messages and it uses pseudo-parallelism which
slows down the processing.

Table 3. Sequential implementation
(average response time (ms)).

Pr
ob

le
m

/P
ro

to
co

l

C
en

tra
liz

ed
se

q

D
ec

en
tra

liz
ed

se
q

H
yb

rid
se

q

R1 25 travelers 35 54 36

C1 25 travelers 32 48 40

R1 50 travelers 36 59 44

C1 50 travelers 38 56 41

R1 100 travelers 43 63 49

C1 100 travelers 44 59 47

However, this round of experiments was ex-
ecuted on a single computer, therefore these
results are not fair towards the decentralized
dispatching strategy, and to a lesser extent, to-
wards the hybrid approach. Indeed, to use the
full capacity of these protocols, we have to exe-
cute our simulations on a mini-cloud.

1In Solomon's benchmarks, there is no unit associated with the distances.

loading of the transported entities is fast (trans-
port of persons for instance). In every problem
set, there are between 8 and 12 files, each con-
taining 100 travelers.
We choose to use Solomon's benchmarks, while
following the modification proposed by [22]
to make the problem dynamic. To this end, let
[0, T] be the simulation time. All the time relat-
ed data (time windows, service times and travel

times) are multiplied by
0 0

T
l e−

, with [e0, l0]

being the scheduling horizon of the problem.
The authors divide the travelers set in two sub-
sets, the first subset defines the travelers that
are known in advance, and the second one the
travelers who appear during execution. We do
not make this distinction, since we consider no
travelers known in advance. For each traveler,
an occurrence time is associated, defining the
moment when the traveler is recognised by the
system. Given a traveler i, the occurrence time
that is associated is generated randomly be-
tween []0, ie , with:

0 0
i i

Te e l e= ×
−

. (6)

It is known that the behavior of insertion heu-
ristics is strongly sensitive to the appearance
order of the travelers to the system. For this
reason, we do not consider only one appearance
order. We launch the process that we have just
described ten times with every problem file,
this way creating ten different versions of every
problem file.

Figure 9. Sequential implementation (left) and
distributed implementation (right).

We have implemented all the systems using the
multi-agent Java-based platform Repast Sim-

phony [23]. We have executed our experiments
on a PC with an Intel Xeon E7-4820 processor,
and 50 GB of RAM for the sequential versions,
and a four PC network for the distributed ver-
sions, each with the same configuration (Intel
Xeon E7-4820 processor, and 50 GB of RAM).
Cf. Figure 9.

5.1. Optimization Cost

We have implemented two MAS with almost
the same behavior, following the hybrid dis-
patching protocol. The only difference concerns
the measure used by vehicle agents to compute
the insertion price of a traveler. For the first im-
plemented MAS, it relies on the Solomon mea-
sure (noted Δ Distance). The second relies on
the space-time model (noted Δ Space-Time). We
choose to run our experiments with the prob-
lems of class R and C, of type 1, which are the
instances that are very constrained in time (nar-
row time windows). Recall that the objective of
the problem is to minimize costs, materialized
by a minimal number of mobilized vehicles,
and then a minimal total traveled distance.

Table 1. Results summary
(Criterion: Fleet Size).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 64 53

C1 25 travelers 34 31

R1 50 travelers 107 92

C1 50 travelers 60 53

R1 100 travelers 181 150

C1 100 travelers 121 108

For each problem class and type, we have con-
sidered different numbers of travelers in order
to verify the behavior of our models w.r.t. the
problem size. To this end, we have consid-
ered successively the 25 first travelers, the 50
first travelers, and finally all the 100 travelers
contained in each problem file. Table 1 sum-
marizes the results. Each cell contains the best
results obtained with each problem class (the
sum of all problem files). The results show,
with the two classes of problems, that the use
of the space-time model mobilizes fewer vehi-
cles than the classic model (53 < 64, 31 < 34,

68 69M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

92 < 107, 53 < 60, 150 < 181, 108 < 121). The
average improvement of the space-time mod-
el compared to the classic model is 13.26%.
These results validate the intuition of the mod-
el, which implies maximizing the future inser-
tion possibilities for a vehicle agent.
Once this result has been validated, it is inter-
esting to check the results with respect to the
total distance traveled by all the vehicles. Ta-
ble 2 summarizes the results1. With respect to
this criterion, the space-time model is more
efficient for two problem classes (C1 25 trav-
elers and R1 100 travelers), with 1.80% im-
provement on average. It is less efficient for
four problem classes (R1 25 travelers, R1 50
travelers, C1 50 travelers and C1 100 travelers),
with 1.39% improvement for the classic model.
The fact remains that our results provide better
results than the traditional heuristic, provided
that the primary objective of the problem is to
minimize the number of vehicles mobilized by
the system.

Table 2. Results summary
(Criterion: Total Traveled Distance).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 6372 6561

C1 25 travelers 3167 3152

R1 50 travelers 12036 12089

C1 50 travelers 6712 7093

R1 100 travelers 17907 17348

C1 100 travelers 16011 16512

The two following subsections provide the re-
sults in terms of response time for the three dis-
patching protocols.

5.2. Sequential Implementation
Experiments

Table 3 provides the values in terms of aver-
age response times (in milliseconds) of every
dispatching protocols in the centralized imple-
mentation. The response time for a traveler is
the difference between the moment when the
traveler agent is created and the moment when
a vehicle is chosen by the traveler. The central-

ized protocol provides the best results (32.80%
improvement, in average, compared to the dis-
tributed protocol), followed by the hybrid proto-
col (24.13% improvement, in average) and the
decentralized protocol. This is due to the fact
that the centralized approach does not generate
communication between agents and does not
assume any concurrency management. The hy-
brid approach provides results that are close to
the centralized dispatching protocol. However,
it provides results of worse quality for two rea-
sons. On the one side, it generates more messag-
es (linear with the number of vehicles) between
the traveler agent and the vehicle agents. On the
other side, the management of concurrent pro-
cesses of the vehicles and travelers, and the fact
that their contexts have to be restored every time
the scheduler executes them, increases the ex-
hibited response times for the travelers. Finally,
the decentralized approach suffers from the two
drawbacks: it generates a quadratic number of
messages and it uses pseudo-parallelism which
slows down the processing.

Table 3. Sequential implementation
(average response time (ms)).

Pr
ob

le
m

/P
ro

to
co

l

C
en

tra
liz

ed
se

q

D
ec

en
tra

liz
ed

se
q

H
yb

rid
se

q

R1 25 travelers 35 54 36

C1 25 travelers 32 48 40

R1 50 travelers 36 59 44

C1 50 travelers 38 56 41

R1 100 travelers 43 63 49

C1 100 travelers 44 59 47

However, this round of experiments was ex-
ecuted on a single computer, therefore these
results are not fair towards the decentralized
dispatching strategy, and to a lesser extent, to-
wards the hybrid approach. Indeed, to use the
full capacity of these protocols, we have to exe-
cute our simulations on a mini-cloud.

1In Solomon's benchmarks, there is no unit associated with the distances.

loading of the transported entities is fast (trans-
port of persons for instance). In every problem
set, there are between 8 and 12 files, each con-
taining 100 travelers.
We choose to use Solomon's benchmarks, while
following the modification proposed by [22]
to make the problem dynamic. To this end, let
[0, T] be the simulation time. All the time relat-
ed data (time windows, service times and travel

times) are multiplied by
0 0

T
l e−

, with [e0, l0]

being the scheduling horizon of the problem.
The authors divide the travelers set in two sub-
sets, the first subset defines the travelers that
are known in advance, and the second one the
travelers who appear during execution. We do
not make this distinction, since we consider no
travelers known in advance. For each traveler,
an occurrence time is associated, defining the
moment when the traveler is recognised by the
system. Given a traveler i, the occurrence time
that is associated is generated randomly be-
tween []0, ie , with:

0 0
i i

Te e l e= ×
−

. (6)

It is known that the behavior of insertion heu-
ristics is strongly sensitive to the appearance
order of the travelers to the system. For this
reason, we do not consider only one appearance
order. We launch the process that we have just
described ten times with every problem file,
this way creating ten different versions of every
problem file.

Figure 9. Sequential implementation (left) and
distributed implementation (right).

We have implemented all the systems using the
multi-agent Java-based platform Repast Sim-

phony [23]. We have executed our experiments
on a PC with an Intel Xeon E7-4820 processor,
and 50 GB of RAM for the sequential versions,
and a four PC network for the distributed ver-
sions, each with the same configuration (Intel
Xeon E7-4820 processor, and 50 GB of RAM).
Cf. Figure 9.

5.1. Optimization Cost

We have implemented two MAS with almost
the same behavior, following the hybrid dis-
patching protocol. The only difference concerns
the measure used by vehicle agents to compute
the insertion price of a traveler. For the first im-
plemented MAS, it relies on the Solomon mea-
sure (noted Δ Distance). The second relies on
the space-time model (noted Δ Space-Time). We
choose to run our experiments with the prob-
lems of class R and C, of type 1, which are the
instances that are very constrained in time (nar-
row time windows). Recall that the objective of
the problem is to minimize costs, materialized
by a minimal number of mobilized vehicles,
and then a minimal total traveled distance.

Table 1. Results summary
(Criterion: Fleet Size).

Problem/Method Δ Distance Δ Space-Time

R1 25 travelers 64 53

C1 25 travelers 34 31

R1 50 travelers 107 92

C1 50 travelers 60 53

R1 100 travelers 181 150

C1 100 travelers 121 108

For each problem class and type, we have con-
sidered different numbers of travelers in order
to verify the behavior of our models w.r.t. the
problem size. To this end, we have consid-
ered successively the 25 first travelers, the 50
first travelers, and finally all the 100 travelers
contained in each problem file. Table 1 sum-
marizes the results. Each cell contains the best
results obtained with each problem class (the
sum of all problem files). The results show,
with the two classes of problems, that the use
of the space-time model mobilizes fewer vehi-
cles than the classic model (53 < 64, 31 < 34,

70 71M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

portation Research Part B: Methodological, vol.
123, pp. 323‒346, 2019.
https://doi.org/10.1016/j.trb.2019.02.003

[5] J. H. Drake et al., ''Recent Advances in Selection
Hyper-Heuristics'', European Journal of Opera-
tional Research, 2019.
https://doi.org/10.1016/j.ejor.2019.07.073

[6] J. Van Engeland et al., ''Literature Review: Stra-
tegic Network Optimization Models in Waste Re-
verse Supply Chains'', Omega, vol. 91, 2020.
https://doi.org/10.1016/j.omega.2018.12.001

[7] S. C. Ho et al., ''A Survey of Dial-a-Ride Prob-
lems: Literature Review and Recent Develop-
ments'', Transportation Research Part B: Meth-
odological, vol. 111, pp. 395‒421, 2018.
https://doi.org/10.1016/j.trb.2018.02.001

[8] H. Hu et al., ''Emergency Material Scheduling
Optimization Model and Algorithms: A Review'',
Journal of Traffic and Transportation Engineer-
ing (English Edition), vol. 6, issue 5, 2019.
https://doi.org/10.1016/j.jtte.2019.07.001

[9] B. Barán and M. Schaerer, ''A Multiobjective
Ant Colony System for Vehicle Routing Problem
with Time Windows", Applied Informatics, pp.
97‒102, 2003.

[10] M. Gendreau et al., "Neighborhood Search Heu-
ristics for a Dynamic Vehicle Dispatching Prob-
lem with Pick-Ups and Deliveries", Transpor-
tation Research Part C: Emerging Technologies
vol. 14, issue 3, pp. 157‒174, 2006.
https://doi.org/10.1016/j.trc.2006.03.002

[11] H. Housroum et al., ''A Hybrid GA Approach for
Solving the Dynamic Vehicle Routing Problem
with Time Windows'', in Proc. of the 2nd Interna-
tional Conference on Information & Communica-
tion Technologies, 2006, pp. 787‒792.
https://doi.org/10.1109/ICTTA.2006.1684473

[12] O. B. Madsen et al., ''A Heuristic Algorithm for a
Dial-a-Ride Problem with Time Windows, Mul-
tiple Capacities, and Multiple Objectives'', An-
nals of operations Research, vol. 60, no.1, pp.
193‒208, 1995.
https://doi.org/10.1007/BF02031946

[13] L. Fu and S. Teply, ''On-Line and Off-Line Rout-
ing and Scheduling of Dial-a-Ride Paratransit Ve-
hicles'', Computer-Aided Civil and Infrastructure
Engineering, vol. 14, no. 5, pp. 309‒319, 1999.
https://doi.org/10.1111/0885-9507.00150

[14] M. E. Horn, ''Fleet Scheduling and Dispatching
for Demand-Responsive Passenger Services'',
Transportation Research Part C: Emerging Tech-
nologies, vol. 10, no. 1, pp. 35‒63, 2002.
https://doi.org/10.1016/S0968-090X(01)00003-1

[15] M. Diana, ''The Importance of Information Flows
Temporal Attributes for the Efficient Scheduling
of Dynamic Demand Responsive Transport Ser-

vices'', Journal of Advanced Transportation, vol.
40, no. 1, pp. 23‒46, 2006.
https://doi.org/10.1002/atr.5670400103

[16] S. R. Thangiah et al., ''An Agent Architecture for
Vehicle Routing Problems'', in Proc. of the 2001
ACM Symposium on Applied Computing, 2001,
pp. 517‒521.
https://doi.org/10.1145/372202.372445

[17] R. Kohout et al., ''In-Time Agent-Based Vehicle
Routing with a Stochastic Improvement Heuris-
tic'', AAAI/IAAI, pp. 864‒869, 1999.

[18] K. Fischer et al., ''A Model for Cooperative Trans-
portation Scheduling'', ICMAS, pp. 109‒116,
1995.

[19] F. Grootenboers et al., ''Impact of Competition on
Quality of Service in Demand Responsive Tran-
sit'', in Proc. of the German Conference on Mul-
tiagent System Technologies, Springer, Berlin,
Heidelberg, pp. 113‒124, 2010.
https://doi.org/10.1007/978-3-642-16178-0_12

[20] Y. Nagata et al., ''A Penalty-Based Edge Assem-
bly Memetic Algorithm for the Vehicle Routing
Problem with Time Windows'', Computers & Op-
erations Research, vol. 37, no. 4, pp. 724‒737,
2010.
https://doi.org/10.1016/j.cor.2009.06.022

[21] M. Diana and M. M. Dessouky, ''A New Regret
Insertion Heuristic for Solving Large-Scale Dial-
a-Ride Problems with Time Windows'', Transpor-
tation Research Part B: Methodological, vol. 38,
no. 6, pp. 539‒557, 2004.
https://doi.org/10.1016/j.trb.2003.07.001

[22] M. Gendreau et al., ''Parallel Tabu Search for Re-
al-Time VehicleRouting and Dispatching'', Trans-
portation science, vol. 33, no. 4, pp. 381‒390,
1999.
https://doi.org/10.1287/trsc.33.4.381

[23] M. J. North et al., ''The Repast Simphony Run-
time System'', in Proc. of the Agent 2005 Con-
ference on Generative Social Processes, Models,
and Mechanisms, vol. 10, pp. 13‒15, 2005.

[24] M. Zargayouna et al., ''Multiagent Simulation
of Real-Time Passenger Information on Transit
Networks'', IEEE Intelligent Transportation Sys-
tems Magazine, vol. 12, issue 2, pp. 50‒63, 2020.
https://doi.org/10.1109/MITS.2018.2879166

[25] M. Zargayouna and B. Zeddini, ''Fleet Organi-
zation Models for Online Vehicle Routing Prob-
lems'', Transactions on Computational Collective
Intelligence VII, Springer, Berlin, Heidelberg, pp.
82‒102, 2012.
https://doi.org/10.1007/978-3-642-32066-8_4

[26] M. M. Solomon et al., ''Algorithms for the Vehi-
cle Routing and Scheduling Problems with Time
Window Constraints'', Operations Research, vol.
35, no. 2, pp. 254‒265, 1987.

5.3. Distributed Implementation
Experiments

It is possible with Repast Simphony to distrib-
ute a simulation over a network, using relevant
Java APIs. We report the corresponding results
in Table 4. These results are interesting since
they provide a new enlightenment concerning
the most promising dispatching protocol in
terms of response time to online users. Indeed,
in the absence of slow-down due to single PC
pseudo-parallelism, the hybrid protocol takes
profit of the processing distribution, without
suffering from a too big number of exchanged
messages (59.66% improvement in average,
compared with the centralized protocol). The
decentralized protocol comes to the second
position in terms of performance (39.31%
improvement in average), taking profit from
the distribution but suffering from its too big
bandwidth consumption. The centralized pro-
tocol comes to the last position, since its gain
in terms of exchanged messages does not coun-
terbalance its sequentialization of processing.
Observe that the centralized protocol yielded
almost identical results in the distributed im-
plementation, as well as in the sequential im-
plementation. The small difference comes
from the fact that vehicle agents are executed
in other hosts than the planner agent, which re-
sults in a small additional cost in terms of com-
munication.

Table 4. Distributed implementation
(average response time (ms)).

Pr
ob

le
m

/P
ro

to
co

l

C
en

tra
liz

ed
di

st

D
ec

en
tra

liz
ed

di
st

H
yb

rid
di

st

R1 25 travelers 36 23 14

C1 25 travelers 34 24 17

R1 50 travelers 37 24 16

C1 50 travelers 40 25 17

R1 100 travelers 44 23 15

C1 100 travelers 48 24 16

6. Conclusion

In this paper, we have proposed a multi-agent
system implementing a regret insertion heuris-
tic for the online vehicle routing problem with
time windows. We propose three versions of the
system, focusing on the travelers' dispatching
protocols. The dispatching protocol decides
which agents perform the computation to an-
swer the travelers' requests. In the centralized
protocol the planner agent performs most of the
computation. In the decentralized protocol, the
vehicle agents perform most of the computation
in a collaborative way. Finally, in the hybrid
protocol, the work is split between travelers
and vehicles. We have compared these three ap-
proaches based on their response time to online
users. We have considered two implementation
types, sequential implementation and distrib-
uted implementation. The results have shown
superiority of the centralized protocol in the
first implementation (32.80% improvement, in
average, compared to the distributed dispatch-
ing protocol) and superiority of the hybrid pro-
tocol in the second implementation (59.66%
improvement, in average, compared with the
centralized dispatching protocol). In our future
works, we will consider more dynamic prob-
lems in which not only travelers, but also the
traffic conditions are unknown before execu-
tion. To this end, we will integrate our vehicle
routing system inside the multimodal traffic
simulator SM4T [24].

References

[1] A. Expósito et al., ''Quality of Service Objectives
for Vehicle Routing Problem with Time Win-
dows'', Applied Soft Computing, vol. 84, 2019.
https://doi.org/10.1016/j.asoc.2019.105707

[2] T. Yang et al., ''A Survey of Distributed Optimi-
zation'', Annual Reviews in Control, vol. 47, pp.
278‒305, 2019.
https://doi.org/10.1016/j.arcontrol.2019.05.006

[3] N. Bessghaier et al., "Management of Urban
Parking: an Agent-Based Approach", in Proc.
of the Int. Conference on Artificial Intelligence:
Methodology, Systems, and Applications, Spring-
er, 2012, pp. 276‒285.
https://doi.org/10.1007/978-3-642-33185-5_31

[4] A. Mourad et al., ''A Survey of Models and Algo-
rithms for Optimizing Shared Mobility'', Trans-

https://doi.org/10.1016/j.trb.2019.02.003
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1016/j.omega.2018.12.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.jtte.2019.07.001
https://doi.org/10.1016/j.trc.2006.03.002
https://doi.org/10.1109/ICTTA.2006.1684473
https://doi.org/10.1007/BF02031946
https://doi.org/10.1111/0885-9507.00150
https://doi.org/10.1016/S0968-090X(01)00003-1
https://doi.org/10.1002/atr.5670400103
https://doi.org/10.1145/372202.372445
https://doi.org/10.1007/978-3-642-16178-0_12
https://doi.org/10.1016/j.cor.2009.06.022
https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1287/trsc.33.4.381
https://doi.org/10.1109/MITS.2018.2879166
https://doi.org/10.1007/978-3-642-32066-8_4
https://doi.org/10.1016/j.asoc.2019.105707
https://doi.org/10.1016/j.arcontrol.2019.05.006
https://doi.org/10.1007/978-3-642-33185-5_31

70 71M. Zargayouna and B. Zeddini Dispatching Requests for Agent-Based Online Vehicle Routing Problems with Time Windows

portation Research Part B: Methodological, vol.
123, pp. 323‒346, 2019.
https://doi.org/10.1016/j.trb.2019.02.003

[5] J. H. Drake et al., ''Recent Advances in Selection
Hyper-Heuristics'', European Journal of Opera-
tional Research, 2019.
https://doi.org/10.1016/j.ejor.2019.07.073

[6] J. Van Engeland et al., ''Literature Review: Stra-
tegic Network Optimization Models in Waste Re-
verse Supply Chains'', Omega, vol. 91, 2020.
https://doi.org/10.1016/j.omega.2018.12.001

[7] S. C. Ho et al., ''A Survey of Dial-a-Ride Prob-
lems: Literature Review and Recent Develop-
ments'', Transportation Research Part B: Meth-
odological, vol. 111, pp. 395‒421, 2018.
https://doi.org/10.1016/j.trb.2018.02.001

[8] H. Hu et al., ''Emergency Material Scheduling
Optimization Model and Algorithms: A Review'',
Journal of Traffic and Transportation Engineer-
ing (English Edition), vol. 6, issue 5, 2019.
https://doi.org/10.1016/j.jtte.2019.07.001

[9] B. Barán and M. Schaerer, ''A Multiobjective
Ant Colony System for Vehicle Routing Problem
with Time Windows", Applied Informatics, pp.
97‒102, 2003.

[10] M. Gendreau et al., "Neighborhood Search Heu-
ristics for a Dynamic Vehicle Dispatching Prob-
lem with Pick-Ups and Deliveries", Transpor-
tation Research Part C: Emerging Technologies
vol. 14, issue 3, pp. 157‒174, 2006.
https://doi.org/10.1016/j.trc.2006.03.002

[11] H. Housroum et al., ''A Hybrid GA Approach for
Solving the Dynamic Vehicle Routing Problem
with Time Windows'', in Proc. of the 2nd Interna-
tional Conference on Information & Communica-
tion Technologies, 2006, pp. 787‒792.
https://doi.org/10.1109/ICTTA.2006.1684473

[12] O. B. Madsen et al., ''A Heuristic Algorithm for a
Dial-a-Ride Problem with Time Windows, Mul-
tiple Capacities, and Multiple Objectives'', An-
nals of operations Research, vol. 60, no.1, pp.
193‒208, 1995.
https://doi.org/10.1007/BF02031946

[13] L. Fu and S. Teply, ''On-Line and Off-Line Rout-
ing and Scheduling of Dial-a-Ride Paratransit Ve-
hicles'', Computer-Aided Civil and Infrastructure
Engineering, vol. 14, no. 5, pp. 309‒319, 1999.
https://doi.org/10.1111/0885-9507.00150

[14] M. E. Horn, ''Fleet Scheduling and Dispatching
for Demand-Responsive Passenger Services'',
Transportation Research Part C: Emerging Tech-
nologies, vol. 10, no. 1, pp. 35‒63, 2002.
https://doi.org/10.1016/S0968-090X(01)00003-1

[15] M. Diana, ''The Importance of Information Flows
Temporal Attributes for the Efficient Scheduling
of Dynamic Demand Responsive Transport Ser-

vices'', Journal of Advanced Transportation, vol.
40, no. 1, pp. 23‒46, 2006.
https://doi.org/10.1002/atr.5670400103

[16] S. R. Thangiah et al., ''An Agent Architecture for
Vehicle Routing Problems'', in Proc. of the 2001
ACM Symposium on Applied Computing, 2001,
pp. 517‒521.
https://doi.org/10.1145/372202.372445

[17] R. Kohout et al., ''In-Time Agent-Based Vehicle
Routing with a Stochastic Improvement Heuris-
tic'', AAAI/IAAI, pp. 864‒869, 1999.

[18] K. Fischer et al., ''A Model for Cooperative Trans-
portation Scheduling'', ICMAS, pp. 109‒116,
1995.

[19] F. Grootenboers et al., ''Impact of Competition on
Quality of Service in Demand Responsive Tran-
sit'', in Proc. of the German Conference on Mul-
tiagent System Technologies, Springer, Berlin,
Heidelberg, pp. 113‒124, 2010.
https://doi.org/10.1007/978-3-642-16178-0_12

[20] Y. Nagata et al., ''A Penalty-Based Edge Assem-
bly Memetic Algorithm for the Vehicle Routing
Problem with Time Windows'', Computers & Op-
erations Research, vol. 37, no. 4, pp. 724‒737,
2010.
https://doi.org/10.1016/j.cor.2009.06.022

[21] M. Diana and M. M. Dessouky, ''A New Regret
Insertion Heuristic for Solving Large-Scale Dial-
a-Ride Problems with Time Windows'', Transpor-
tation Research Part B: Methodological, vol. 38,
no. 6, pp. 539‒557, 2004.
https://doi.org/10.1016/j.trb.2003.07.001

[22] M. Gendreau et al., ''Parallel Tabu Search for Re-
al-Time VehicleRouting and Dispatching'', Trans-
portation science, vol. 33, no. 4, pp. 381‒390,
1999.
https://doi.org/10.1287/trsc.33.4.381

[23] M. J. North et al., ''The Repast Simphony Run-
time System'', in Proc. of the Agent 2005 Con-
ference on Generative Social Processes, Models,
and Mechanisms, vol. 10, pp. 13‒15, 2005.

[24] M. Zargayouna et al., ''Multiagent Simulation
of Real-Time Passenger Information on Transit
Networks'', IEEE Intelligent Transportation Sys-
tems Magazine, vol. 12, issue 2, pp. 50‒63, 2020.
https://doi.org/10.1109/MITS.2018.2879166

[25] M. Zargayouna and B. Zeddini, ''Fleet Organi-
zation Models for Online Vehicle Routing Prob-
lems'', Transactions on Computational Collective
Intelligence VII, Springer, Berlin, Heidelberg, pp.
82‒102, 2012.
https://doi.org/10.1007/978-3-642-32066-8_4

[26] M. M. Solomon et al., ''Algorithms for the Vehi-
cle Routing and Scheduling Problems with Time
Window Constraints'', Operations Research, vol.
35, no. 2, pp. 254‒265, 1987.

5.3. Distributed Implementation
Experiments

It is possible with Repast Simphony to distrib-
ute a simulation over a network, using relevant
Java APIs. We report the corresponding results
in Table 4. These results are interesting since
they provide a new enlightenment concerning
the most promising dispatching protocol in
terms of response time to online users. Indeed,
in the absence of slow-down due to single PC
pseudo-parallelism, the hybrid protocol takes
profit of the processing distribution, without
suffering from a too big number of exchanged
messages (59.66% improvement in average,
compared with the centralized protocol). The
decentralized protocol comes to the second
position in terms of performance (39.31%
improvement in average), taking profit from
the distribution but suffering from its too big
bandwidth consumption. The centralized pro-
tocol comes to the last position, since its gain
in terms of exchanged messages does not coun-
terbalance its sequentialization of processing.
Observe that the centralized protocol yielded
almost identical results in the distributed im-
plementation, as well as in the sequential im-
plementation. The small difference comes
from the fact that vehicle agents are executed
in other hosts than the planner agent, which re-
sults in a small additional cost in terms of com-
munication.

Table 4. Distributed implementation
(average response time (ms)).

Pr
ob

le
m

/P
ro

to
co

l

C
en

tra
liz

ed
di

st

D
ec

en
tra

liz
ed

di
st

H
yb

rid
di

st

R1 25 travelers 36 23 14

C1 25 travelers 34 24 17

R1 50 travelers 37 24 16

C1 50 travelers 40 25 17

R1 100 travelers 44 23 15

C1 100 travelers 48 24 16

6. Conclusion

In this paper, we have proposed a multi-agent
system implementing a regret insertion heuris-
tic for the online vehicle routing problem with
time windows. We propose three versions of the
system, focusing on the travelers' dispatching
protocols. The dispatching protocol decides
which agents perform the computation to an-
swer the travelers' requests. In the centralized
protocol the planner agent performs most of the
computation. In the decentralized protocol, the
vehicle agents perform most of the computation
in a collaborative way. Finally, in the hybrid
protocol, the work is split between travelers
and vehicles. We have compared these three ap-
proaches based on their response time to online
users. We have considered two implementation
types, sequential implementation and distrib-
uted implementation. The results have shown
superiority of the centralized protocol in the
first implementation (32.80% improvement, in
average, compared to the distributed dispatch-
ing protocol) and superiority of the hybrid pro-
tocol in the second implementation (59.66%
improvement, in average, compared with the
centralized dispatching protocol). In our future
works, we will consider more dynamic prob-
lems in which not only travelers, but also the
traffic conditions are unknown before execu-
tion. To this end, we will integrate our vehicle
routing system inside the multimodal traffic
simulator SM4T [24].

References

[1] A. Expósito et al., ''Quality of Service Objectives
for Vehicle Routing Problem with Time Win-
dows'', Applied Soft Computing, vol. 84, 2019.
https://doi.org/10.1016/j.asoc.2019.105707

[2] T. Yang et al., ''A Survey of Distributed Optimi-
zation'', Annual Reviews in Control, vol. 47, pp.
278‒305, 2019.
https://doi.org/10.1016/j.arcontrol.2019.05.006

[3] N. Bessghaier et al., "Management of Urban
Parking: an Agent-Based Approach", in Proc.
of the Int. Conference on Artificial Intelligence:
Methodology, Systems, and Applications, Spring-
er, 2012, pp. 276‒285.
https://doi.org/10.1007/978-3-642-33185-5_31

[4] A. Mourad et al., ''A Survey of Models and Algo-
rithms for Optimizing Shared Mobility'', Trans-

https://doi.org/10.1016/j.trb.2019.02.003
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1016/j.omega.2018.12.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.jtte.2019.07.001
https://doi.org/10.1016/j.trc.2006.03.002
https://doi.org/10.1109/ICTTA.2006.1684473
https://doi.org/10.1007/BF02031946
https://doi.org/10.1111/0885-9507.00150
https://doi.org/10.1016/S0968-090X(01)00003-1
https://doi.org/10.1002/atr.5670400103
https://doi.org/10.1145/372202.372445
https://doi.org/10.1007/978-3-642-16178-0_12
https://doi.org/10.1016/j.cor.2009.06.022
https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1287/trsc.33.4.381
https://doi.org/10.1109/MITS.2018.2879166
https://doi.org/10.1007/978-3-642-32066-8_4
https://doi.org/10.1016/j.asoc.2019.105707
https://doi.org/10.1016/j.arcontrol.2019.05.006
https://doi.org/10.1007/978-3-642-33185-5_31

72 M. Zargayouna and B. Zeddini

Received: August 2018
Revised: October 2019

Accepted: May 2020

Contact addresses:
Mahdi Zargayouna

Gustave Eiffel University, IFSTTAR, COSYS, GRETTIA
Champs sur Marne

France
e-mail: mahdi.zargayouna@univ-eiffel.fr

Besma Zeddini
SATIE, UMR CNRS 8029 ENS Cachan, CY Tech

Cergy-Pontoise
France

e-mail: bzi@eisti.eu

Mahdi Zargayouna is a researcher at Gustave Eiffel University (France)
and deputy director of the GRETTIA Laboratory. He is also head of the
Intelligent Systems & Application MSc Program. He received his MSc,
PhD and Habilitation degrees in computer science and artificial intelli-
gence from the University of Paris Dauphine (France) in 2003, 2007,
and 2019 respectively. He is mainly interested in multi-agent systems
(languages, coordination models, simulation, optimization, etc.), and
dynamic transportation applications (traveler information, crisis man-
agement, dial-a-ride, urban parking, etc.). He has published more than
70 papers in peer-reviewed journals and conference proceedings and is
a member of the reviewer boards of several international journals and
conferences.

BesMa Zeddini is an assistant professor in computer science at CY
Tech Engineering School and a researcher at CNRS-SATIE Laborato-
ry (France). She is the Partnership and Valorization coordinator of CY
Tech. She is the co-leader of the engineering program on Cybersecurity
and Smart Systems and head of the IoT MSc program. Besma Zeddini
received her MSc and PhD degrees in computer science from the Uni-
versity of Le Havre Normandie (France). Her work is mainly focused
on artificial intelligence, complex systems, and simulation of intelligent
transportation systems. She has authored more than 40 papers in inter-
national journals and conferences.

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

