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Practical Model Checking of a Home 
Area Network System: Case Study

The integrated communication infrastructure is the 
core of the Smart Grid architecture. Its two-way com-
munication and information flow provides this net-
work with all needed resources in order to control and 
manage all connected components from the utility to 
the customer side. This latter, named the Home Area 
Network or HAN, is a dedicated network connecting 
smart devices inside the customer home, and using 
different solutions. In order to avoid problems and 
anomalies along the process life cycle of developing 
a new solution for HAN network, the modeling and 
validation is one of the most powerful tools to achieve 
this goal. This paper presents a practical case study 
of such validation. It intends to validate a HAN SDL 
model, described in a previous work, using model 
checking techniques. It introduces a method to trans-
late the SDL model to a Promela model using an inter-
mediate format IF. After the generation of the Promela 
model, verification is performed to ensure that some 
functional properties are satisfied. The desired proper-
ties are defined in Linear Temporal Logic (LTL), and 
DTSPIN (an extension of SPIN with discrete time) 
model checker is used to verify the correctness of the 
model.
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→ Software functional properties → Formal methods 
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Networks → Network types → Home networks
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1. Introduction

Smart Grid is an intelligent power network 
based on information and communication 
technologies in order to monitor, optimize and 
control all functional units from electricity gen-
eration to end-customers. Many internation-
al organizations and government institutions 
around the world have been encouraging the 
use of Smart Grids, and proposed their own 
models and roadmaps for this. In particular, the 
end-user side, or Home Area Network (HAN), 
represents a challenge for these organizations 
in order to help customers to reduce their ener-
gy consumption and cost, and to maximize the 
transparency and reliability of the energy sup-
ply chain.
In a previous work [1], a communication in-
frastructure model for the Smart Grid was pre-
sented. This model is based on international 
guidelines proposed by IEEE, ITU and NIST. It 
focuses on the communication aspect of Smart 
Grid and its services as defined by the U.S. De-
partment of Energy (DOE) [2]. This previous 
work aimed to analyze, study and understand 
the communication relationship between the 
system components. It explained the function-
ing of essential units and the interaction between 
them, and it proposed a set of possible technolo-
gies and standards for each link between the en-
tities. The analysis was divided into three parts 
depending on the network studied: Home Area 
Network (HAN), Neighborhood Area Network 
(NAN) or Wide Area Network (WAN).
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 ● IHD: or In-Home Display which is an in-
terface to control the appliances and show 
statistics,

 ● HEMS: or Home Energy Management 
System, it stores data about all the con-
nected appliances and PEV, and manages 
the DR signals from the utility,

 ● SM: or Smart Meter, it displays the energy 
consumption of the customer,

 ● ESI: or Energy Services Interface, which 
plays the role of the gateway between the 
home and the utility network.

The SDL system interacts with system envi-
ronment via 5 channels. Channels C1, C4 and 
C9 represent the customer interaction with the 
HAN; channel C11 is related to the energy gen-
erated by renewable sources; and the last one is 
C14 which connects the HAN with the NAN. 
This model was verified using the reachability 
analysis techniques and the verification against 
a given MSC (Message Sequence Charts) in 
order to detect dead blocks and verify specific 
scenarios, respectively [3]. However, no veri-
fication of the system behavior has been made 
yet. In fact, the SDL language does not allow 
such verification [4]. Therefore, this paper in-
tends to perform model checking [11] to verify 
the model behavior. For this purpose, one of the 
existing model checkers must be chosen.
Model checkers are the tools that help in this 
type of formal verification. In literature, there 
is a very large number of these tools. Authors in 
[12] compared six model checkers, namely: Al-
loy [13], CADP [14], FDR2 [15], NuSMV [16], 

Programs and Time-based Programs; each cate-
gory contains several programs [7].
This architecture was modeled using the SDL 
language [8]. The latter is a standard language 
for specification and description of reactive 
and distributed systems. A model described in 
SDL is composed of one or several blocks. Each 
block contains either other blocks or processes. 
The behavior of the processes is detailed using 
Extended Finite State Machine (EFSM) [9]. Un-
like FSM that always performs a transition on a 
given input from one state to another, an EFSM 
however only performs a transition when a giv-
en set of conditions have been satisfied. It means 
that the transition can be expressed by a set of 
trigger conditions (e.g. if statements). If trigger 
conditions are all satisfied, the transition is fired, 
bringing the machine from the current state to 
the next state and performing the specified data 
operations. On the other hand, the procedure be-
havior is described by FSM. It is similar to the 
one known from programming languages. It is 
created when a procedure call is interpreted, and 
it dies when it terminates. Signals in the system 
are exchanged between blocks via channels, and 
between processes via signal routes. Figure 1 re-
sumes this architecture [10].
The SDL model of the HAN architecture, cited 
in a previous contribution [3], consists of six 
blocks as shown in Figure 2. Each entity rep-
resents one of the HAN's components, namely:

 ● Appliance: refers to all devices inside the 
home,

 ● PEV: or Plug-in Electrical Vehicle,

The HAN network is one of the most important 
parts in Smart Grid. Many researches around the 
world are focusing on this network and they are 
trying to investigate its potential benefits for both 
customers and providers. So, the analysis of the 
previous architecture was started by modeling 
the HAN network [3] using SDL (Specification 
and Description Language). Then, the resulting 
model was verified and validated by the reach-
ability analysis technique, with the support of 
IBM Rational SDL suite, to detect dead blocks 
and to ensure that all the branches are reachable. 
The bit-state exploration was used to find un-
explored branches in the model. If they were 
found, the model was corrected and the verifica-
tion was rerun until a model free of dead blocks 
was obtained. However, at this stage, the prop-
erties of the system have not been verified yet. 
In fact, the task of validating implementation of 
the model is generally much harder. This paper 
focuses only on some properties in relation with 
the Demand Response service (which will be 
described in the next section). These properties 
will be detailed later. Unfortunately, the SDL 
language does not allow such validation [4]. 
This work aims to perform the model checking 
[5] step using an extension of one of the most 
powerful tools in this field, which is SPIN mod-
el checker. It will be used to verify the desirable 
temporal properties of the model, expressed as 
LTL formulas, to evaluate the system require-
ments. The SDL model must be translated into 
Promela (the input language for SPIN), how-
ever, this translation is not as trivial as it may 
seem. There are some fundamental differences 
between these two languages. In fact, SDL sup-
ports hierarchical structure, whereas Promela 
is a flat language, with one level of hierarchy. 
Also, some SDL data types and constructs can-
not be represented trivially in Promela, because 
they usually include additional information in 
relation with the system hierarchy.
This case study introduces one approach to 
generate the Promela model from the SDL one, 
using an intermediate format IF. The reason be-
hind this choice is that the transformation from 
SDL to IF is intuitive and simple compared to 
the translation from SDL to Promela directly. 
Also, it provides a common model between 
various languages adopting different descrip-
tion styles (e.g. SDL, UML). After the trans-
lation of the SDL model into Promela, verifi-

cation is done to ensure that some functional 
properties, represented as LTL properties, are 
satisfied. This approach can be applied to any 
model developed in the SDL language. 
The remainder of this paper is organized as fol-
lows. The next section presents the background 
of the work. It gives a brief description of the 
HAN architecture and its SDL modeling, then, 
it introduces some works related to Prome-
la generation from SDL. Section 3 details the 
translation approach via two big steps. The first 
step highlights transformation of the SDL mod-
el into the intermediate format IF. It explains 
some translation features concerning the struc-
ture, the behavior and the data. The second one 
introduces the if2pml tool used to generate the 
Promela model. Section 4 presents the model 
checking of the generated model. It describes 
some LTL properties to be checked and the re-
sult of this verification. The last section con-
cludes the paper and presents the future works.

2. Background

The Home Area Network or HAN is the cus-
tomer side in a Smart Grid network. It is con-
tained within the user's home and connects all 
appliances and electrical vehicles to a common 
network. It contains other solutions, such as 
software applications to manage and control 
these devices, as well as renewable energy re-
sources and energy storage equipment. 
A previous work [1] presented HAN architec-
ture and its mandatory and essential compo-
nents. It introduced the possible and well-used 
communication technologies and standards for 
each section. This architecture brings a lot of 
benefits to the customers. They can take advan-
tage of the services provided by utilities. The 
most important one is the service DR (Demand 
Response). It is responsible for reducing the 
peak loads, when the network is under stress, by 
minimizing the energy consumption in response 
to an increase in the price of electricity [6]. So, 
each customer may participate in one or more 
DR programs. The raisons behind encouraging 
customers to participate in such programs are 
different. They help them reduce the bills price, 
avoid blackouts and increase their sense of re-
sponsibility. DR programs are classified into 
two major categories, namely Incentive-based 

Figure 1. A structural vision of an SDL model [10].
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but it generates C sources for the problem. This 
technique allows improving performance and 
saving memory [18]. SPIN also offers a large 
number of options to further speed up the mod-
el checking process.
In order to use SPIN, the SDL model needs to 
be translated into Promela. This transforma-
tion is not as trivial as it seems. Many methods 
found in literature have addressed this problem-
atic. The most popular method is the use of an 
intermediate format IF [29]. Firstly, the model 
is translated into IF using sdl2if tool, then the 
Promela model is generated from the resulting 
model using if2pml tool. This technique lacks 
support of some important SDL features like 
the "save" operator and the Timer. To solve the 
"save" operator problem, the authors in [30] 
proposed an extension of if2pml to translate 
this operator from IF to Promela. The extension 
uses additional local queues to which the saved 
signals are sent. Also, the sdl2if tool works only 
with ObjectGeode (obsolete product) API and 
requires license file. It is not available for IBM 
Rational SDL Suite, which is the successor of 
ObjectGeode.
Another interesting contribution was intro-
duced in [31]. The authors presented their proj-
ect to directly generate Promela model from the 
SDL specification. This work resulted in the 
implementation of automated generation tool 
named sdl2pml [32]. The latter is, to the best 
of the authors' knowledge, the only tool that 
supports the translation of all SDL constructs. 
Unfortunately, this tool is not yet available as 
free/commercial product. 
In this paper, the adopted approach is based on 
the intermediate format IF. The motivation be-
hind this choice is to provide a common model 
between various languages adopting different 
description styles (e.g. SDL, UML). The mod-
el will be translated manually into IF language 
and then the if2pml tool will be used to gener-
ate Promela script.

3. Generation of the Promela Model

Generally, after creating an SDL model of a 
system and validating it via reachability anal-
ysis techniques, a designer is interested in the 
verification of specific proprieties. One of the 

well-known methods is the model checking. 
This paper aims to check exhaustively and au-
tomatically whether the HAN model meets giv-
en specifications. However, modifications must 
be made to this model to be compatible, after 
transformation, with SPIN. In fact, SPIN re-
quires a complete system, with no interactions 
with the environment. This section describes 
the required modifications in order to create a 
closed model from the model described above 
and the transformation process.

3.1. A Closed Model for HAN

In order to achieve a closed architecture, the 
specification is supplemented with a model of 
its environment as shown in Figure 3. This block 
contains three processes which represent the 
interaction of customer, utility and renewable 
energy sources with the system. Figure 4 rep-
resents the finite state machine of one of these 
processes. 

The environment block defines a set of sig-
nals to execute all possible paths which can be 
checked during the verification step. The stan-
dard SDL key word "ANY" is used to create all 
the decisions in this process. In fact, in order to 
run the model checking process in an automat-
ed way, the user intervention must be eliminat-
ed. The model must not contain any decision 
statements that need external intervention. All 
decisions are nondeterministic in this block. 
Also, the "environment" is not limited by the 
order in which the signals will be sent.

On the other hand, all decisions described by 
informal text were replaced by nondetermin-
istic decision statements. The reserved word 
"ANY", again, is used to transform a simple de-
cision to a nondeterministic decision. The rest 
of the model remains unchanged.

This new model was also validated using the 
three techniques described in [3]. All errors 
were detected and corrected. It should be not-
ed that this is only an example of one possible 
model for the block "environment". And if the 
"environment" block becomes more complex, 
the verification becomes complicated too.

ProB [17], SPIN [18]. They specified a single 
case study using each of those tools and eval-
uated the characteristics of the system in order 
to identify the most suitable model checker for 
the information systems. However, the checked 
properties represented only specific informa-
tion system properties. Another work [19] veri-
fied an algorithm for Automatic Train Supervi-
sion using ten model checkers, namely: UMC 
[20], SPIN, NuSMV, mCRL2 [21], CPN Tools 
[22], FDR4 [23], CADP, TLA+ [24], UPPAAL 
[25] and ProB. It highlighted the commonalities 
and differences among the modeling languages 
considered, and presented the impact of these 
languages on the model.
Therefore, the choice between the different 
types of model checkers is not an easy task. It 
depends on the system architecture, the proper-
ties to be verified and other system character-
istics. Generally, each modeling language can 
be translated (manually and/or automatically) 
into any verification language. However, only 
smaller pairs are in use [26]. The SDL/Promela 

is one of those pairs [26]. Since Promela is the 
input verification language of SPIN [27], this 
model checker is chosen in the verification step. 
The other model checkers could be used in this 
case study, but they are not the best choice.  For 
example, the transformation from SDL to inter-
mediate language SDLxta and then to "xta" lan-
guage used in UPPAAL [25] tool is a very com-
plex process [28]. Also, in the SMV language 
(used in NuSMV), all assignments, parameters 
or array indexes should be constant. So, speci-
fications may be longer than in Promela [12], 
because each case has to be explicitly written. 
The range verification time in SPIN compared 
to the ten other model checkers is reasonable 
[19]. This parameter represents the time needed 
to terminate the verification. It is expressed as 
a range because it actually depends on the spe-
cific design approach adopted, on the specific 
formulas being evaluated, and on the specific 
options used during the tool execution. On the 
other hand, and unlike many model checkers, 
SPIN does not perform the verification itself, 

Figure 2. The system view of the HAN SDL model.
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Figure 2. The system view of the HAN SDL model.



6 7S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

3.2. Promela Model

As mentioned before, the model is firstly trans-
lated into an intermediate format IF. This sub-
section explains the translation of some SDL 
features concerning the structure, the behavior 
and the data type.
IF was developed to sit between high-lev-
el specification languages, such as SDL and 
UML, and tool specific internal representa-
tions [29]. Thus, IF representations can be 
passed between the tools, and translated into 
other languages, for example, SDL specifica-
tions can be analyzed using SPIN as described 
in this paper. Another example is the UML, 
where the mapping is done in a way that all 
runtime entities (objects, call stacks, pending 
messages, etc.) are identifiable as a part of the 
IF model's state [33]. Moreover, translating 
high-level languages into IF may also allow 
extending the model with other features missed 
in the original language.
The structures of SDL and IF are different. In 
fact, an SDL model may contain blocks, pro-
cesses and services. Elseways, the IF models 
are flat and they are composed only of process-
es at one level. However, at the execution time, 
even an SDL model is composed of processes 
that react with each other. Thus, each SDL pro-
cess is translated into an equivalent IF process. 
The remote exported/imported variables de-
fined inside processes are declared only once at 
the IF system level. Thus, all other processes of 
the system can use them. Since the IF does not 
support the dynamic creation of process, only 
one instance of these processes is created. The 
dynamic creation will be added later, using the 
"run" operator in Promela.
In IF, there are two types of states: "stable" and 
"nostable". By default, all the SDL states are 
translated into "stable" states. The "nostable" 
type is used to model supplementary states 
added in order to divide a long transition into 
small transitions. In these states, the process 
blocks the others and continues to execute 
its code until it reaches a stable state. Figure 
5 shows an example of this decomposition. 
The transition from the state waitOK to the 
state ready is long. So, two "nostable" states, 
namely, q1_3 and q1_4, were added. Now, in 
each sub-transition there is only a simple set 
of actions (receive signal, condition test, send 

signal). Generally, "nostable" states are added 
before every condition test.
An IF transition represents the minimal path be-
tween two IF states (either stable or nostable), 
and contains all triggers and actions defined on 
that path in the same order. It has higher prior-
ity than time progress; so, by default, its type 
is "eager". The simple input signals are direct-
ly represented with an asynchronous IF input. 
For other types (e.g. spontaneous, continuous, 
priority), other auxiliary parameters are need-
ed, such as PID, to translate them. For instance, 
the NONE signal is translated by an assigning 
the PID of the current process to the sender. No 
input part is generated in this case i.e. the input 
part of the corresponding IF transition is empty.

Figure 5. Nostable state example.

The SDL channels are translated using IF buf-
fers. Each process has a unique input buffer 
through which messages are received. A buffer 
is defined by name, the serving discipline (i.e. 
queue, stack, set, and bag) and the set of signals 
that can be transported. The buffers are global 
and are used to transport signals between the 

Figure 3. SDL model of HAN and its environment.

Figure 4. Process UTILITYproc.



6 7S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

3.2. Promela Model

As mentioned before, the model is firstly trans-
lated into an intermediate format IF. This sub-
section explains the translation of some SDL 
features concerning the structure, the behavior 
and the data type.
IF was developed to sit between high-lev-
el specification languages, such as SDL and 
UML, and tool specific internal representa-
tions [29]. Thus, IF representations can be 
passed between the tools, and translated into 
other languages, for example, SDL specifica-
tions can be analyzed using SPIN as described 
in this paper. Another example is the UML, 
where the mapping is done in a way that all 
runtime entities (objects, call stacks, pending 
messages, etc.) are identifiable as a part of the 
IF model's state [33]. Moreover, translating 
high-level languages into IF may also allow 
extending the model with other features missed 
in the original language.
The structures of SDL and IF are different. In 
fact, an SDL model may contain blocks, pro-
cesses and services. Elseways, the IF models 
are flat and they are composed only of process-
es at one level. However, at the execution time, 
even an SDL model is composed of processes 
that react with each other. Thus, each SDL pro-
cess is translated into an equivalent IF process. 
The remote exported/imported variables de-
fined inside processes are declared only once at 
the IF system level. Thus, all other processes of 
the system can use them. Since the IF does not 
support the dynamic creation of process, only 
one instance of these processes is created. The 
dynamic creation will be added later, using the 
"run" operator in Promela.
In IF, there are two types of states: "stable" and 
"nostable". By default, all the SDL states are 
translated into "stable" states. The "nostable" 
type is used to model supplementary states 
added in order to divide a long transition into 
small transitions. In these states, the process 
blocks the others and continues to execute 
its code until it reaches a stable state. Figure 
5 shows an example of this decomposition. 
The transition from the state waitOK to the 
state ready is long. So, two "nostable" states, 
namely, q1_3 and q1_4, were added. Now, in 
each sub-transition there is only a simple set 
of actions (receive signal, condition test, send 

signal). Generally, "nostable" states are added 
before every condition test.
An IF transition represents the minimal path be-
tween two IF states (either stable or nostable), 
and contains all triggers and actions defined on 
that path in the same order. It has higher prior-
ity than time progress; so, by default, its type 
is "eager". The simple input signals are direct-
ly represented with an asynchronous IF input. 
For other types (e.g. spontaneous, continuous, 
priority), other auxiliary parameters are need-
ed, such as PID, to translate them. For instance, 
the NONE signal is translated by an assigning 
the PID of the current process to the sender. No 
input part is generated in this case i.e. the input 
part of the corresponding IF transition is empty.

Figure 5. Nostable state example.

The SDL channels are translated using IF buf-
fers. Each process has a unique input buffer 
through which messages are received. A buffer 
is defined by name, the serving discipline (i.e. 
queue, stack, set, and bag) and the set of signals 
that can be transported. The buffers are global 
and are used to transport signals between the 

Figure 3. SDL model of HAN and its environment.

Figure 4. Process UTILITYproc.



8 9S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

sion of if2pml that uses additional local queues 
to which the saved signals are sent. In this work, 
this algorithm is not implemented, however, the 
XSpin (graphical interface for SPIN) options 
are used to simulate the save operator during 
the verification step. The "Queue" options al-
low either saving the new, not used messages 
or discarding them. So, in this case study, the 
choice of saving them is adopted to simulate the 
SDL save operator.
While Promela has no notion of time, the new 
version DTPromela [27] is used in this case 
study to describe real-time proprieties of the 
HAN model. In DTPromela, a new data type 
called timer is introduced. It is used to declare 
the variables that represent discrete-time count-
down timers, and then to model quantitative as-
pects of SDL timers. By default, the if2pml tool 
translates SDL models into this language. The 
new definition of a timer is added to the system 
as a Promela macro, contained within a header 
file. The DTPromela model is then verified us-
ing the SPIN extension: DTSPIN.
To illustrate the transformation from SDL to 
Promela (or DTPromela), Table 2 gives an ex-
ample using the process "AMIint". An IF pro-
cess with the same name as the original process 
was defined. It was associated with a default 
input queue "q_AMIint". Because the "Sender" 
variable is missed in IF, additional variable of 
type PID was defined to represent it explicitly.

4. Verification by Model Checking

The model checking is the most powerful and 
successful approach to verify requirements and 

processes. Thus, each process can specify to 
which buffer a signal should be written or from 
which buffer a signal should be read.
On the other hand, each predefined data type 
used in SDL model has its equivalent in IF. The 
abstract data types are also translated into an 
IF ADT with the same signature. However, if 
the latter contains only predefined or implicit 
operators, it is translated into an enumerated 
type. Table 1 gives an example of the transla-
tion features. For the translation of channel C3, 
only the definition of one buffer is given. Nor-
mally, the equivalent representation contains 
five buffers, because there are two processes in 
the block Appliance, and three processes in the 
block HEMS. However, for the sake of space 
and simplicity, only one buffer is represented.
The second step is the generation of Promela 
model. Promela is a verification modeling lan-
guage introduced by Gerard J. Holzmann [34]. 
The behavior of a system described in Promela 
is presented inside the processes. There is no 
notion of block, thus there is only one level, i.e. 
the process level. This language allows the dy-
namic creation of concurrent processes to mod-

el, for example, distributed systems. Data are 
exchanged between processes through message 
channels. They can be defined to be synchro-
nous (i.e., rendezvous), or asynchronous (i.e., 
buffered). Promela models can be analyzed 
with the SPIN model checker, to verify that the 
modeled system produces the desired behavior, 
as shown in the rest of this paper.
Generation of the Promela model from IF 
model is achieved with the if2pml tool. Thus, 
the Promela model is generated automatically 
from the IF script created earlier. However, as 
mentioned before, one change is made to this 
model. The dynamic creation of processes, us-
ing the "run" operator, is added because IF does 
not support it. However, the if2pml has made 
another change. In fact, Promela lacks the pre-
defined type "real". So, the tool changes all the 
real variables into natural variables. This modi-
fication does not influence the model behavior. 
Indeed, the variables used (e.g. price, charge) 
could be either real or natural.
Another aspect missed in Promela is the save 
operator. This problem has been investigated by 
researchers in [4]. They implemented an exten-

Table 1. SDL to IF translation features example

SDL representation IF representation

NEWTYPE AppType 
LITERALS CTRL, CRITICAL, NULL 
ENDNEWTYPE;

AppType = enum CTRL, CRITICAL, NULL;

SYNTYPE  
DevPriority = Integer CONSTANTS 0:2  
ENDSYNTYPE;

DevPriority =  range 0..2

NEWTYPE  
AppArray ARRAY(AppID, PID)  
ENDNEWTYPE;

AppArray = array[0..100] of pid;

SIGNAL 
PowerOFF(AppID);

SIGNAL 
PowerOFF(pid);

channel C3 
from Appliance 
to HEMS 
with  
Unregister, DeleteDev, MeteringData;  
from HEMS 
to Appliance 
with  
RegisterOK, Shutdown;  
Endchannel C3;

buffer 
q_SmartPlug: queue of 
PowerON, 
  RegisterOK, 
  DevStopped, 
  PowerOFF, 
  Shutdown;

state DecisionState; 
input NONE;

From DecisionState : eager 
do sender := DemandResponse

Table 2. SDL to Promela translation example.

SDL representation:
PROCESS AMIint (1, 1); 
DCL 
     SumCons Consumption, 
     HANCons Consumption := 0; 
START; 
NEXTSTATE ready; 
STATE ready; 
INPUT MeteringSum(SumCons); 
TASK HANCons := SumCons; 
NEXTSTATE -; 
INPUT getMetering; 
OUTPUT SendMetering(HANCons); 
NEXTSTATE -; 
ENDSTATE; 
ENDPROCESS AMIint;

IF representation:
Process AMIint : buffer q_AMIint; 
var 
     SumCons : Consumption; 
     HANCons(0) : Consumption; 
     Sender : pid; 
state 
     start : init; 
     ready; 
transition 
from start : eager 
to ready; 
from ready : eager 
input MeteringSum(sender, SumCons) from 
q_AMIint 
do HANCons := SumCons 
to ready; 
from ready : eager 
input getMetering(sender) from q_AMIint 
do output SendMetering(AMIint, HANCons) to 
q_UTILITYproc 
to ready;
 

Promela representation:
proctypeAMIint()
{
 Consumption SumCons;
 Consumption HANCons = 0;
 Byte Sender;

start:
 atomic{
 if
 :: goto  ready;
 fi;
 }
ready:
 atomic{
 if

 :: q_AMIint?MeteringSum(sender,Sum-
Cons)->

HANCons = SumCons->
goto ready;

 :: q_AMIint?getMetering(sender,_)->
q_UTILITYproc!SendMetering(_
pid, HANCons)->
goto ready;

 fi;
 }
};
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are used to simulate the save operator during 
the verification step. The "Queue" options al-
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While Promela has no notion of time, the new 
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translates SDL models into this language. The 
new definition of a timer is added to the system 
as a Promela macro, contained within a header 
file. The DTPromela model is then verified us-
ing the SPIN extension: DTSPIN.
To illustrate the transformation from SDL to 
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ample using the process "AMIint". An IF pro-
cess with the same name as the original process 
was defined. It was associated with a default 
input queue "q_AMIint". Because the "Sender" 
variable is missed in IF, additional variable of 
type PID was defined to represent it explicitly.
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mally, the equivalent representation contains 
five buffers, because there are two processes in 
the block Appliance, and three processes in the 
block HEMS. However, for the sake of space 
and simplicity, only one buffer is represented.
The second step is the generation of Promela 
model. Promela is a verification modeling lan-
guage introduced by Gerard J. Holzmann [34]. 
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is presented inside the processes. There is no 
notion of block, thus there is only one level, i.e. 
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as shown in the rest of this paper.
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model is achieved with the if2pml tool. Thus, 
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from the IF script created earlier. However, as 
mentioned before, one change is made to this 
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ing the "run" operator, is added because IF does 
not support it. However, the if2pml has made 
another change. In fact, Promela lacks the pre-
defined type "real". So, the tool changes all the 
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operator. This problem has been investigated by 
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As mentioned earlier, after gaining basic con-
fidence that the model has the intended propri-
eties, verification was performed by generating 
an optimized verifier. The latter was used to exe-
cute three main search modes: exhaustive verifi-
cation, bitstate approximation, or hash-compact 
[18]-[34]. Exhaustive verification can deliver 
the strongest possible verification result; howev-
er, the available memory in the machine did not 
allow completing the run because of the large 
state space size. Thus, the bitstate was chosen 
to identify correctness violations if they existed. 
This technique was used with the default Par-
tial Order Reduction (POR) [36] to reduce the 
state space sufficiently. In fact, the idea behind 
the POR is to reduce the size of the state space 
that needs to be searched. It exploits the com-
mutativity of concurrently executed transitions, 
which results in the same state when executed 
in different orders. This method constructs a re-
duced state graph. The full state graph, which 
may be too big to fit in memory, is never con-
structed. The implementation of this reduction 
method is out of the scope of this paper. Howev-
er, justification of the reduction method shows 
that the behaviors that are not present do not add 
any information [36]. The hash-compact could 
be used if the verifier still runs out of memory 
before it can complete the search with bitstate 
exploration. This is not the case for the model.

By default, XSpin searches for safety properties 
only (i.e. under certain conditions, something 
never occurs), however, when changing the tool 
options, liveness properties can be checked as 
well (i.e. under certain conditions, something 
will ultimately occur). The safety properties as-
sert that the system always stays within some 
allowed region [37]. Thus, the observed behav-
ior always stays within some allowed set of fi-
nite behaviors in which nothing ''bad'' happens. 
On the other hand, liveness properties are de-
fined as the set of properties the system must 
satisfy. So, it defines the good things that cap-
ture the required functionality of a system [37]. 
For example, to prove the absence of assertion 
violations and deadlock states is a safety prop-
erty; and to prove the absence of non-progress 
cycles is a liveness property.

This general verification was terminated without 
detecting any violations. Next subsection de-
scribes the verification using the LTL properties.

4.2. DR Service Properties and LTL 
Formulas

After general verification of the model, the next 
step is verification of desirable properties writ-
ten in LTL [38]. In LTL, the properties of a run 
are formalized, unambiguously and concisely, 
with the help of a small number of special tem-
poral operators [39]-[40]-[41]. Thus, an LTL 
property is a temporal logic formula that de-
scribes a set of infinite sequences for which it 
is true (e.g., a condition will eventually be true, 
a condition will be true until another fact be-
comes true, etc).

This subsection presents some of these prop-
erties in relation to the DR Service. They rep-
resent requirements captured from the model 
specification. Nine temporal formulae were 
defined to help building the desired properties:

 ● p1 (Store >= 0)
 ● p2 (Battery >= 0)
 ● p3 (EVexist == false)
 ● p4 (PlugEV@ready)
 ● p5 (SmartPlug@ready)
 ● p6 (q_DemandResponse?[RTP])
 ● p7 (DemandResponse@DecisionStat)
 ● p8 (q_DRint?[Bid])
 ● p9 (q_DemandResponse?[Bid] || q_UTIL-

ITYproc?[AcceptBid])

Property 1: [] p1
The variable Store refers to the amount of ener-
gy generated by the renewable energy sources 
and stored in the customer house. Several con-
current processes influence this variable either 
by increasing or decreasing its value. This val-
ue must always be positive.
Property 2: [] p2
The customer can also save energy stored in an 
electrical vehicle. So, same as the first property, 
the Battery variable, which represents the elec-
trical vehicle charge, must not be negative.
The first and the second properties are safety 
properties. They represent unwanted situations 
(i.e. negative value for variable) that should 
never occur. Furthermore, the above safety 
properties are of a particular kind; they are in-

correctness of a system hard to build. It brings a 
lot of benefits to users over other methods such 
as testing and simulation. In fact, testing and 
simulation cannot cover all the possible cas-
es, scenarios and behaviors; and generally it is 
impossible to build the system under consider-
ation to make these tests (e.g. a complex sys-
tem like Smart Grid). So, these techniques are 
not exhaustive, and the problem or the failure 
cases may be among those not tested or simu-
lated scenarios. Contrariwise, the model check-
ing technique allows verifying the whole sys-
tem automatically. The verification terminates 
normally or produces a counterexample in case 
of failure. This counterexample details reasons 
why the model does not satisfy the specifica-
tion. The source of errors is detected by study-
ing it. The idea behind the model checking is to 
ensure that a given model satisfies enough sys-
tem properties; so that a designer can increase 
the confidence in the correctness of the model.

Once the DTPromela model was generated, the 
verification and validation step using DTSPIN 
(version 4.1.1) was used to check the correct-
ness of the model. DTSPIN was installed un-
der Solaris machine, with 5 GB of memory. 

This verification was performed with the help 
of a graphical interface named XSpin (version 
4.1.1) [34]. The XSpin was used, even if it is no 
longer supported, because it is the only graph-
ical interface compatible with the DTSPIN. 
The interface was developed in tcl/tk. It is in-
dependent from DTSPIN itself, but it executes 
DTSPIN command in background and provides 
graphical displays of the message flows, data 
values, and other options. Figure 6 illustrates 
the basic structure of SPIN (and DTSPIN as 
well) [34].

Given a specification written in Promela, SPIN 
is used, firstly to find and fix syntax errors. 
After that, interactive or random simulation is 
performed to gain the basic confidence that the 
model meets the intended proprieties. Then, an 
optimized verifier called pan [35] is generated. 
This verifier is compiled, with possible com-
pile-time choices for the types of reduction 
algorithms to be used, and executed to detect 
counterexamples. In case the counterexamples 
are detected, a trail file is generated. The guid-
ed simulation is then used to detect the source 
of violation. The verification can be also per-
formed with the linear temporal logic (LTL). 
Correctness claims are generated from a logic 
formula in order to verify specific properties of 
the system.

4.1. General Verification 

This subsection describes "general" verifica-
tion, which means launching simulations and 
verifications without fixing specified proper-
ties to be checked. As a first step to verify the 
model, random simulation was launched. The 
latter was used to debug a model. Some assert 
statements (e.g. to check that a variable is nev-
er taking a negative value) were defined to be 
checked. It allows also tracking the channels 
buffer, the value of global and local variables. 
Other than assert statements, no correctness 
requirements were checked during simulation 
runs. All nondeterministic decisions were re-
solved randomly. The simulation was repeated 
with different and random values of "Seed" to 
obtain different types of runs. The interactive 
simulation was not launched because the sys-
tem is complex and it consists of a huge number 
of states.Figure 6. The structure of SPIN [34].
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[18]-[34]. Exhaustive verification can deliver 
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structed. The implementation of this reduction 
method is out of the scope of this paper. Howev-
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that the behaviors that are not present do not add 
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be used if the verifier still runs out of memory 
before it can complete the search with bitstate 
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never occurs), however, when changing the tool 
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well (i.e. under certain conditions, something 
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ITYproc?[AcceptBid])

Property 1: [] p1
The variable Store refers to the amount of ener-
gy generated by the renewable energy sources 
and stored in the customer house. Several con-
current processes influence this variable either 
by increasing or decreasing its value. This val-
ue must always be positive.
Property 2: [] p2
The customer can also save energy stored in an 
electrical vehicle. So, same as the first property, 
the Battery variable, which represents the elec-
trical vehicle charge, must not be negative.
The first and the second properties are safety 
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never occur. Furthermore, the above safety 
properties are of a particular kind; they are in-

correctness of a system hard to build. It brings a 
lot of benefits to users over other methods such 
as testing and simulation. In fact, testing and 
simulation cannot cover all the possible cas-
es, scenarios and behaviors; and generally it is 
impossible to build the system under consider-
ation to make these tests (e.g. a complex sys-
tem like Smart Grid). So, these techniques are 
not exhaustive, and the problem or the failure 
cases may be among those not tested or simu-
lated scenarios. Contrariwise, the model check-
ing technique allows verifying the whole sys-
tem automatically. The verification terminates 
normally or produces a counterexample in case 
of failure. This counterexample details reasons 
why the model does not satisfy the specifica-
tion. The source of errors is detected by study-
ing it. The idea behind the model checking is to 
ensure that a given model satisfies enough sys-
tem properties; so that a designer can increase 
the confidence in the correctness of the model.

Once the DTPromela model was generated, the 
verification and validation step using DTSPIN 
(version 4.1.1) was used to check the correct-
ness of the model. DTSPIN was installed un-
der Solaris machine, with 5 GB of memory. 

This verification was performed with the help 
of a graphical interface named XSpin (version 
4.1.1) [34]. The XSpin was used, even if it is no 
longer supported, because it is the only graph-
ical interface compatible with the DTSPIN. 
The interface was developed in tcl/tk. It is in-
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graphical displays of the message flows, data 
values, and other options. Figure 6 illustrates 
the basic structure of SPIN (and DTSPIN as 
well) [34].

Given a specification written in Promela, SPIN 
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After that, interactive or random simulation is 
performed to gain the basic confidence that the 
model meets the intended proprieties. Then, an 
optimized verifier called pan [35] is generated. 
This verifier is compiled, with possible com-
pile-time choices for the types of reduction 
algorithms to be used, and executed to detect 
counterexamples. In case the counterexamples 
are detected, a trail file is generated. The guid-
ed simulation is then used to detect the source 
of violation. The verification can be also per-
formed with the linear temporal logic (LTL). 
Correctness claims are generated from a logic 
formula in order to verify specific properties of 
the system.

4.1. General Verification 

This subsection describes "general" verifica-
tion, which means launching simulations and 
verifications without fixing specified proper-
ties to be checked. As a first step to verify the 
model, random simulation was launched. The 
latter was used to debug a model. Some assert 
statements (e.g. to check that a variable is nev-
er taking a negative value) were defined to be 
checked. It allows also tracking the channels 
buffer, the value of global and local variables. 
Other than assert statements, no correctness 
requirements were checked during simulation 
runs. All nondeterministic decisions were re-
solved randomly. The simulation was repeated 
with different and random values of "Seed" to 
obtain different types of runs. The interactive 
simulation was not launched because the sys-
tem is complex and it consists of a huge number 
of states.Figure 6. The structure of SPIN [34].
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variants. In fact, invariants are the properties 
given by a condition and require that this latter 
holds for all reachable states.
Property 3: [] <>p5
The SmartPlug process waits for the devices 
to be turned on. After that, it registers them 
in the data base. The process must not hang at 
the registration state for a long time because 
other devices may be connected to the system 
at this time. This property states that if p5 (i.e. 
SmartPlug is at the state ready) happens to be 
false at any given point in a run, it is always 
guaranteed to become true again if the run is 
continued.
Property 4: [] <> p4
This property is same as the previous one, but 
for an electrical vehicle. It ensures that PlugEV 
eventually always returns to the state ready.
The third and fourth properties are liveness 
type. They define the positive behaviors indi-
cating the required functionality of the system.
Property 5: [] (p3 -><> p4)
The electrical vehicle EV connected to the net-
work may be unplugged by the customer at any 
time. The connection of EV with the network is 
represented by a global Boolean EVexist. The 
latter can be modified by several processes. It 
must be guaranteed that once the variable value 
become false, the process PlugEV stops all ac-
tivities and returns to the ready state.
Property 6: [] (p6 -><> p7)
In Time-based Programs (RTP) the electricity 
price changes for different periods. It depends 
on customers' choice to decrease or change 
their consumption in response to price chang-
es during a period. When a customer receives 
an RTP signal, the process DemandResponse 
chooses the devices to be turned off, if any, and 
reaches the decision state. The algorithm used 
in this process, and described in a previous 
work [3], is composed of many loops. It must 
be guaranteed that the process can reach the de-
cision state at certain times.
Property 7: [] (p8 -><> p9)
In the Incentive-based Programs (Bid) the 
actions are initiated by the utility or the DR 
Service Provider. DR signals are sent to every 
customer participating in one of these pro-

grams, in order to motivate him/her to reduce 
their energy consumption. In exchange for this 
diminution, customers will benefit from an in-
centive payment, bill creditor contractual ar-
rangements between them and the electricity 
suppliers. Generally, DR signals are sent in 
the peak hours. They may either be voluntary 
demand reduction requests or mandatory com-
mands. When a customer receives one of these 
signals, the ESI interface must either refuse the 
request, if the offer does not meet the user's 
need, or accept it and send the bid to HEMS to 
check the possibility of selling energy to util-
ity.
The last three properties are also liveness prop-
erties. However, they are of special type called 
response. When verifying a liveness property 
with DTSPIN, it is important to switch to weak 
fairness [42]. This means that every process 
that is almost always enabled should be execut-
ed infinitely often. In other words, it expresses 
that under certain conditions, something will 
(or will not) occur infinitely often. DTSPIN ac-
cepts only weak fairness (which is sufficient in 
this work).
It should be noted that XSpin generates a never 
claim from each property before to be verified. 
All the seven properties are desired, so, they are 
negated before generating the never claim. For 
instance, the last property [] (p8 -><>p9) is ne-
gated and then converted to the never claim as 
follows:

never {    /* !([] (p8 -><>  p9)) */
T0_init:
 if
 :: (! ((p9)) && (p8)) ->goto accept_S4
 :: (1) ->goto T0_init
 fi;
accept_S4:
 if
 :: (! ((p9))) ->goto accept_S4
 fi;
}

The result of the verification has showed that 
the model is too complex. In fact, this is clear 
from Table 3, which shows the number of 
states searched while verifying the properties. 
It presents the states stored (i.e. total num-
ber of unique global system states stored in 
the state space), and states matched (i.e. how 

many times the search returns to a previously 
visited state in the search tree).
During the verification, DTSPIN detected un-
reached states in the processes, as shown in 
Table 4. For each process, the number of un-
reached states is indicated between brackets. 
Generally, in a full state space search, the un-
reached states indicate a dead code (i.e. tran-
sitions are unreachable). However, this is not 
the case here. In fact, the search depth was set 
to 10000, which was imposed by the available 
memory in the operating system (i.e. 5 GB). If 
a higher value was used, pan verifier got out of 
the memory. Despite not detecting any viola-
tion, this is a limitation of this verification.
Verification with DTSPIN took several hours 
to complete, when all available memory was 
used. This problem is due to dynamic creation 
of processes. In fact, each time a device is off, 
it can be turned on by the user. Thus, a new 
process with new PID is created. In order to 
fix this, the number of "PowerOFF" signal 
sent in the system was limited. The same thing 
was done with the EV, so only one vehicle was 
plugged at a time. This ensures that the pro-
cesses will be created and ended only once. 
It is important to note here that, unlike SDL, 
Promela distinguishes between the termina-
tion of process and the end of its execution. 
A process terminates (i.e. releases the resourc-
es allocated to it) when all younger processes 
have terminated first. It is impossible to force 
a process to terminate because it depends on 
other processes. However, in this verification, 
the process was forced to end by making it 

reach the end bracket (i.e. goto LABEL). The 
process may be not terminating, but it no lon-
ger has any interaction with others. 
After the modification, verification was run 
again, with a search depth of 1000000. This 
time it finished in six hours (in average) with-
out detecting any violations, but the pan was 
again out of the memory. Thus, to be sure that 
the model is free of errors, the stack cycling 
method [34] is enabled. This method is useful 
for verifications that require a very large depth 
limit, which is the case in this work. When the 
stack cycling is enabled, only a small fraction 
of the stack is kept in the memory, while the 
unused portions of the search stack are stored 
on the disk. With this method, the pan did not 
run out of memory. When this option was used 
with the first LTL property, the verification took 
more than 48 hours, without detecting any vi-
olation. The problem of the verification time 
is due to the process termination as mentioned 
before.

Table 4. Unreached states.

Property 1 2 3 4 5 6 7

__Timers (5) 1 1 1 1 1 1 1

SmartPlug (94) 3 3 4 24 4 4 3

Device (37) 4 4 9 13 9 5 4

DeviceDB (30) 2 2 5 7 5 4 2

DemandResponse (178) 19 19 29 32 29 27 34

EnergyUse (59) 9 9 9 9 9 9 9

AMIint (14) 1 1 1 1 1 1 1

DRint (79) 4 4 3 3 3 4 4

Metering (12) 2 2 2 2 2 2 2

SetAndDisplay (52) 3 3 5 4 5 3 3

PlugEV (112) 4 4 29 13 29 10 7

EV (101) 17 17 33 27 33 27 21

CUSTOMERproc (197) 1 1 1 1 1 1 1

ENVproc (24) 1 1 1 1 1 1 1

UTILITYproc (74) 1 1 1 1 1 1 1

Table 3. Number of states explored by DTSPIN.

Property States stored States matched

1 4.84004e+07 4.39905e+08

2 4.84004e+07 4.39905e+08

3 4.82335e+07 3.60119e+08

4 4.81368e+07 3.53796e+08

5 4.82335e+07 3.60119e+08

6 4.83146e+07 4.4187e+08

7 4.84947e+07 4.06158e+08
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variants. In fact, invariants are the properties 
given by a condition and require that this latter 
holds for all reachable states.
Property 3: [] <>p5
The SmartPlug process waits for the devices 
to be turned on. After that, it registers them 
in the data base. The process must not hang at 
the registration state for a long time because 
other devices may be connected to the system 
at this time. This property states that if p5 (i.e. 
SmartPlug is at the state ready) happens to be 
false at any given point in a run, it is always 
guaranteed to become true again if the run is 
continued.
Property 4: [] <> p4
This property is same as the previous one, but 
for an electrical vehicle. It ensures that PlugEV 
eventually always returns to the state ready.
The third and fourth properties are liveness 
type. They define the positive behaviors indi-
cating the required functionality of the system.
Property 5: [] (p3 -><> p4)
The electrical vehicle EV connected to the net-
work may be unplugged by the customer at any 
time. The connection of EV with the network is 
represented by a global Boolean EVexist. The 
latter can be modified by several processes. It 
must be guaranteed that once the variable value 
become false, the process PlugEV stops all ac-
tivities and returns to the ready state.
Property 6: [] (p6 -><> p7)
In Time-based Programs (RTP) the electricity 
price changes for different periods. It depends 
on customers' choice to decrease or change 
their consumption in response to price chang-
es during a period. When a customer receives 
an RTP signal, the process DemandResponse 
chooses the devices to be turned off, if any, and 
reaches the decision state. The algorithm used 
in this process, and described in a previous 
work [3], is composed of many loops. It must 
be guaranteed that the process can reach the de-
cision state at certain times.
Property 7: [] (p8 -><> p9)
In the Incentive-based Programs (Bid) the 
actions are initiated by the utility or the DR 
Service Provider. DR signals are sent to every 
customer participating in one of these pro-

grams, in order to motivate him/her to reduce 
their energy consumption. In exchange for this 
diminution, customers will benefit from an in-
centive payment, bill creditor contractual ar-
rangements between them and the electricity 
suppliers. Generally, DR signals are sent in 
the peak hours. They may either be voluntary 
demand reduction requests or mandatory com-
mands. When a customer receives one of these 
signals, the ESI interface must either refuse the 
request, if the offer does not meet the user's 
need, or accept it and send the bid to HEMS to 
check the possibility of selling energy to util-
ity.
The last three properties are also liveness prop-
erties. However, they are of special type called 
response. When verifying a liveness property 
with DTSPIN, it is important to switch to weak 
fairness [42]. This means that every process 
that is almost always enabled should be execut-
ed infinitely often. In other words, it expresses 
that under certain conditions, something will 
(or will not) occur infinitely often. DTSPIN ac-
cepts only weak fairness (which is sufficient in 
this work).
It should be noted that XSpin generates a never 
claim from each property before to be verified. 
All the seven properties are desired, so, they are 
negated before generating the never claim. For 
instance, the last property [] (p8 -><>p9) is ne-
gated and then converted to the never claim as 
follows:

never {    /* !([] (p8 -><>  p9)) */
T0_init:
 if
 :: (! ((p9)) && (p8)) ->goto accept_S4
 :: (1) ->goto T0_init
 fi;
accept_S4:
 if
 :: (! ((p9))) ->goto accept_S4
 fi;
}

The result of the verification has showed that 
the model is too complex. In fact, this is clear 
from Table 3, which shows the number of 
states searched while verifying the properties. 
It presents the states stored (i.e. total num-
ber of unique global system states stored in 
the state space), and states matched (i.e. how 

many times the search returns to a previously 
visited state in the search tree).
During the verification, DTSPIN detected un-
reached states in the processes, as shown in 
Table 4. For each process, the number of un-
reached states is indicated between brackets. 
Generally, in a full state space search, the un-
reached states indicate a dead code (i.e. tran-
sitions are unreachable). However, this is not 
the case here. In fact, the search depth was set 
to 10000, which was imposed by the available 
memory in the operating system (i.e. 5 GB). If 
a higher value was used, pan verifier got out of 
the memory. Despite not detecting any viola-
tion, this is a limitation of this verification.
Verification with DTSPIN took several hours 
to complete, when all available memory was 
used. This problem is due to dynamic creation 
of processes. In fact, each time a device is off, 
it can be turned on by the user. Thus, a new 
process with new PID is created. In order to 
fix this, the number of "PowerOFF" signal 
sent in the system was limited. The same thing 
was done with the EV, so only one vehicle was 
plugged at a time. This ensures that the pro-
cesses will be created and ended only once. 
It is important to note here that, unlike SDL, 
Promela distinguishes between the termina-
tion of process and the end of its execution. 
A process terminates (i.e. releases the resourc-
es allocated to it) when all younger processes 
have terminated first. It is impossible to force 
a process to terminate because it depends on 
other processes. However, in this verification, 
the process was forced to end by making it 

reach the end bracket (i.e. goto LABEL). The 
process may be not terminating, but it no lon-
ger has any interaction with others. 
After the modification, verification was run 
again, with a search depth of 1000000. This 
time it finished in six hours (in average) with-
out detecting any violations, but the pan was 
again out of the memory. Thus, to be sure that 
the model is free of errors, the stack cycling 
method [34] is enabled. This method is useful 
for verifications that require a very large depth 
limit, which is the case in this work. When the 
stack cycling is enabled, only a small fraction 
of the stack is kept in the memory, while the 
unused portions of the search stack are stored 
on the disk. With this method, the pan did not 
run out of memory. When this option was used 
with the first LTL property, the verification took 
more than 48 hours, without detecting any vi-
olation. The problem of the verification time 
is due to the process termination as mentioned 
before.
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5. Conclusion

This paper presented a detailed description of 
a case study in order to validate an SDL HAN 
model. It proposed a semi-automatic way to 
generate the Promela model from the HAN 
SDL model detailed in Section 2. An interme-
diate format IF was used in order to facilitate 
this translation. This latter was described in two 
steps. The first one is manual mapping between 
SDL and IF. Translation features concerning the 
structure and behavior and the data type were 
defined. The "nostable" states were used to de-
compose each transition into simple actions, 
in order to reduce combinatorial explosion. 
However, even with this solution, the manual 
translation from the SDL model into IF is still a 
source of potential errors. It is difficult to guar-
antee that the IF model is free of such errors. 
The generated IF model was then transformed 
into DTPromela, using the if2pml tool. The lat-
ter supplements the model with a definition of 
Timer as a Promela macro.  Once the DTProme-
la model was prepared, the verification and val-
idation were performed. Desired properties to 
be checked were defined in LTL, and DTSPIN 
was used to check the correctness of the model. 
In the first place, pan got out of memory, even 
when limiting the number of processes created. 
However, to solve this problem, an algorithm 
built in SPIN was used to keep only a small 
fraction of the search stack in the memory, but 
the verification took several hours to finish.
Our future work aims to generate the C code 
from the HAN SDL specification. To do this, 
one of the SDL to C compiler from the IBM Ra-
tional SDL Suite will be used. The environment 
functions will be designed in order to connect 
the SDL system with its environment. The goal 
of this step is to build either a simulator/emula-
tor core or a plug-in for the HAN network.
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5. Conclusion

This paper presented a detailed description of 
a case study in order to validate an SDL HAN 
model. It proposed a semi-automatic way to 
generate the Promela model from the HAN 
SDL model detailed in Section 2. An interme-
diate format IF was used in order to facilitate 
this translation. This latter was described in two 
steps. The first one is manual mapping between 
SDL and IF. Translation features concerning the 
structure and behavior and the data type were 
defined. The "nostable" states were used to de-
compose each transition into simple actions, 
in order to reduce combinatorial explosion. 
However, even with this solution, the manual 
translation from the SDL model into IF is still a 
source of potential errors. It is difficult to guar-
antee that the IF model is free of such errors. 
The generated IF model was then transformed 
into DTPromela, using the if2pml tool. The lat-
ter supplements the model with a definition of 
Timer as a Promela macro.  Once the DTProme-
la model was prepared, the verification and val-
idation were performed. Desired properties to 
be checked were defined in LTL, and DTSPIN 
was used to check the correctness of the model. 
In the first place, pan got out of memory, even 
when limiting the number of processes created. 
However, to solve this problem, an algorithm 
built in SPIN was used to keep only a small 
fraction of the search stack in the memory, but 
the verification took several hours to finish.
Our future work aims to generate the C code 
from the HAN SDL specification. To do this, 
one of the SDL to C compiler from the IBM Ra-
tional SDL Suite will be used. The environment 
functions will be designed in order to connect 
the SDL system with its environment. The goal 
of this step is to build either a simulator/emula-
tor core or a plug-in for the HAN network.
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