
1CIT. Journal of Computing and Information Technology, Vol. 27, No. 2, June 2019, 1–16
doi: 10.20532/cit.2019.1004453

Soufiane Zahid1, Abdeslam En-Nouaary1 and Slimane Bah2

1Institut National des Postes et Télécommunication, Rabat, Morocco
2Ecole Mohammadia d'Ingénieurs, University Mohammed V, Rabat, Morocco

Practical Model Checking of a Home
Area Network System: Case Study

The integrated communication infrastructure is the
core of the Smart Grid architecture. Its two-way com-
munication and information flow provides this net-
work with all needed resources in order to control and
manage all connected components from the utility to
the customer side. This latter, named the Home Area
Network or HAN, is a dedicated network connecting
smart devices inside the customer home, and using
different solutions. In order to avoid problems and
anomalies along the process life cycle of developing
a new solution for HAN network, the modeling and
validation is one of the most powerful tools to achieve
this goal. This paper presents a practical case study
of such validation. It intends to validate a HAN SDL
model, described in a previous work, using model
checking techniques. It introduces a method to trans-
late the SDL model to a Promela model using an inter-
mediate format IF. After the generation of the Promela
model, verification is performed to ensure that some
functional properties are satisfied. The desired proper-
ties are defined in Linear Temporal Logic (LTL), and
DTSPIN (an extension of SPIN with discrete time)
model checker is used to verify the correctness of the
model.

ACM CCS (2012) Classification: Software and its
engineering → Software organization and properties
→ Software functional properties → Formal methods
→ Model checking
Networks → Network types → Home networks

Keywords: Smart Grid, Promela generation, Formal
modeling, V&V, SPIN, LTL

1. Introduction

Smart Grid is an intelligent power network
based on information and communication
technologies in order to monitor, optimize and
control all functional units from electricity gen-
eration to end-customers. Many internation-
al organizations and government institutions
around the world have been encouraging the
use of Smart Grids, and proposed their own
models and roadmaps for this. In particular, the
end-user side, or Home Area Network (HAN),
represents a challenge for these organizations
in order to help customers to reduce their ener-
gy consumption and cost, and to maximize the
transparency and reliability of the energy sup-
ply chain.
In a previous work [1], a communication in-
frastructure model for the Smart Grid was pre-
sented. This model is based on international
guidelines proposed by IEEE, ITU and NIST. It
focuses on the communication aspect of Smart
Grid and its services as defined by the U.S. De-
partment of Energy (DOE) [2]. This previous
work aimed to analyze, study and understand
the communication relationship between the
system components. It explained the function-
ing of essential units and the interaction between
them, and it proposed a set of possible technolo-
gies and standards for each link between the en-
tities. The analysis was divided into three parts
depending on the network studied: Home Area
Network (HAN), Neighborhood Area Network
(NAN) or Wide Area Network (WAN).

2 3S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

 ● IHD: or In-Home Display which is an in-
terface to control the appliances and show
statistics,

 ● HEMS: or Home Energy Management
System, it stores data about all the con-
nected appliances and PEV, and manages
the DR signals from the utility,

 ● SM: or Smart Meter, it displays the energy
consumption of the customer,

 ● ESI: or Energy Services Interface, which
plays the role of the gateway between the
home and the utility network.

The SDL system interacts with system envi-
ronment via 5 channels. Channels C1, C4 and
C9 represent the customer interaction with the
HAN; channel C11 is related to the energy gen-
erated by renewable sources; and the last one is
C14 which connects the HAN with the NAN.
This model was verified using the reachability
analysis techniques and the verification against
a given MSC (Message Sequence Charts) in
order to detect dead blocks and verify specific
scenarios, respectively [3]. However, no veri-
fication of the system behavior has been made
yet. In fact, the SDL language does not allow
such verification [4]. Therefore, this paper in-
tends to perform model checking [11] to verify
the model behavior. For this purpose, one of the
existing model checkers must be chosen.
Model checkers are the tools that help in this
type of formal verification. In literature, there
is a very large number of these tools. Authors in
[12] compared six model checkers, namely: Al-
loy [13], CADP [14], FDR2 [15], NuSMV [16],

Programs and Time-based Programs; each cate-
gory contains several programs [7].
This architecture was modeled using the SDL
language [8]. The latter is a standard language
for specification and description of reactive
and distributed systems. A model described in
SDL is composed of one or several blocks. Each
block contains either other blocks or processes.
The behavior of the processes is detailed using
Extended Finite State Machine (EFSM) [9]. Un-
like FSM that always performs a transition on a
given input from one state to another, an EFSM
however only performs a transition when a giv-
en set of conditions have been satisfied. It means
that the transition can be expressed by a set of
trigger conditions (e.g. if statements). If trigger
conditions are all satisfied, the transition is fired,
bringing the machine from the current state to
the next state and performing the specified data
operations. On the other hand, the procedure be-
havior is described by FSM. It is similar to the
one known from programming languages. It is
created when a procedure call is interpreted, and
it dies when it terminates. Signals in the system
are exchanged between blocks via channels, and
between processes via signal routes. Figure 1 re-
sumes this architecture [10].
The SDL model of the HAN architecture, cited
in a previous contribution [3], consists of six
blocks as shown in Figure 2. Each entity rep-
resents one of the HAN's components, namely:

 ● Appliance: refers to all devices inside the
home,

 ● PEV: or Plug-in Electrical Vehicle,

The HAN network is one of the most important
parts in Smart Grid. Many researches around the
world are focusing on this network and they are
trying to investigate its potential benefits for both
customers and providers. So, the analysis of the
previous architecture was started by modeling
the HAN network [3] using SDL (Specification
and Description Language). Then, the resulting
model was verified and validated by the reach-
ability analysis technique, with the support of
IBM Rational SDL suite, to detect dead blocks
and to ensure that all the branches are reachable.
The bit-state exploration was used to find un-
explored branches in the model. If they were
found, the model was corrected and the verifica-
tion was rerun until a model free of dead blocks
was obtained. However, at this stage, the prop-
erties of the system have not been verified yet.
In fact, the task of validating implementation of
the model is generally much harder. This paper
focuses only on some properties in relation with
the Demand Response service (which will be
described in the next section). These properties
will be detailed later. Unfortunately, the SDL
language does not allow such validation [4].
This work aims to perform the model checking
[5] step using an extension of one of the most
powerful tools in this field, which is SPIN mod-
el checker. It will be used to verify the desirable
temporal properties of the model, expressed as
LTL formulas, to evaluate the system require-
ments. The SDL model must be translated into
Promela (the input language for SPIN), how-
ever, this translation is not as trivial as it may
seem. There are some fundamental differences
between these two languages. In fact, SDL sup-
ports hierarchical structure, whereas Promela
is a flat language, with one level of hierarchy.
Also, some SDL data types and constructs can-
not be represented trivially in Promela, because
they usually include additional information in
relation with the system hierarchy.
This case study introduces one approach to
generate the Promela model from the SDL one,
using an intermediate format IF. The reason be-
hind this choice is that the transformation from
SDL to IF is intuitive and simple compared to
the translation from SDL to Promela directly.
Also, it provides a common model between
various languages adopting different descrip-
tion styles (e.g. SDL, UML). After the trans-
lation of the SDL model into Promela, verifi-

cation is done to ensure that some functional
properties, represented as LTL properties, are
satisfied. This approach can be applied to any
model developed in the SDL language.
The remainder of this paper is organized as fol-
lows. The next section presents the background
of the work. It gives a brief description of the
HAN architecture and its SDL modeling, then,
it introduces some works related to Prome-
la generation from SDL. Section 3 details the
translation approach via two big steps. The first
step highlights transformation of the SDL mod-
el into the intermediate format IF. It explains
some translation features concerning the struc-
ture, the behavior and the data. The second one
introduces the if2pml tool used to generate the
Promela model. Section 4 presents the model
checking of the generated model. It describes
some LTL properties to be checked and the re-
sult of this verification. The last section con-
cludes the paper and presents the future works.

2. Background

The Home Area Network or HAN is the cus-
tomer side in a Smart Grid network. It is con-
tained within the user's home and connects all
appliances and electrical vehicles to a common
network. It contains other solutions, such as
software applications to manage and control
these devices, as well as renewable energy re-
sources and energy storage equipment.
A previous work [1] presented HAN architec-
ture and its mandatory and essential compo-
nents. It introduced the possible and well-used
communication technologies and standards for
each section. This architecture brings a lot of
benefits to the customers. They can take advan-
tage of the services provided by utilities. The
most important one is the service DR (Demand
Response). It is responsible for reducing the
peak loads, when the network is under stress, by
minimizing the energy consumption in response
to an increase in the price of electricity [6]. So,
each customer may participate in one or more
DR programs. The raisons behind encouraging
customers to participate in such programs are
different. They help them reduce the bills price,
avoid blackouts and increase their sense of re-
sponsibility. DR programs are classified into
two major categories, namely Incentive-based

Figure 1. A structural vision of an SDL model [10].

2 3S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

 ● IHD: or In-Home Display which is an in-
terface to control the appliances and show
statistics,

 ● HEMS: or Home Energy Management
System, it stores data about all the con-
nected appliances and PEV, and manages
the DR signals from the utility,

 ● SM: or Smart Meter, it displays the energy
consumption of the customer,

 ● ESI: or Energy Services Interface, which
plays the role of the gateway between the
home and the utility network.

The SDL system interacts with system envi-
ronment via 5 channels. Channels C1, C4 and
C9 represent the customer interaction with the
HAN; channel C11 is related to the energy gen-
erated by renewable sources; and the last one is
C14 which connects the HAN with the NAN.
This model was verified using the reachability
analysis techniques and the verification against
a given MSC (Message Sequence Charts) in
order to detect dead blocks and verify specific
scenarios, respectively [3]. However, no veri-
fication of the system behavior has been made
yet. In fact, the SDL language does not allow
such verification [4]. Therefore, this paper in-
tends to perform model checking [11] to verify
the model behavior. For this purpose, one of the
existing model checkers must be chosen.
Model checkers are the tools that help in this
type of formal verification. In literature, there
is a very large number of these tools. Authors in
[12] compared six model checkers, namely: Al-
loy [13], CADP [14], FDR2 [15], NuSMV [16],

Programs and Time-based Programs; each cate-
gory contains several programs [7].
This architecture was modeled using the SDL
language [8]. The latter is a standard language
for specification and description of reactive
and distributed systems. A model described in
SDL is composed of one or several blocks. Each
block contains either other blocks or processes.
The behavior of the processes is detailed using
Extended Finite State Machine (EFSM) [9]. Un-
like FSM that always performs a transition on a
given input from one state to another, an EFSM
however only performs a transition when a giv-
en set of conditions have been satisfied. It means
that the transition can be expressed by a set of
trigger conditions (e.g. if statements). If trigger
conditions are all satisfied, the transition is fired,
bringing the machine from the current state to
the next state and performing the specified data
operations. On the other hand, the procedure be-
havior is described by FSM. It is similar to the
one known from programming languages. It is
created when a procedure call is interpreted, and
it dies when it terminates. Signals in the system
are exchanged between blocks via channels, and
between processes via signal routes. Figure 1 re-
sumes this architecture [10].
The SDL model of the HAN architecture, cited
in a previous contribution [3], consists of six
blocks as shown in Figure 2. Each entity rep-
resents one of the HAN's components, namely:

 ● Appliance: refers to all devices inside the
home,

 ● PEV: or Plug-in Electrical Vehicle,

The HAN network is one of the most important
parts in Smart Grid. Many researches around the
world are focusing on this network and they are
trying to investigate its potential benefits for both
customers and providers. So, the analysis of the
previous architecture was started by modeling
the HAN network [3] using SDL (Specification
and Description Language). Then, the resulting
model was verified and validated by the reach-
ability analysis technique, with the support of
IBM Rational SDL suite, to detect dead blocks
and to ensure that all the branches are reachable.
The bit-state exploration was used to find un-
explored branches in the model. If they were
found, the model was corrected and the verifica-
tion was rerun until a model free of dead blocks
was obtained. However, at this stage, the prop-
erties of the system have not been verified yet.
In fact, the task of validating implementation of
the model is generally much harder. This paper
focuses only on some properties in relation with
the Demand Response service (which will be
described in the next section). These properties
will be detailed later. Unfortunately, the SDL
language does not allow such validation [4].
This work aims to perform the model checking
[5] step using an extension of one of the most
powerful tools in this field, which is SPIN mod-
el checker. It will be used to verify the desirable
temporal properties of the model, expressed as
LTL formulas, to evaluate the system require-
ments. The SDL model must be translated into
Promela (the input language for SPIN), how-
ever, this translation is not as trivial as it may
seem. There are some fundamental differences
between these two languages. In fact, SDL sup-
ports hierarchical structure, whereas Promela
is a flat language, with one level of hierarchy.
Also, some SDL data types and constructs can-
not be represented trivially in Promela, because
they usually include additional information in
relation with the system hierarchy.
This case study introduces one approach to
generate the Promela model from the SDL one,
using an intermediate format IF. The reason be-
hind this choice is that the transformation from
SDL to IF is intuitive and simple compared to
the translation from SDL to Promela directly.
Also, it provides a common model between
various languages adopting different descrip-
tion styles (e.g. SDL, UML). After the trans-
lation of the SDL model into Promela, verifi-

cation is done to ensure that some functional
properties, represented as LTL properties, are
satisfied. This approach can be applied to any
model developed in the SDL language.
The remainder of this paper is organized as fol-
lows. The next section presents the background
of the work. It gives a brief description of the
HAN architecture and its SDL modeling, then,
it introduces some works related to Prome-
la generation from SDL. Section 3 details the
translation approach via two big steps. The first
step highlights transformation of the SDL mod-
el into the intermediate format IF. It explains
some translation features concerning the struc-
ture, the behavior and the data. The second one
introduces the if2pml tool used to generate the
Promela model. Section 4 presents the model
checking of the generated model. It describes
some LTL properties to be checked and the re-
sult of this verification. The last section con-
cludes the paper and presents the future works.

2. Background

The Home Area Network or HAN is the cus-
tomer side in a Smart Grid network. It is con-
tained within the user's home and connects all
appliances and electrical vehicles to a common
network. It contains other solutions, such as
software applications to manage and control
these devices, as well as renewable energy re-
sources and energy storage equipment.
A previous work [1] presented HAN architec-
ture and its mandatory and essential compo-
nents. It introduced the possible and well-used
communication technologies and standards for
each section. This architecture brings a lot of
benefits to the customers. They can take advan-
tage of the services provided by utilities. The
most important one is the service DR (Demand
Response). It is responsible for reducing the
peak loads, when the network is under stress, by
minimizing the energy consumption in response
to an increase in the price of electricity [6]. So,
each customer may participate in one or more
DR programs. The raisons behind encouraging
customers to participate in such programs are
different. They help them reduce the bills price,
avoid blackouts and increase their sense of re-
sponsibility. DR programs are classified into
two major categories, namely Incentive-based

Figure 1. A structural vision of an SDL model [10].

4 5S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

but it generates C sources for the problem. This
technique allows improving performance and
saving memory [18]. SPIN also offers a large
number of options to further speed up the mod-
el checking process.
In order to use SPIN, the SDL model needs to
be translated into Promela. This transforma-
tion is not as trivial as it seems. Many methods
found in literature have addressed this problem-
atic. The most popular method is the use of an
intermediate format IF [29]. Firstly, the model
is translated into IF using sdl2if tool, then the
Promela model is generated from the resulting
model using if2pml tool. This technique lacks
support of some important SDL features like
the "save" operator and the Timer. To solve the
"save" operator problem, the authors in [30]
proposed an extension of if2pml to translate
this operator from IF to Promela. The extension
uses additional local queues to which the saved
signals are sent. Also, the sdl2if tool works only
with ObjectGeode (obsolete product) API and
requires license file. It is not available for IBM
Rational SDL Suite, which is the successor of
ObjectGeode.
Another interesting contribution was intro-
duced in [31]. The authors presented their proj-
ect to directly generate Promela model from the
SDL specification. This work resulted in the
implementation of automated generation tool
named sdl2pml [32]. The latter is, to the best
of the authors' knowledge, the only tool that
supports the translation of all SDL constructs.
Unfortunately, this tool is not yet available as
free/commercial product.
In this paper, the adopted approach is based on
the intermediate format IF. The motivation be-
hind this choice is to provide a common model
between various languages adopting different
description styles (e.g. SDL, UML). The mod-
el will be translated manually into IF language
and then the if2pml tool will be used to gener-
ate Promela script.

3. Generation of the Promela Model

Generally, after creating an SDL model of a
system and validating it via reachability anal-
ysis techniques, a designer is interested in the
verification of specific proprieties. One of the

well-known methods is the model checking.
This paper aims to check exhaustively and au-
tomatically whether the HAN model meets giv-
en specifications. However, modifications must
be made to this model to be compatible, after
transformation, with SPIN. In fact, SPIN re-
quires a complete system, with no interactions
with the environment. This section describes
the required modifications in order to create a
closed model from the model described above
and the transformation process.

3.1. A Closed Model for HAN

In order to achieve a closed architecture, the
specification is supplemented with a model of
its environment as shown in Figure 3. This block
contains three processes which represent the
interaction of customer, utility and renewable
energy sources with the system. Figure 4 rep-
resents the finite state machine of one of these
processes.

The environment block defines a set of sig-
nals to execute all possible paths which can be
checked during the verification step. The stan-
dard SDL key word "ANY" is used to create all
the decisions in this process. In fact, in order to
run the model checking process in an automat-
ed way, the user intervention must be eliminat-
ed. The model must not contain any decision
statements that need external intervention. All
decisions are nondeterministic in this block.
Also, the "environment" is not limited by the
order in which the signals will be sent.

On the other hand, all decisions described by
informal text were replaced by nondetermin-
istic decision statements. The reserved word
"ANY", again, is used to transform a simple de-
cision to a nondeterministic decision. The rest
of the model remains unchanged.

This new model was also validated using the
three techniques described in [3]. All errors
were detected and corrected. It should be not-
ed that this is only an example of one possible
model for the block "environment". And if the
"environment" block becomes more complex,
the verification becomes complicated too.

ProB [17], SPIN [18]. They specified a single
case study using each of those tools and eval-
uated the characteristics of the system in order
to identify the most suitable model checker for
the information systems. However, the checked
properties represented only specific informa-
tion system properties. Another work [19] veri-
fied an algorithm for Automatic Train Supervi-
sion using ten model checkers, namely: UMC
[20], SPIN, NuSMV, mCRL2 [21], CPN Tools
[22], FDR4 [23], CADP, TLA+ [24], UPPAAL
[25] and ProB. It highlighted the commonalities
and differences among the modeling languages
considered, and presented the impact of these
languages on the model.
Therefore, the choice between the different
types of model checkers is not an easy task. It
depends on the system architecture, the proper-
ties to be verified and other system character-
istics. Generally, each modeling language can
be translated (manually and/or automatically)
into any verification language. However, only
smaller pairs are in use [26]. The SDL/Promela

is one of those pairs [26]. Since Promela is the
input verification language of SPIN [27], this
model checker is chosen in the verification step.
The other model checkers could be used in this
case study, but they are not the best choice. For
example, the transformation from SDL to inter-
mediate language SDLxta and then to "xta" lan-
guage used in UPPAAL [25] tool is a very com-
plex process [28]. Also, in the SMV language
(used in NuSMV), all assignments, parameters
or array indexes should be constant. So, speci-
fications may be longer than in Promela [12],
because each case has to be explicitly written.
The range verification time in SPIN compared
to the ten other model checkers is reasonable
[19]. This parameter represents the time needed
to terminate the verification. It is expressed as
a range because it actually depends on the spe-
cific design approach adopted, on the specific
formulas being evaluated, and on the specific
options used during the tool execution. On the
other hand, and unlike many model checkers,
SPIN does not perform the verification itself,

Figure 2. The system view of the HAN SDL model.

4 5S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

but it generates C sources for the problem. This
technique allows improving performance and
saving memory [18]. SPIN also offers a large
number of options to further speed up the mod-
el checking process.
In order to use SPIN, the SDL model needs to
be translated into Promela. This transforma-
tion is not as trivial as it seems. Many methods
found in literature have addressed this problem-
atic. The most popular method is the use of an
intermediate format IF [29]. Firstly, the model
is translated into IF using sdl2if tool, then the
Promela model is generated from the resulting
model using if2pml tool. This technique lacks
support of some important SDL features like
the "save" operator and the Timer. To solve the
"save" operator problem, the authors in [30]
proposed an extension of if2pml to translate
this operator from IF to Promela. The extension
uses additional local queues to which the saved
signals are sent. Also, the sdl2if tool works only
with ObjectGeode (obsolete product) API and
requires license file. It is not available for IBM
Rational SDL Suite, which is the successor of
ObjectGeode.
Another interesting contribution was intro-
duced in [31]. The authors presented their proj-
ect to directly generate Promela model from the
SDL specification. This work resulted in the
implementation of automated generation tool
named sdl2pml [32]. The latter is, to the best
of the authors' knowledge, the only tool that
supports the translation of all SDL constructs.
Unfortunately, this tool is not yet available as
free/commercial product.
In this paper, the adopted approach is based on
the intermediate format IF. The motivation be-
hind this choice is to provide a common model
between various languages adopting different
description styles (e.g. SDL, UML). The mod-
el will be translated manually into IF language
and then the if2pml tool will be used to gener-
ate Promela script.

3. Generation of the Promela Model

Generally, after creating an SDL model of a
system and validating it via reachability anal-
ysis techniques, a designer is interested in the
verification of specific proprieties. One of the

well-known methods is the model checking.
This paper aims to check exhaustively and au-
tomatically whether the HAN model meets giv-
en specifications. However, modifications must
be made to this model to be compatible, after
transformation, with SPIN. In fact, SPIN re-
quires a complete system, with no interactions
with the environment. This section describes
the required modifications in order to create a
closed model from the model described above
and the transformation process.

3.1. A Closed Model for HAN

In order to achieve a closed architecture, the
specification is supplemented with a model of
its environment as shown in Figure 3. This block
contains three processes which represent the
interaction of customer, utility and renewable
energy sources with the system. Figure 4 rep-
resents the finite state machine of one of these
processes.

The environment block defines a set of sig-
nals to execute all possible paths which can be
checked during the verification step. The stan-
dard SDL key word "ANY" is used to create all
the decisions in this process. In fact, in order to
run the model checking process in an automat-
ed way, the user intervention must be eliminat-
ed. The model must not contain any decision
statements that need external intervention. All
decisions are nondeterministic in this block.
Also, the "environment" is not limited by the
order in which the signals will be sent.

On the other hand, all decisions described by
informal text were replaced by nondetermin-
istic decision statements. The reserved word
"ANY", again, is used to transform a simple de-
cision to a nondeterministic decision. The rest
of the model remains unchanged.

This new model was also validated using the
three techniques described in [3]. All errors
were detected and corrected. It should be not-
ed that this is only an example of one possible
model for the block "environment". And if the
"environment" block becomes more complex,
the verification becomes complicated too.

ProB [17], SPIN [18]. They specified a single
case study using each of those tools and eval-
uated the characteristics of the system in order
to identify the most suitable model checker for
the information systems. However, the checked
properties represented only specific informa-
tion system properties. Another work [19] veri-
fied an algorithm for Automatic Train Supervi-
sion using ten model checkers, namely: UMC
[20], SPIN, NuSMV, mCRL2 [21], CPN Tools
[22], FDR4 [23], CADP, TLA+ [24], UPPAAL
[25] and ProB. It highlighted the commonalities
and differences among the modeling languages
considered, and presented the impact of these
languages on the model.
Therefore, the choice between the different
types of model checkers is not an easy task. It
depends on the system architecture, the proper-
ties to be verified and other system character-
istics. Generally, each modeling language can
be translated (manually and/or automatically)
into any verification language. However, only
smaller pairs are in use [26]. The SDL/Promela

is one of those pairs [26]. Since Promela is the
input verification language of SPIN [27], this
model checker is chosen in the verification step.
The other model checkers could be used in this
case study, but they are not the best choice. For
example, the transformation from SDL to inter-
mediate language SDLxta and then to "xta" lan-
guage used in UPPAAL [25] tool is a very com-
plex process [28]. Also, in the SMV language
(used in NuSMV), all assignments, parameters
or array indexes should be constant. So, speci-
fications may be longer than in Promela [12],
because each case has to be explicitly written.
The range verification time in SPIN compared
to the ten other model checkers is reasonable
[19]. This parameter represents the time needed
to terminate the verification. It is expressed as
a range because it actually depends on the spe-
cific design approach adopted, on the specific
formulas being evaluated, and on the specific
options used during the tool execution. On the
other hand, and unlike many model checkers,
SPIN does not perform the verification itself,

Figure 2. The system view of the HAN SDL model.

6 7S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

3.2. Promela Model

As mentioned before, the model is firstly trans-
lated into an intermediate format IF. This sub-
section explains the translation of some SDL
features concerning the structure, the behavior
and the data type.
IF was developed to sit between high-lev-
el specification languages, such as SDL and
UML, and tool specific internal representa-
tions [29]. Thus, IF representations can be
passed between the tools, and translated into
other languages, for example, SDL specifica-
tions can be analyzed using SPIN as described
in this paper. Another example is the UML,
where the mapping is done in a way that all
runtime entities (objects, call stacks, pending
messages, etc.) are identifiable as a part of the
IF model's state [33]. Moreover, translating
high-level languages into IF may also allow
extending the model with other features missed
in the original language.
The structures of SDL and IF are different. In
fact, an SDL model may contain blocks, pro-
cesses and services. Elseways, the IF models
are flat and they are composed only of process-
es at one level. However, at the execution time,
even an SDL model is composed of processes
that react with each other. Thus, each SDL pro-
cess is translated into an equivalent IF process.
The remote exported/imported variables de-
fined inside processes are declared only once at
the IF system level. Thus, all other processes of
the system can use them. Since the IF does not
support the dynamic creation of process, only
one instance of these processes is created. The
dynamic creation will be added later, using the
"run" operator in Promela.
In IF, there are two types of states: "stable" and
"nostable". By default, all the SDL states are
translated into "stable" states. The "nostable"
type is used to model supplementary states
added in order to divide a long transition into
small transitions. In these states, the process
blocks the others and continues to execute
its code until it reaches a stable state. Figure
5 shows an example of this decomposition.
The transition from the state waitOK to the
state ready is long. So, two "nostable" states,
namely, q1_3 and q1_4, were added. Now, in
each sub-transition there is only a simple set
of actions (receive signal, condition test, send

signal). Generally, "nostable" states are added
before every condition test.
An IF transition represents the minimal path be-
tween two IF states (either stable or nostable),
and contains all triggers and actions defined on
that path in the same order. It has higher prior-
ity than time progress; so, by default, its type
is "eager". The simple input signals are direct-
ly represented with an asynchronous IF input.
For other types (e.g. spontaneous, continuous,
priority), other auxiliary parameters are need-
ed, such as PID, to translate them. For instance,
the NONE signal is translated by an assigning
the PID of the current process to the sender. No
input part is generated in this case i.e. the input
part of the corresponding IF transition is empty.

Figure 5. Nostable state example.

The SDL channels are translated using IF buf-
fers. Each process has a unique input buffer
through which messages are received. A buffer
is defined by name, the serving discipline (i.e.
queue, stack, set, and bag) and the set of signals
that can be transported. The buffers are global
and are used to transport signals between the

Figure 3. SDL model of HAN and its environment.

Figure 4. Process UTILITYproc.

6 7S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

3.2. Promela Model

As mentioned before, the model is firstly trans-
lated into an intermediate format IF. This sub-
section explains the translation of some SDL
features concerning the structure, the behavior
and the data type.
IF was developed to sit between high-lev-
el specification languages, such as SDL and
UML, and tool specific internal representa-
tions [29]. Thus, IF representations can be
passed between the tools, and translated into
other languages, for example, SDL specifica-
tions can be analyzed using SPIN as described
in this paper. Another example is the UML,
where the mapping is done in a way that all
runtime entities (objects, call stacks, pending
messages, etc.) are identifiable as a part of the
IF model's state [33]. Moreover, translating
high-level languages into IF may also allow
extending the model with other features missed
in the original language.
The structures of SDL and IF are different. In
fact, an SDL model may contain blocks, pro-
cesses and services. Elseways, the IF models
are flat and they are composed only of process-
es at one level. However, at the execution time,
even an SDL model is composed of processes
that react with each other. Thus, each SDL pro-
cess is translated into an equivalent IF process.
The remote exported/imported variables de-
fined inside processes are declared only once at
the IF system level. Thus, all other processes of
the system can use them. Since the IF does not
support the dynamic creation of process, only
one instance of these processes is created. The
dynamic creation will be added later, using the
"run" operator in Promela.
In IF, there are two types of states: "stable" and
"nostable". By default, all the SDL states are
translated into "stable" states. The "nostable"
type is used to model supplementary states
added in order to divide a long transition into
small transitions. In these states, the process
blocks the others and continues to execute
its code until it reaches a stable state. Figure
5 shows an example of this decomposition.
The transition from the state waitOK to the
state ready is long. So, two "nostable" states,
namely, q1_3 and q1_4, were added. Now, in
each sub-transition there is only a simple set
of actions (receive signal, condition test, send

signal). Generally, "nostable" states are added
before every condition test.
An IF transition represents the minimal path be-
tween two IF states (either stable or nostable),
and contains all triggers and actions defined on
that path in the same order. It has higher prior-
ity than time progress; so, by default, its type
is "eager". The simple input signals are direct-
ly represented with an asynchronous IF input.
For other types (e.g. spontaneous, continuous,
priority), other auxiliary parameters are need-
ed, such as PID, to translate them. For instance,
the NONE signal is translated by an assigning
the PID of the current process to the sender. No
input part is generated in this case i.e. the input
part of the corresponding IF transition is empty.

Figure 5. Nostable state example.

The SDL channels are translated using IF buf-
fers. Each process has a unique input buffer
through which messages are received. A buffer
is defined by name, the serving discipline (i.e.
queue, stack, set, and bag) and the set of signals
that can be transported. The buffers are global
and are used to transport signals between the

Figure 3. SDL model of HAN and its environment.

Figure 4. Process UTILITYproc.

8 9S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

sion of if2pml that uses additional local queues
to which the saved signals are sent. In this work,
this algorithm is not implemented, however, the
XSpin (graphical interface for SPIN) options
are used to simulate the save operator during
the verification step. The "Queue" options al-
low either saving the new, not used messages
or discarding them. So, in this case study, the
choice of saving them is adopted to simulate the
SDL save operator.
While Promela has no notion of time, the new
version DTPromela [27] is used in this case
study to describe real-time proprieties of the
HAN model. In DTPromela, a new data type
called timer is introduced. It is used to declare
the variables that represent discrete-time count-
down timers, and then to model quantitative as-
pects of SDL timers. By default, the if2pml tool
translates SDL models into this language. The
new definition of a timer is added to the system
as a Promela macro, contained within a header
file. The DTPromela model is then verified us-
ing the SPIN extension: DTSPIN.
To illustrate the transformation from SDL to
Promela (or DTPromela), Table 2 gives an ex-
ample using the process "AMIint". An IF pro-
cess with the same name as the original process
was defined. It was associated with a default
input queue "q_AMIint". Because the "Sender"
variable is missed in IF, additional variable of
type PID was defined to represent it explicitly.

4. Verification by Model Checking

The model checking is the most powerful and
successful approach to verify requirements and

processes. Thus, each process can specify to
which buffer a signal should be written or from
which buffer a signal should be read.
On the other hand, each predefined data type
used in SDL model has its equivalent in IF. The
abstract data types are also translated into an
IF ADT with the same signature. However, if
the latter contains only predefined or implicit
operators, it is translated into an enumerated
type. Table 1 gives an example of the transla-
tion features. For the translation of channel C3,
only the definition of one buffer is given. Nor-
mally, the equivalent representation contains
five buffers, because there are two processes in
the block Appliance, and three processes in the
block HEMS. However, for the sake of space
and simplicity, only one buffer is represented.
The second step is the generation of Promela
model. Promela is a verification modeling lan-
guage introduced by Gerard J. Holzmann [34].
The behavior of a system described in Promela
is presented inside the processes. There is no
notion of block, thus there is only one level, i.e.
the process level. This language allows the dy-
namic creation of concurrent processes to mod-

el, for example, distributed systems. Data are
exchanged between processes through message
channels. They can be defined to be synchro-
nous (i.e., rendezvous), or asynchronous (i.e.,
buffered). Promela models can be analyzed
with the SPIN model checker, to verify that the
modeled system produces the desired behavior,
as shown in the rest of this paper.
Generation of the Promela model from IF
model is achieved with the if2pml tool. Thus,
the Promela model is generated automatically
from the IF script created earlier. However, as
mentioned before, one change is made to this
model. The dynamic creation of processes, us-
ing the "run" operator, is added because IF does
not support it. However, the if2pml has made
another change. In fact, Promela lacks the pre-
defined type "real". So, the tool changes all the
real variables into natural variables. This modi-
fication does not influence the model behavior.
Indeed, the variables used (e.g. price, charge)
could be either real or natural.
Another aspect missed in Promela is the save
operator. This problem has been investigated by
researchers in [4]. They implemented an exten-

Table 1. SDL to IF translation features example

SDL representation IF representation

NEWTYPE AppType
LITERALS CTRL, CRITICAL, NULL
ENDNEWTYPE;

AppType = enum CTRL, CRITICAL, NULL;

SYNTYPE
DevPriority = Integer CONSTANTS 0:2
ENDSYNTYPE;

DevPriority = range 0..2

NEWTYPE
AppArray ARRAY(AppID, PID)
ENDNEWTYPE;

AppArray = array[0..100] of pid;

SIGNAL
PowerOFF(AppID);

SIGNAL
PowerOFF(pid);

channel C3
from Appliance
to HEMS
with
Unregister, DeleteDev, MeteringData;
from HEMS
to Appliance
with
RegisterOK, Shutdown;
Endchannel C3;

buffer
q_SmartPlug: queue of
PowerON,
 RegisterOK,
 DevStopped,
 PowerOFF,
 Shutdown;

state DecisionState;
input NONE;

From DecisionState : eager
do sender := DemandResponse

Table 2. SDL to Promela translation example.

SDL representation:
PROCESS AMIint (1, 1);
DCL
 SumCons Consumption,
 HANCons Consumption := 0;
START;
NEXTSTATE ready;
STATE ready;
INPUT MeteringSum(SumCons);
TASK HANCons := SumCons;
NEXTSTATE -;
INPUT getMetering;
OUTPUT SendMetering(HANCons);
NEXTSTATE -;
ENDSTATE;
ENDPROCESS AMIint;

IF representation:
Process AMIint : buffer q_AMIint;
var
 SumCons : Consumption;
 HANCons(0) : Consumption;
 Sender : pid;
state
 start : init;
 ready;
transition
from start : eager
to ready;
from ready : eager
input MeteringSum(sender, SumCons) from
q_AMIint
do HANCons := SumCons
to ready;
from ready : eager
input getMetering(sender) from q_AMIint
do output SendMetering(AMIint, HANCons) to
q_UTILITYproc
to ready;

Promela representation:
proctypeAMIint()
{
 Consumption SumCons;
 Consumption HANCons = 0;
 Byte Sender;

start:
 atomic{
 if
 :: goto ready;
 fi;
 }
ready:
 atomic{
 if

 :: q_AMIint?MeteringSum(sender,Sum-
Cons)->

HANCons = SumCons->
goto ready;

 :: q_AMIint?getMetering(sender,_)->
q_UTILITYproc!SendMetering(_
pid, HANCons)->
goto ready;

 fi;
 }
};

8 9S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

sion of if2pml that uses additional local queues
to which the saved signals are sent. In this work,
this algorithm is not implemented, however, the
XSpin (graphical interface for SPIN) options
are used to simulate the save operator during
the verification step. The "Queue" options al-
low either saving the new, not used messages
or discarding them. So, in this case study, the
choice of saving them is adopted to simulate the
SDL save operator.
While Promela has no notion of time, the new
version DTPromela [27] is used in this case
study to describe real-time proprieties of the
HAN model. In DTPromela, a new data type
called timer is introduced. It is used to declare
the variables that represent discrete-time count-
down timers, and then to model quantitative as-
pects of SDL timers. By default, the if2pml tool
translates SDL models into this language. The
new definition of a timer is added to the system
as a Promela macro, contained within a header
file. The DTPromela model is then verified us-
ing the SPIN extension: DTSPIN.
To illustrate the transformation from SDL to
Promela (or DTPromela), Table 2 gives an ex-
ample using the process "AMIint". An IF pro-
cess with the same name as the original process
was defined. It was associated with a default
input queue "q_AMIint". Because the "Sender"
variable is missed in IF, additional variable of
type PID was defined to represent it explicitly.

4. Verification by Model Checking

The model checking is the most powerful and
successful approach to verify requirements and

processes. Thus, each process can specify to
which buffer a signal should be written or from
which buffer a signal should be read.
On the other hand, each predefined data type
used in SDL model has its equivalent in IF. The
abstract data types are also translated into an
IF ADT with the same signature. However, if
the latter contains only predefined or implicit
operators, it is translated into an enumerated
type. Table 1 gives an example of the transla-
tion features. For the translation of channel C3,
only the definition of one buffer is given. Nor-
mally, the equivalent representation contains
five buffers, because there are two processes in
the block Appliance, and three processes in the
block HEMS. However, for the sake of space
and simplicity, only one buffer is represented.
The second step is the generation of Promela
model. Promela is a verification modeling lan-
guage introduced by Gerard J. Holzmann [34].
The behavior of a system described in Promela
is presented inside the processes. There is no
notion of block, thus there is only one level, i.e.
the process level. This language allows the dy-
namic creation of concurrent processes to mod-

el, for example, distributed systems. Data are
exchanged between processes through message
channels. They can be defined to be synchro-
nous (i.e., rendezvous), or asynchronous (i.e.,
buffered). Promela models can be analyzed
with the SPIN model checker, to verify that the
modeled system produces the desired behavior,
as shown in the rest of this paper.
Generation of the Promela model from IF
model is achieved with the if2pml tool. Thus,
the Promela model is generated automatically
from the IF script created earlier. However, as
mentioned before, one change is made to this
model. The dynamic creation of processes, us-
ing the "run" operator, is added because IF does
not support it. However, the if2pml has made
another change. In fact, Promela lacks the pre-
defined type "real". So, the tool changes all the
real variables into natural variables. This modi-
fication does not influence the model behavior.
Indeed, the variables used (e.g. price, charge)
could be either real or natural.
Another aspect missed in Promela is the save
operator. This problem has been investigated by
researchers in [4]. They implemented an exten-

Table 1. SDL to IF translation features example

SDL representation IF representation

NEWTYPE AppType
LITERALS CTRL, CRITICAL, NULL
ENDNEWTYPE;

AppType = enum CTRL, CRITICAL, NULL;

SYNTYPE
DevPriority = Integer CONSTANTS 0:2
ENDSYNTYPE;

DevPriority = range 0..2

NEWTYPE
AppArray ARRAY(AppID, PID)
ENDNEWTYPE;

AppArray = array[0..100] of pid;

SIGNAL
PowerOFF(AppID);

SIGNAL
PowerOFF(pid);

channel C3
from Appliance
to HEMS
with
Unregister, DeleteDev, MeteringData;
from HEMS
to Appliance
with
RegisterOK, Shutdown;
Endchannel C3;

buffer
q_SmartPlug: queue of
PowerON,
 RegisterOK,
 DevStopped,
 PowerOFF,
 Shutdown;

state DecisionState;
input NONE;

From DecisionState : eager
do sender := DemandResponse

Table 2. SDL to Promela translation example.

SDL representation:
PROCESS AMIint (1, 1);
DCL
 SumCons Consumption,
 HANCons Consumption := 0;
START;
NEXTSTATE ready;
STATE ready;
INPUT MeteringSum(SumCons);
TASK HANCons := SumCons;
NEXTSTATE -;
INPUT getMetering;
OUTPUT SendMetering(HANCons);
NEXTSTATE -;
ENDSTATE;
ENDPROCESS AMIint;

IF representation:
Process AMIint : buffer q_AMIint;
var
 SumCons : Consumption;
 HANCons(0) : Consumption;
 Sender : pid;
state
 start : init;
 ready;
transition
from start : eager
to ready;
from ready : eager
input MeteringSum(sender, SumCons) from
q_AMIint
do HANCons := SumCons
to ready;
from ready : eager
input getMetering(sender) from q_AMIint
do output SendMetering(AMIint, HANCons) to
q_UTILITYproc
to ready;

Promela representation:
proctypeAMIint()
{
 Consumption SumCons;
 Consumption HANCons = 0;
 Byte Sender;

start:
 atomic{
 if
 :: goto ready;
 fi;
 }
ready:
 atomic{
 if

 :: q_AMIint?MeteringSum(sender,Sum-
Cons)->

HANCons = SumCons->
goto ready;

 :: q_AMIint?getMetering(sender,_)->
q_UTILITYproc!SendMetering(_
pid, HANCons)->
goto ready;

 fi;
 }
};

10 11S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

As mentioned earlier, after gaining basic con-
fidence that the model has the intended propri-
eties, verification was performed by generating
an optimized verifier. The latter was used to exe-
cute three main search modes: exhaustive verifi-
cation, bitstate approximation, or hash-compact
[18]-[34]. Exhaustive verification can deliver
the strongest possible verification result; howev-
er, the available memory in the machine did not
allow completing the run because of the large
state space size. Thus, the bitstate was chosen
to identify correctness violations if they existed.
This technique was used with the default Par-
tial Order Reduction (POR) [36] to reduce the
state space sufficiently. In fact, the idea behind
the POR is to reduce the size of the state space
that needs to be searched. It exploits the com-
mutativity of concurrently executed transitions,
which results in the same state when executed
in different orders. This method constructs a re-
duced state graph. The full state graph, which
may be too big to fit in memory, is never con-
structed. The implementation of this reduction
method is out of the scope of this paper. Howev-
er, justification of the reduction method shows
that the behaviors that are not present do not add
any information [36]. The hash-compact could
be used if the verifier still runs out of memory
before it can complete the search with bitstate
exploration. This is not the case for the model.

By default, XSpin searches for safety properties
only (i.e. under certain conditions, something
never occurs), however, when changing the tool
options, liveness properties can be checked as
well (i.e. under certain conditions, something
will ultimately occur). The safety properties as-
sert that the system always stays within some
allowed region [37]. Thus, the observed behav-
ior always stays within some allowed set of fi-
nite behaviors in which nothing ''bad'' happens.
On the other hand, liveness properties are de-
fined as the set of properties the system must
satisfy. So, it defines the good things that cap-
ture the required functionality of a system [37].
For example, to prove the absence of assertion
violations and deadlock states is a safety prop-
erty; and to prove the absence of non-progress
cycles is a liveness property.

This general verification was terminated without
detecting any violations. Next subsection de-
scribes the verification using the LTL properties.

4.2. DR Service Properties and LTL
Formulas

After general verification of the model, the next
step is verification of desirable properties writ-
ten in LTL [38]. In LTL, the properties of a run
are formalized, unambiguously and concisely,
with the help of a small number of special tem-
poral operators [39]-[40]-[41]. Thus, an LTL
property is a temporal logic formula that de-
scribes a set of infinite sequences for which it
is true (e.g., a condition will eventually be true,
a condition will be true until another fact be-
comes true, etc).

This subsection presents some of these prop-
erties in relation to the DR Service. They rep-
resent requirements captured from the model
specification. Nine temporal formulae were
defined to help building the desired properties:

 ● p1 (Store >= 0)
 ● p2 (Battery >= 0)
 ● p3 (EVexist == false)
 ● p4 (PlugEV@ready)
 ● p5 (SmartPlug@ready)
 ● p6 (q_DemandResponse?[RTP])
 ● p7 (DemandResponse@DecisionStat)
 ● p8 (q_DRint?[Bid])
 ● p9 (q_DemandResponse?[Bid] || q_UTIL-

ITYproc?[AcceptBid])

Property 1: [] p1
The variable Store refers to the amount of ener-
gy generated by the renewable energy sources
and stored in the customer house. Several con-
current processes influence this variable either
by increasing or decreasing its value. This val-
ue must always be positive.
Property 2: [] p2
The customer can also save energy stored in an
electrical vehicle. So, same as the first property,
the Battery variable, which represents the elec-
trical vehicle charge, must not be negative.
The first and the second properties are safety
properties. They represent unwanted situations
(i.e. negative value for variable) that should
never occur. Furthermore, the above safety
properties are of a particular kind; they are in-

correctness of a system hard to build. It brings a
lot of benefits to users over other methods such
as testing and simulation. In fact, testing and
simulation cannot cover all the possible cas-
es, scenarios and behaviors; and generally it is
impossible to build the system under consider-
ation to make these tests (e.g. a complex sys-
tem like Smart Grid). So, these techniques are
not exhaustive, and the problem or the failure
cases may be among those not tested or simu-
lated scenarios. Contrariwise, the model check-
ing technique allows verifying the whole sys-
tem automatically. The verification terminates
normally or produces a counterexample in case
of failure. This counterexample details reasons
why the model does not satisfy the specifica-
tion. The source of errors is detected by study-
ing it. The idea behind the model checking is to
ensure that a given model satisfies enough sys-
tem properties; so that a designer can increase
the confidence in the correctness of the model.

Once the DTPromela model was generated, the
verification and validation step using DTSPIN
(version 4.1.1) was used to check the correct-
ness of the model. DTSPIN was installed un-
der Solaris machine, with 5 GB of memory.

This verification was performed with the help
of a graphical interface named XSpin (version
4.1.1) [34]. The XSpin was used, even if it is no
longer supported, because it is the only graph-
ical interface compatible with the DTSPIN.
The interface was developed in tcl/tk. It is in-
dependent from DTSPIN itself, but it executes
DTSPIN command in background and provides
graphical displays of the message flows, data
values, and other options. Figure 6 illustrates
the basic structure of SPIN (and DTSPIN as
well) [34].

Given a specification written in Promela, SPIN
is used, firstly to find and fix syntax errors.
After that, interactive or random simulation is
performed to gain the basic confidence that the
model meets the intended proprieties. Then, an
optimized verifier called pan [35] is generated.
This verifier is compiled, with possible com-
pile-time choices for the types of reduction
algorithms to be used, and executed to detect
counterexamples. In case the counterexamples
are detected, a trail file is generated. The guid-
ed simulation is then used to detect the source
of violation. The verification can be also per-
formed with the linear temporal logic (LTL).
Correctness claims are generated from a logic
formula in order to verify specific properties of
the system.

4.1. General Verification

This subsection describes "general" verifica-
tion, which means launching simulations and
verifications without fixing specified proper-
ties to be checked. As a first step to verify the
model, random simulation was launched. The
latter was used to debug a model. Some assert
statements (e.g. to check that a variable is nev-
er taking a negative value) were defined to be
checked. It allows also tracking the channels
buffer, the value of global and local variables.
Other than assert statements, no correctness
requirements were checked during simulation
runs. All nondeterministic decisions were re-
solved randomly. The simulation was repeated
with different and random values of "Seed" to
obtain different types of runs. The interactive
simulation was not launched because the sys-
tem is complex and it consists of a huge number
of states.Figure 6. The structure of SPIN [34].

10 11S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

As mentioned earlier, after gaining basic con-
fidence that the model has the intended propri-
eties, verification was performed by generating
an optimized verifier. The latter was used to exe-
cute three main search modes: exhaustive verifi-
cation, bitstate approximation, or hash-compact
[18]-[34]. Exhaustive verification can deliver
the strongest possible verification result; howev-
er, the available memory in the machine did not
allow completing the run because of the large
state space size. Thus, the bitstate was chosen
to identify correctness violations if they existed.
This technique was used with the default Par-
tial Order Reduction (POR) [36] to reduce the
state space sufficiently. In fact, the idea behind
the POR is to reduce the size of the state space
that needs to be searched. It exploits the com-
mutativity of concurrently executed transitions,
which results in the same state when executed
in different orders. This method constructs a re-
duced state graph. The full state graph, which
may be too big to fit in memory, is never con-
structed. The implementation of this reduction
method is out of the scope of this paper. Howev-
er, justification of the reduction method shows
that the behaviors that are not present do not add
any information [36]. The hash-compact could
be used if the verifier still runs out of memory
before it can complete the search with bitstate
exploration. This is not the case for the model.

By default, XSpin searches for safety properties
only (i.e. under certain conditions, something
never occurs), however, when changing the tool
options, liveness properties can be checked as
well (i.e. under certain conditions, something
will ultimately occur). The safety properties as-
sert that the system always stays within some
allowed region [37]. Thus, the observed behav-
ior always stays within some allowed set of fi-
nite behaviors in which nothing ''bad'' happens.
On the other hand, liveness properties are de-
fined as the set of properties the system must
satisfy. So, it defines the good things that cap-
ture the required functionality of a system [37].
For example, to prove the absence of assertion
violations and deadlock states is a safety prop-
erty; and to prove the absence of non-progress
cycles is a liveness property.

This general verification was terminated without
detecting any violations. Next subsection de-
scribes the verification using the LTL properties.

4.2. DR Service Properties and LTL
Formulas

After general verification of the model, the next
step is verification of desirable properties writ-
ten in LTL [38]. In LTL, the properties of a run
are formalized, unambiguously and concisely,
with the help of a small number of special tem-
poral operators [39]-[40]-[41]. Thus, an LTL
property is a temporal logic formula that de-
scribes a set of infinite sequences for which it
is true (e.g., a condition will eventually be true,
a condition will be true until another fact be-
comes true, etc).

This subsection presents some of these prop-
erties in relation to the DR Service. They rep-
resent requirements captured from the model
specification. Nine temporal formulae were
defined to help building the desired properties:

 ● p1 (Store >= 0)
 ● p2 (Battery >= 0)
 ● p3 (EVexist == false)
 ● p4 (PlugEV@ready)
 ● p5 (SmartPlug@ready)
 ● p6 (q_DemandResponse?[RTP])
 ● p7 (DemandResponse@DecisionStat)
 ● p8 (q_DRint?[Bid])
 ● p9 (q_DemandResponse?[Bid] || q_UTIL-

ITYproc?[AcceptBid])

Property 1: [] p1
The variable Store refers to the amount of ener-
gy generated by the renewable energy sources
and stored in the customer house. Several con-
current processes influence this variable either
by increasing or decreasing its value. This val-
ue must always be positive.
Property 2: [] p2
The customer can also save energy stored in an
electrical vehicle. So, same as the first property,
the Battery variable, which represents the elec-
trical vehicle charge, must not be negative.
The first and the second properties are safety
properties. They represent unwanted situations
(i.e. negative value for variable) that should
never occur. Furthermore, the above safety
properties are of a particular kind; they are in-

correctness of a system hard to build. It brings a
lot of benefits to users over other methods such
as testing and simulation. In fact, testing and
simulation cannot cover all the possible cas-
es, scenarios and behaviors; and generally it is
impossible to build the system under consider-
ation to make these tests (e.g. a complex sys-
tem like Smart Grid). So, these techniques are
not exhaustive, and the problem or the failure
cases may be among those not tested or simu-
lated scenarios. Contrariwise, the model check-
ing technique allows verifying the whole sys-
tem automatically. The verification terminates
normally or produces a counterexample in case
of failure. This counterexample details reasons
why the model does not satisfy the specifica-
tion. The source of errors is detected by study-
ing it. The idea behind the model checking is to
ensure that a given model satisfies enough sys-
tem properties; so that a designer can increase
the confidence in the correctness of the model.

Once the DTPromela model was generated, the
verification and validation step using DTSPIN
(version 4.1.1) was used to check the correct-
ness of the model. DTSPIN was installed un-
der Solaris machine, with 5 GB of memory.

This verification was performed with the help
of a graphical interface named XSpin (version
4.1.1) [34]. The XSpin was used, even if it is no
longer supported, because it is the only graph-
ical interface compatible with the DTSPIN.
The interface was developed in tcl/tk. It is in-
dependent from DTSPIN itself, but it executes
DTSPIN command in background and provides
graphical displays of the message flows, data
values, and other options. Figure 6 illustrates
the basic structure of SPIN (and DTSPIN as
well) [34].

Given a specification written in Promela, SPIN
is used, firstly to find and fix syntax errors.
After that, interactive or random simulation is
performed to gain the basic confidence that the
model meets the intended proprieties. Then, an
optimized verifier called pan [35] is generated.
This verifier is compiled, with possible com-
pile-time choices for the types of reduction
algorithms to be used, and executed to detect
counterexamples. In case the counterexamples
are detected, a trail file is generated. The guid-
ed simulation is then used to detect the source
of violation. The verification can be also per-
formed with the linear temporal logic (LTL).
Correctness claims are generated from a logic
formula in order to verify specific properties of
the system.

4.1. General Verification

This subsection describes "general" verifica-
tion, which means launching simulations and
verifications without fixing specified proper-
ties to be checked. As a first step to verify the
model, random simulation was launched. The
latter was used to debug a model. Some assert
statements (e.g. to check that a variable is nev-
er taking a negative value) were defined to be
checked. It allows also tracking the channels
buffer, the value of global and local variables.
Other than assert statements, no correctness
requirements were checked during simulation
runs. All nondeterministic decisions were re-
solved randomly. The simulation was repeated
with different and random values of "Seed" to
obtain different types of runs. The interactive
simulation was not launched because the sys-
tem is complex and it consists of a huge number
of states.Figure 6. The structure of SPIN [34].

12 13S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

variants. In fact, invariants are the properties
given by a condition and require that this latter
holds for all reachable states.
Property 3: [] <>p5
The SmartPlug process waits for the devices
to be turned on. After that, it registers them
in the data base. The process must not hang at
the registration state for a long time because
other devices may be connected to the system
at this time. This property states that if p5 (i.e.
SmartPlug is at the state ready) happens to be
false at any given point in a run, it is always
guaranteed to become true again if the run is
continued.
Property 4: [] <> p4
This property is same as the previous one, but
for an electrical vehicle. It ensures that PlugEV
eventually always returns to the state ready.
The third and fourth properties are liveness
type. They define the positive behaviors indi-
cating the required functionality of the system.
Property 5: [] (p3 -><> p4)
The electrical vehicle EV connected to the net-
work may be unplugged by the customer at any
time. The connection of EV with the network is
represented by a global Boolean EVexist. The
latter can be modified by several processes. It
must be guaranteed that once the variable value
become false, the process PlugEV stops all ac-
tivities and returns to the ready state.
Property 6: [] (p6 -><> p7)
In Time-based Programs (RTP) the electricity
price changes for different periods. It depends
on customers' choice to decrease or change
their consumption in response to price chang-
es during a period. When a customer receives
an RTP signal, the process DemandResponse
chooses the devices to be turned off, if any, and
reaches the decision state. The algorithm used
in this process, and described in a previous
work [3], is composed of many loops. It must
be guaranteed that the process can reach the de-
cision state at certain times.
Property 7: [] (p8 -><> p9)
In the Incentive-based Programs (Bid) the
actions are initiated by the utility or the DR
Service Provider. DR signals are sent to every
customer participating in one of these pro-

grams, in order to motivate him/her to reduce
their energy consumption. In exchange for this
diminution, customers will benefit from an in-
centive payment, bill creditor contractual ar-
rangements between them and the electricity
suppliers. Generally, DR signals are sent in
the peak hours. They may either be voluntary
demand reduction requests or mandatory com-
mands. When a customer receives one of these
signals, the ESI interface must either refuse the
request, if the offer does not meet the user's
need, or accept it and send the bid to HEMS to
check the possibility of selling energy to util-
ity.
The last three properties are also liveness prop-
erties. However, they are of special type called
response. When verifying a liveness property
with DTSPIN, it is important to switch to weak
fairness [42]. This means that every process
that is almost always enabled should be execut-
ed infinitely often. In other words, it expresses
that under certain conditions, something will
(or will not) occur infinitely often. DTSPIN ac-
cepts only weak fairness (which is sufficient in
this work).
It should be noted that XSpin generates a never
claim from each property before to be verified.
All the seven properties are desired, so, they are
negated before generating the never claim. For
instance, the last property [] (p8 -><>p9) is ne-
gated and then converted to the never claim as
follows:

never { /* !([] (p8 -><> p9)) */
T0_init:
 if
 :: (! ((p9)) && (p8)) ->goto accept_S4
 :: (1) ->goto T0_init
 fi;
accept_S4:
 if
 :: (! ((p9))) ->goto accept_S4
 fi;
}

The result of the verification has showed that
the model is too complex. In fact, this is clear
from Table 3, which shows the number of
states searched while verifying the properties.
It presents the states stored (i.e. total num-
ber of unique global system states stored in
the state space), and states matched (i.e. how

many times the search returns to a previously
visited state in the search tree).
During the verification, DTSPIN detected un-
reached states in the processes, as shown in
Table 4. For each process, the number of un-
reached states is indicated between brackets.
Generally, in a full state space search, the un-
reached states indicate a dead code (i.e. tran-
sitions are unreachable). However, this is not
the case here. In fact, the search depth was set
to 10000, which was imposed by the available
memory in the operating system (i.e. 5 GB). If
a higher value was used, pan verifier got out of
the memory. Despite not detecting any viola-
tion, this is a limitation of this verification.
Verification with DTSPIN took several hours
to complete, when all available memory was
used. This problem is due to dynamic creation
of processes. In fact, each time a device is off,
it can be turned on by the user. Thus, a new
process with new PID is created. In order to
fix this, the number of "PowerOFF" signal
sent in the system was limited. The same thing
was done with the EV, so only one vehicle was
plugged at a time. This ensures that the pro-
cesses will be created and ended only once.
It is important to note here that, unlike SDL,
Promela distinguishes between the termina-
tion of process and the end of its execution.
A process terminates (i.e. releases the resourc-
es allocated to it) when all younger processes
have terminated first. It is impossible to force
a process to terminate because it depends on
other processes. However, in this verification,
the process was forced to end by making it

reach the end bracket (i.e. goto LABEL). The
process may be not terminating, but it no lon-
ger has any interaction with others.
After the modification, verification was run
again, with a search depth of 1000000. This
time it finished in six hours (in average) with-
out detecting any violations, but the pan was
again out of the memory. Thus, to be sure that
the model is free of errors, the stack cycling
method [34] is enabled. This method is useful
for verifications that require a very large depth
limit, which is the case in this work. When the
stack cycling is enabled, only a small fraction
of the stack is kept in the memory, while the
unused portions of the search stack are stored
on the disk. With this method, the pan did not
run out of memory. When this option was used
with the first LTL property, the verification took
more than 48 hours, without detecting any vi-
olation. The problem of the verification time
is due to the process termination as mentioned
before.

Table 4. Unreached states.

Property 1 2 3 4 5 6 7

__Timers (5) 1 1 1 1 1 1 1

SmartPlug (94) 3 3 4 24 4 4 3

Device (37) 4 4 9 13 9 5 4

DeviceDB (30) 2 2 5 7 5 4 2

DemandResponse (178) 19 19 29 32 29 27 34

EnergyUse (59) 9 9 9 9 9 9 9

AMIint (14) 1 1 1 1 1 1 1

DRint (79) 4 4 3 3 3 4 4

Metering (12) 2 2 2 2 2 2 2

SetAndDisplay (52) 3 3 5 4 5 3 3

PlugEV (112) 4 4 29 13 29 10 7

EV (101) 17 17 33 27 33 27 21

CUSTOMERproc (197) 1 1 1 1 1 1 1

ENVproc (24) 1 1 1 1 1 1 1

UTILITYproc (74) 1 1 1 1 1 1 1

Table 3. Number of states explored by DTSPIN.

Property States stored States matched

1 4.84004e+07 4.39905e+08

2 4.84004e+07 4.39905e+08

3 4.82335e+07 3.60119e+08

4 4.81368e+07 3.53796e+08

5 4.82335e+07 3.60119e+08

6 4.83146e+07 4.4187e+08

7 4.84947e+07 4.06158e+08

12 13S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

variants. In fact, invariants are the properties
given by a condition and require that this latter
holds for all reachable states.
Property 3: [] <>p5
The SmartPlug process waits for the devices
to be turned on. After that, it registers them
in the data base. The process must not hang at
the registration state for a long time because
other devices may be connected to the system
at this time. This property states that if p5 (i.e.
SmartPlug is at the state ready) happens to be
false at any given point in a run, it is always
guaranteed to become true again if the run is
continued.
Property 4: [] <> p4
This property is same as the previous one, but
for an electrical vehicle. It ensures that PlugEV
eventually always returns to the state ready.
The third and fourth properties are liveness
type. They define the positive behaviors indi-
cating the required functionality of the system.
Property 5: [] (p3 -><> p4)
The electrical vehicle EV connected to the net-
work may be unplugged by the customer at any
time. The connection of EV with the network is
represented by a global Boolean EVexist. The
latter can be modified by several processes. It
must be guaranteed that once the variable value
become false, the process PlugEV stops all ac-
tivities and returns to the ready state.
Property 6: [] (p6 -><> p7)
In Time-based Programs (RTP) the electricity
price changes for different periods. It depends
on customers' choice to decrease or change
their consumption in response to price chang-
es during a period. When a customer receives
an RTP signal, the process DemandResponse
chooses the devices to be turned off, if any, and
reaches the decision state. The algorithm used
in this process, and described in a previous
work [3], is composed of many loops. It must
be guaranteed that the process can reach the de-
cision state at certain times.
Property 7: [] (p8 -><> p9)
In the Incentive-based Programs (Bid) the
actions are initiated by the utility or the DR
Service Provider. DR signals are sent to every
customer participating in one of these pro-

grams, in order to motivate him/her to reduce
their energy consumption. In exchange for this
diminution, customers will benefit from an in-
centive payment, bill creditor contractual ar-
rangements between them and the electricity
suppliers. Generally, DR signals are sent in
the peak hours. They may either be voluntary
demand reduction requests or mandatory com-
mands. When a customer receives one of these
signals, the ESI interface must either refuse the
request, if the offer does not meet the user's
need, or accept it and send the bid to HEMS to
check the possibility of selling energy to util-
ity.
The last three properties are also liveness prop-
erties. However, they are of special type called
response. When verifying a liveness property
with DTSPIN, it is important to switch to weak
fairness [42]. This means that every process
that is almost always enabled should be execut-
ed infinitely often. In other words, it expresses
that under certain conditions, something will
(or will not) occur infinitely often. DTSPIN ac-
cepts only weak fairness (which is sufficient in
this work).
It should be noted that XSpin generates a never
claim from each property before to be verified.
All the seven properties are desired, so, they are
negated before generating the never claim. For
instance, the last property [] (p8 -><>p9) is ne-
gated and then converted to the never claim as
follows:

never { /* !([] (p8 -><> p9)) */
T0_init:
 if
 :: (! ((p9)) && (p8)) ->goto accept_S4
 :: (1) ->goto T0_init
 fi;
accept_S4:
 if
 :: (! ((p9))) ->goto accept_S4
 fi;
}

The result of the verification has showed that
the model is too complex. In fact, this is clear
from Table 3, which shows the number of
states searched while verifying the properties.
It presents the states stored (i.e. total num-
ber of unique global system states stored in
the state space), and states matched (i.e. how

many times the search returns to a previously
visited state in the search tree).
During the verification, DTSPIN detected un-
reached states in the processes, as shown in
Table 4. For each process, the number of un-
reached states is indicated between brackets.
Generally, in a full state space search, the un-
reached states indicate a dead code (i.e. tran-
sitions are unreachable). However, this is not
the case here. In fact, the search depth was set
to 10000, which was imposed by the available
memory in the operating system (i.e. 5 GB). If
a higher value was used, pan verifier got out of
the memory. Despite not detecting any viola-
tion, this is a limitation of this verification.
Verification with DTSPIN took several hours
to complete, when all available memory was
used. This problem is due to dynamic creation
of processes. In fact, each time a device is off,
it can be turned on by the user. Thus, a new
process with new PID is created. In order to
fix this, the number of "PowerOFF" signal
sent in the system was limited. The same thing
was done with the EV, so only one vehicle was
plugged at a time. This ensures that the pro-
cesses will be created and ended only once.
It is important to note here that, unlike SDL,
Promela distinguishes between the termina-
tion of process and the end of its execution.
A process terminates (i.e. releases the resourc-
es allocated to it) when all younger processes
have terminated first. It is impossible to force
a process to terminate because it depends on
other processes. However, in this verification,
the process was forced to end by making it

reach the end bracket (i.e. goto LABEL). The
process may be not terminating, but it no lon-
ger has any interaction with others.
After the modification, verification was run
again, with a search depth of 1000000. This
time it finished in six hours (in average) with-
out detecting any violations, but the pan was
again out of the memory. Thus, to be sure that
the model is free of errors, the stack cycling
method [34] is enabled. This method is useful
for verifications that require a very large depth
limit, which is the case in this work. When the
stack cycling is enabled, only a small fraction
of the stack is kept in the memory, while the
unused portions of the search stack are stored
on the disk. With this method, the pan did not
run out of memory. When this option was used
with the first LTL property, the verification took
more than 48 hours, without detecting any vi-
olation. The problem of the verification time
is due to the process termination as mentioned
before.

Table 4. Unreached states.

Property 1 2 3 4 5 6 7

__Timers (5) 1 1 1 1 1 1 1

SmartPlug (94) 3 3 4 24 4 4 3

Device (37) 4 4 9 13 9 5 4

DeviceDB (30) 2 2 5 7 5 4 2

DemandResponse (178) 19 19 29 32 29 27 34

EnergyUse (59) 9 9 9 9 9 9 9

AMIint (14) 1 1 1 1 1 1 1

DRint (79) 4 4 3 3 3 4 4

Metering (12) 2 2 2 2 2 2 2

SetAndDisplay (52) 3 3 5 4 5 3 3

PlugEV (112) 4 4 29 13 29 10 7

EV (101) 17 17 33 27 33 27 21

CUSTOMERproc (197) 1 1 1 1 1 1 1

ENVproc (24) 1 1 1 1 1 1 1

UTILITYproc (74) 1 1 1 1 1 1 1

Table 3. Number of states explored by DTSPIN.

Property States stored States matched

1 4.84004e+07 4.39905e+08

2 4.84004e+07 4.39905e+08

3 4.82335e+07 3.60119e+08

4 4.81368e+07 3.53796e+08

5 4.82335e+07 3.60119e+08

6 4.83146e+07 4.4187e+08

7 4.84947e+07 4.06158e+08

14 15S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

5. Conclusion

This paper presented a detailed description of
a case study in order to validate an SDL HAN
model. It proposed a semi-automatic way to
generate the Promela model from the HAN
SDL model detailed in Section 2. An interme-
diate format IF was used in order to facilitate
this translation. This latter was described in two
steps. The first one is manual mapping between
SDL and IF. Translation features concerning the
structure and behavior and the data type were
defined. The "nostable" states were used to de-
compose each transition into simple actions,
in order to reduce combinatorial explosion.
However, even with this solution, the manual
translation from the SDL model into IF is still a
source of potential errors. It is difficult to guar-
antee that the IF model is free of such errors.
The generated IF model was then transformed
into DTPromela, using the if2pml tool. The lat-
ter supplements the model with a definition of
Timer as a Promela macro. Once the DTProme-
la model was prepared, the verification and val-
idation were performed. Desired properties to
be checked were defined in LTL, and DTSPIN
was used to check the correctness of the model.
In the first place, pan got out of memory, even
when limiting the number of processes created.
However, to solve this problem, an algorithm
built in SPIN was used to keep only a small
fraction of the search stack in the memory, but
the verification took several hours to finish.
Our future work aims to generate the C code
from the HAN SDL specification. To do this,
one of the SDL to C compiler from the IBM Ra-
tional SDL Suite will be used. The environment
functions will be designed in order to connect
the SDL system with its environment. The goal
of this step is to build either a simulator/emula-
tor core or a plug-in for the HAN network.

References

[1] S. Zahid et al., "A Synthesis of Communication
Architectures and Services of Smart Grid Sys-
tems", 3rd Int Conf on Syst of Collaboration (Sy-
sCo). IEEE, 2016, pp. 1‒6.
http://dx.doi.org/10.1109/SYSCO.2016.7831334

[2] US Dept of Energy, "Communications Require-
ments of Smart Grid Technologies", Tech. Rep,
pp. 1‒69, 2010.
http://energy.gov/gc/downloads/communica-
tions-requirements-smart-grid-technologies

[3] S. Zahid et al., "SDL Modeling and Validation
of Home Area Network in Smart Grid Systems",
The Mediterranean Symp on Smart City Applicat.
Springer, pp. 28‒43, 2017.
https://doi.org/10.1007/978-3-319-74500-8_3

[4] B. Vlaovič et al., "Automated Generation of Pro-
mela Model from SDL Specification", Comput
Standards & Interfaces, vol. 29, pp. 449‒461,
2007.
http://dx.doi.org/10.1016/j.csi.2006.10.001

[5] E. Clarke et al., "Model Checking", MIT Press,
2018.

[6] N. Good et al., "Review and Classification of
Barriers and Enablers of Demand Response in the
Smart Grid", Renew. Sustain. Energy Rev., vol.
72, pp. 57‒72, 2017.
https://doi.org/10.1016/j.rser.2017.01.043

[7] N. Paterakis et al., "An Overview of Demand
Response: Key-Elements and International Expe-
rience", Renewable and Sustainable Energy Re-
views, vol. 69, pp. 871‒891, 2017.
http://dx.doi.org/10.1016/j.rser.2016.11.167

[8] F. Belina and D. Hogrefe, "The CCITT-Specifi-
cation and Description Language SDL", Comput.
Networks ISDN Syst., vol. 16, pp. 311‒341, 1989.
http://dx.doi.org/10.1016/0169-7552(89)90078-0

[9] M. Fantinato and M. Jino, "Applying Extend-
ed Finite State Machines in Software Testing of
Interactive Systems", Int Workshop on Design,
Specification, and Verification of Interactive Syst.
Springer, Berlin, Heidelberg, 2003, pp. 34‒45.
http://dx.doi.org/10.1007/978-3-540-39929-2_3

[10] P. F. I. Casas et al., ''Formalizing Geographical
Models Using Specification and Description Lan-
guage: The Wildfire Example,'' Proc. of the 2013
Winter Simulation Conf: Simulation: Making De-
cisions in a Complex World. IEEE Press, 2013,
pp. 1961‒1972.
http://dx.doi.org/10.1109/WSC.2013.6721575

[11] C. Baier and J.-P. Katoen, "Principles of Model
Checking.", MIT press, 2007.

[12] M. Frappier et al., "Comparison of Model Check-
ing Tools for Information Systems", in Int Conf
on Formal Eng Methods. Springer, Berlin, Hei-
delberg, 2010, pp. 581‒596.
http://dx.doi.org/10.1007/978-3-642-16901-4_38

[13] D. Jackson, "Software Abstractions: Logic Lan-
guage and Analysis", Cambridge, MA, USA:
MIT Press, 2006.

[14] H. Garavel et al., "CADP 2011: A Toolbox for
the Construction and Analysis of Distributed Pro-

cesses", Int. J. Softw. Tools Technol. Transfer, vol.
15, no. 2, pp. 89‒107, 2013.
http://dx.doi.org/10.1007/s10009-012-0244-z

[15] A.W. Roscoe, "The Theory and Practice of Con-
currency", Prentice Hall, 1998.

[16] A. Cimatti et al., "NuSMV 2: An OpenSource
Tool for Symbolic Model Checking", in Proc. of
the Int Conf on Comput-Aided Verification (CAV
2002), Copenhagen, Denmark, 2002.
http://dx.doi.org/10.1007/3-540-45657-0_29

[17] M. Leuschel et al., "ProB: A Model Checker
for B" in Int Symp of Formal Methods Europe.
Springer, Berlin, Heidelberg, 2003, pp. 855‒874.
http://dx.doi.org/10.1007/978-3-540-45236-2_46

[18] G. J. Holzmann, "The Model Checker SPIN",
IEEE Transactions on Software Eng, vol. 23, no.
5, pp. 279‒294, 1997.
http://dx.doi.org/10.1109/32.588521

[19] F. Mazzanti and A. Ferrari, ''Ten Diverse Formal
Models for a CBTC Automatic Train Supervision
System,'' Electron Proc in Theoretical Comput
Sci, vol. 268, pp. 104‒149, 2018.
http://dx.doi.org/10.4204/EPTCS.268.4

[20] M. H. T. Beek et al., ''From EU Projects to a Fam-
ily of Model Checkers,'' Software, Services, and
Syst Lecture Notes in Comput Sci, pp. 312‒328,
2015.
https://doi.org/10.1007/978-3-319-15545-6_20

[21] J. F. Groote and M. R. Mousavi, "Modeling and
Analysis of Communicating Systems", The MIT
Press, 2014.
http://dx.doi.org/10.7551/mitpress/9946.001.0001

[22] K. Jensen and L. Kristensen, "Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems", Springer Science & Business Media,
2009.
http://dx.doi.org/10.1007/b95112

[23] FDR4 – The CSP Refinement Checker.
http://www.cs.ox.ac.uk/projects/fdr/

[24] L. Lamport, "Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers", MA, Reading: Addison-Wesley,
2002.

[25] K. Larsen et al., "UPPAAL in a Nutshell", Int
Journal on Software Tools for Technology Trans-
fer (STTT), vol. 1, no 1, pp. 134‒152, 1997.
http://dx.doi.org/10.1007/s100090050010

[26] Blaskovic et al., ''Model Checking of Concurrent
System with SDL/sup --/ Specification,'' IEEE
10th Mediterranean Electrotechnical Conf. In-
form Technology and Electrotechnology for the
Mediterranean Countries. Proc. of the MeleCon
2000 (Cat. No.00CH37099), 2000, vol. 1, pp.
77‒80.
http://dx.doi.org/10.1109/MELCON.2000.880372

[27] D. Bošnački et al., "Model Checking SDL with
Spin", Proc. of the TACAS'2000, 2000, vol. 1785,
pp. 363‒377.
https://doi.org/10.1007/3-540-46419-0_25

[28] A. Hessel, "Timing Analysis of sdl Subset in Up-
paal," Master Thesis, Uppsala University, 2002.

[29] M. Bozga et al., "IF: An Intermediate Represen-
tation for SDL and its Applications", in SDL Fo-
rum, pp. 423‒40, 1999.
http://dx.doi.org/10.1016/B978-044450228-5/50028-X

[30] A. Prigent et al., "Extending the Translation from
SDL to Promela", in Proc. of the 9th Int SPIN
Workshop on Model Checking of Software, 2002,
pp. 79‒94.
http://dx.doi.org/10.1007/3-540-46017-9_8

[31] B. Vlaovič et al.,"Applying Automated Mod-
el Extraction for Simulation and Verification
of Real-Life SDL Specification with Spin",
IEEE Access, vol. 5, pp. 5046‒5058, 2017.
http://dx.doi.org/10.1109/ACCESS.2017.2685238

[32] A. Vreže et al., "Sdl2pml – Tool for Automated
Generation of Promela Model From SDL Specifi-
cation", Comput Standards & Interfaces, vol. 31,
no. 4, pp. 779‒786, 2009.
https://doi.org/10.1016/j.csi.2008.09.005

[33] S. Graf et al., "Model Checking of UML Mod-
els via a Mapping to Communicating Extended
Timed Automata" in S. Graf and L. Mounier
(Eds.), Proc. of the SPIN'04 Workshop, Barcelo-
na, Spain, vol. 2989 of LNCS, Springer, 2004.

[34] G. J. Holzmann, "The SPIN Model Checker:
Primer and Reference Manual"., Addison-Wes-
ley, 2003.

[35] G. J. Holzmann, "PAN: A Protocol Specification
Analyzer", Technical Rep TM81-11271-5, AT&T
Bell Laboratories, 1981.

[36] D. Baeld et al., "Partial Order Reduction for Se-
curity Protocols", in Proc. of the 26th Int Conf on
Concurrency Theory (CONCUR'15) ser. LIPIcs,
2015, vol. 42, pp. 497‒510.
https://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.497

[37] I. Konnov et al., ''A Short Counterexample
Property for Safety and Liveness Verification of
Fault-Tolerant Distributed Algorithms'' in Proc.
of the 44th ACM SIGPLAN Symp on Principles
of Programming Languages – POPL 2017, 2017.
https://dx.doi.org/10.1145/3009837.3009860

[38] E. M. Clarke and E. A. Emerson, "Design and
Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic", in Proc. of the
Logic of Programs: Workshop, 1981.
https://doi.org/10.1007/BFb0025774

[39] M. Dwyer et al., "Property Specification Patterns
for Finite-State Verification", Proc. of the 2nd

http://dx.doi.org/10.1109/SYSCO.2016.7831334
http://energy.gov/gc/downloads/communications-requirements-smart-grid-technologies
http://energy.gov/gc/downloads/communications-requirements-smart-grid-technologies
https://doi.org/10.1007/978-3-319-74500-8_3
http://dx.doi.org/10.1016/j.csi.2006.10.001
https://doi.org/10.1016/j.rser.2017.01.043
http://dx.doi.org/10.1016/j.rser.2016.11.167
http://dx.doi.org/10.1016/0169-7552(89)90078-0
http://dx.doi.org/10.1007/978-3-540-39929-2_3
http://dx.doi.org/10.1109/WSC.2013.6721575
http://dx.doi.org/10.1007/978-3-642-16901-4_38
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/978-3-319-15545-6_20
http://dx.doi.org/10.7551/mitpress/9946.001.0001
http://dx.doi.org/10.1007/b95112
http://www.cs.ox.ac.uk/projects/fdr/
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/MELCON.2000.880372
https://doi.org/10.1007/3-540-46419-0_25
http://dx.doi.org/10.1016/B978-044450228-5/50028-X
http://dx.doi.org/10.1007/3-540-46017-9_8
http://dx.doi.org/10.1109/ACCESS.2017.2685238
https://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.497
https://dx.doi.org/10.1145/3009837.3009860
https://doi.org/10.1007/BFb0025774

14 15S. Zahid, A. En-Nouaary and S. Bah Practical Model Checking of a Home Area Network System: Case Study

5. Conclusion

This paper presented a detailed description of
a case study in order to validate an SDL HAN
model. It proposed a semi-automatic way to
generate the Promela model from the HAN
SDL model detailed in Section 2. An interme-
diate format IF was used in order to facilitate
this translation. This latter was described in two
steps. The first one is manual mapping between
SDL and IF. Translation features concerning the
structure and behavior and the data type were
defined. The "nostable" states were used to de-
compose each transition into simple actions,
in order to reduce combinatorial explosion.
However, even with this solution, the manual
translation from the SDL model into IF is still a
source of potential errors. It is difficult to guar-
antee that the IF model is free of such errors.
The generated IF model was then transformed
into DTPromela, using the if2pml tool. The lat-
ter supplements the model with a definition of
Timer as a Promela macro. Once the DTProme-
la model was prepared, the verification and val-
idation were performed. Desired properties to
be checked were defined in LTL, and DTSPIN
was used to check the correctness of the model.
In the first place, pan got out of memory, even
when limiting the number of processes created.
However, to solve this problem, an algorithm
built in SPIN was used to keep only a small
fraction of the search stack in the memory, but
the verification took several hours to finish.
Our future work aims to generate the C code
from the HAN SDL specification. To do this,
one of the SDL to C compiler from the IBM Ra-
tional SDL Suite will be used. The environment
functions will be designed in order to connect
the SDL system with its environment. The goal
of this step is to build either a simulator/emula-
tor core or a plug-in for the HAN network.

References

[1] S. Zahid et al., "A Synthesis of Communication
Architectures and Services of Smart Grid Sys-
tems", 3rd Int Conf on Syst of Collaboration (Sy-
sCo). IEEE, 2016, pp. 1‒6.
http://dx.doi.org/10.1109/SYSCO.2016.7831334

[2] US Dept of Energy, "Communications Require-
ments of Smart Grid Technologies", Tech. Rep,
pp. 1‒69, 2010.
http://energy.gov/gc/downloads/communica-
tions-requirements-smart-grid-technologies

[3] S. Zahid et al., "SDL Modeling and Validation
of Home Area Network in Smart Grid Systems",
The Mediterranean Symp on Smart City Applicat.
Springer, pp. 28‒43, 2017.
https://doi.org/10.1007/978-3-319-74500-8_3

[4] B. Vlaovič et al., "Automated Generation of Pro-
mela Model from SDL Specification", Comput
Standards & Interfaces, vol. 29, pp. 449‒461,
2007.
http://dx.doi.org/10.1016/j.csi.2006.10.001

[5] E. Clarke et al., "Model Checking", MIT Press,
2018.

[6] N. Good et al., "Review and Classification of
Barriers and Enablers of Demand Response in the
Smart Grid", Renew. Sustain. Energy Rev., vol.
72, pp. 57‒72, 2017.
https://doi.org/10.1016/j.rser.2017.01.043

[7] N. Paterakis et al., "An Overview of Demand
Response: Key-Elements and International Expe-
rience", Renewable and Sustainable Energy Re-
views, vol. 69, pp. 871‒891, 2017.
http://dx.doi.org/10.1016/j.rser.2016.11.167

[8] F. Belina and D. Hogrefe, "The CCITT-Specifi-
cation and Description Language SDL", Comput.
Networks ISDN Syst., vol. 16, pp. 311‒341, 1989.
http://dx.doi.org/10.1016/0169-7552(89)90078-0

[9] M. Fantinato and M. Jino, "Applying Extend-
ed Finite State Machines in Software Testing of
Interactive Systems", Int Workshop on Design,
Specification, and Verification of Interactive Syst.
Springer, Berlin, Heidelberg, 2003, pp. 34‒45.
http://dx.doi.org/10.1007/978-3-540-39929-2_3

[10] P. F. I. Casas et al., ''Formalizing Geographical
Models Using Specification and Description Lan-
guage: The Wildfire Example,'' Proc. of the 2013
Winter Simulation Conf: Simulation: Making De-
cisions in a Complex World. IEEE Press, 2013,
pp. 1961‒1972.
http://dx.doi.org/10.1109/WSC.2013.6721575

[11] C. Baier and J.-P. Katoen, "Principles of Model
Checking.", MIT press, 2007.

[12] M. Frappier et al., "Comparison of Model Check-
ing Tools for Information Systems", in Int Conf
on Formal Eng Methods. Springer, Berlin, Hei-
delberg, 2010, pp. 581‒596.
http://dx.doi.org/10.1007/978-3-642-16901-4_38

[13] D. Jackson, "Software Abstractions: Logic Lan-
guage and Analysis", Cambridge, MA, USA:
MIT Press, 2006.

[14] H. Garavel et al., "CADP 2011: A Toolbox for
the Construction and Analysis of Distributed Pro-

cesses", Int. J. Softw. Tools Technol. Transfer, vol.
15, no. 2, pp. 89‒107, 2013.
http://dx.doi.org/10.1007/s10009-012-0244-z

[15] A.W. Roscoe, "The Theory and Practice of Con-
currency", Prentice Hall, 1998.

[16] A. Cimatti et al., "NuSMV 2: An OpenSource
Tool for Symbolic Model Checking", in Proc. of
the Int Conf on Comput-Aided Verification (CAV
2002), Copenhagen, Denmark, 2002.
http://dx.doi.org/10.1007/3-540-45657-0_29

[17] M. Leuschel et al., "ProB: A Model Checker
for B" in Int Symp of Formal Methods Europe.
Springer, Berlin, Heidelberg, 2003, pp. 855‒874.
http://dx.doi.org/10.1007/978-3-540-45236-2_46

[18] G. J. Holzmann, "The Model Checker SPIN",
IEEE Transactions on Software Eng, vol. 23, no.
5, pp. 279‒294, 1997.
http://dx.doi.org/10.1109/32.588521

[19] F. Mazzanti and A. Ferrari, ''Ten Diverse Formal
Models for a CBTC Automatic Train Supervision
System,'' Electron Proc in Theoretical Comput
Sci, vol. 268, pp. 104‒149, 2018.
http://dx.doi.org/10.4204/EPTCS.268.4

[20] M. H. T. Beek et al., ''From EU Projects to a Fam-
ily of Model Checkers,'' Software, Services, and
Syst Lecture Notes in Comput Sci, pp. 312‒328,
2015.
https://doi.org/10.1007/978-3-319-15545-6_20

[21] J. F. Groote and M. R. Mousavi, "Modeling and
Analysis of Communicating Systems", The MIT
Press, 2014.
http://dx.doi.org/10.7551/mitpress/9946.001.0001

[22] K. Jensen and L. Kristensen, "Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems", Springer Science & Business Media,
2009.
http://dx.doi.org/10.1007/b95112

[23] FDR4 – The CSP Refinement Checker.
http://www.cs.ox.ac.uk/projects/fdr/

[24] L. Lamport, "Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers", MA, Reading: Addison-Wesley,
2002.

[25] K. Larsen et al., "UPPAAL in a Nutshell", Int
Journal on Software Tools for Technology Trans-
fer (STTT), vol. 1, no 1, pp. 134‒152, 1997.
http://dx.doi.org/10.1007/s100090050010

[26] Blaskovic et al., ''Model Checking of Concurrent
System with SDL/sup --/ Specification,'' IEEE
10th Mediterranean Electrotechnical Conf. In-
form Technology and Electrotechnology for the
Mediterranean Countries. Proc. of the MeleCon
2000 (Cat. No.00CH37099), 2000, vol. 1, pp.
77‒80.
http://dx.doi.org/10.1109/MELCON.2000.880372

[27] D. Bošnački et al., "Model Checking SDL with
Spin", Proc. of the TACAS'2000, 2000, vol. 1785,
pp. 363‒377.
https://doi.org/10.1007/3-540-46419-0_25

[28] A. Hessel, "Timing Analysis of sdl Subset in Up-
paal," Master Thesis, Uppsala University, 2002.

[29] M. Bozga et al., "IF: An Intermediate Represen-
tation for SDL and its Applications", in SDL Fo-
rum, pp. 423‒40, 1999.
http://dx.doi.org/10.1016/B978-044450228-5/50028-X

[30] A. Prigent et al., "Extending the Translation from
SDL to Promela", in Proc. of the 9th Int SPIN
Workshop on Model Checking of Software, 2002,
pp. 79‒94.
http://dx.doi.org/10.1007/3-540-46017-9_8

[31] B. Vlaovič et al.,"Applying Automated Mod-
el Extraction for Simulation and Verification
of Real-Life SDL Specification with Spin",
IEEE Access, vol. 5, pp. 5046‒5058, 2017.
http://dx.doi.org/10.1109/ACCESS.2017.2685238

[32] A. Vreže et al., "Sdl2pml – Tool for Automated
Generation of Promela Model From SDL Specifi-
cation", Comput Standards & Interfaces, vol. 31,
no. 4, pp. 779‒786, 2009.
https://doi.org/10.1016/j.csi.2008.09.005

[33] S. Graf et al., "Model Checking of UML Mod-
els via a Mapping to Communicating Extended
Timed Automata" in S. Graf and L. Mounier
(Eds.), Proc. of the SPIN'04 Workshop, Barcelo-
na, Spain, vol. 2989 of LNCS, Springer, 2004.

[34] G. J. Holzmann, "The SPIN Model Checker:
Primer and Reference Manual"., Addison-Wes-
ley, 2003.

[35] G. J. Holzmann, "PAN: A Protocol Specification
Analyzer", Technical Rep TM81-11271-5, AT&T
Bell Laboratories, 1981.

[36] D. Baeld et al., "Partial Order Reduction for Se-
curity Protocols", in Proc. of the 26th Int Conf on
Concurrency Theory (CONCUR'15) ser. LIPIcs,
2015, vol. 42, pp. 497‒510.
https://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.497

[37] I. Konnov et al., ''A Short Counterexample
Property for Safety and Liveness Verification of
Fault-Tolerant Distributed Algorithms'' in Proc.
of the 44th ACM SIGPLAN Symp on Principles
of Programming Languages – POPL 2017, 2017.
https://dx.doi.org/10.1145/3009837.3009860

[38] E. M. Clarke and E. A. Emerson, "Design and
Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic", in Proc. of the
Logic of Programs: Workshop, 1981.
https://doi.org/10.1007/BFb0025774

[39] M. Dwyer et al., "Property Specification Patterns
for Finite-State Verification", Proc. of the 2nd

http://dx.doi.org/10.1109/SYSCO.2016.7831334
http://energy.gov/gc/downloads/communications-requirements-smart-grid-technologies
http://energy.gov/gc/downloads/communications-requirements-smart-grid-technologies
https://doi.org/10.1007/978-3-319-74500-8_3
http://dx.doi.org/10.1016/j.csi.2006.10.001
https://doi.org/10.1016/j.rser.2017.01.043
http://dx.doi.org/10.1016/j.rser.2016.11.167
http://dx.doi.org/10.1016/0169-7552(89)90078-0
http://dx.doi.org/10.1007/978-3-540-39929-2_3
http://dx.doi.org/10.1109/WSC.2013.6721575
http://dx.doi.org/10.1007/978-3-642-16901-4_38
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/978-3-319-15545-6_20
http://dx.doi.org/10.7551/mitpress/9946.001.0001
http://dx.doi.org/10.1007/b95112
http://www.cs.ox.ac.uk/projects/fdr/
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/MELCON.2000.880372
https://doi.org/10.1007/3-540-46419-0_25
http://dx.doi.org/10.1016/B978-044450228-5/50028-X
http://dx.doi.org/10.1007/3-540-46017-9_8
http://dx.doi.org/10.1109/ACCESS.2017.2685238
https://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.497
https://dx.doi.org/10.1145/3009837.3009860
https://doi.org/10.1007/BFb0025774

16 S. Zahid, A. En-Nouaary and S. Bah

Workshop on Formal Methods in Software Prac-
tice, 1998, pp. 7‒15.
http://dx.doi.org/10.1145/298595.298598

[40] A. Pnueli, "The Temporal Logic of Programs",
Proc. of the 18th IEEE Symp. Foundations of
Comput Sci, 1977, pp. 46‒57.
http://dx.doi.org/10.1109/SFCS.1977.32

[41] E. M. Clarke et al., "Another Look at LTL Mod-
el Checking" in Int Conf on Comput Aided Ver-
ification, Springer, Berlin, Heidelberg, 1994,
pp. 415‒427.
http://dx.doi.org/10.1007/3-540-58179-0_72

[42] V. Germanos et al., "Diagnosability under Weak
Fairness", 14th Int. Conf. on Application of Con-
currency to Sys Design, 2014, pp. 132‒141.
http://dx.doi.org/10.1109/ACSD.2014.9

Received: October 2018
Revised: October 2019

Accepted: November 2019

Contact addresses:
Soufiane Zahid

Institut National des Postes et Télécommunication
Rabat

Morocco
e-mail: zahidsoufiane@gmail.com

Abdeslam En-Nouaary
Institut National des Postes et Télécommunication

Rabat
Morocco

e-mail: abdeslam@inpt.ac.ma

Slimane Bah
Ecole Mohammadia d'Ingénieurs

University Mohammed V
Rabat

Morocco
e-mail: slimane.bah@emi.ac.ma

Soufiane Zahid received his Diploma (engineer degree) in Telecom-
munication, option Networks and Computer Systems, from the Institut
National des Postes et Télécommunication (INPT), Rabat, Morocco, in
2012. He is currently a PhD student in the doctoral center of INPT. His
current research topics are smart grid networks, formal methods and
conceptual modeling.

abdeSlam en-nouaary received his engineer degree in computer
engineering, option Data Communication and Computer Networks,
from the École Nationale Supérieure d'Informatique et d'Analyse des
Systèmes (ENSIAS), Rabat, Morocco, in 1996, and the MSc and PhD
degrees in computer science from the University of Montreal, in 1998
and 2001, respectively. Dr. En-Nouaary is currently an Associate Pro-
fessor at INPT (Institut National des Postes et Télécommunications),
Rabat, Morocco. Before joining INPT in 2008, Dr. En-Nouaary had
been an Associate Professor at the Electrical and Computer Engineer-
ing Department of Concordia University, Montreal, Canada, from 2001
to 2008. His main research interests are modeling and validation of
distributed, real-time, and embedded systems.

Slimane bah holds a PhD in computer networks from Concordia Uni-
versity, Montreal, Canada. During his PhD research he was an intern
at Ericsson Canada. Dr. Bah also holds an MSc in computer networks
from the University of Montreal, Canada, and an engineering degree
in computer science from the École Nationale Supérieure d'Informa-
tique et d'Analyse des Systèmes (ENSIAS), Morocco. Currently, Dr.
Bah is an Associate Professor at the Computer Science Department of
Mohammadia Engineering School (Ecole Mohammadia d'Ingenieurs),
University Mohammed V in Rabat, Morocco. He has also worked as an
Adjunct Professor at the University of Moncton, Canada. His research
interests include end-user services, self-organizing and challenging net-
works, service and protocol engineering.

http://dx.doi.org/10.1145/298595.298598
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-58179-0_72
http://dx.doi.org/10.1109/ACSD.2014.9

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1 1
 747
 281
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

