
Costin Badica1, Milan Vidaković2, Sorin Ilie1, Mirjana Ivanović3 and
Jovana Vidaković3

¹University of Craiova, Department of Computers and Information Technology; Romania
²University of Novi Sad, Faculty of Technical Sciences, Department of Computing and Control; Serbia
³University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics; Serbia

25CIT. Journal of Computing and Information Technology, Vol. 27, No. 1, March 2019, 25–42
doi: 10.20532/cit.2019.1004464

Role of Agent Middleware in Teaching
Distributed Systems and Agent
Technologies

Computer science and information communication
technologies are among the fastest changing areas and
it is essential to follow this world-wide trend also in
education, constantly innovating and adapting curric-
ula. In this paper, we introduce the structure, meth-
odological aspects and educational experiences of
teaching two courses on distributed systems and agent
technologies at two different universities and coun-
tries. The presentation is focused on the role of agent
middleware and multi-agent systems in teaching vari-
ous theoretical and practical aspects of these courses.
At the University of Craiova, the conclusion is that the
use of agent middleware in general and of JADE plat-
form in particular for teaching the course Distributed
Systems certainly brings many advantages, but also
has some limitations. At the University of Novi Sad,
within the Agent Technologies course, agent middle-
ware, initially developed as part of the research proj-
ect, has been successfully used for educational pur-
poses, too. For both courses, we present the structure,
the tools, teachers' and students' experiences and joint
useful conclusions and lessons learned with regard to
courses delivery.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Distributed artifi-
cial intelligence → Multi-agent systems
Applied computing → Education → Interactive
learning environments
Computing methodologies → Distributed computing
methodologies → Distributed algorithms
Computer systems organization → Architectures →
Distributed architectures → Client-server architec-
tures

Keywords: distributed software technology, multi-
agent middleware, educational experience

1. Introduction

Computer science (CS) and Information com-
munication technologies (ICT) curricula must
be under constant reevaluation and develop-
ment as nowadays these two areas have been
rapidly changing. Therefore, it is significant to
impose and suggest adequate approaches for re-
vitalizing CS and ICT education and curricula.
Significant changes in developing modern soft-
ware have happened in the last two decades. We
are now in a world of computing, where basical-
ly everything is distributed in the broader sense,
i.e. computing devices are interconnected, they
use heterogeneous software and hardware plat-
forms, and they exchange information via het-
erogeneous network communication channels.
Facing this reality, technologies of distributed
computing are developed and diversified with
the spread of new platforms, architectures and
languages for applications that could not have
been imagined before, like ubiquitous and per-
vasive computing, mobile computing, sensor
networks, high-performance computing, cloud
computing, or the Internet of things. Therefore,
rigorous design, integration, and harmonization
of various topics of distributed systems into CS
and ICT curricula, based on the most recent
technological developments, presents a qua-
si-permanent challenge taking into account the
various constraints of time, resources, effort,
and expertise of educators and students.
Motivation and discussion of the structure of a
core Distributed Systems and Agent Technol-
ogies courses, as well as their integration into

26 27C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

CS and ICT curricula, are not an easy task and
it would probably require more space than is
available in this paper.
At the University of Craiova, based on our 6
years experience in teaching a one-semester
mandatory course in Distributed network appli-
cation development (DNAD hereafter) to un-
dergraduate CS and ICT curricula, in teaching
the various concepts of distributed systems, we
focus on the role played by multi-agent distrib-
uted middleware.
Our investigation is triggered by the following
core question:

Q: Why and how can agent middleware play
a relevant role in teaching topics of distrib-
uted systems in CS and ICT curricula?

Based on our research and educational expe-
riences, we do believe that agent middleware
is relevant for teaching several theoretical and
practical aspects of distributed systems and
agent technologies. We will provide arguments
for this statement in the paper.
The same core question Q inspired us at the
University of Novi Sad to select particular agent
middleware for elective Agent Technologies
(AT hereafter) course and draw some useful
educational and methodological conclusions.
At the University of Novi Sad, until recent-
ly, undergraduate CS and ICT curricula only
had one course in artificial intelligence (AI)
where general AI topics were covered. Rarely
such courses presented distributed systems and
agent technology in more details. We realized
that distributed systems and agent technologies
are sufficiently mature, and it was a challenge
to introduce such topics to undergraduate stud-
ies. Unfortunately, we faced some obstacles.
First, there is a great discrepancy between our
students' previous knowledge and ambitions.
The majority of students lack motivation for
studying and gaining a higher level of knowl-
edge and skills in any course and they try to
avoid demanding courses. On the other hand,
a minority of students have shown to be high-
ly motivated and prefer to be challenged with
new, interesting and innovative courses. We
have also faced some general obstacles such
as the lack of a choice of appropriate textbooks
and teaching materials. Nevertheless, that this
course is elective, students' motivations to en-
roll in it are very diverse. With the need of an
appropriate software tool for the practical part

of the course, we also concluded that use of the
in-house developed system would obtain easier
maintenance of students practical and laborato-
ry activities.
In this context, the paper brings to the readers
some experiences gained in teaching two sim-
ilar courses at two universities from two coun-
tries, delivered by the teachers who have been
collaborating for a decade.
On one hand, we present our approach and con-
clusions on using agent middleware to support
the lectures, lab and project activities during the
DNAD course that was taught for 6 years to CS
undergraduates at the University of Craiova,
Romania.
On the other hand, we also elaborate on some
challenges and initial experiences in the de-
livery of elective courses on agents and multi-
agent systems, to undergraduate CS curricula at
the University of Novi Sad during a time period
of 3 years.
Some common experiences in delivering these
courses are identified and we will present our
joint conclusions that could be useful for those
teachers who are considering introducing top-
ics/courses on distributed systems and agent
technologies within CS and ICT curricula at
their universities.
The paper is organized as follows. We start in
Section 2 with a background and an overview
of various sources for developing a computer
science course focused on topics in distributed
systems and multi-agent technology. In Section
3, we follow with an overview of the course on
distributed network applications development.
Section 4 brings an overview of Agent Tech-
nology course. In Section 5, educational expe-
riences from delivering both courses are pre-
sented and discussed. They could be useful for
teachers and educational institutions that plan
to introduce similar courses in their curricula.
Last section brings some concluding remarks.

2. Background

2.1. Related Work

Rapid development of ICT has influenced im-
portant trends oriented towards distributed, per-
vasive networks and Internet of things, where
agents and agent technologies play essential

NetLogo was proposed as an excellent platform
for teaching intelligent agents within Multi-
agent systems course, in paper [6]. The authors
discussed a number of interesting features of the
platform and their educational value: expressive
and rather simple programming language with
a small learning curve, rapid GUI creation and
custom visualizations, significant features that
facilitate modeling of complex environments
and agents, etc. In the first several years of their
course delivery, the students enjoyed the course
in spite of the fact that it was rather theoretically
oriented. Obviously, courses on distributed sys-
tems and agent technologies require practical
aspects and program development. It is one of
the significant drawbacks of these authors' ap-
proach. But they persistently continued to teach
similar topics in their CS studies and reported
in [7] about new, rather specific experiences. In
fact, they presented a series of modules within
study program, that progressively address other
related topics necessary for their course. Final-
ly, in the last year of study they deliver a course
on multi-agent systems and principles of robot-
ics. Within the course, they organized a Robot-
ics Challenge which gave students the opportu-
nity to integrate gained knowledge and skills in
order to solve a real problem. According to the
authors' report, this approach, which seems a
little bit demanding compared to our approach-
es, was very well received by students.
Another educational approach based on NetLo-
go platform is presented in [8]. It was used in
elective AI course, fifth semester of the Bach-
elor of Computer Science. Significant part of
this course was devoted to autonomous agents
and multi-agent systems. In fact, the main idea
presented in the paper was to extend a BDI (Be-
lief-Desire-Intention) library in NetLogo based
on a specific case study and students' solutions.
Students were given the ''possibility to choose
either to complete a final exam to evaluate the
module Autonomous Agents and Multi-Agent
Systems, or to work on a course project using
NetLogo and BDI'' [8]. It is interesting to note
that almost all students decided to follow the
practical work on projects. Authors specified
the undergraduate students' research projects
from computational economics and the main
task was to enhance the existing library in order
to make students familiar with a more sophisti-
cated form of the BDI model in NetLogo.

role. For their future jobs in ICT companies,
students would benefit from learning and un-
derstanding new and challenging environ-
ments and implementations of softwares such
as ubiquitous and pervasive computing, sensor
networks, Internet of things, high-performance
computing, mobile computing, cloud comput-
ing and even collective intelligence [1]. There-
fore, rigorous design, integration, and harmoni-
zation of various topics of distributed systems
and agent technologies into CS and ICT curric-
ula presents a permanent task requiring exper-
tise adaptation of educators and students [2].
Despite the fact that there are different courses
on distributed systems and agent technologies
delivered at universities world-wide, there are
not too many papers that report on education-
al effects and students' motivation, results and
achievements. It is also worth noting that multi-
agent approaches are rather diverse, providing
a wider perspective on computer science meth-
ods, spanning various topics reaching applica-
tions, intelligent methods, new programming
paradigms and software technologies, possibly,
but not necessarily, in connection with distrib-
uted systems and technologies.
There are some papers that present experiences
in developing and using a variety of agent envi-
ronments. For example, [3] and [4] provide an
extensive overview of such environments, but
there are only a few papers describing effects
and students'/teachers' experiences in delivering
distributed systems and agent-oriented courses.
An interesting approach for revitalizing intro-
ductory undergraduate CS curricula through
the integration of agent-based modeling and
multi-agent systems is presented in [5]. Authors
decided to use their own system, i.e. MAgICS
(Multi-Agent Introduction to Computer Sci-
ence) framework. They introduced a range of
rather standard topics (searching and sorting,
machine learning, networks and security),
but put a special focus on parallel, distribut-
ed, and stochastic methods. Teachers' primary
teaching/learning goal was to enable students to
think in decentralized manner but also to un-
derstand the trade-offs between centralized and
decentralized approaches. Additionally, rather
advanced achievement was that students were
able to consider issues of distribution and par-
allelism from the programming, as well as from
the conceptual design of systems point of view.

26 27C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

CS and ICT curricula, are not an easy task and
it would probably require more space than is
available in this paper.
At the University of Craiova, based on our 6
years experience in teaching a one-semester
mandatory course in Distributed network appli-
cation development (DNAD hereafter) to un-
dergraduate CS and ICT curricula, in teaching
the various concepts of distributed systems, we
focus on the role played by multi-agent distrib-
uted middleware.
Our investigation is triggered by the following
core question:

Q: Why and how can agent middleware play
a relevant role in teaching topics of distrib-
uted systems in CS and ICT curricula?

Based on our research and educational expe-
riences, we do believe that agent middleware
is relevant for teaching several theoretical and
practical aspects of distributed systems and
agent technologies. We will provide arguments
for this statement in the paper.
The same core question Q inspired us at the
University of Novi Sad to select particular agent
middleware for elective Agent Technologies
(AT hereafter) course and draw some useful
educational and methodological conclusions.
At the University of Novi Sad, until recent-
ly, undergraduate CS and ICT curricula only
had one course in artificial intelligence (AI)
where general AI topics were covered. Rarely
such courses presented distributed systems and
agent technology in more details. We realized
that distributed systems and agent technologies
are sufficiently mature, and it was a challenge
to introduce such topics to undergraduate stud-
ies. Unfortunately, we faced some obstacles.
First, there is a great discrepancy between our
students' previous knowledge and ambitions.
The majority of students lack motivation for
studying and gaining a higher level of knowl-
edge and skills in any course and they try to
avoid demanding courses. On the other hand,
a minority of students have shown to be high-
ly motivated and prefer to be challenged with
new, interesting and innovative courses. We
have also faced some general obstacles such
as the lack of a choice of appropriate textbooks
and teaching materials. Nevertheless, that this
course is elective, students' motivations to en-
roll in it are very diverse. With the need of an
appropriate software tool for the practical part

of the course, we also concluded that use of the
in-house developed system would obtain easier
maintenance of students practical and laborato-
ry activities.
In this context, the paper brings to the readers
some experiences gained in teaching two sim-
ilar courses at two universities from two coun-
tries, delivered by the teachers who have been
collaborating for a decade.
On one hand, we present our approach and con-
clusions on using agent middleware to support
the lectures, lab and project activities during the
DNAD course that was taught for 6 years to CS
undergraduates at the University of Craiova,
Romania.
On the other hand, we also elaborate on some
challenges and initial experiences in the de-
livery of elective courses on agents and multi-
agent systems, to undergraduate CS curricula at
the University of Novi Sad during a time period
of 3 years.
Some common experiences in delivering these
courses are identified and we will present our
joint conclusions that could be useful for those
teachers who are considering introducing top-
ics/courses on distributed systems and agent
technologies within CS and ICT curricula at
their universities.
The paper is organized as follows. We start in
Section 2 with a background and an overview
of various sources for developing a computer
science course focused on topics in distributed
systems and multi-agent technology. In Section
3, we follow with an overview of the course on
distributed network applications development.
Section 4 brings an overview of Agent Tech-
nology course. In Section 5, educational expe-
riences from delivering both courses are pre-
sented and discussed. They could be useful for
teachers and educational institutions that plan
to introduce similar courses in their curricula.
Last section brings some concluding remarks.

2. Background

2.1. Related Work

Rapid development of ICT has influenced im-
portant trends oriented towards distributed, per-
vasive networks and Internet of things, where
agents and agent technologies play essential

NetLogo was proposed as an excellent platform
for teaching intelligent agents within Multi-
agent systems course, in paper [6]. The authors
discussed a number of interesting features of the
platform and their educational value: expressive
and rather simple programming language with
a small learning curve, rapid GUI creation and
custom visualizations, significant features that
facilitate modeling of complex environments
and agents, etc. In the first several years of their
course delivery, the students enjoyed the course
in spite of the fact that it was rather theoretically
oriented. Obviously, courses on distributed sys-
tems and agent technologies require practical
aspects and program development. It is one of
the significant drawbacks of these authors' ap-
proach. But they persistently continued to teach
similar topics in their CS studies and reported
in [7] about new, rather specific experiences. In
fact, they presented a series of modules within
study program, that progressively address other
related topics necessary for their course. Final-
ly, in the last year of study they deliver a course
on multi-agent systems and principles of robot-
ics. Within the course, they organized a Robot-
ics Challenge which gave students the opportu-
nity to integrate gained knowledge and skills in
order to solve a real problem. According to the
authors' report, this approach, which seems a
little bit demanding compared to our approach-
es, was very well received by students.
Another educational approach based on NetLo-
go platform is presented in [8]. It was used in
elective AI course, fifth semester of the Bach-
elor of Computer Science. Significant part of
this course was devoted to autonomous agents
and multi-agent systems. In fact, the main idea
presented in the paper was to extend a BDI (Be-
lief-Desire-Intention) library in NetLogo based
on a specific case study and students' solutions.
Students were given the ''possibility to choose
either to complete a final exam to evaluate the
module Autonomous Agents and Multi-Agent
Systems, or to work on a course project using
NetLogo and BDI'' [8]. It is interesting to note
that almost all students decided to follow the
practical work on projects. Authors specified
the undergraduate students' research projects
from computational economics and the main
task was to enhance the existing library in order
to make students familiar with a more sophisti-
cated form of the BDI model in NetLogo.

role. For their future jobs in ICT companies,
students would benefit from learning and un-
derstanding new and challenging environ-
ments and implementations of softwares such
as ubiquitous and pervasive computing, sensor
networks, Internet of things, high-performance
computing, mobile computing, cloud comput-
ing and even collective intelligence [1]. There-
fore, rigorous design, integration, and harmoni-
zation of various topics of distributed systems
and agent technologies into CS and ICT curric-
ula presents a permanent task requiring exper-
tise adaptation of educators and students [2].
Despite the fact that there are different courses
on distributed systems and agent technologies
delivered at universities world-wide, there are
not too many papers that report on education-
al effects and students' motivation, results and
achievements. It is also worth noting that multi-
agent approaches are rather diverse, providing
a wider perspective on computer science meth-
ods, spanning various topics reaching applica-
tions, intelligent methods, new programming
paradigms and software technologies, possibly,
but not necessarily, in connection with distrib-
uted systems and technologies.
There are some papers that present experiences
in developing and using a variety of agent envi-
ronments. For example, [3] and [4] provide an
extensive overview of such environments, but
there are only a few papers describing effects
and students'/teachers' experiences in delivering
distributed systems and agent-oriented courses.
An interesting approach for revitalizing intro-
ductory undergraduate CS curricula through
the integration of agent-based modeling and
multi-agent systems is presented in [5]. Authors
decided to use their own system, i.e. MAgICS
(Multi-Agent Introduction to Computer Sci-
ence) framework. They introduced a range of
rather standard topics (searching and sorting,
machine learning, networks and security),
but put a special focus on parallel, distribut-
ed, and stochastic methods. Teachers' primary
teaching/learning goal was to enable students to
think in decentralized manner but also to un-
derstand the trade-offs between centralized and
decentralized approaches. Additionally, rather
advanced achievement was that students were
able to consider issues of distribution and par-
allelism from the programming, as well as from
the conceptual design of systems point of view.

28 29C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Extensive experiences in teaching several un-
dergraduate courses on distributed systems and
agents and multi-agent frameworks at our two
universities are presented in [2], [9]. We paid
attention to three key issues in our courses.
The first aim was to support students' intuitive
understanding of vital concepts of distributed
systems and agent technologies. The second
aim was the selection of appropriate teach-
ing material and we pointed out some criteria
useful for selecting and/or preparing adequate
teaching material. The third aspect was oriented
towards specification of good motivational and
inspiring examples and problems that students
have to solve practically during lab classes,
home-work and projects.
An important part of courses delivery is de-
voted to lessons learned and feedback from
students in order to try to improve the courses
from year to year.
Practical aspects of courses on distributed sys-
tems and agent technologies can be of great
importance for students and their future jobs
in companies. So the decision which environ-
ment, platform, middleware to use is important
for teachers and it can significantly influence
students' motivation, learning curve, acquiring
practical skills and general satisfaction with
courses' effects.
Following [10], agent systems are deployed
over specialized software infrastructures that
provide a basic set of functionalities for the
existence of a realistic multi-agent application.
Seen from the perspective of distributed sys-
tems and agent technologies, such infrastruc-
tures are placed at the middleware level. They
define a software layer that
(i) assures platform (here understood as hard-

ware + operating system) independence
and

(ii) provides a collection of software function-
alities and services, including: agent life-
time management, agent communication
and message transport, agent naming and
discovery, mobility, security, etc.

An agent framework is a software infrastruc-
ture that is available as software library, pro-
gramming language environment, or both, and
provides the core software artifacts needed for

creating the skeleton of a multi-agent system.
A software package that provides the core run-
time functionalities for deploying and running
distributed multi-agent applications is tradi-
tionally known as agent platform. Typical agent
middleware provides both, an agent platform
and an agent framework.
More than a hundred of agent platforms and
toolkits that differ in maturity, quality, stan-
dards compliance, and complexity are reported
in the literature [10]. One of the most popular,
well-documented, FIPA1 compliant, and easy-
to-program agent packages is JADE [11]. So
at the University of Craiova within our DNAD
course, we decided to use JADE.
Our intention within AT course at the Univer-
sity of Novi Sad was to prepare a smooth in-
troduction in agent technology and multi-agent
systems (MASs) using, as much as possible,
our previously developed teaching resources
and self-developed software tools for creation
of MASs [2], [9]. The main advantage of our
approach is that we use in-house agent middle-
ware developed within our research activities,
for teaching as well. So we are able to offer
thorough knowledge of our system to the stu-
dents. Also, it is possible to easily make cor-
rections and extend the system, because we do
not depend on external programmers. Students
performed different tasks with the system and
used it to implement simple MAS, while during
programming and testing their solutions, they
could also test our framework.

2.2. Computer Science Curricula
Recommendations

ACM and IEEE are continuously developing,
revising, refining, and adapting recommen-
dations to help academic educators with the
design and further adaptation of CS and ICT
curricula by incorporating the most recent re-
sults of CS and ICT research and by addressing
the new market requirements for such profes-
sionals. The recommendations are available as
Computer Science Body Knowledge – CSBK,
the last version being issued in 2013 [12].
Moreover, CS scholars are providing textbooks
in distributed systems, like for example [13].

There are also some well-known introductory
textbooks on Agent Technologies [14]. Those
textbooks, as well as CSBK, are valuable sourc-
es of knowledge and methodology for teaching
Distributed Systems and agent topics to CS and
ICT undergraduates. Unfortunately, students
usually avoid reading the books, while look-
ing for some compressed/digested versions of
teaching materials, so we also had to take care
about that in delivering our courses.
CSBK provides comprehensive structuring of
CS knowledge into 18 knowledge areas – KA
that we had to take into account when prepar-
ing our courses. Each KA is decomposed into
a number of knowledge units – KU, while each
KU is further divided into a number of topics
with associated learning outcomes – LO. Each
LO must have associated a certain level of mas-
tery from the available set: familiarity, usage,
and assessment.
Three CSBK KAs that are relevant for the de-
velopment of courses, including Distributed
Systems and agent topics were recently updated
to reflect the current developments in comput-
ing and information technology industry:

 ● Networking and Communication (NC) KA
was split, because of its growth and diver-
gence. A part of it was included in PBD
(see below).

 ● Platform-Based Development (PBD) is a
new KA, with its content mainly grown
from the NC KA.

 ● Parallel and Distributed Computing (PD)
is a new KA that has acquired topics that
were previously spread in other KAs.

3. Distributed Network Application
Development (DNAD) Course

3.1. Overview of DNAD Course

In developing Distributed Network Applica-
tions Development (DNAD) course at the Uni-
versity of Craiova, we took into consideration
the definition of course learning objectives and
the availability of course prerequisites. The
DNAD course is scheduled in the 3rd year, 6th
semester of Computer Science curricula.

Firstly, the course learning objectives were for-
mulated in accordance with recommendations
provided by CSBK on the topics that were con-
sidered relevant for distributed systems, as well
as based on standard textbooks in distributed
systems:

 ● LO1: To introduce the principles and con-
cepts of distributed software.

 ● LO2: To introduce the basic technologies
of distributed software with a focus on
core middleware technologies based on
Internet.

 ● LO3: To provide an opportunity to ob-
tain practical experience in applying these
techniques for programming small-scale
distributed software applications.

Secondly, the course prerequisites were estab-
lished, taking into account the current struc-
ture of our computer science curricula. The
students must be familiar with theory and
practice of computer programming (including
object-oriented programming using the Java
programming language), operating systems and
computer networks. The courses that directly
benefit from DNAD are Electronic Commerce
and Web Application Design.
Thirdly, a course structure was defined, includ-
ing lectures, labs, and project activities. Finally,
we added topics on agent middleware that were
aimed to support teaching of several conceptu-
al and practical aspects of distributed systems,
while trying to correctly fit agent middleware
into the concepts and approaches of distributed
systems.
The DNAD course is structured in two modules
with separate grading:
(i) Course module comprising lectures and

labs with 4 ECTS points;
(ii) Project module with 1 ECTS point.
Both modules last 14 weeks with lectures 2h/
week, lab 2h/week and project 1h/week.
DNAD course uses a technology-centered prag-
matic approach to teach distributed systems.
The course is focused on applications and pro-
gramming in the spirit of [15] and [16], rather
than on theory and algorithms, as for example
in [17]. Nevertheless, important concepts are
firstly introduced and then exemplified with the
help of technologies and frameworks.1http://www.fipa.org/

28 29C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Extensive experiences in teaching several un-
dergraduate courses on distributed systems and
agents and multi-agent frameworks at our two
universities are presented in [2], [9]. We paid
attention to three key issues in our courses.
The first aim was to support students' intuitive
understanding of vital concepts of distributed
systems and agent technologies. The second
aim was the selection of appropriate teach-
ing material and we pointed out some criteria
useful for selecting and/or preparing adequate
teaching material. The third aspect was oriented
towards specification of good motivational and
inspiring examples and problems that students
have to solve practically during lab classes,
home-work and projects.
An important part of courses delivery is de-
voted to lessons learned and feedback from
students in order to try to improve the courses
from year to year.
Practical aspects of courses on distributed sys-
tems and agent technologies can be of great
importance for students and their future jobs
in companies. So the decision which environ-
ment, platform, middleware to use is important
for teachers and it can significantly influence
students' motivation, learning curve, acquiring
practical skills and general satisfaction with
courses' effects.
Following [10], agent systems are deployed
over specialized software infrastructures that
provide a basic set of functionalities for the
existence of a realistic multi-agent application.
Seen from the perspective of distributed sys-
tems and agent technologies, such infrastruc-
tures are placed at the middleware level. They
define a software layer that
(i) assures platform (here understood as hard-

ware + operating system) independence
and

(ii) provides a collection of software function-
alities and services, including: agent life-
time management, agent communication
and message transport, agent naming and
discovery, mobility, security, etc.

An agent framework is a software infrastruc-
ture that is available as software library, pro-
gramming language environment, or both, and
provides the core software artifacts needed for

creating the skeleton of a multi-agent system.
A software package that provides the core run-
time functionalities for deploying and running
distributed multi-agent applications is tradi-
tionally known as agent platform. Typical agent
middleware provides both, an agent platform
and an agent framework.
More than a hundred of agent platforms and
toolkits that differ in maturity, quality, stan-
dards compliance, and complexity are reported
in the literature [10]. One of the most popular,
well-documented, FIPA1 compliant, and easy-
to-program agent packages is JADE [11]. So
at the University of Craiova within our DNAD
course, we decided to use JADE.
Our intention within AT course at the Univer-
sity of Novi Sad was to prepare a smooth in-
troduction in agent technology and multi-agent
systems (MASs) using, as much as possible,
our previously developed teaching resources
and self-developed software tools for creation
of MASs [2], [9]. The main advantage of our
approach is that we use in-house agent middle-
ware developed within our research activities,
for teaching as well. So we are able to offer
thorough knowledge of our system to the stu-
dents. Also, it is possible to easily make cor-
rections and extend the system, because we do
not depend on external programmers. Students
performed different tasks with the system and
used it to implement simple MAS, while during
programming and testing their solutions, they
could also test our framework.

2.2. Computer Science Curricula
Recommendations

ACM and IEEE are continuously developing,
revising, refining, and adapting recommen-
dations to help academic educators with the
design and further adaptation of CS and ICT
curricula by incorporating the most recent re-
sults of CS and ICT research and by addressing
the new market requirements for such profes-
sionals. The recommendations are available as
Computer Science Body Knowledge – CSBK,
the last version being issued in 2013 [12].
Moreover, CS scholars are providing textbooks
in distributed systems, like for example [13].

There are also some well-known introductory
textbooks on Agent Technologies [14]. Those
textbooks, as well as CSBK, are valuable sourc-
es of knowledge and methodology for teaching
Distributed Systems and agent topics to CS and
ICT undergraduates. Unfortunately, students
usually avoid reading the books, while look-
ing for some compressed/digested versions of
teaching materials, so we also had to take care
about that in delivering our courses.
CSBK provides comprehensive structuring of
CS knowledge into 18 knowledge areas – KA
that we had to take into account when prepar-
ing our courses. Each KA is decomposed into
a number of knowledge units – KU, while each
KU is further divided into a number of topics
with associated learning outcomes – LO. Each
LO must have associated a certain level of mas-
tery from the available set: familiarity, usage,
and assessment.
Three CSBK KAs that are relevant for the de-
velopment of courses, including Distributed
Systems and agent topics were recently updated
to reflect the current developments in comput-
ing and information technology industry:

 ● Networking and Communication (NC) KA
was split, because of its growth and diver-
gence. A part of it was included in PBD
(see below).

 ● Platform-Based Development (PBD) is a
new KA, with its content mainly grown
from the NC KA.

 ● Parallel and Distributed Computing (PD)
is a new KA that has acquired topics that
were previously spread in other KAs.

3. Distributed Network Application
Development (DNAD) Course

3.1. Overview of DNAD Course

In developing Distributed Network Applica-
tions Development (DNAD) course at the Uni-
versity of Craiova, we took into consideration
the definition of course learning objectives and
the availability of course prerequisites. The
DNAD course is scheduled in the 3rd year, 6th
semester of Computer Science curricula.

Firstly, the course learning objectives were for-
mulated in accordance with recommendations
provided by CSBK on the topics that were con-
sidered relevant for distributed systems, as well
as based on standard textbooks in distributed
systems:

 ● LO1: To introduce the principles and con-
cepts of distributed software.

 ● LO2: To introduce the basic technologies
of distributed software with a focus on
core middleware technologies based on
Internet.

 ● LO3: To provide an opportunity to ob-
tain practical experience in applying these
techniques for programming small-scale
distributed software applications.

Secondly, the course prerequisites were estab-
lished, taking into account the current struc-
ture of our computer science curricula. The
students must be familiar with theory and
practice of computer programming (including
object-oriented programming using the Java
programming language), operating systems and
computer networks. The courses that directly
benefit from DNAD are Electronic Commerce
and Web Application Design.
Thirdly, a course structure was defined, includ-
ing lectures, labs, and project activities. Finally,
we added topics on agent middleware that were
aimed to support teaching of several conceptu-
al and practical aspects of distributed systems,
while trying to correctly fit agent middleware
into the concepts and approaches of distributed
systems.
The DNAD course is structured in two modules
with separate grading:
(i) Course module comprising lectures and

labs with 4 ECTS points;
(ii) Project module with 1 ECTS point.
Both modules last 14 weeks with lectures 2h/
week, lab 2h/week and project 1h/week.
DNAD course uses a technology-centered prag-
matic approach to teach distributed systems.
The course is focused on applications and pro-
gramming in the spirit of [15] and [16], rather
than on theory and algorithms, as for example
in [17]. Nevertheless, important concepts are
firstly introduced and then exemplified with the
help of technologies and frameworks.1http://www.fipa.org/

30 31C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Similar pragmatic approaches in teaching dis-
tributed systems applications to undergraduates
were already used, like for example [18]. How-
ever, the special feature of our approach is the
significant role that we assigned to distributed
agent middleware in teaching the concepts and
practical applications of distributed systems.
There is no single textbook to cover the course
content. Nevertheless, for our course, a useful
starting reference is [13]. The course lectures
comprise the following list of topics:

 ● Introduction to Distributed Systems: defi-
nition, classification and characteristics,

 ● Models of Distributed Systems: physical,
architectural, and fundamental models,

 ● Inter-process communication in Distribut-
ed Systems: TCP, UDP, group communi-
cation,

 ● Core technologies for Web-based Distrib-
uted Systems: HTML/CSS, XML, HTTP;
Web clients and servers; Servlets and
Apache/Tomcat,

 ● Object-based Distributed Systems and Re-
mote Method Invocation: Design of RMI,
Programming Java RMI,

 ● P2P systems: Structured and unstructured
overlay networks,

 ● Agent-based Distributed Systems: FIPA
and JADE,

 ● Web Services: Concepts and standards;
Axis2.

DNAD course addresses several KUs that are
part of three KAs of CSBK, as follows (note
that two KUs are on our wish-list, as future
work):

 ● KA: Networking and Communication
(NC): KU – NC/Networked Applications,

 ● KA: Platform-Based Development (PBD):
KU – PBD/Introduction; KU – PBD/Web
Platforms; KU – PBD/Mobile Platforms
(on the wish-list as future work),

 ● KA: Parallel and Distributed Comput-
ing (PD): KU – PD/Distributed Systems;
KU – PD/Cloud Computing (on the wish-
list as future work).

Grading of the DNAD course module is based
on final exam and lab assignments. The final
exam counts 60% of the final mark and com-
prises 30% based on a questionnaire of knowl-

edge questions and 30% based on ''apply skills''
exercises involving the design of a small-scale
distributed software application. The lab grad-
ing counts 40% of the final mark and it is deter-
mined from the outcome of a set of lab assign-
ments. Their number depends on difficulty, and
it is usually chosen between 3 and 5. During
the semester, as part of the lab activity, the stu-
dents are also exposed to a number of tutorials
that introduce the software packages and tools
required for carrying out their lab and project
assignments.
Grading of the DNAD project module is based
on a project assignment and associated deliver-
ables: a project report and a software package.
The grade is split as 20% for the intermediary
report and 80% for the final report and software
deliverables.

3.2. Role of Agent Middleware in DNAD
Course

Agent middleware can play (and actually
played) an important role in teaching our DNAD
course. In order to support this statement, we
performed a thorough analysis of the JADE
agent middleware – JADE [11] with respect to
the requirements set by the learning objectives,
structure and topics of the DNAD course.
Firstly, JADE agent middleware supports all
the course learning objectives. It supports LO1,
as using JADE examples, we can explain many
principles and concepts of Distributed Sys-
tems, including: platform heterogeneity man-
agement, transport protocols, white and yellow
pages (naming and directories), code mobility,
fault tolerance (JADE supports a limited form
of fault tolerance), and interaction protocols
based on message exchange. Conceptually,
following the classification of architectural
models proposed in [13], JADE uses a soft-
ware component-based model. This means that
JADE agents are actually software components
(i.e. dynamically loadable objects enabling run-
time configuration) that support asynchronous
message passing for agent communication in
the P2P style (although JADE itself cannot be
characterized as a true P2P system). Moreover,
JADE is standards' (i.e. FIPA) compliant. Part-
ly, it also supports LO2, as JADE itself can be
described as a middleware platform. It also well
supports LO3 with the low cost of a smooth

learning curve by providing a meaningful and
well-documented API that helps students to ac-
quire skills for developing JADE-based small-
scale distributed software in due time and with
reasonable effort.
Secondly, using JADE as an example, we can
cover part of the topics included in DNAD
course – both lectures and laboratories. In par-
ticular, JADE is a good example of compo-
nent-based distributed middleware platform,
well supporting students' practical work.
The interaction model (one of the fundamental
models [13]) of a distributed system actually
corresponds to a distributed algorithm and it
can be described in a disciplined way as a set of
communicating state-machines [17]. This mod-
el can be naturally implemented using JADE
agents with the help of finite-state machine be-
haviors, i.e. FSMBehaviour class [11].
JADE can be also used to introduce the ser-
vice-oriented architecture. JADE agents can ex-
pose services registered in a yellow pages direc-
tory – the Directory Facilitator agent. Services
can be named, searched in this directory, and
then invoked using interaction protocols, thus
supporting one of the basic architectural pat-
terns of service-oriented computing. Services
provided by JADE agents can be encapsulated
into and exposed as Web Services [19], allow-
ing the integration of distributed multi-agent
applications into the Web environment, and en-
abling use of JADE as integration middleware
of distributed heterogeneous applications.
Using JADE, we can also exemplify an elegant
model of object serialization based on Java
Beans and semantic web technologies. Firstly,
JADE provides an API for manipulating ontol-
ogies that supports packing and unpacking of
complex objects when they are exchanged be-
tween agents via FIPA ACL messages. More-
over, the specialized Ontology Bean Generator
tool is available to facilitate the engineering
process of JADE ontologies [20].
One of the weaknesses of JADE, however, is
the integration with standard Web technolo-
gies. Although possible, the development of a
Web-based application that integrates JADE
on the server-side is not natural and it requires
the use of additional software glue known as
JADE Gateway [21]. This facility was never-
theless useful for project activities, where stu-

dents chose to develop a Web-based interface
to a JADE-based distributed multi-agent appli-
cation.
Finally, it is worth mentioning that JADE can
also support the development of mobile com-
puting applications on Android-based smart-
phones [22]. This can be very useful with regard
to the extension of DNAD course with topics
covering the Mobile Platforms KU. Moreover,
JADE can be also useful in the near future to
support lab and project activities involving the
development of distributed mobile applications
with JADE agents running on Android-based
smartphones.
Before concluding this section, we would like to
mention that although JADE (and multi-agent
middleware in general) can support the teach-
ing of distributed systems in multiple ways, it is
by far not the silver bullet. There are many other
aspects related to concepts and technologies of
distributed systems that require additional ex-
amples and tools to support a good coverage of
the subject. Some example topics that require
different tools are web technologies, RMI, P2P
systems, cloud computing, ubiquitous and per-
vasive computing. Taking also into account that
it is probably impossible to find a single tool
to cover all the topics, we can conclude that
the correct approach, we also followed, is to
carefully analyze the course curricula (lectures,
labs, and project) and decide where precisely
agent middleware can serve as a relevant exam-
ple, as well as a practical implementation tool.

4. Agent Technologies (AT) Course

4.1. Overview of the AT Course

At the University of Novi Sad, Faculty of Tech-
nical Sciences, the main idea within the elective
course on Agent Technologies (AT) was to mo-
tivate better students to learn some new, mod-
ern and challenging technologies, but also to
give them opportunity to bridge the gap in the
understanding of a particular area of distributed
systems i.e. multi-agent systems as one among
essential components of smart environments
and computational collective intelligence areas.
The course on AT is scheduled in 4th year 8th

30 31C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Similar pragmatic approaches in teaching dis-
tributed systems applications to undergraduates
were already used, like for example [18]. How-
ever, the special feature of our approach is the
significant role that we assigned to distributed
agent middleware in teaching the concepts and
practical applications of distributed systems.
There is no single textbook to cover the course
content. Nevertheless, for our course, a useful
starting reference is [13]. The course lectures
comprise the following list of topics:

 ● Introduction to Distributed Systems: defi-
nition, classification and characteristics,

 ● Models of Distributed Systems: physical,
architectural, and fundamental models,

 ● Inter-process communication in Distribut-
ed Systems: TCP, UDP, group communi-
cation,

 ● Core technologies for Web-based Distrib-
uted Systems: HTML/CSS, XML, HTTP;
Web clients and servers; Servlets and
Apache/Tomcat,

 ● Object-based Distributed Systems and Re-
mote Method Invocation: Design of RMI,
Programming Java RMI,

 ● P2P systems: Structured and unstructured
overlay networks,

 ● Agent-based Distributed Systems: FIPA
and JADE,

 ● Web Services: Concepts and standards;
Axis2.

DNAD course addresses several KUs that are
part of three KAs of CSBK, as follows (note
that two KUs are on our wish-list, as future
work):

 ● KA: Networking and Communication
(NC): KU – NC/Networked Applications,

 ● KA: Platform-Based Development (PBD):
KU – PBD/Introduction; KU – PBD/Web
Platforms; KU – PBD/Mobile Platforms
(on the wish-list as future work),

 ● KA: Parallel and Distributed Comput-
ing (PD): KU – PD/Distributed Systems;
KU – PD/Cloud Computing (on the wish-
list as future work).

Grading of the DNAD course module is based
on final exam and lab assignments. The final
exam counts 60% of the final mark and com-
prises 30% based on a questionnaire of knowl-

edge questions and 30% based on ''apply skills''
exercises involving the design of a small-scale
distributed software application. The lab grad-
ing counts 40% of the final mark and it is deter-
mined from the outcome of a set of lab assign-
ments. Their number depends on difficulty, and
it is usually chosen between 3 and 5. During
the semester, as part of the lab activity, the stu-
dents are also exposed to a number of tutorials
that introduce the software packages and tools
required for carrying out their lab and project
assignments.
Grading of the DNAD project module is based
on a project assignment and associated deliver-
ables: a project report and a software package.
The grade is split as 20% for the intermediary
report and 80% for the final report and software
deliverables.

3.2. Role of Agent Middleware in DNAD
Course

Agent middleware can play (and actually
played) an important role in teaching our DNAD
course. In order to support this statement, we
performed a thorough analysis of the JADE
agent middleware – JADE [11] with respect to
the requirements set by the learning objectives,
structure and topics of the DNAD course.
Firstly, JADE agent middleware supports all
the course learning objectives. It supports LO1,
as using JADE examples, we can explain many
principles and concepts of Distributed Sys-
tems, including: platform heterogeneity man-
agement, transport protocols, white and yellow
pages (naming and directories), code mobility,
fault tolerance (JADE supports a limited form
of fault tolerance), and interaction protocols
based on message exchange. Conceptually,
following the classification of architectural
models proposed in [13], JADE uses a soft-
ware component-based model. This means that
JADE agents are actually software components
(i.e. dynamically loadable objects enabling run-
time configuration) that support asynchronous
message passing for agent communication in
the P2P style (although JADE itself cannot be
characterized as a true P2P system). Moreover,
JADE is standards' (i.e. FIPA) compliant. Part-
ly, it also supports LO2, as JADE itself can be
described as a middleware platform. It also well
supports LO3 with the low cost of a smooth

learning curve by providing a meaningful and
well-documented API that helps students to ac-
quire skills for developing JADE-based small-
scale distributed software in due time and with
reasonable effort.
Secondly, using JADE as an example, we can
cover part of the topics included in DNAD
course – both lectures and laboratories. In par-
ticular, JADE is a good example of compo-
nent-based distributed middleware platform,
well supporting students' practical work.
The interaction model (one of the fundamental
models [13]) of a distributed system actually
corresponds to a distributed algorithm and it
can be described in a disciplined way as a set of
communicating state-machines [17]. This mod-
el can be naturally implemented using JADE
agents with the help of finite-state machine be-
haviors, i.e. FSMBehaviour class [11].
JADE can be also used to introduce the ser-
vice-oriented architecture. JADE agents can ex-
pose services registered in a yellow pages direc-
tory – the Directory Facilitator agent. Services
can be named, searched in this directory, and
then invoked using interaction protocols, thus
supporting one of the basic architectural pat-
terns of service-oriented computing. Services
provided by JADE agents can be encapsulated
into and exposed as Web Services [19], allow-
ing the integration of distributed multi-agent
applications into the Web environment, and en-
abling use of JADE as integration middleware
of distributed heterogeneous applications.
Using JADE, we can also exemplify an elegant
model of object serialization based on Java
Beans and semantic web technologies. Firstly,
JADE provides an API for manipulating ontol-
ogies that supports packing and unpacking of
complex objects when they are exchanged be-
tween agents via FIPA ACL messages. More-
over, the specialized Ontology Bean Generator
tool is available to facilitate the engineering
process of JADE ontologies [20].
One of the weaknesses of JADE, however, is
the integration with standard Web technolo-
gies. Although possible, the development of a
Web-based application that integrates JADE
on the server-side is not natural and it requires
the use of additional software glue known as
JADE Gateway [21]. This facility was never-
theless useful for project activities, where stu-

dents chose to develop a Web-based interface
to a JADE-based distributed multi-agent appli-
cation.
Finally, it is worth mentioning that JADE can
also support the development of mobile com-
puting applications on Android-based smart-
phones [22]. This can be very useful with regard
to the extension of DNAD course with topics
covering the Mobile Platforms KU. Moreover,
JADE can be also useful in the near future to
support lab and project activities involving the
development of distributed mobile applications
with JADE agents running on Android-based
smartphones.
Before concluding this section, we would like to
mention that although JADE (and multi-agent
middleware in general) can support the teach-
ing of distributed systems in multiple ways, it is
by far not the silver bullet. There are many other
aspects related to concepts and technologies of
distributed systems that require additional ex-
amples and tools to support a good coverage of
the subject. Some example topics that require
different tools are web technologies, RMI, P2P
systems, cloud computing, ubiquitous and per-
vasive computing. Taking also into account that
it is probably impossible to find a single tool
to cover all the topics, we can conclude that
the correct approach, we also followed, is to
carefully analyze the course curricula (lectures,
labs, and project) and decide where precisely
agent middleware can serve as a relevant exam-
ple, as well as a practical implementation tool.

4. Agent Technologies (AT) Course

4.1. Overview of the AT Course

At the University of Novi Sad, Faculty of Tech-
nical Sciences, the main idea within the elective
course on Agent Technologies (AT) was to mo-
tivate better students to learn some new, mod-
ern and challenging technologies, but also to
give them opportunity to bridge the gap in the
understanding of a particular area of distributed
systems i.e. multi-agent systems as one among
essential components of smart environments
and computational collective intelligence areas.
The course on AT is scheduled in 4th year 8th

32 33C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

semester and is based on multi-agent middle-
ware that has been developing at our University
during the last decade [9].
Firstly, the course learning objectives also arose
as a consequence of recommendations provided
by CSBK and were formulated in accordance
with some of those relevant for distributed
systems and agent technologies. AT course ad-
dresses several KUs that are part of three KAs
of CSBK, as follows:

 ● KA: Networking and Communication
(NC): KU – NC/Networked Applications,

 ● KA: Platform-Based Development (PBD):
KU – PBD/Introduction; KU – PBD/Web
Platforms,

 ● KA: Parallel and Distributed Computing
(PD): KU – Distributed Systems.

As we could not find appropriate textbook for
our approach to AT course, we prepared the
teaching materials in the following way. We
started with selecting some topics of textbooks
in Agent technologies, but predominantly used
our own experience in the field, as well as con-
temporary freely available papers published in
the past 15 years. Accordingly, learning objec-
tives were formulated:

 ● LO1: Present essential concept of intel-
ligent agents, different types of agents,
communication protocols, and supporting
architecture for their operation.

 ● LO2: Explain essential differences be-
tween single agent and multi-agent sys-
tems and crucial facts about agent lifecycle
management, communication, and interac-
tion.

 ● LO3: Discuss possible applications of
MASs and emphasize advantages of the
agent-based approach for solving complex
engineering problems. Also, provide the
opportunity to obtain practical experience
in applying gained knowledge to solve
slightly complex problems, preferably in
the AI realm.

Secondly, the course prerequisites by some
other courses at our study program, more or
less related to AI, like "Basic Artificial Intelli-
gence Techniques" and "Business Intelligence".
Through mentioned courses, students gained
essential knowledge of characteristic AI topics,

including planning, knowledge-based systems,
fuzzy rule-based systems, genetic algorithms,
and machine learning. As they are 4th year stu-
dents, we expect that they:

(i) are familiar with and skilled in program-
ming and using the Java and JavaScript
programming languages,

(ii) have adequate knowledge in the areas of
operating systems and computer networks.

With such previously adopted knowledge, the
course on AT is not too demanding and is val-
ued by 4 ECTS points.

The structure of the course is prepared in a
stepwise manner. The course encompasses
regular lectures about theoretical aspects, and
lab exercises, where students use middleware
for solving smaller lab assignments distributed
over the semester and supervised by teaching
assistant. In the last part of the course, students
have to implement a slightly complex problem
(i.e. the design of a small-scale distributed
agent middleware) by themselves. The course
lasts 14 weeks, with 3 hours/week for theoret-
ical lectures and 3 hours/week for laborato-
ry work. During theoretical classes, students
learn fundamentals of the agent technology,
organization of agent code, agent lifecycle,
FIPA protocols and FIPA ACL. They expand
their technical knowledge with all necessary
skills for the agent middleware development,
like: Java EE, aspect-oriented programming,
and advanced JavaScript. Laboratory tasks are
closely related to the topics presented during
theoretical classes. For lab exercises, students
are divided into small teams (3 or 4 members)
with the primary task to create agents capable
of communicating with several different types
of agents on the same computer, to employ
FIPA communication protocols, and finally to
perform a communication between multiple
agents on several computers. Students are giv-
en several examples of inter-agent communi-
cation based on the FIPA Protocols.
The final grade is composed of three compo-
nents:
1. 30% is based on a questionnaire for assess-

ing gained theoretical knowledge;
2. 30% is based on lab achievements and

3. 40% is based on the evaluation of quality
of the project completed as part of home-
work activities.

During the course, students are also introduced
to several tutorials of necessary frameworks, li-
braries, and application servers, to be able to
cope with project activities that require imple-
mentation of small-scale distributed agent mid-
dleware.
Since 2014/2015 academic year, between 12
and 29 students have been selecting this elec-
tive course every year.

4.2. Role of the In-house Developed Agent
Middleware in AT Course

Similarly, as within DNAD course at the Uni-
versity of Craiova, we concluded that success-
ful delivering of a highly practically oriented AT
course, requires appropriate agent middleware.
We have been considering several possibilities,
including a thorough analysis of the JADE agent
middleware functionalities. Our motivation and
intention was to use agent middleware that will
satisfy, as much as possible, AT course learning
objectives with the low cost of a smooth learn-
ing curve. We also thought that it is important
to provide a meaningful and well-documented
software that helps students to acquire skills
for developing distributed solutions in due time
and with reasonable effort.
Therefore, we finally decided to use, for all
course activities, an in-house implemented very
high-quality and robust agent development
framework i.e. the Siebog agent middleware
[9]. Siebog integrated two (see Figure 1), also
in-house, developed, components: XJAF and
Radigost, to support server-side and client-side

agents. Server-side agents are supported by the
XJAF component of the Siebog framework.
Agents developed in Siebog are load-balanced
and can be executed in the distributed, clustered
environment, safely transferred to another node
if their node in the cluster fails [9], [23].
Client-side agents (written in JavaScript) are
supported by Radigost component and can
migrate to the server-side if necessary. Being
implemented as JavaScript objects and loaded
within the web page, they can execute in a wide
range of devices, such as desktops, laptops,
tablets, smartphones, smart TVs, etc. Since the
state of a client-side agent can be destroyed
when the page is left (or the browser is closed),
it was necessary to develop a way of persisting
the state of an agent to the server, so it could
continue with the execution when the page is
reloaded. Client-side agents are also able to
communicate with both client and server-side
agents.

5. Educational Experiences

In this section, we will present experiences in
delivering these two courses and gained with
teaching them for several years at our universi-
ties. Numerous positive experiences are gained
by teachers and students as well, which proves
that such courses should be a regular part of
study programs in informatics and computer
science.

5.1. Educational Experiences with DNAD
Course

Experiences with teaching the DNAD course
have been gained during the academic years be-
tween 2009–2015. During the course lectures,
we followed the course topics outlined in Sec-
tion 3. They included a chapter on agent mid-
dleware covering FIPA and JADE. Moreover,
agent middleware examples were often used to
discuss concepts of distributed systems. On the
other hand, we experimented with different ap-
proaches and assignments in each year for the
lab and project work in order to better adapt to
the special needs of our students, so the follow-
ing presentation is more focused on those prac-
tical aspects of the course.Figure 1. Siebog Architecture.

32 33C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

semester and is based on multi-agent middle-
ware that has been developing at our University
during the last decade [9].
Firstly, the course learning objectives also arose
as a consequence of recommendations provided
by CSBK and were formulated in accordance
with some of those relevant for distributed
systems and agent technologies. AT course ad-
dresses several KUs that are part of three KAs
of CSBK, as follows:

 ● KA: Networking and Communication
(NC): KU – NC/Networked Applications,

 ● KA: Platform-Based Development (PBD):
KU – PBD/Introduction; KU – PBD/Web
Platforms,

 ● KA: Parallel and Distributed Computing
(PD): KU – Distributed Systems.

As we could not find appropriate textbook for
our approach to AT course, we prepared the
teaching materials in the following way. We
started with selecting some topics of textbooks
in Agent technologies, but predominantly used
our own experience in the field, as well as con-
temporary freely available papers published in
the past 15 years. Accordingly, learning objec-
tives were formulated:

 ● LO1: Present essential concept of intel-
ligent agents, different types of agents,
communication protocols, and supporting
architecture for their operation.

 ● LO2: Explain essential differences be-
tween single agent and multi-agent sys-
tems and crucial facts about agent lifecycle
management, communication, and interac-
tion.

 ● LO3: Discuss possible applications of
MASs and emphasize advantages of the
agent-based approach for solving complex
engineering problems. Also, provide the
opportunity to obtain practical experience
in applying gained knowledge to solve
slightly complex problems, preferably in
the AI realm.

Secondly, the course prerequisites by some
other courses at our study program, more or
less related to AI, like "Basic Artificial Intelli-
gence Techniques" and "Business Intelligence".
Through mentioned courses, students gained
essential knowledge of characteristic AI topics,

including planning, knowledge-based systems,
fuzzy rule-based systems, genetic algorithms,
and machine learning. As they are 4th year stu-
dents, we expect that they:

(i) are familiar with and skilled in program-
ming and using the Java and JavaScript
programming languages,

(ii) have adequate knowledge in the areas of
operating systems and computer networks.

With such previously adopted knowledge, the
course on AT is not too demanding and is val-
ued by 4 ECTS points.

The structure of the course is prepared in a
stepwise manner. The course encompasses
regular lectures about theoretical aspects, and
lab exercises, where students use middleware
for solving smaller lab assignments distributed
over the semester and supervised by teaching
assistant. In the last part of the course, students
have to implement a slightly complex problem
(i.e. the design of a small-scale distributed
agent middleware) by themselves. The course
lasts 14 weeks, with 3 hours/week for theoret-
ical lectures and 3 hours/week for laborato-
ry work. During theoretical classes, students
learn fundamentals of the agent technology,
organization of agent code, agent lifecycle,
FIPA protocols and FIPA ACL. They expand
their technical knowledge with all necessary
skills for the agent middleware development,
like: Java EE, aspect-oriented programming,
and advanced JavaScript. Laboratory tasks are
closely related to the topics presented during
theoretical classes. For lab exercises, students
are divided into small teams (3 or 4 members)
with the primary task to create agents capable
of communicating with several different types
of agents on the same computer, to employ
FIPA communication protocols, and finally to
perform a communication between multiple
agents on several computers. Students are giv-
en several examples of inter-agent communi-
cation based on the FIPA Protocols.
The final grade is composed of three compo-
nents:
1. 30% is based on a questionnaire for assess-

ing gained theoretical knowledge;
2. 30% is based on lab achievements and

3. 40% is based on the evaluation of quality
of the project completed as part of home-
work activities.

During the course, students are also introduced
to several tutorials of necessary frameworks, li-
braries, and application servers, to be able to
cope with project activities that require imple-
mentation of small-scale distributed agent mid-
dleware.
Since 2014/2015 academic year, between 12
and 29 students have been selecting this elec-
tive course every year.

4.2. Role of the In-house Developed Agent
Middleware in AT Course

Similarly, as within DNAD course at the Uni-
versity of Craiova, we concluded that success-
ful delivering of a highly practically oriented AT
course, requires appropriate agent middleware.
We have been considering several possibilities,
including a thorough analysis of the JADE agent
middleware functionalities. Our motivation and
intention was to use agent middleware that will
satisfy, as much as possible, AT course learning
objectives with the low cost of a smooth learn-
ing curve. We also thought that it is important
to provide a meaningful and well-documented
software that helps students to acquire skills
for developing distributed solutions in due time
and with reasonable effort.
Therefore, we finally decided to use, for all
course activities, an in-house implemented very
high-quality and robust agent development
framework i.e. the Siebog agent middleware
[9]. Siebog integrated two (see Figure 1), also
in-house, developed, components: XJAF and
Radigost, to support server-side and client-side

agents. Server-side agents are supported by the
XJAF component of the Siebog framework.
Agents developed in Siebog are load-balanced
and can be executed in the distributed, clustered
environment, safely transferred to another node
if their node in the cluster fails [9], [23].
Client-side agents (written in JavaScript) are
supported by Radigost component and can
migrate to the server-side if necessary. Being
implemented as JavaScript objects and loaded
within the web page, they can execute in a wide
range of devices, such as desktops, laptops,
tablets, smartphones, smart TVs, etc. Since the
state of a client-side agent can be destroyed
when the page is left (or the browser is closed),
it was necessary to develop a way of persisting
the state of an agent to the server, so it could
continue with the execution when the page is
reloaded. Client-side agents are also able to
communicate with both client and server-side
agents.

5. Educational Experiences

In this section, we will present experiences in
delivering these two courses and gained with
teaching them for several years at our universi-
ties. Numerous positive experiences are gained
by teachers and students as well, which proves
that such courses should be a regular part of
study programs in informatics and computer
science.

5.1. Educational Experiences with DNAD
Course

Experiences with teaching the DNAD course
have been gained during the academic years be-
tween 2009–2015. During the course lectures,
we followed the course topics outlined in Sec-
tion 3. They included a chapter on agent mid-
dleware covering FIPA and JADE. Moreover,
agent middleware examples were often used to
discuss concepts of distributed systems. On the
other hand, we experimented with different ap-
proaches and assignments in each year for the
lab and project work in order to better adapt to
the special needs of our students, so the follow-
ing presentation is more focused on those prac-
tical aspects of the course.Figure 1. Siebog Architecture.

34 35C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Agent middleware was firstly added to the
DNAD course in 2009/2010 academic year. The
lectures included a chapter on FIPA and JADE.
Also, the students were exposed to the design
and implementation of simple multi-agent sys-
tems during the laboratory classes. The pro-
cess started with the presentation of a scenario,
followed by the identification of agent types,
design of interaction protocols and agent be-
haviors. However, while we noticed during the
exams that students received well the discipline
of MAS design, they had difficulties with the
implementation of the agent system. Actually,
very few of them were able to produce a work-
ing JADE-based MAS at the end of the lab ac-
tivity. We learnt that one weakness of our ap-
proach was the schedule of JADE introduction
too late, towards the end of the course. The stu-
dents needed more time to gain better familiar-
ity with the technology in order to successfully
finalize some concrete programming tasks.
Therefore, during the next 2010/2011 year, we
decided to direct more lab assignments towards
MAS design and implementation, as well as to
understanding of the underlying technologies
in connection with agent middleware. So, apart
from the course lectures dedicated to FIPA and
JADE, students received a lab task to imple-
ment distributed entities called ''agents'' that
can interact using a simple ''ping'' protocol. For
the implementation, students had to use sev-
eral Java middleware technologies, including:
sockets, RMI, servlets, web services and JADE.
They were introduced to the MAS design meth-
odology during the first lab task, while the rest
of the laboratory work was concentrated on var-
ious implementations.
Learning from past experiences, we helped stu-
dents by creating a JADE bootstrap class that
instantiates the JADE platform as well as the
Remote Management Agent – RMA that pro-
vides a default Graphical User Interface to the
MAS. Then we taught students how to easily
add agents to their system using sample Java
code. This proved to be a better approach, since
all students were able to create agent running
examples more easily.
During academic year 2010/2011, we also di-
rected the project activity towards using agent
middleware. Therefore students received an
''agent stress'' experiment as project assign-

ment. Their first task was to define an agent
organization with a fixed communication to-
pology of their choice (i.e. ring, mesh, linear
etc.) and to run an experiment to determine how
many ''ping'' protocols they can instantiate on
a single machine before their system started to
exhibit any kind of failures, like lost messages
or agent crashes. Their second task was to rerun
their experiment on a computer network using
more machines and then compare the results.
The implementation technology of the ''agents''
was left to their choice. Out of 28 students that
presented the project in the first exam session,
25 of them decided to use JADE. However, this
result is only partly positive, as 29 out of 57
students did not present the project at all.
We generally concluded that students liked
working with JADE. However, as a ''side-ef-
fect'', we noticed that they prefer to use a sim-
ple development environment that automati-
cally takes care of general repetitive tasks that
are part of the system setup. This conclusion
is independent of the technology taught, as we
noticed the same problems with teaching Java
servlets. Although it can be argued that doing
such actions manually can be more educative
as students are faced with ''more realistic'' prob-
lems, those activities are also tedious and dis-
couraging, thus hindering the focusing of stu-
dents' attention on more interesting problems.
One negative effect is that most students just
stopped doing the laboratory duties altogether,
accepting lower grades. So we decided to focus
them on programming and experimentation ac-
tivities, rather than forcing them to do the con-
figuration and setup activities themselves.
Doing experiments on multiple computers also
captured well the students' attention, in spite of
the obvious complexities of setting up a distrib-
uted application on a computer network. The
JADE RMA agent was very well received by
the students for monitoring the setup of their
distributed system before actually starting the
agents' interactions.
Most of the students needed personal assistance
from the lab teacher until they were able to pro-
duce a working lab assignment. This resulted
in students' asking so many questions that the
professor ended up by handing out pieces of
code to them. Some students finalized their lab
assignments before the schedule, thus finish-
ing their work faster. Consequently, the teach-

er took advantage to assign them with helping
slower students that ran out of time. However,
this approach turned out to be not so ''competi-
tive'', as slower students actually received more
attention. The negative effect was that the num-
ber of these students was increasing by the end
of the semester. Nevertheless, this was compen-
sated during the grading process.
During academic year 2011/2012, we decid-
ed to continue with the same lab assignments,
while applying an ''elitist'' type of assistance. If
a student did not present a reasonable person-
al attempt, then he/she would not get any help.
But in order to make sure that all students could
make that first attempt, we provided them with
a review of Java programming in the first lab
session. For diversity, we slightly modified the
project assignment by adding the requirement
to measure the MAS setup time for instantiat-
ing an increasing number of ping protocols on a
single machine, as well as on two machines and
then compare the results. As a consequence,
only 15 out of 45 students were able to present
their project during the first exam session. Also,
only one student chose to use sockets instead of
JADE agents.
For the following academic year 2012/2013,
we chose to make a radical change in lab and
project activities. We devised two large assign-
ments:

 ● a distributed master-slave password crack-
er implemented using a safe socket-based
communication protocol over UDP, and

 ● a Twitter-like system implemented using
JADE agents and equipped with a Web
based GUI.

We also continued with the presentation of a
Java programming tutorial during the first lab.
For the project task, the students were asked to
perform a ''stress'' experiment on one of the lab
assignments of their choice.
During their assignments, we identified two
most frequent difficulties encountered by the
students:

 ● dealing with the potential failures of the
UDP protocol, and

 ● interfacing JADE with the Tomcat Web
server.

They determined many students to actually re-
fuse to even try to achieve these particular re-

quirements of the assignments. Out of 90 stu-
dents, only 21 of them were able to implement
the safe communication protocol over UDP and
only 17 created some kind of Web interface to
their agent-based Twitter-like system. Just 25
out of 90 students presented the project in the
first exam session, which was in fact an over-
all negative result. We concluded that the main
cause was the significantly higher complexity
of the lab assignments, as compared with the
previous years.
During the academic year 2013/2014, we pre-
sented the students with the challenge of build-
ing a mobile app that allows users to chat peer
to peer. The students were briefly introduced
to agents as distributed software components.
They were also given an example of how to pro-
grammatically setup a JADE framework using
Java code, how to connect to it from a mobile
device and how to dynamically create agents.
Students were not granted credit for attending
the lab, unless they successfully achieved the
framework setup. We found that this was a great
source of motivation for below average graded
students. While most of the students attempt-
ed to do everything by themselves, they usual-
ly failed because of the lack of experience. So
they were tempted to ask for help from better
students, which was offered happily. This prac-
tice was beneficial to all students involved, so
it was not discouraged. Therefore, all 88 attend-
ing students (out of 102 enrolled in the course)
have successfully instantiated the JADE frame-
work.
The decision to use mobile devices was based
on two elements: demand from students and de-
mand from software companies, including local
ones. We made two local pilot workshops for
mobile programming to get students' feedback
on this decision. Based on positive students' re-
sponse and the high interest of local software
companies, we decided to include this technol-
ogy into our lab.
Note that this positive feedback was partly due
to the low number of possibly unrepresentative,
but highly motivated attendees. When all stu-
dents were presented with our distributed mo-
bile challenge at the lab, a lot of them seemed
overwhelmed. However, again by conditioning
their attendance with providing a working demo
application, most students (91/102) were able
to produce a simple Android app in the first lab.

34 35C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

Agent middleware was firstly added to the
DNAD course in 2009/2010 academic year. The
lectures included a chapter on FIPA and JADE.
Also, the students were exposed to the design
and implementation of simple multi-agent sys-
tems during the laboratory classes. The pro-
cess started with the presentation of a scenario,
followed by the identification of agent types,
design of interaction protocols and agent be-
haviors. However, while we noticed during the
exams that students received well the discipline
of MAS design, they had difficulties with the
implementation of the agent system. Actually,
very few of them were able to produce a work-
ing JADE-based MAS at the end of the lab ac-
tivity. We learnt that one weakness of our ap-
proach was the schedule of JADE introduction
too late, towards the end of the course. The stu-
dents needed more time to gain better familiar-
ity with the technology in order to successfully
finalize some concrete programming tasks.
Therefore, during the next 2010/2011 year, we
decided to direct more lab assignments towards
MAS design and implementation, as well as to
understanding of the underlying technologies
in connection with agent middleware. So, apart
from the course lectures dedicated to FIPA and
JADE, students received a lab task to imple-
ment distributed entities called ''agents'' that
can interact using a simple ''ping'' protocol. For
the implementation, students had to use sev-
eral Java middleware technologies, including:
sockets, RMI, servlets, web services and JADE.
They were introduced to the MAS design meth-
odology during the first lab task, while the rest
of the laboratory work was concentrated on var-
ious implementations.
Learning from past experiences, we helped stu-
dents by creating a JADE bootstrap class that
instantiates the JADE platform as well as the
Remote Management Agent – RMA that pro-
vides a default Graphical User Interface to the
MAS. Then we taught students how to easily
add agents to their system using sample Java
code. This proved to be a better approach, since
all students were able to create agent running
examples more easily.
During academic year 2010/2011, we also di-
rected the project activity towards using agent
middleware. Therefore students received an
''agent stress'' experiment as project assign-

ment. Their first task was to define an agent
organization with a fixed communication to-
pology of their choice (i.e. ring, mesh, linear
etc.) and to run an experiment to determine how
many ''ping'' protocols they can instantiate on
a single machine before their system started to
exhibit any kind of failures, like lost messages
or agent crashes. Their second task was to rerun
their experiment on a computer network using
more machines and then compare the results.
The implementation technology of the ''agents''
was left to their choice. Out of 28 students that
presented the project in the first exam session,
25 of them decided to use JADE. However, this
result is only partly positive, as 29 out of 57
students did not present the project at all.
We generally concluded that students liked
working with JADE. However, as a ''side-ef-
fect'', we noticed that they prefer to use a sim-
ple development environment that automati-
cally takes care of general repetitive tasks that
are part of the system setup. This conclusion
is independent of the technology taught, as we
noticed the same problems with teaching Java
servlets. Although it can be argued that doing
such actions manually can be more educative
as students are faced with ''more realistic'' prob-
lems, those activities are also tedious and dis-
couraging, thus hindering the focusing of stu-
dents' attention on more interesting problems.
One negative effect is that most students just
stopped doing the laboratory duties altogether,
accepting lower grades. So we decided to focus
them on programming and experimentation ac-
tivities, rather than forcing them to do the con-
figuration and setup activities themselves.
Doing experiments on multiple computers also
captured well the students' attention, in spite of
the obvious complexities of setting up a distrib-
uted application on a computer network. The
JADE RMA agent was very well received by
the students for monitoring the setup of their
distributed system before actually starting the
agents' interactions.
Most of the students needed personal assistance
from the lab teacher until they were able to pro-
duce a working lab assignment. This resulted
in students' asking so many questions that the
professor ended up by handing out pieces of
code to them. Some students finalized their lab
assignments before the schedule, thus finish-
ing their work faster. Consequently, the teach-

er took advantage to assign them with helping
slower students that ran out of time. However,
this approach turned out to be not so ''competi-
tive'', as slower students actually received more
attention. The negative effect was that the num-
ber of these students was increasing by the end
of the semester. Nevertheless, this was compen-
sated during the grading process.
During academic year 2011/2012, we decid-
ed to continue with the same lab assignments,
while applying an ''elitist'' type of assistance. If
a student did not present a reasonable person-
al attempt, then he/she would not get any help.
But in order to make sure that all students could
make that first attempt, we provided them with
a review of Java programming in the first lab
session. For diversity, we slightly modified the
project assignment by adding the requirement
to measure the MAS setup time for instantiat-
ing an increasing number of ping protocols on a
single machine, as well as on two machines and
then compare the results. As a consequence,
only 15 out of 45 students were able to present
their project during the first exam session. Also,
only one student chose to use sockets instead of
JADE agents.
For the following academic year 2012/2013,
we chose to make a radical change in lab and
project activities. We devised two large assign-
ments:

 ● a distributed master-slave password crack-
er implemented using a safe socket-based
communication protocol over UDP, and

 ● a Twitter-like system implemented using
JADE agents and equipped with a Web
based GUI.

We also continued with the presentation of a
Java programming tutorial during the first lab.
For the project task, the students were asked to
perform a ''stress'' experiment on one of the lab
assignments of their choice.
During their assignments, we identified two
most frequent difficulties encountered by the
students:

 ● dealing with the potential failures of the
UDP protocol, and

 ● interfacing JADE with the Tomcat Web
server.

They determined many students to actually re-
fuse to even try to achieve these particular re-

quirements of the assignments. Out of 90 stu-
dents, only 21 of them were able to implement
the safe communication protocol over UDP and
only 17 created some kind of Web interface to
their agent-based Twitter-like system. Just 25
out of 90 students presented the project in the
first exam session, which was in fact an over-
all negative result. We concluded that the main
cause was the significantly higher complexity
of the lab assignments, as compared with the
previous years.
During the academic year 2013/2014, we pre-
sented the students with the challenge of build-
ing a mobile app that allows users to chat peer
to peer. The students were briefly introduced
to agents as distributed software components.
They were also given an example of how to pro-
grammatically setup a JADE framework using
Java code, how to connect to it from a mobile
device and how to dynamically create agents.
Students were not granted credit for attending
the lab, unless they successfully achieved the
framework setup. We found that this was a great
source of motivation for below average graded
students. While most of the students attempt-
ed to do everything by themselves, they usual-
ly failed because of the lack of experience. So
they were tempted to ask for help from better
students, which was offered happily. This prac-
tice was beneficial to all students involved, so
it was not discouraged. Therefore, all 88 attend-
ing students (out of 102 enrolled in the course)
have successfully instantiated the JADE frame-
work.
The decision to use mobile devices was based
on two elements: demand from students and de-
mand from software companies, including local
ones. We made two local pilot workshops for
mobile programming to get students' feedback
on this decision. Based on positive students' re-
sponse and the high interest of local software
companies, we decided to include this technol-
ogy into our lab.
Note that this positive feedback was partly due
to the low number of possibly unrepresentative,
but highly motivated attendees. When all stu-
dents were presented with our distributed mo-
bile challenge at the lab, a lot of them seemed
overwhelmed. However, again by conditioning
their attendance with providing a working demo
application, most students (91/102) were able
to produce a simple Android app in the first lab.

36 37C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

At the end, we had a total of 88 students that
gathered both the know-how of creating a mo-
bile application, as well as setting up a JADE
framework. The last part of the challenge re-
quired creation of an agent from the app and
then sending it a message. Out of 88 students,
only 36 (40%) were able to actually finalize
it. Based on students' feedback about the lab
assignments and the implementation effort re-
quired, it became clear that actually only half
of these 36 students would have been able to do
the assignment by themselves, while the other
half required assistance from the rest.
A general conclusion of 2013/2014 lab activ-
ities was that merging different technologies
might intimidate students, possibly with a neg-
ative effect on the educational process since
most students (the remaining 102 – 36 = 66)
did not achieve the target set by the lab of de-
veloping an actual distributed application. On
the positive side, we have initiated a few stu-
dents in mobile computing, which we consider
beneficial for the local software development
industry. Nevertheless, the mobile software
technology and tools evolved too rapidly, so a
large part of our tutorials and lab presentations
were rendered obsolete for the next years. So,
we concluded that, at that time, this was not a
sustainable way of conducting the lab activities.
In academic year 2014/2015, the students were
challenged with developing a mobile code ap-
plication. For the sole purpose of captatio be-
nevolentiae, this was presented as ''building a
computer virus''. The scenario involved two
computers running ''trojan code'' such that one
was sending the virus code, and the receiver
would then run the virus on the host computer.
What the virus did was unimportant for the pur-
pose of the lab, so a simple ''hello world code''
was enough for demoing the application.
At this point, students were allowed to use any
technology in order to achieve the desired func-
tionality. JADE agents were presented as a pos-
sible alternative supported by mobile agents.
As usual, the students were given code to set-
up the framework and two demo agents. At the
time of this challenge, the students were also
introduced to Java Sockets, remote method in-
vocation and web services. Given the freedom
to choose, 39 (42%) students of a total of 92
used JADE agents. This is an objectively high
percentage given that only 72 students attend-

ed that laboratory. Counting only the physi-
cally present students who actually completed
the assignment, 55% of them used JADE. We
believe that this was partly due to the concise
and comprehensive tutorial on agent mobility
provided by JADE community. Even so, we
felt that many ''lazier'' students preferred to ap-
ply the knowledge gathered at the beginning
of the course by implementing code mobility
using Java Sockets (no other way of imple-
mentation was attempted). In other words, 33
(35%) students preferred to practice acquired
knowledge, rather than to learn and experiment
with the new agent technology. We believe that
such students were mostly interested in being
hired by local companies as soon as possible,
rather than spending more time and effort in
mastering new skills, not immediately useful
to a local employer. The group of students that
used JADE mobile agents seemed to be more
research oriented. We found these students to
be better programmers, by rapidly adapting to
new programming styles and technologies, thus
leaving also enough time for experimentation,
rather than only learning to code.
Based on our experiences we can speculate that
agent middleware in general and JADE in par-
ticular could offer certain advantages as com-
pared with other frameworks for teaching sev-
eral aspects of distributed systems technologies
and applications. JADE has a smooth learning
curve and requires considerably less effort than
other enterprise technologies – like Enterprise
Java Beans, for example. Students enjoyed
programming simple JADE-based distributed
applications. Moreover, agent-based approach
offered a disciplined approach for design and
development of distributed applications that
can be successfully transferred to other distrib-
uted software technologies.
However, there are aspects where the use of
JADE presents difficulties. Students needed
help with the setup and creation of simple ap-
plications. This was achieved by the creation
of a JADE bootstrap class, as well as a special
application configuration of Eclipse platform to
facilitate the development and running of agent
applications. Moreover, the implementation of a
Web-based GUI for JADE-based MAS requires
a tedious and discouraging work of interfacing
two different distributed technologies: FIPA
agents on one hand and web servers or mobile

technology on the other. This fact requires fur-
ther investigation before deciding to consider
this as a limit of our lab or just a trigger for
creating better ways of interfacing JADE other
distributed software technologies.
Finally, we also noted that students did not per-
ceive JADE as an actual enterprise technology.
We have reasons to believe that this is one of
the main causes of their low turn up with the
project presentations in the first exam session.
It is quite hard to capture the full attention of all
the students when the only foreseeable result of
using JADE is a basis for a prototype or con-
cept implementation.
Before concluding the discussion on educa-
tional experiences with DNAD course at the
University of Craiova, we mention that, start-
ing with 2016, the CS curricula was updated
according to new regulations and, although
quite successful in our opinion, the topics of
the DNAD course had to be dispersed into oth-
er courses, as follows. Firstly, the course itself
was shifted one semester earlier and it was
oriented more on concurrent programming in-
cluding modeling and verification of concur-
rency, as well as on programming with threads
on multicore architectures, with examples in
Java. Only a small part related to the introduc-
tion of distributed systems and programming
by asynchronous message passing using sock-
ets and remote method invocation, was kept
in the new course. More advanced distributed
computing aspects, including distributed and
parallel algorithms are now being taught as a
separate course. Multi-agent systems topics
were also included into an advanced course
that is taught within the Master program.
However, the aim of this course is more in the
spirit of multi-agent, than distributed systems,
including, for example, topics of game theory,
artificial intelligence (Belief-Desire-Intention
programming) and Machine Learning. Note
also that an advanced course on Distributed
Programming focused on distributed software
technologies is also included in the Master
program. So, we can conclude that our posi-
tive experiences with teaching DNAD topics
were not lost, but rather reused by enriching
other courses that are now part of the CS cur-
ricula at the University of Craiova.

5.2. Educational Experiences with AT
Course

Teaching experiences with the elective AT
course at the Technical Faculty, University of
Novi Sad have been gained during the academ-
ic years 2014/2015, 2015/2016 and 2017/2018.
During the course lectures, we followed the
course content and methodology mentioned in
Section 4. Moreover, like our colleagues from
the University of Craiova, we experimented
with different approaches and assignments, es-
pecially in the last year compared to the previ-
ous ones. Particularly for the project work, we
introduced new elements in the last academic
year in order to offer students better under-
standing of agent concepts and technology, thus
allowing them to be more focused on practical
aspects of the course.
AT course was introduced as elective course
for the first time during the 2014/2015 aca-
demic year. Out of 12 students attending this
course, 4 proceeded with the work in the field
of agent technology by taking upon (and finish-
ing on time) a bachelor thesis related to agent
frameworks. The same trend continued in the
2015/2016 year: 5 out of 20 students advanced
to doing a bachelor thesis related to agent
frameworks. Finally, during the school year
2016/2017, 6 out of 29 students, took bachelor
thesis related to agent frameworks. All students
passed the final exam for this course within six
months from the end of the course.
From our point of view, we applied important
methodological approach i.e. we have adopted
in our AT course the organization of practical
activities as team work. Similar to the real-life
tasks and assignments, usually in IT compa-
nies, students were organized in groups/teams
and each team had to implement the same API
given by the teachers.
That way, all the teams had to produce interop-
erable code, which would be compatible with
the solution from any other team. Another ad-
vantage of having team work is in giving more
complex assignments to the students. Both stu-
dents and teachers were satisfied with the re-
sults achieved from performing the tasks within
the teams, since all the solutions were produced
on time and the code was interoperable. How-
ever, there is a potential drawback of having
teams instead of individual assignments. In this

36 37C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

At the end, we had a total of 88 students that
gathered both the know-how of creating a mo-
bile application, as well as setting up a JADE
framework. The last part of the challenge re-
quired creation of an agent from the app and
then sending it a message. Out of 88 students,
only 36 (40%) were able to actually finalize
it. Based on students' feedback about the lab
assignments and the implementation effort re-
quired, it became clear that actually only half
of these 36 students would have been able to do
the assignment by themselves, while the other
half required assistance from the rest.
A general conclusion of 2013/2014 lab activ-
ities was that merging different technologies
might intimidate students, possibly with a neg-
ative effect on the educational process since
most students (the remaining 102 – 36 = 66)
did not achieve the target set by the lab of de-
veloping an actual distributed application. On
the positive side, we have initiated a few stu-
dents in mobile computing, which we consider
beneficial for the local software development
industry. Nevertheless, the mobile software
technology and tools evolved too rapidly, so a
large part of our tutorials and lab presentations
were rendered obsolete for the next years. So,
we concluded that, at that time, this was not a
sustainable way of conducting the lab activities.
In academic year 2014/2015, the students were
challenged with developing a mobile code ap-
plication. For the sole purpose of captatio be-
nevolentiae, this was presented as ''building a
computer virus''. The scenario involved two
computers running ''trojan code'' such that one
was sending the virus code, and the receiver
would then run the virus on the host computer.
What the virus did was unimportant for the pur-
pose of the lab, so a simple ''hello world code''
was enough for demoing the application.
At this point, students were allowed to use any
technology in order to achieve the desired func-
tionality. JADE agents were presented as a pos-
sible alternative supported by mobile agents.
As usual, the students were given code to set-
up the framework and two demo agents. At the
time of this challenge, the students were also
introduced to Java Sockets, remote method in-
vocation and web services. Given the freedom
to choose, 39 (42%) students of a total of 92
used JADE agents. This is an objectively high
percentage given that only 72 students attend-

ed that laboratory. Counting only the physi-
cally present students who actually completed
the assignment, 55% of them used JADE. We
believe that this was partly due to the concise
and comprehensive tutorial on agent mobility
provided by JADE community. Even so, we
felt that many ''lazier'' students preferred to ap-
ply the knowledge gathered at the beginning
of the course by implementing code mobility
using Java Sockets (no other way of imple-
mentation was attempted). In other words, 33
(35%) students preferred to practice acquired
knowledge, rather than to learn and experiment
with the new agent technology. We believe that
such students were mostly interested in being
hired by local companies as soon as possible,
rather than spending more time and effort in
mastering new skills, not immediately useful
to a local employer. The group of students that
used JADE mobile agents seemed to be more
research oriented. We found these students to
be better programmers, by rapidly adapting to
new programming styles and technologies, thus
leaving also enough time for experimentation,
rather than only learning to code.
Based on our experiences we can speculate that
agent middleware in general and JADE in par-
ticular could offer certain advantages as com-
pared with other frameworks for teaching sev-
eral aspects of distributed systems technologies
and applications. JADE has a smooth learning
curve and requires considerably less effort than
other enterprise technologies – like Enterprise
Java Beans, for example. Students enjoyed
programming simple JADE-based distributed
applications. Moreover, agent-based approach
offered a disciplined approach for design and
development of distributed applications that
can be successfully transferred to other distrib-
uted software technologies.
However, there are aspects where the use of
JADE presents difficulties. Students needed
help with the setup and creation of simple ap-
plications. This was achieved by the creation
of a JADE bootstrap class, as well as a special
application configuration of Eclipse platform to
facilitate the development and running of agent
applications. Moreover, the implementation of a
Web-based GUI for JADE-based MAS requires
a tedious and discouraging work of interfacing
two different distributed technologies: FIPA
agents on one hand and web servers or mobile

technology on the other. This fact requires fur-
ther investigation before deciding to consider
this as a limit of our lab or just a trigger for
creating better ways of interfacing JADE other
distributed software technologies.
Finally, we also noted that students did not per-
ceive JADE as an actual enterprise technology.
We have reasons to believe that this is one of
the main causes of their low turn up with the
project presentations in the first exam session.
It is quite hard to capture the full attention of all
the students when the only foreseeable result of
using JADE is a basis for a prototype or con-
cept implementation.
Before concluding the discussion on educa-
tional experiences with DNAD course at the
University of Craiova, we mention that, start-
ing with 2016, the CS curricula was updated
according to new regulations and, although
quite successful in our opinion, the topics of
the DNAD course had to be dispersed into oth-
er courses, as follows. Firstly, the course itself
was shifted one semester earlier and it was
oriented more on concurrent programming in-
cluding modeling and verification of concur-
rency, as well as on programming with threads
on multicore architectures, with examples in
Java. Only a small part related to the introduc-
tion of distributed systems and programming
by asynchronous message passing using sock-
ets and remote method invocation, was kept
in the new course. More advanced distributed
computing aspects, including distributed and
parallel algorithms are now being taught as a
separate course. Multi-agent systems topics
were also included into an advanced course
that is taught within the Master program.
However, the aim of this course is more in the
spirit of multi-agent, than distributed systems,
including, for example, topics of game theory,
artificial intelligence (Belief-Desire-Intention
programming) and Machine Learning. Note
also that an advanced course on Distributed
Programming focused on distributed software
technologies is also included in the Master
program. So, we can conclude that our posi-
tive experiences with teaching DNAD topics
were not lost, but rather reused by enriching
other courses that are now part of the CS cur-
ricula at the University of Craiova.

5.2. Educational Experiences with AT
Course

Teaching experiences with the elective AT
course at the Technical Faculty, University of
Novi Sad have been gained during the academ-
ic years 2014/2015, 2015/2016 and 2017/2018.
During the course lectures, we followed the
course content and methodology mentioned in
Section 4. Moreover, like our colleagues from
the University of Craiova, we experimented
with different approaches and assignments, es-
pecially in the last year compared to the previ-
ous ones. Particularly for the project work, we
introduced new elements in the last academic
year in order to offer students better under-
standing of agent concepts and technology, thus
allowing them to be more focused on practical
aspects of the course.
AT course was introduced as elective course
for the first time during the 2014/2015 aca-
demic year. Out of 12 students attending this
course, 4 proceeded with the work in the field
of agent technology by taking upon (and finish-
ing on time) a bachelor thesis related to agent
frameworks. The same trend continued in the
2015/2016 year: 5 out of 20 students advanced
to doing a bachelor thesis related to agent
frameworks. Finally, during the school year
2016/2017, 6 out of 29 students, took bachelor
thesis related to agent frameworks. All students
passed the final exam for this course within six
months from the end of the course.
From our point of view, we applied important
methodological approach i.e. we have adopted
in our AT course the organization of practical
activities as team work. Similar to the real-life
tasks and assignments, usually in IT compa-
nies, students were organized in groups/teams
and each team had to implement the same API
given by the teachers.
That way, all the teams had to produce interop-
erable code, which would be compatible with
the solution from any other team. Another ad-
vantage of having team work is in giving more
complex assignments to the students. Both stu-
dents and teachers were satisfied with the re-
sults achieved from performing the tasks within
the teams, since all the solutions were produced
on time and the code was interoperable. How-
ever, there is a potential drawback of having
teams instead of individual assignments. In this

38 39C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

approach, it is quite usual that not all students
contribute equally to solving joint tasks and
problems. That is the general problem in having
teams and one solution can be to set up a fair
project management able to assess roles in the
team, which is in our course equally done by
the teachers and students. Student polls indicate
that they are reasonably satisfied with the load
balancing between team members.
Finally, as AT is an elective course, a very im-
portant issue to be considered is how to try to
raise the number of students and motivate them
to select and attend this course. During academ-
ic year 2015/16, we had more students than in
the previous year (20 of them). Furthermore,
during the 2016/17 year, 29 students attended
our course. This is a valuable information, as
it seems that more and more students are be-
coming aware of the importance and necessity
of application of distributed programming and
agent technology in real-life domains. They
have realized that such a course would give
them the opportunity to improve distributed
programming skills necessary for their future
careers.
For example, one of the characteristic exam-
ples that students have to solve during their
lab classes is the FIPA Subscribe Interaction
Protocol [9] that has been realised on the Sie-
bog platform. In this example, students need to
implement several types of agents to provide
message exchange and implement basic agent
intelligence. Furthemore, students are required
to implement this example in the distributed
environment, having multiple agents deployed
on multiple servers. This way, students are also
trained to solve problems in the field of distrib-
uted computing.
Students develop the agent code in the Eclipse
IDE, and deploy the solution into the JBoss
application server. Siebog middleware has the
built-in web console for the agent management.
This console also dumps all the logged messag-
es and significantly improves debugging and
analysis. It also visualizes the interactive way
of monitoring the Siebog operations and helps
students in better understanding of the agents'
execution.
After this initial phase, the clustering of appli-
cation servers and realization of agents in clus-
tered environments is presented to students.
Needed technologies (JavaEE) for the realiza-

tion of agent middleware are also discussed:
Enterprise Java Beans – EJB, Java Naming and
Directory Interface – JNDI, Java Messaging
System – JMS, Message Driven Beans – MDB,
JAX-RS specification for the REST services,
and WebSockets. Students also widen their
knowledge about reflection, class loading, se-
curity managers, and advanced JavaScript.
Last part of the course is devoted to students'
building their own agent middleware using the
Siebog as a model. To simplify students' activ-
ities, their task was to implement only a subset
of all Siebog features and demonstrate agent
functionality by implementing chosen FIPA
agent communication protocol on a real-life
problem.
Each team of students has to implement par-
ticular problem emphasizing the interoperabil-
ity (following the same API). So, all instances
must be able to communicate with each other,
providing interoperability (by REST services).
This means that agents developed by different
teams and deployed on different platforms must
communicate with each other without any addi-
tional requirements or implementation efforts.
Our experience with previous years and tasks
that students have successfully completed is
very positive. On the other hand, as lab tasks in
previous 2 years were very similar, we would
like to prevent possible students' cheating, but
also to make further innovations within the
course. As a consequence, during the last ac-
ademic year, we introduced additional assign-
ments for students – besides creating the agent
framework, they had to perform one more task
– to solve more a complex problem, prefera-
bly in the AI realm. The problems that students
were solving during the last academic year are
very briefly presented below.
This way, they were able to apply their knowl-
edge of AI in the Intelligent Agents realm, thus
broadening their skills.
Example 1. Fruit purchasing agents – Agents
are trained to perform the image recognition
of the fruits to be purchased. It is necessary to
distinguish two types of agents: merchant and
estimator. Merchant is sending images of the
fruits to be purchased to the estimator agent.
Estimator agent returns the estimated quality of
the fruits, so the merchant can make a decision
whether to buy this fruit or not. Estimator agent

does its job by employing the neural network
approach.
Example 2. Sport match result prediction –
In this example, the idea is to implement agents
and train them to predict the outcome of the
sport matches. Generally speaking, there are
multiple agents doing the same job, doing the
same prediction based on particular input data.
The key agent here is the master agent, which
gathers the predictions from other agents and
sends the aggregated results to the client. As in
the previous example, concept of neural net-
work is utilized for the sport matches results
prediction.
Example 3. Weather prediction – In this ex-
ample, the idea is to implement agents and train
them to perform the weather prediction. Again,
the master agent acts on the client request, acti-
vates a number of prediction agents and gathers
their predictions. The master agent sends the
aggregated data back to the client. Neural net-
work model is used for the weather prediction.
Example 4. Chess playing – For each chess
figure type, it is necessary to develop a corre-
sponding type of agent. Also, for each concrete
figure, it is necessary to activate an instance of
a corresponding agent. The master agent coor-
dinates figures (agents) and is trained to move
them on the chess board according to chess
rules. Master agent uses open source chess en-
gine to make adequate moves. Human oppo-
nent is playing against agents.
All the above-mentioned projects have been
proposed by the students themselves. The pro-
posed projects were carefully considered by the
professor and teaching assistant, adjusted to the
content of the course and available resources
and improved to be finally approved. All the
proposed projects were implemented properly
and defended successfully. As these projects
were obligatory part of the course realization,
obtained grades together with the final exam
created the final grade for each student.
By the end of the course, we expect each stu-
dent to have gained appropriate knowledge, ac-
quired adequate agent programming skills, and
achieved main course goals:

 ● Understand the concept of agents and agent
middleware, the agent lifecycle, message
exchange, mobility and other related con-
cepts.

 ● Understand the diversity between specific-
ities of agents and other software entities.

 ● Be able to design and implement distribut-
ed, agent-based solutions.

 ● Be able to solve problems being part of the
team.

 ● Critically analyze the expected benefits of
using agent technology.

 ● Apply the newly obtained knowledge of
agent technology to the AI problems, mak-
ing agents really intelligent.

6. Conclusion

In this paper, we presented both a comprehen-
sive overview and experiences of delivering
two courses on distributed systems and agent
technology at two universities in two countries.
For both courses, we presented the structure,
the tools, teachers' and students' experiences
and lessons learned.
Concerning the course on Distributed Network
Application Development, which was delivered
in the period of six years, we highlighted the
role of agent middleware and multi-agent sys-
tems on teaching various theoretical and prac-
tical aspects of the distributed systems. Our
conclusion is that the use of agent middleware
and of JADE platform for teaching topics of
distributed systems certainly brings many ad-
vantages, but also has some limits and poses
a few difficulties. As future work, we plan to
adapt our course curricula and methodology to
address some of these issues. We also plan to
expand our course curricula by adding new top-
ics in mobile computing and cloud computing,
while maintaining the significant role of agent
middleware.
Another course we deeply considered in this
paper is the Agent Technologies course, which
has been offered for the past several years at
the Faculty of Technical Sciences, UNS, Ser-
bia, inspired by [9] and subsequently improved
[2]. Students have had classes and exercises
performed using Siebog in-house agent middle-
ware, which is being actively developed at the
UNS for more than 10 years.
Experience with Siebog showed that the in-
house solution used for teaching such advanced

38 39C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

approach, it is quite usual that not all students
contribute equally to solving joint tasks and
problems. That is the general problem in having
teams and one solution can be to set up a fair
project management able to assess roles in the
team, which is in our course equally done by
the teachers and students. Student polls indicate
that they are reasonably satisfied with the load
balancing between team members.
Finally, as AT is an elective course, a very im-
portant issue to be considered is how to try to
raise the number of students and motivate them
to select and attend this course. During academ-
ic year 2015/16, we had more students than in
the previous year (20 of them). Furthermore,
during the 2016/17 year, 29 students attended
our course. This is a valuable information, as
it seems that more and more students are be-
coming aware of the importance and necessity
of application of distributed programming and
agent technology in real-life domains. They
have realized that such a course would give
them the opportunity to improve distributed
programming skills necessary for their future
careers.
For example, one of the characteristic exam-
ples that students have to solve during their
lab classes is the FIPA Subscribe Interaction
Protocol [9] that has been realised on the Sie-
bog platform. In this example, students need to
implement several types of agents to provide
message exchange and implement basic agent
intelligence. Furthemore, students are required
to implement this example in the distributed
environment, having multiple agents deployed
on multiple servers. This way, students are also
trained to solve problems in the field of distrib-
uted computing.
Students develop the agent code in the Eclipse
IDE, and deploy the solution into the JBoss
application server. Siebog middleware has the
built-in web console for the agent management.
This console also dumps all the logged messag-
es and significantly improves debugging and
analysis. It also visualizes the interactive way
of monitoring the Siebog operations and helps
students in better understanding of the agents'
execution.
After this initial phase, the clustering of appli-
cation servers and realization of agents in clus-
tered environments is presented to students.
Needed technologies (JavaEE) for the realiza-

tion of agent middleware are also discussed:
Enterprise Java Beans – EJB, Java Naming and
Directory Interface – JNDI, Java Messaging
System – JMS, Message Driven Beans – MDB,
JAX-RS specification for the REST services,
and WebSockets. Students also widen their
knowledge about reflection, class loading, se-
curity managers, and advanced JavaScript.
Last part of the course is devoted to students'
building their own agent middleware using the
Siebog as a model. To simplify students' activ-
ities, their task was to implement only a subset
of all Siebog features and demonstrate agent
functionality by implementing chosen FIPA
agent communication protocol on a real-life
problem.
Each team of students has to implement par-
ticular problem emphasizing the interoperabil-
ity (following the same API). So, all instances
must be able to communicate with each other,
providing interoperability (by REST services).
This means that agents developed by different
teams and deployed on different platforms must
communicate with each other without any addi-
tional requirements or implementation efforts.
Our experience with previous years and tasks
that students have successfully completed is
very positive. On the other hand, as lab tasks in
previous 2 years were very similar, we would
like to prevent possible students' cheating, but
also to make further innovations within the
course. As a consequence, during the last ac-
ademic year, we introduced additional assign-
ments for students – besides creating the agent
framework, they had to perform one more task
– to solve more a complex problem, prefera-
bly in the AI realm. The problems that students
were solving during the last academic year are
very briefly presented below.
This way, they were able to apply their knowl-
edge of AI in the Intelligent Agents realm, thus
broadening their skills.
Example 1. Fruit purchasing agents – Agents
are trained to perform the image recognition
of the fruits to be purchased. It is necessary to
distinguish two types of agents: merchant and
estimator. Merchant is sending images of the
fruits to be purchased to the estimator agent.
Estimator agent returns the estimated quality of
the fruits, so the merchant can make a decision
whether to buy this fruit or not. Estimator agent

does its job by employing the neural network
approach.
Example 2. Sport match result prediction –
In this example, the idea is to implement agents
and train them to predict the outcome of the
sport matches. Generally speaking, there are
multiple agents doing the same job, doing the
same prediction based on particular input data.
The key agent here is the master agent, which
gathers the predictions from other agents and
sends the aggregated results to the client. As in
the previous example, concept of neural net-
work is utilized for the sport matches results
prediction.
Example 3. Weather prediction – In this ex-
ample, the idea is to implement agents and train
them to perform the weather prediction. Again,
the master agent acts on the client request, acti-
vates a number of prediction agents and gathers
their predictions. The master agent sends the
aggregated data back to the client. Neural net-
work model is used for the weather prediction.
Example 4. Chess playing – For each chess
figure type, it is necessary to develop a corre-
sponding type of agent. Also, for each concrete
figure, it is necessary to activate an instance of
a corresponding agent. The master agent coor-
dinates figures (agents) and is trained to move
them on the chess board according to chess
rules. Master agent uses open source chess en-
gine to make adequate moves. Human oppo-
nent is playing against agents.
All the above-mentioned projects have been
proposed by the students themselves. The pro-
posed projects were carefully considered by the
professor and teaching assistant, adjusted to the
content of the course and available resources
and improved to be finally approved. All the
proposed projects were implemented properly
and defended successfully. As these projects
were obligatory part of the course realization,
obtained grades together with the final exam
created the final grade for each student.
By the end of the course, we expect each stu-
dent to have gained appropriate knowledge, ac-
quired adequate agent programming skills, and
achieved main course goals:

 ● Understand the concept of agents and agent
middleware, the agent lifecycle, message
exchange, mobility and other related con-
cepts.

 ● Understand the diversity between specific-
ities of agents and other software entities.

 ● Be able to design and implement distribut-
ed, agent-based solutions.

 ● Be able to solve problems being part of the
team.

 ● Critically analyze the expected benefits of
using agent technology.

 ● Apply the newly obtained knowledge of
agent technology to the AI problems, mak-
ing agents really intelligent.

6. Conclusion

In this paper, we presented both a comprehen-
sive overview and experiences of delivering
two courses on distributed systems and agent
technology at two universities in two countries.
For both courses, we presented the structure,
the tools, teachers' and students' experiences
and lessons learned.
Concerning the course on Distributed Network
Application Development, which was delivered
in the period of six years, we highlighted the
role of agent middleware and multi-agent sys-
tems on teaching various theoretical and prac-
tical aspects of the distributed systems. Our
conclusion is that the use of agent middleware
and of JADE platform for teaching topics of
distributed systems certainly brings many ad-
vantages, but also has some limits and poses
a few difficulties. As future work, we plan to
adapt our course curricula and methodology to
address some of these issues. We also plan to
expand our course curricula by adding new top-
ics in mobile computing and cloud computing,
while maintaining the significant role of agent
middleware.
Another course we deeply considered in this
paper is the Agent Technologies course, which
has been offered for the past several years at
the Faculty of Technical Sciences, UNS, Ser-
bia, inspired by [9] and subsequently improved
[2]. Students have had classes and exercises
performed using Siebog in-house agent middle-
ware, which is being actively developed at the
UNS for more than 10 years.
Experience with Siebog showed that the in-
house solution used for teaching such advanced

40 41C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

courses is very welcomed by students, since
they can obtain instant help regarding problems
or understanding complex concepts. Practi-
cal projects for students were organized in the
form of team work. Team work provided stu-
dents with the possibility to develop distrib-
uted applications in the way it is usually done
in IT companies, which prepares them for the
real-life working situations in their future jobs.
Based on previous experiences in delivering
this course, we are aware of the fact that there
are still a wide range of opportunities for ex-
pansion and introduction of innovations in the
course structure and organization.
As authors of the paper have been cooperating
in research and educational activities for more
than a decade, we managed to approach joint
conclusions and advantages of delivering such
kind of courses. Regardless of the fact that one
course is mandatory (DNAD) and the other one
is elective (AT), some common conclusions fol-
low:

 ● If students are highly motivated and eager
to enhance their knowledge in new, con-
temporary topics in ICT and CS, then they
are ready for hard work and extra activities
in order to successfully accomplish rather
demanding tasks.

 ● Successful realization of courses on Dis-
tributed Systems and Agent Technology,
based on high exam passing rate for mo-
tivated students, confirms that these topics
should be a part of modern ICT and CS
curricula.

 ● If it is possible to use an in-house devel-
oped software system for theoretical but
predominantly for practical aspects of a
course, then such software offers signifi-
cant additional value.

 ● Organization of students' practical projects
based on team work is motivational and
inspiring for the majority of students. It of-
fers them experience they will face in their
future work and jobs in companies.

We believe that material, experiences and les-
sons learned from delivering these rather inno-
vative courses presented in the paper could also
be useful for other teachers and educational in-
stitutions.

References

[1] M. Ivanović and A. Klašnja Milićević, "Big data
and computational intelligence", International
Journal of High Performance Computing and
Networking (in print).

[2] C. Bădică et al., "Role of agent middleware in
teaching distributed network application devel-
opment", in Proceedings of the 8th International
Conference KES-AMSTA, vol. 296, 2014, Ad-
vances in Intelligent Systems and Computing, pp.
267–276, 2014, Springer International Publishing.
https://doi.org/10.1007/978-3-319-07650-8_27

[3] J. Kesaniemi and V. Terziyan, "Agent-environ-
ment interaction in mas - introduction and sur-
vey". In: F. Alkhateeb (Ed.), Multi-Agent Sys-
tems - Modeling, Interactions, Simulations and
Case Studies, pp. 203–226, 2011, IntechOpen.
doi:10.5772/15145.

[4] M. Beer et al., "Multi-agent systems for educa-
tion and interactive entertainment: design, use
and experience", IGI Global, 2011.
https://doi.org/10.4018/978-1-60960-080-8

[5] F. Stonedahl et al., "MAgICS: Toward a multi-
agent introduction to computer science", In. M.
Beer, M. Fasli, & D. Richards (Eds.) Multi-Agent
Systems for Education and Interactive Entertain-
ment: Design, Use and Experience, pp. 1–25,
2011, Hershey, Information Science Reference.

[6] I. Sakellariou et al., "An intelligent agents and
multi-agent systems course involving NetLo-
go", in Multi-Agent Systems for Education and
Interactive Entertainment: Design, Use and Ex-
perience, pp. 26–50, 2011, Hershey, Information
Science Reference.

[7] I. Stamatopoulou et al., "Teaching, learning and
assessment of agents and robotics in a computer
science curriculum", in. Proc. of the 11th Inter-
national Symposium on Intelligent Distributed
Computing - IDC 2017, Studies in Computational
Intelligence 737, Springer, pp. 321–332, 2018,
ISBN 978-3-319-66378-4C.

[8] J. Wiens and D. Monett, "Using BDI-extended
NetLogo agents in undergraduate CS research
and teaching", in Proceedings of the International
Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS), pp.
396–402, 2013, The Steering Committee of The
World Congress in Computer Science, Comput-
er Engineering and Applied Computing (World-
Comp), CSREA Press U.S.A.

[9] D. Mitrović et al., "The Siebog multiagent mid-
dleware". Knowl.-Based Syst., vol. 103, pp.
56‒59, 2016.
https://doi.org/10.1016/j.knosys.2016.03.017

[10] C. Bădică et al., "Software agents: languages,
tools, platforms", Computer Science and Infor-
mation Systems, vol. 8, no. 2, pp. 255‒298, 2011.
https://doi.org/10.2298/CSIS110214013B

[11] F. L. Bellifemine et al., Developing multi agent
systems with JADE, John Wiley & Sons Ltd,
Chichester, West Sussex, England, 2007.

[12] Joint Task Force on Computing Curricula, As-
sociation for Computing Machinery (ACM) and
IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science.
ACM, New York, NY, USA. Accessed on: Oct.
15, 2016.
http://dx.doi.org/10.1145/2534860

[13] G. Coulouris et al., Distributed Systems. Con-
cepts and Design (Fifth Edition), Addison Wes-
ley, 2011.

[14] M. Wooldridge, Introduction to MultiAgent Sys-
tems, Second Edition, John Wiley and Sons, 2009.

[15] D. Ince, Developing Distributed and E-Commerce
Applications, Second Edition, Addison-Wesley,
2003.

[16] J. Graba, An Introduction to Network Program-
ming with Java, Springer, 2007.

[17] N. Santoro, Design and Analysis of Distributed
Algorithms, John Wiley & Sons, 2007.

[18] J. R. Albrecht, "Bringing big systems to small
schools: distributed systems for undergraduates",
SIGCSE Bull., vol. 41, no. 1, pp. 101–105, 2009,
ACM, New York, NY, USA.
https://doi.org/10.1145/1539024.1508903

[19] C. Bădică et al., "Agent reasoning on the
web using web services", Computer Science
and Information Systems, vol. 11, no. 2, pp.
697–721, 2014.
http://dx.doi.org/10.2298/CSIS140301038B

[20] C. van Aart, Organizational Principles for Multi-
Agent Architectures, Birkhäuser Verlag, Whit-
estein Series in Software Agent Technologies,
2005.

[21] C. Bădică et al., "Distributed agent-based online
auction system'', Computing and Informatics,
vol.33, no.3, pp. 518–552, 2014.
http://www.cai.sk/ojs/index.php/cai/article/
view/2216

[22] A. Mocanu et al., "Ubiquitous multi-agent envi-
ronmental hazard management", in Proc. of the
14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC), pp. 513–521, 2012, IEEE Computer
Society.
https://doi.org/10.1109/SYNASC.2012.72

[23] D. Mitrović et al., "Extensible Java EE-based
agent framework in clustered environments",
LNCS, vol. 8732, pp. 202–215, Springer, 2014.
https://doi.org/10.1007/978-3-319-11584-9_14

Received: October 2018
Revised: January 2019

Accepted: January 2019

https://doi.org/10.1007/978-3-319-07650-8_27
https://doi.org/10.4018/978-1-60960-080-8
https://doi.org/10.1016/j.knosys.2016.03.017
https://doi.org/10.2298/CSIS110214013B
http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/1539024.1508903
http://dx.doi.org/10.2298/CSIS140301038B
http://www.cai.sk/ojs/index.php/cai/article/view/2216
http://www.cai.sk/ojs/index.php/cai/article/view/2216
https://doi.org/10.1109/SYNASC.2012.72
https://doi.org/10.1007/978-3-319-11584-9_14

40 41C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković Role of Agent Middleware in Teaching Distributed Systems and Agent Technologies

courses is very welcomed by students, since
they can obtain instant help regarding problems
or understanding complex concepts. Practi-
cal projects for students were organized in the
form of team work. Team work provided stu-
dents with the possibility to develop distrib-
uted applications in the way it is usually done
in IT companies, which prepares them for the
real-life working situations in their future jobs.
Based on previous experiences in delivering
this course, we are aware of the fact that there
are still a wide range of opportunities for ex-
pansion and introduction of innovations in the
course structure and organization.
As authors of the paper have been cooperating
in research and educational activities for more
than a decade, we managed to approach joint
conclusions and advantages of delivering such
kind of courses. Regardless of the fact that one
course is mandatory (DNAD) and the other one
is elective (AT), some common conclusions fol-
low:

 ● If students are highly motivated and eager
to enhance their knowledge in new, con-
temporary topics in ICT and CS, then they
are ready for hard work and extra activities
in order to successfully accomplish rather
demanding tasks.

 ● Successful realization of courses on Dis-
tributed Systems and Agent Technology,
based on high exam passing rate for mo-
tivated students, confirms that these topics
should be a part of modern ICT and CS
curricula.

 ● If it is possible to use an in-house devel-
oped software system for theoretical but
predominantly for practical aspects of a
course, then such software offers signifi-
cant additional value.

 ● Organization of students' practical projects
based on team work is motivational and
inspiring for the majority of students. It of-
fers them experience they will face in their
future work and jobs in companies.

We believe that material, experiences and les-
sons learned from delivering these rather inno-
vative courses presented in the paper could also
be useful for other teachers and educational in-
stitutions.

References

[1] M. Ivanović and A. Klašnja Milićević, "Big data
and computational intelligence", International
Journal of High Performance Computing and
Networking (in print).

[2] C. Bădică et al., "Role of agent middleware in
teaching distributed network application devel-
opment", in Proceedings of the 8th International
Conference KES-AMSTA, vol. 296, 2014, Ad-
vances in Intelligent Systems and Computing, pp.
267–276, 2014, Springer International Publishing.
https://doi.org/10.1007/978-3-319-07650-8_27

[3] J. Kesaniemi and V. Terziyan, "Agent-environ-
ment interaction in mas - introduction and sur-
vey". In: F. Alkhateeb (Ed.), Multi-Agent Sys-
tems - Modeling, Interactions, Simulations and
Case Studies, pp. 203–226, 2011, IntechOpen.
doi:10.5772/15145.

[4] M. Beer et al., "Multi-agent systems for educa-
tion and interactive entertainment: design, use
and experience", IGI Global, 2011.
https://doi.org/10.4018/978-1-60960-080-8

[5] F. Stonedahl et al., "MAgICS: Toward a multi-
agent introduction to computer science", In. M.
Beer, M. Fasli, & D. Richards (Eds.) Multi-Agent
Systems for Education and Interactive Entertain-
ment: Design, Use and Experience, pp. 1–25,
2011, Hershey, Information Science Reference.

[6] I. Sakellariou et al., "An intelligent agents and
multi-agent systems course involving NetLo-
go", in Multi-Agent Systems for Education and
Interactive Entertainment: Design, Use and Ex-
perience, pp. 26–50, 2011, Hershey, Information
Science Reference.

[7] I. Stamatopoulou et al., "Teaching, learning and
assessment of agents and robotics in a computer
science curriculum", in. Proc. of the 11th Inter-
national Symposium on Intelligent Distributed
Computing - IDC 2017, Studies in Computational
Intelligence 737, Springer, pp. 321–332, 2018,
ISBN 978-3-319-66378-4C.

[8] J. Wiens and D. Monett, "Using BDI-extended
NetLogo agents in undergraduate CS research
and teaching", in Proceedings of the International
Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS), pp.
396–402, 2013, The Steering Committee of The
World Congress in Computer Science, Comput-
er Engineering and Applied Computing (World-
Comp), CSREA Press U.S.A.

[9] D. Mitrović et al., "The Siebog multiagent mid-
dleware". Knowl.-Based Syst., vol. 103, pp.
56‒59, 2016.
https://doi.org/10.1016/j.knosys.2016.03.017

[10] C. Bădică et al., "Software agents: languages,
tools, platforms", Computer Science and Infor-
mation Systems, vol. 8, no. 2, pp. 255‒298, 2011.
https://doi.org/10.2298/CSIS110214013B

[11] F. L. Bellifemine et al., Developing multi agent
systems with JADE, John Wiley & Sons Ltd,
Chichester, West Sussex, England, 2007.

[12] Joint Task Force on Computing Curricula, As-
sociation for Computing Machinery (ACM) and
IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science.
ACM, New York, NY, USA. Accessed on: Oct.
15, 2016.
http://dx.doi.org/10.1145/2534860

[13] G. Coulouris et al., Distributed Systems. Con-
cepts and Design (Fifth Edition), Addison Wes-
ley, 2011.

[14] M. Wooldridge, Introduction to MultiAgent Sys-
tems, Second Edition, John Wiley and Sons, 2009.

[15] D. Ince, Developing Distributed and E-Commerce
Applications, Second Edition, Addison-Wesley,
2003.

[16] J. Graba, An Introduction to Network Program-
ming with Java, Springer, 2007.

[17] N. Santoro, Design and Analysis of Distributed
Algorithms, John Wiley & Sons, 2007.

[18] J. R. Albrecht, "Bringing big systems to small
schools: distributed systems for undergraduates",
SIGCSE Bull., vol. 41, no. 1, pp. 101–105, 2009,
ACM, New York, NY, USA.
https://doi.org/10.1145/1539024.1508903

[19] C. Bădică et al., "Agent reasoning on the
web using web services", Computer Science
and Information Systems, vol. 11, no. 2, pp.
697–721, 2014.
http://dx.doi.org/10.2298/CSIS140301038B

[20] C. van Aart, Organizational Principles for Multi-
Agent Architectures, Birkhäuser Verlag, Whit-
estein Series in Software Agent Technologies,
2005.

[21] C. Bădică et al., "Distributed agent-based online
auction system'', Computing and Informatics,
vol.33, no.3, pp. 518–552, 2014.
http://www.cai.sk/ojs/index.php/cai/article/
view/2216

[22] A. Mocanu et al., "Ubiquitous multi-agent envi-
ronmental hazard management", in Proc. of the
14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC), pp. 513–521, 2012, IEEE Computer
Society.
https://doi.org/10.1109/SYNASC.2012.72

[23] D. Mitrović et al., "Extensible Java EE-based
agent framework in clustered environments",
LNCS, vol. 8732, pp. 202–215, Springer, 2014.
https://doi.org/10.1007/978-3-319-11584-9_14

Received: October 2018
Revised: January 2019

Accepted: January 2019

https://doi.org/10.1007/978-3-319-07650-8_27
https://doi.org/10.4018/978-1-60960-080-8
https://doi.org/10.1016/j.knosys.2016.03.017
https://doi.org/10.2298/CSIS110214013B
http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/1539024.1508903
http://dx.doi.org/10.2298/CSIS140301038B
http://www.cai.sk/ojs/index.php/cai/article/view/2216
http://www.cai.sk/ojs/index.php/cai/article/view/2216
https://doi.org/10.1109/SYNASC.2012.72
https://doi.org/10.1007/978-3-319-11584-9_14

42 C. Badica, M. Vidaković, S. Ilie, M. Ivanović and J. Vidaković

Contact addresses:
Costin Bădică

Department of Computers and Information Technology
Faculty of Automation, Computers and Electronics

University of Craiova
Romania

e-mail: cbadica@software.ucv.ro

Milan Vidaković
Faculty of Technical Sciences

University of Novi Sad
Serbia

e-mail: minja@uns.ac.rs

Sorin Ilie
Department of Computers and Information Technology

Faculty of Automation, Computers and Electronics
University of Craiova

Romania
e-mail: ilie_sorin@software.ucv.ro

Mirjana Ivanović
Faculty of Sciences

University of Novi Sad
Serbia

e-mail: mira@dmi.uns.ac.rs

Jovana Vidaković
Faculty of Sciences

University of Novi Sad
Serbia

e-mail: jovana@dmi.uns.ac.rs

Costin Bădică is a Professor at the Department of Computers and Infor-
mation Technology, Faculty of Automation, Computers and Electron-
ics, University of Craiova, Romania since 2006. He obtained his PhD
degree. in Automatic Control in 1999. The research of Prof. Bădică has
been the intersection of artificial intelligence, software engineering and
distributed systems. He has contributed to the fields of applied formal
representations and reasoning, as well as intelligent distributed multi-
agent systems, platforms and programming. Prof. Bădică co-initiated
the ''Intelligent Distributed Computing – IDC'' series of conferences,
and is a Founding Member of Romanian Association of Artificial In-
telligence. As guest editor, he has organized many international journal
special issues and managed many national and international research
projects.

Milan Vidaković was born in Novi Sad, Yugoslavia (nowadays Serbia),
in 1971. He received his BSc degree in electrical engineering from the
University of Novi Sad, Novi Sad, Yugoslavia, in 1995, and the MSc
and PhD. degrees in Electrical Engineering from the University of Novi
Sad, in 1998 and 2003, respectively. In 1995, he joined the Department
for Computing and Control of the Faculty of Technical Sciences, Uni-
versity of Novi Sad as a teaching assistant. In 2014, he became full
professor at the same university. His current research interests include
agent technology, distributed computing, object-oriented programming,
web programming, and internationalisation and localisation.

Mirjana Ivanović holds a position of full professor at the Faculty of
Sciences, University of Novi Sad, Serbia, since 2002. She is a member
of the University Council for Informatics. She has been a member of
Program Committees of more than 250 international conferences and
General Chair and Program Committee Chair of numerous internation-
al conferences. She has also been invited speaker at several internation-
al conferences and visiting lecturer in Australia, Thailand and China.
As leader and researcher, she has participated in numerous internation-
al projects. Currently, she is the Editor-in-Chief of Computer Science
and Information Systems Journal. Her research interests include multi-
agent systems, e-learning, and applications of intelligent techniques
(CBR, data and web mining).

Sorin Ilie has been a teaching assistant at the Department of Comput-
ers and Information Technology, University of Craiova, since 2009. He
obtained his PhD degree in Computers and Information Technology in
2013. Dr. Ilie is interested in research topics along the lines of intel-
ligent distributed applications and agent based simulations. He is an
active member of the Intelligent Distributed Systems research group
led by professor Costin Bădică.

Jovana Vidaković was born in Novi Sad, Serbia, in 1975. She received
her BSc and MSc degrees in Computer Science from the Faculty of
Sciences, University of Novi Sad, Serbia, in 1999 and 2003, respec-
tively. She received her PhD degree from the Faculty of Technical Sci-
ences, University of Novi Sad, Serbia, in 2015. Currently, she works as
an Assistant Professor at the Faculty of Sciences, University of Novi
Sad, where she lectures in several Computer Science and Informatics
courses. Her research interests are related to database systems and in-
formation systems.

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

