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Uncertain Time Series

To achieve fast retrieval of online data, it is need-
ed for the retrieval algorithm to increase through-
put while reducing latency. Based on the traditional 
online processing algorithm for time series data, we 
propose a spatial index structure that can be updated 
and searched quickly in a real-time environment. At 
the same time, we introduce an adaptive segmentation 
method to divide the space corresponding to nodes. 
Unlike traditional retrieval algorithms, for uncertain 
time series, the distance threshold used for screen-
ing will dynamically change due to noise during the 
search process. Extensive experiments are conducted 
to compare the accuracy of the query results and the 
timeliness of the algorithm. The results show that the 
index structure proposed in this paper has better effi-
ciency while maintaining a similar true positive ratio.
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1. Introduction

With the improvement of computing power and 
the development of data mining technology, 
time series is of growing importance in many 
new streaming applications, such as GIS detec-
tion [6], stock market [16] and medical moni-
tor [28]. Thanks to the advances in large-scale 
storage and computing power, there have been 
a lot of efforts in exploiting large time series da-
tabases [16, 29, 33, 36]. Due to the factors such 
as physical equipment, calculation of distance 
metrics, and inherent noise of the sample, the 

streaming data always carry uncertainty. Gener-
ally, uncertainty leads to drawing erroneous con-
clusions. In order to keep results from great bias, 
the uncertainty information must be taken into 
consideration. For example, each timestamp is 
modeled as a random variable that associates a 
probability density function [13]. Most of cur-
rent work, however, only concentrates on exact 
queries [5, 8, 23, 25, 26, 27, 33, 34] although 
uncertain queries rather than exact queries are 
greatly required. Especially, uncertainty is uni-
versal in emerging applications that deal with 
streaming series, object identification [4] and 
environmental applications [29]. Diverse uncer-
tain objects have been extensively investigat-
ed. But, to the best of our knowledge, the first 
effort that proposes a framework for similarity 
matching of uncertain time series is presented in 
[13], where the uncertain time series is named 
cloaked time series and the fundamental query 
predicates are discussed. Furthermore, in [1], the 
notion of an uncertain time series is formalized, 
two novel kinds of probabilistic range queries 
are introduced, and a primitive approximate rep-
resentation of uncertain time series is proposed. 
Generally, there are three types of spatial queries 
over time series.

 ● Range query: Given a target point Q and 
a threshold ε, find all points X such that 
Dist(Q, X ) ≤ ε.

 ● Nearest neighbor query: Given a que-
ry point Q, find all points X such that 
Dist(Q, X) is the minimum. Furthermore, 
the k-nearest neighbor query asks for the k 
closest points to a given point. 
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2.2. Sequence Matching Using Index

In [15], the FRM is used to extract the features 
of the subsequence, where the subsequence 
matching algorithm is proposed based on those 
features. The algorithm consists of the index 
building and subsequent matching. In the index 
building, the FRM divides time series into slid-
ing windows of size w and stores feature points 
in a spatial access method, R*-tree. The struc-
ture of R*-tree is shown in Figure 1, which is 
mainly used to organize the MBR. In the sub-
sequence matching, the FRM transforms the 
feature points into the f-dimensional points by 
using a feature extraction algorithm during the 
matching process. In [35], an improvement of 
the known DFT-based indexing technique is 
proposed, in which the first few large Fourier 
coefficients are used in the distance compu-
tation. The work in [32] measures the subse-
quence similarity by Time Warping (TW ) based 
on those coefficients. After mapping the ob-
jects into the k-d points, a spatial access meth-
od, KD-tree, is used to organize them. Further-
more, a bounding technique is designed in [30] 
to prune the unnecessary computation as much 
as possible. To achieve Dynamic Time Warping 
(DTW ), a novel algorithm SPRING is present-
ed to select all matched subsequences. For the 
interval problem, the extensive index scheme is 
established based on the R-tree in [20]. For dis-
crete data, the search algorithm PROUD is ap-
plied in [2] to a streaming uncertain time series. 
And the Haar wavelet decomposition is used to 
construct an error-tree to retrieve the distance 
measurement efficiently.

2. Related Work

2.1. Discrete Fourier Transform

There are two main techniques for the decom-
position of sequences. The first proposed tech-
nique is DFT, which is followed by the Haar 
decomposition [27]. Most of the research on 
feature extraction of the time series is based on 
both. In this paper, we use DFT to extract the 
feature of the expectation. The earliest work to 
build an index with an eigenvalue sequence is 
to construct the index structure based on the co-
efficients extracted by the DFT [31]. Its import-
ant contribution is to reduce the sequence di-
mension, which needs to be calculated by using 
the theorem that the value of the distance metric 
in the frequency domain space is equal to the 
distance of the original space. Because the DFT 
can find the most frequent eigenvalue in fre-
quency space, only a few coefficients should be 
kept to approximate the original value. Here the 
dimensions of these eigenvalues are generally 
much smaller than the original dimension. This 
method can greatly reduce the amount of calcu-
lation in the metric. Meanwhile, the property of 
the triangle inequality of the distance measure-
ment allows us to use optimization methods to 
search for candidates in the feature space as in 
the original space. In summary, we can combine 
the DFT, spatial index structure and uncertainty 
metrics to query for the candidates.

Table 1. Main symbols used in this paper.

Symbols Description

X The sequence consists of the primitive data

�X The sequence consists of the features extracted by DFT

X [i: j] A sequence representing the value of the timestamp from i to j

X [i] The i-th timestamp value

μi = E(Xi) The expected value of the i-th timestamp variable

Ti The i-th timestamp real variable

Xi = Ti + δi The i-th timestamp output variable

 ● Subsequence query: Given a query se-
quence Q, find all subsequences that sat-
isfy Dist(Q[i: j], X [m:n]) ≤ ε. For example, 
DTW (Dynamic Time Warping) calculates 
the similarities between sequences of dif-
ferent lengths based on dynamic program-
ming.

Limited by the high dimension of the sequence, 
most current work just focuses on the uncertain 
offline data [7, 11, 17, 18, 19]. No efficient in-
dex has been proposed so far to support online 
query processing for uncertain time series. The 
computational complexity of distance metric 
is proportional to the sequence length. So, a 
sequence that is too long in the candidate set 
screening process will seriously affect the que-
ry speed.
To deal with time series with index technique, 
many efforts have tried to build a spatial index 
structure for querying the sequence data. In 
[21], a set of points is picked into a minimum 
bounding rectangle (MBR) and a spatial index 
R-tree is used to query the target MBRs. Gener-
ally, R-tree is mainly used to solve the problem 
of querying non-zero objects which are treated 
as a rectangle (namely MBR) for processing. 
To improve the efficiency of retrieval, in [31], 
the sequence is mapped into the frequency do-
main by using the Discrete Fourier Transform 
(DFT), and the first few large coefficients are 
kept in the R-tree. Unlike [31], the algorithm 
FastMap [25] tends to build the KD-tree by us-
ing time wrapping measurements. As shown in 
Figure 2, the KD-tree (k-dimensional) is a data 
structure that divides the k-dimensional data 
space. It is mainly used for the search of key 
data in multi-dimensional space (such as range 
search and nearest neighbor search). Collabo-
rating with the time wrapping measurements, it 
can work well for the similarity matching over 
subsequence. At the same time, R*-Tree [24] 
further expands the type of problem as well as 
the deciding factors of MBR partitioning based 
on R-tree. Compared with KD-tree, the MBR 
in R-Tree is more flexible because the MBRs in 
R-tree can overlap with each other. Yet, KD-tree 
tidily splits space without a redundant or un-
covered place on the same layer. The experi-
ment confirms that, in terms of the efficiency of 
retrieval, R*-Tree outperforms KD-tree while 
in terms of the efficiency of update, KD-tree is 
superior to R*-Tree. To utilize the advantages 

of both, we propose an index KDR-tree by com-
bining the structure of KD-tree with the retriev-
al algorithm of R-tree. Specifically, we put for-
ward a search algorithm based on the R-tree's 
query process, and adapt the split threshold of 
KDR-tree to limit the number of the split oper-
ations.
In this paper, we concentrate on the subsequence 
query and present a novel and efficient indexing 
technique over the online sequence. The work 
surrounds the subsequence query about uncer-
tain time series, i.e., finding the candidates sat-
isfying P(Dist(Q, X ) ≤ ε) ≥ τ. In the matching 
of similar sequence, the traditional index is de-
signed for the exactly matched sequence. Based 
on these indexes, the queries always generate 
imprecise distance measurement rather than the 
exact answer. When uncertain information is 
taken into consideration, the measurement for 
the probabilistic threshold can calculate the dif-
ference of the likelihood of each answer. The 
measurement DUST accommodates the uncer-
tainty and generalizes the notion of measure-
ment. We use Euclidean and DUST as distance 
metrics in KDR-tree.
Our contributions in this paper are summarized 
as follows.
1. We combine the characteristics of R-tree 

and KD-tree to build an index structure 
KDR-tree for online data. 

2. We propose an adaptive segmentation al-
gorithm to calculate the maximum number 
of accommodating points for the spatial 
split.

3. We have experimentally confirmed the 
superiority of KDR-tree in terms of per-
formance and efficiency. KDR-tree can re-
duce the loss rate without the cost of the 
true positive rate.

The rest of this paper is organized as follows. 
The main symbols are listed in Table 1. In Sec-
tion 2, we give a brief description of related 
work for uncertain time series. Section 3 pres-
ents the method to index online for the uncertain 
time series. We present how to quickly build an 
index of real-time data by combining the char-
acteristics of KD-tree and R-tree in Section 4. 
The experiments are presented in Section 5. We 
finally conclude the paper in Section 6.
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distribution of noise δ. Hence each timestamp 
is a random variable and corresponds to a mean 
and to a variance. As shown in Figure 3, the dis-
tribution of a timestamp will be (μi, σi) where μi  
is a mean and σi is a variance.

Figure 3. The distribution of one timestamp.

We define X as a reference series with uncer-
tainty and Y as one of the subsequences with the 
uncertainty stored in the database. Both series 
consist of the random variables in each time se-
ries. Specifically, X[i] = Tx[i] + δx[i] and [i] = 
Ty[1] + δy[i]. After pretreatment with the DFT,

we get �X  and �Y  series that are composed of 
features extracted from the X and Y and satisfy 
the following equation.
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Here M is the dimension of the feature space 
and N is the length of the original sequence. 
The FRM gets the sub-trails after mapping the 
series with an allowable length into a feature 
space. Based on those features, the spatial index 
is constructed in real time. Since the sub-trails 
are included in the MBR, there will be no false 
dismissal. However, the cost function with re-
spects to the MBR margin, which is one of the 
factors to decide how to split the MBR, is always 
time-expensive. Thus, we propose a method 
that can avoid this condition. We put forward 
the KDR-tree to index the DFT coefficients 
based on the local linear assumption. We split 
the feature space along the dimension without 
crossing any points to construct the KDR-tree. 
While the R*-tree is used in [15] to insert the 
offline data into the new MBR in advance, the 
KDR-tree is constructed dynamically for the 
online data. Meanwhile, the max number K of 
points included in the MBR is determined by a 
number of factors and is adaptive to control the 

volume of the feature space. We define the K 
determination equation as follows.
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Here Klast represents the parent's or the child's 
number of current K and arealast represents the 
parent's or the child's number of area. If the 
split operation takes place, Klast is the parent's 
K and the arealast is the parent's K. On the other 
hand, if the index removes the last point of a 
subspace and combination happens, Klast is the 
child's K and the arealast is the child's area. As 
for the root node, we need to manually set an 
initial value for K. The density is obtained by 
dividing the number of points surrounded in 
space by the volume of space. As we can see, 
the new K value is obtained by multiplying the 
K value of its parent/child node by a constant. 
The constant is calculated based on the logistic 
function. Its changing image is shown in Figure 
4 It is shown that the K value of the new space 
is increased or decreased by half at most.

Figure 4. Adaptive K function.

Given the incoming point sets US(T) = 
(S12, Len(S1), ..., SMi, Len(SMi)

) at time T, we should
update the KDR-tree over US(T). We add a new 
boundary to split the MBR when the number of 
points in the MBR is bigger than K. The split op-
eration only affects the subspace that intersects 
the MBR formed by the newly arrived point set. 
Meanwhile, we need to update the K value of 
the new sub MBRs in real time. The KDR-tree 
divides the existing MBR instead of creating an 

Figure 1. R*-tree.

Figure 2. KD-tree.

2.3. Uncertain Similarity Measurement

The PROUD presented in [2] is a probabilistic 
approach to processing similarity queries over 
uncertain streams. Although this approach is 
flexible to control the trade-off between false 
positives and false negatives, it cannot be quan-
tified. The approach is only suitable for the 
specified uncertain time series, where each 
timestamp has the same variance. Moreover, 
the filter function is limited to the Euclidean 
distance. When the measurement is changed 
into another distance, such as the TW, the fil-
ter function must change as well. A theoretical 
framework is applied in [3] to generalize the 
notion of similarity between uncertain time 
series. Furthermore, a novel distance measure 
DUST is proposed, which takes uncertainty 
into consideration. While the PROUD can only 

measure the sequences with the same noise 
variance and the metric is still not quantifiable, 
the DUST goes one step further on the basis of 
PROUD. The algorithm can process diverse un-
certainties. Variance of the noise of each time-
stamp can be a different type. However, it is too 
time-expensive to be feasible for streaming data 
applications. As for the DTW, it aims to find the 
optimal alignment with a minimum distance by 
typically using a dynamic programming tech-
nique. To adapt the DTW to the real-time and 
streaming data, the SPRING algorithm is pro-
posed in [40] to dramatically improve the naive 
method. Unnecessary computation is pruned in 
[30] by using a bounding technique, which can 
accelerate the process by at least three times, 
compared to the SPRING. 

3. Proposed Method

To construct the index over the streaming un-
certain series, we use the subsequence distance 
measurement. Here we present the concrete 
question definition as follows:

3.1. Problem Definition

Suppose that the user specifies a target time se-
ries Q of length Len(Q, T ) at time T. Let the 
probability threshold and the tolerance of the 
difference of the distance be ϵ and ε, respective-
ly. Here, T is the time when the user wants to 
get access to the history series.
Assume that we have a collection of Num(T ) 
sequences of real time series S1, S2, ..., SNum(T ), 
each one of a potentially different length. We 
aim to efficiently get all qualified candi-
dates Si  (1 ≤ i ≤ Num(T )), along with the 
specified offset k, such that the subsequence 
Si [k :k + Len(Q, T) - 1] matches the query se-
quence: P(Dist(Si [k :k + Len(Q, T) - 1], Q) ≤ 
ε) ≥ τ.

3.2. Proposed Approach

For uncertain time series data, different mod-
els have been proposed. This paper mainly uses 
the models based on probability statistics. This 
means that the data at each moment is com-
posed of the distribution of real data T and the 
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PROUD. The algorithm can process diverse un-
certainties. Variance of the noise of each time-
stamp can be a different type. However, it is too 
time-expensive to be feasible for streaming data 
applications. As for the DTW, it aims to find the 
optimal alignment with a minimum distance by 
typically using a dynamic programming tech-
nique. To adapt the DTW to the real-time and 
streaming data, the SPRING algorithm is pro-
posed in [40] to dramatically improve the naive 
method. Unnecessary computation is pruned in 
[30] by using a bounding technique, which can 
accelerate the process by at least three times, 
compared to the SPRING. 

3. Proposed Method

To construct the index over the streaming un-
certain series, we use the subsequence distance 
measurement. Here we present the concrete 
question definition as follows:

3.1. Problem Definition

Suppose that the user specifies a target time se-
ries Q of length Len(Q, T ) at time T. Let the 
probability threshold and the tolerance of the 
difference of the distance be ϵ and ε, respective-
ly. Here, T is the time when the user wants to 
get access to the history series.
Assume that we have a collection of Num(T ) 
sequences of real time series S1, S2, ..., SNum(T ), 
each one of a potentially different length. We 
aim to efficiently get all qualified candi-
dates Si  (1 ≤ i ≤ Num(T )), along with the 
specified offset k, such that the subsequence 
Si [k :k + Len(Q, T) - 1] matches the query se-
quence: P(Dist(Si [k :k + Len(Q, T) - 1], Q) ≤ 
ε) ≥ τ.

3.2. Proposed Approach

For uncertain time series data, different mod-
els have been proposed. This paper mainly uses 
the models based on probability statistics. This 
means that the data at each moment is com-
posed of the distribution of real data T and the 
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In summary, the non-leaf node is used to find 
candidates satisfying P(Dist(Si [k :k + Len(Q, T) 
- 1], Q) ≤ ε) ≥ τ and the leaf node returns to the 
target points. The search spends a lot of time 
on these nodes to check the distance measure-
ment rather than update the index structure in 
real time.

4. Index Construction

In the previous section, we discussed the 
sketched approach to dealing with the updating 
points. We used an inserting operation similar 
to the KD-trees operation, to avoid excessive 
MBR updates. In this section, we present how to 
construct the spatial index. First, we select the 
DFT as our feature extraction method used by 
the subsequence. Second, we discuss the search 
and the algorithm when the new points arrive.

4.1. Feature Extraction

We choose the DFT for three reasons. 
1. It is commonly used for dimension reduc-

tion. 
2. It provides a good and intuitive example to 

make the presentation clearer. 
3. It keeps the distance measurement the 

same as the real distance, except for the 
white noise. 

Furthermore, the feature extraction is important 
for us to reduce the length of the series result-
ing in higher efficiency when we treat the time 
as one dimension. Meanwhile, it is useful when 
the distance measurement over an uncertain 
time series is complicated. After the updating 
set arrives, we check if the space needs to be 
divided according to K.

4.2. Search

The search operation is used to select the qual-
ified candidates when the user gives a query 
series at a specific time. At this point, we must 
choose one distance measure with uncertainty 
taken into consideration. Although the PROUD 
approach formalizes a selection standard by 
using a normalized function, it cannot be used 
directly to compare the distance in the form of 

numeric. Hence, in this paper, we use a variant 
numeric approach based on the PROUD as fol-
lows.

 ● The user query Q is mapped into the 
sub-trails in the same manner. The 
KDR-tree works for the specific area, 
which satisfies P(Dist(Si [k :k + Len(Q, T) 
- 1], Q) ≤ ε) ≥ τ.

 ● We use the variant distance measurement 
based on the PROUD to collect the candi-
dates from the top down.

 ● We combine the results of the collections 
of the leaf points according to the iden-
tified id in the MBR over each uncertain 
time series.

In this paper, we focus on the uncertain time 
series. This means that our search process will 
take more time due to the addition of uncer-
tain information. Correspondingly, the distance 
measurement is based on uncertain objects 
rather than on the crisp ones. For the continu-
ous model, the value consists of real value and 
noise. Both of them are regarded as variables 
linked with an unknown probability density 
function. Although the distribution over a single 
random variable is unknown, the Central Limit 
Theorem indicates that the group of variables 
can be simulated by the Gauss Distribution.
We use the KDR-tree to perform the search ac-
tions on uncertain time series and it is differ-
ent from the process of screening for crisp time 
series. Although both are based on Euclidean 
distance, the screening radius in the KDR-tree 
changes dynamically during the algorithm ex-
ecution. 
According to [41], the varying threshold (i.e., 
screening radius) can be represented by the av-
erage of the random variable (i.e., E(xi)). Since 
the measurement is based on the probability 
theory, it must utilize the characteristics of the 
expected value as the computational element of 
the Euclidean distance. Here, we directly pres-
ent the result in [41]. The filter function can be 
reorganized as the following equation:
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MBR to store the new points. Compared with 
the R*-tree, it saves the split and inserts time 
because it doesn't enumerate all sub MBRs to 
determine the best inserted MBR and calcu-
late the area of sub MBRs. Thus, the index can 
quickly respond to the coming data. Because of 
this fast response to real-time data, the index 
structure has high throughput. Figure 5 shows 
the content of the MBR we use. The leaf MBRs 
of the KDR-tree store the set of points in the 
subspace while the non-leaf MBR only saves 
the information about the split boundary of the 
parent space. The point set of the subspace is 
highly repetitive, hence there is no need to store 
the points in the non-leaf MBR. Moreover, the 
subspace size can be obtained along the path 
from the top down.

Figure 5. Data structure of MBR.

The KDR-tree uses the split algorithm, which 
is similar to the KD-tree, but the point is only 
included in the leaf nodes and no point passes 
through the split boundary. The biggest differ-
ence is that this is applied to uncertain time se-
ries. As for the maximum number of points, it is 
allowed to be adaptively changed according to 
the density and area as well as variance.
We give a simple example of KDR-tree in 2-di-
mensional space. Figure 3 shows a possible 
case of spatial division. Each of the subspaces 
has the maximum number of points equal to 1.

We define K as the formula (3) because the den-
sity distribution of the index is always uneven 
which is not beneficial for the search efficiency. 
For example, a small area containing as many 
points as a large area is easier to cause unnec-
essary depth exploration during the search. 
Hence, we define the density value as the ratio 
of a point set to the area and we consider it to be 
one of the standards for splitting the space. The 
higher the density, the easier it is to be divid-
ed. Meanwhile, given a search range, it is more 
possible to eliminate unnecessary space look-
ups for space with a large area. Otherwise, if 
the area itself is small, the same search radius is 
likely to cover the entire space and this makes 
the enumeration unavoidable. Finally, due to 
the larger variance, the denser the point set is 
within the point cluster, the more obvious is the 
separation between the points. It means that the 
space with a large variance should be easier to 
segment. Hence, we make K inversely propor-
tional to the variance along the split dimension.

Figure 6. Example of mapping the series into feature 
space.
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In summary, the non-leaf node is used to find 
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- 1], Q) ≤ ε) ≥ τ and the leaf node returns to the 
target points. The search spends a lot of time 
on these nodes to check the distance measure-
ment rather than update the index structure in 
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sketched approach to dealing with the updating 
points. We used an inserting operation similar 
to the KD-trees operation, to avoid excessive 
MBR updates. In this section, we present how to 
construct the spatial index. First, we select the 
DFT as our feature extraction method used by 
the subsequence. Second, we discuss the search 
and the algorithm when the new points arrive.
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We choose the DFT for three reasons. 
1. It is commonly used for dimension reduc-

tion. 
2. It provides a good and intuitive example to 

make the presentation clearer. 
3. It keeps the distance measurement the 

same as the real distance, except for the 
white noise. 

Furthermore, the feature extraction is important 
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ing in higher efficiency when we treat the time 
as one dimension. Meanwhile, it is useful when 
the distance measurement over an uncertain 
time series is complicated. After the updating 
set arrives, we check if the space needs to be 
divided according to K.
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series at a specific time. At this point, we must 
choose one distance measure with uncertainty 
taken into consideration. Although the PROUD 
approach formalizes a selection standard by 
using a normalized function, it cannot be used 
directly to compare the distance in the form of 

numeric. Hence, in this paper, we use a variant 
numeric approach based on the PROUD as fol-
lows.

 ● The user query Q is mapped into the 
sub-trails in the same manner. The 
KDR-tree works for the specific area, 
which satisfies P(Dist(Si [k :k + Len(Q, T) 
- 1], Q) ≤ ε) ≥ τ.

 ● We use the variant distance measurement 
based on the PROUD to collect the candi-
dates from the top down.

 ● We combine the results of the collections 
of the leaf points according to the iden-
tified id in the MBR over each uncertain 
time series.

In this paper, we focus on the uncertain time 
series. This means that our search process will 
take more time due to the addition of uncer-
tain information. Correspondingly, the distance 
measurement is based on uncertain objects 
rather than on the crisp ones. For the continu-
ous model, the value consists of real value and 
noise. Both of them are regarded as variables 
linked with an unknown probability density 
function. Although the distribution over a single 
random variable is unknown, the Central Limit 
Theorem indicates that the group of variables 
can be simulated by the Gauss Distribution.
We use the KDR-tree to perform the search ac-
tions on uncertain time series and it is differ-
ent from the process of screening for crisp time 
series. Although both are based on Euclidean 
distance, the screening radius in the KDR-tree 
changes dynamically during the algorithm ex-
ecution. 
According to [41], the varying threshold (i.e., 
screening radius) can be represented by the av-
erage of the random variable (i.e., E(xi)). Since 
the measurement is based on the probability 
theory, it must utilize the characteristics of the 
expected value as the computational element of 
the Euclidean distance. Here, we directly pres-
ent the result in [41]. The filter function can be 
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MBR to store the new points. Compared with 
the R*-tree, it saves the split and inserts time 
because it doesn't enumerate all sub MBRs to 
determine the best inserted MBR and calcu-
late the area of sub MBRs. Thus, the index can 
quickly respond to the coming data. Because of 
this fast response to real-time data, the index 
structure has high throughput. Figure 5 shows 
the content of the MBR we use. The leaf MBRs 
of the KDR-tree store the set of points in the 
subspace while the non-leaf MBR only saves 
the information about the split boundary of the 
parent space. The point set of the subspace is 
highly repetitive, hence there is no need to store 
the points in the non-leaf MBR. Moreover, the 
subspace size can be obtained along the path 
from the top down.

Figure 5. Data structure of MBR.

The KDR-tree uses the split algorithm, which 
is similar to the KD-tree, but the point is only 
included in the leaf nodes and no point passes 
through the split boundary. The biggest differ-
ence is that this is applied to uncertain time se-
ries. As for the maximum number of points, it is 
allowed to be adaptively changed according to 
the density and area as well as variance.
We give a simple example of KDR-tree in 2-di-
mensional space. Figure 3 shows a possible 
case of spatial division. Each of the subspaces 
has the maximum number of points equal to 1.

We define K as the formula (3) because the den-
sity distribution of the index is always uneven 
which is not beneficial for the search efficiency. 
For example, a small area containing as many 
points as a large area is easier to cause unnec-
essary depth exploration during the search. 
Hence, we define the density value as the ratio 
of a point set to the area and we consider it to be 
one of the standards for splitting the space. The 
higher the density, the easier it is to be divid-
ed. Meanwhile, given a search range, it is more 
possible to eliminate unnecessary space look-
ups for space with a large area. Otherwise, if 
the area itself is small, the same search radius is 
likely to cover the entire space and this makes 
the enumeration unavoidable. Finally, due to 
the larger variance, the denser the point set is 
within the point cluster, the more obvious is the 
separation between the points. It means that the 
space with a large variance should be easier to 
segment. Hence, we make K inversely propor-
tional to the variance along the split dimension.

Figure 6. Example of mapping the series into feature 
space.
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the feature space, it is a bit cumbersome, main-
ly in checking all feature space intersecting the 
MBR formed by the set of points to be added. 
In summary, the update of the data includes the 
following steps.

 ● When the data to be updated arrives, we 
save it directly in the database.

 ● We calculate the MBR of these point sets 
and then find the feature space that inter-
sects with the space in the KDR-tree.

 ● Based on the found MBRs, we determine if 
to divide the corresponding space by com-
paring the number of points and the value 
of K in each subspace after adding the cor-
responding point set.

For determining the split dimension, we use 
the variance as the criterion for screening the 
optimal dimension because the larger the vari-
ance, the more obvious the point set distribu-
tion. Not only do we need to consider variance, 
but also the size of the subspace. Intuitively, we 
know that, for the same search radius, if a cir-
cle corresponding to the radius covers a dens-
er set of points and fewer nodes, there will be 
more points that may need to be enumerated. It 
means that a set of points with low density can 
help reduce unnecessary further node explora-
tion. Conversely, a subspace with dense points 
is likely to cause unnecessary traversal due to 
insufficient filtering. Hence, we need to use the 
size of the space and the spatial density as a cor-
relation factor. In short, we set three quantita-
tive values, namely variance, density and area, 
as criteria for the division. 

Most of the time is usually spent in searching 
and enumerating the space to be divided. Hence, 
compared to the R-tree, there is more time-cost 
for the KDR to determine if it needs to be split 
than to perform the splitting operation.

Above all, we have the following algorithm to 
update the KDR-tree. TryToSplit algorithm (Al-
gorithm 2) is applied to determine whether the 
node needs spliting or not. And ADD (Algo-
rithm 3) is an interface used to insert the new 
points.

Algorithm 1. Search.

Input: root R of KDR-tree, Q query feature, σ query 
variance, ε distance threshold, τ probability threshold
Output: candidates
1.    initialize:
2.    1- 2 (2 1)r limit erf τ−← −
3.    

4.    minThd = getThreshold(r-limit, R.Dim, R.σmax, σ, ε)

5.    maxThd = getThreshold(r-limit, R.Dim, R.σmin, σ, ε)
6.    
7.    if maxDist(R.MBR, Q) ≤ minThd then
8.        GetCoveredLeaves 

push
⇒ candidates

9.    end if
10.  if minDist(R.MBR, Q) > maxThd then
11.      return
12.  end if
13.  if R is leaf node then
14.      for i = 1, ..., R.pointsNum do
15.          thd = getThreshold(r-limit, R.σ[i], σ, ε)
16.          if Dist(R.points[i], Q) ≤ thd then
17.              R.points[i] 

push
⇒ candidates

18.          end if
19.      end for
20.      return
21.  end if
22.  if (R.points[R.splitDim] - R.splitVal)2 ≤ maxThd then
23.      Search(R.left, Q, σ, ε, τ)
24.      Search(R.right, Q, σ, ε, τ)
25.  end if

Algorithm 2. TryToSplit.

Input: root R of KDR-tree
1.    initialize: curNode = R
2.    if Count(R.points) > R.K then
3.        for all dimensions do
4.            calculate the variance of two subspace
5.            if the sum of two variances is the largest one then
6.            else we choose this dimension to split
7.            end if
8.        end for
9.        calculate the area, density of two subspaces
10.      choose the median value as the split value along 
           the choosen dimension
11.      Update R.left.K and R.right.K according to 
           T(area, variance, density)
12.  end if

c = -ε2 + N(σ2 + (σq)2). Here, μi is the expec-
tation of the i-th timestamp of the sequence 
whose variance is σ in the database; μi

q is the 
expectation of the i-th timestamp of the query 
sequence whose variance is σ 

q; N is the dimen-
sion of the feature space. The symbol r-limit is 
the threshold that satisfies the target probability 
value under a normal distribution, which is de-
fined as follows:

1- 2 (2 1)r limit erf τ−= −              (4)

Here, erf -1(x) represents the inverse of the er-
ror function; τ is the user-defined probability 
threshold; r is the user-defined distance thresh-
old. According to the algorithm proposed in 
[41], the threshold dynamically changes with 
respect to the square of variance.
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The symbol len in this paper can be considered 
equivalent to the dimension of the feature space 
since (1) the request sequence with a large 
length can be split into multiple short sequences 
and mapped to low dimensional space and (2) 
under the real-time environment, the proportion 
of short-sequence data is relatively large due to 
factors such as speed, throughput, and trans-
mission limitations.
Furthermore, this threshold has monotonic 
nature respect to σ when r-limit is positive, 
otherwise it is uncertain. Therefore, for the 
sake of simplicity, we suppose r-limit > 0 or
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 to make sure the 

threshold is monotonic decrease reference to 
the σ2. As we can see, the radius of the sieve 
inspection is the dynamic distance with respect 
to the variance. This property certainly increas-
es the time of calculating the distance measure-
ment. However, after the DFT-based feature 
extraction and the KDR-tree processes, it effec-
tively reduces unnecessary point set checks and 
time-consuming updates. In [41], it is proposed 
to apply a one-dimensional variance interval as 

an MBR to construct an R-tree. Similarly, we 
store the set of points in the sub-feature space 
to the MBR, store the interval value of the vari-
ance into the feature space, and use the two 
filter mechanisms in [41] in the search. Since 
the arrival of data in the process of building a 
KDR-tree is random, the structure of the final 
tree will be uncertain.
The metrics for uncertain data are expanded 
in [3]. For more complex types of uncertainty, 
they propose the DUST metric, which is primar-
ily measured based on the definitions below.
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Probability information is mainly integrated 
into the dust.

( )( ) ( )( , ) log log (0)dust x y x yφ φ= − − +    (7)

In the paper, we use the DUST distance met-
ric based on the error function, which is nor-
mally distributed. In the case that the noise 
data is Gaussian Distribution, the distance of 
DUST is only proportional to the absolute val-
ue of the difference. The DUST is essentially 
based on Euclidean distance and the DFT does 
not change the Euclidean distance between the 
original points. Hence, we can directly calcu-
late the metric in the new feature space.
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After obtaining the candidate set, we use a 
post-processing method to get the last submit-
ted candidate set. The Search algorithm (Algo-
rithm 1) implements the steps described above.

4.3. Update

The update processing includes the addition of 
data sets and the partitioning of feature space. 
For the addition of data sets, the time complex-
ity is constant since it is highly efficient to up-
date the feature subspace. For the division of 
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the feature space, it is a bit cumbersome, main-
ly in checking all feature space intersecting the 
MBR formed by the set of points to be added. 
In summary, the update of the data includes the 
following steps.

 ● When the data to be updated arrives, we 
save it directly in the database.

 ● We calculate the MBR of these point sets 
and then find the feature space that inter-
sects with the space in the KDR-tree.

 ● Based on the found MBRs, we determine if 
to divide the corresponding space by com-
paring the number of points and the value 
of K in each subspace after adding the cor-
responding point set.

For determining the split dimension, we use 
the variance as the criterion for screening the 
optimal dimension because the larger the vari-
ance, the more obvious the point set distribu-
tion. Not only do we need to consider variance, 
but also the size of the subspace. Intuitively, we 
know that, for the same search radius, if a cir-
cle corresponding to the radius covers a dens-
er set of points and fewer nodes, there will be 
more points that may need to be enumerated. It 
means that a set of points with low density can 
help reduce unnecessary further node explora-
tion. Conversely, a subspace with dense points 
is likely to cause unnecessary traversal due to 
insufficient filtering. Hence, we need to use the 
size of the space and the spatial density as a cor-
relation factor. In short, we set three quantita-
tive values, namely variance, density and area, 
as criteria for the division. 

Most of the time is usually spent in searching 
and enumerating the space to be divided. Hence, 
compared to the R-tree, there is more time-cost 
for the KDR to determine if it needs to be split 
than to perform the splitting operation.

Above all, we have the following algorithm to 
update the KDR-tree. TryToSplit algorithm (Al-
gorithm 2) is applied to determine whether the 
node needs spliting or not. And ADD (Algo-
rithm 3) is an interface used to insert the new 
points.

Algorithm 1. Search.

Input: root R of KDR-tree, Q query feature, σ query 
variance, ε distance threshold, τ probability threshold
Output: candidates
1.    initialize:
2.    1- 2 (2 1)r limit erf τ−← −
3.    

4.    minThd = getThreshold(r-limit, R.Dim, R.σmax, σ, ε)

5.    maxThd = getThreshold(r-limit, R.Dim, R.σmin, σ, ε)
6.    
7.    if maxDist(R.MBR, Q) ≤ minThd then
8.        GetCoveredLeaves 

push
⇒ candidates

9.    end if
10.  if minDist(R.MBR, Q) > maxThd then
11.      return
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13.  if R is leaf node then
14.      for i = 1, ..., R.pointsNum do
15.          thd = getThreshold(r-limit, R.σ[i], σ, ε)
16.          if Dist(R.points[i], Q) ≤ thd then
17.              R.points[i] 

push
⇒ candidates

18.          end if
19.      end for
20.      return
21.  end if
22.  if (R.points[R.splitDim] - R.splitVal)2 ≤ maxThd then
23.      Search(R.left, Q, σ, ε, τ)
24.      Search(R.right, Q, σ, ε, τ)
25.  end if

Algorithm 2. TryToSplit.

Input: root R of KDR-tree
1.    initialize: curNode = R
2.    if Count(R.points) > R.K then
3.        for all dimensions do
4.            calculate the variance of two subspace
5.            if the sum of two variances is the largest one then
6.            else we choose this dimension to split
7.            end if
8.        end for
9.        calculate the area, density of two subspaces
10.      choose the median value as the split value along 
           the choosen dimension
11.      Update R.left.K and R.right.K according to 
           T(area, variance, density)
12.  end if

c = -ε2 + N(σ2 + (σq)2). Here, μi is the expec-
tation of the i-th timestamp of the sequence 
whose variance is σ in the database; μi

q is the 
expectation of the i-th timestamp of the query 
sequence whose variance is σ 

q; N is the dimen-
sion of the feature space. The symbol r-limit is 
the threshold that satisfies the target probability 
value under a normal distribution, which is de-
fined as follows:

1- 2 (2 1)r limit erf τ−= −              (4)

Here, erf -1(x) represents the inverse of the er-
ror function; τ is the user-defined probability 
threshold; r is the user-defined distance thresh-
old. According to the algorithm proposed in 
[41], the threshold dynamically changes with 
respect to the square of variance.

( ) ( )( )
( )

2

22 2 2

22

( )

-

-

r

r

VarThd

r limit len r

r limit

σ

σ σ

σ σ

=

= − + + −

− +

    (5)

The symbol len in this paper can be considered 
equivalent to the dimension of the feature space 
since (1) the request sequence with a large 
length can be split into multiple short sequences 
and mapped to low dimensional space and (2) 
under the real-time environment, the proportion 
of short-sequence data is relatively large due to 
factors such as speed, throughput, and trans-
mission limitations.
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sake of simplicity, we suppose r-limit > 0 or

2 2
2

2 2
-

- -
r limit r

r limit r limit len
σ >

− ⋅
 to make sure the 

threshold is monotonic decrease reference to 
the σ2. As we can see, the radius of the sieve 
inspection is the dynamic distance with respect 
to the variance. This property certainly increas-
es the time of calculating the distance measure-
ment. However, after the DFT-based feature 
extraction and the KDR-tree processes, it effec-
tively reduces unnecessary point set checks and 
time-consuming updates. In [41], it is proposed 
to apply a one-dimensional variance interval as 

an MBR to construct an R-tree. Similarly, we 
store the set of points in the sub-feature space 
to the MBR, store the interval value of the vari-
ance into the feature space, and use the two 
filter mechanisms in [41] in the search. Since 
the arrival of data in the process of building a 
KDR-tree is random, the structure of the final 
tree will be uncertain.
The metrics for uncertain data are expanded 
in [3]. For more complex types of uncertainty, 
they propose the DUST metric, which is primar-
ily measured based on the definitions below.
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In the paper, we use the DUST distance met-
ric based on the error function, which is nor-
mally distributed. In the case that the noise 
data is Gaussian Distribution, the distance of 
DUST is only proportional to the absolute val-
ue of the difference. The DUST is essentially 
based on Euclidean distance and the DFT does 
not change the Euclidean distance between the 
original points. Hence, we can directly calcu-
late the metric in the new feature space.
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After obtaining the candidate set, we use a 
post-processing method to get the last submit-
ted candidate set. The Search algorithm (Algo-
rithm 1) implements the steps described above.

4.3. Update

The update processing includes the addition of 
data sets and the partitioning of feature space. 
For the addition of data sets, the time complex-
ity is constant since it is highly efficient to up-
date the feature subspace. For the division of 
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the corresponding search algorithm to find the 
candidate set.
All experiments were repeated 20 times. Each 
experiment (randomly) generated 10 batches 
of random data under the corresponding test 
parameters to simulate real-time data. We av-
eraged all test results as the final elapsed time. 
Here, an experiment was carried out under dif-
ferent numbers of processed objects to test the 
efficiency of different indexes. The final result 
is presented in Figure 7.

Figure 7. Efficiency comparison over the num.

It is shown in Figure 7 that, as expected, three 
index structures have their own advantages. 
Due to the flexibility of the MBR, the R-tree 
needs to update the MBR from the bottom 
up when the inserting operation takes place. 
Hence, it is time expensive to insert the com-
ing data. On the contrary, due to the flexibility 
of the MBR, we can quickly locate the MBR, 
where the target is located when the R-tree is 
used for retrieval. Therefore, the R-tree is the 
most efficient in terms of retrieval, but it is the 
least efficient when updating. The KDR-tree 
query efficiency is between the KD-tree update 
and query efficiency. The structure of KDR-tree 
is similar to the KD-tree, and the space is divid-
ed into subspaces that do not overlap with each 
other. Therefore, there is no need to update a 
large number of MBRs when inserting data. Un-
like the KD-tree, the KDR-tree needs to divide 
the space according to a series of rules. The 
division decision is based on the density, the 
area and the variance along the split dimension. 
Therefore, the division of KDR-tree increases 
the time of update, but a reasonable division can 

make the retrieval efficiency almost unchanged 
or even improveed. Due to the split decision, 
the depth of the KDR-tree does not increase lin-
early with the data points. Most importantly, the 
KDR-tree can handle uncertainty time series.
Concerning the effect of noise variance on que-
ry performance, performance of the index varies 
slightly under different noises. The experimen-
tal data is based on the random data generated 
under fixed τ and ε. Each corresponding noise 
variance has 10 sets of random data for test-
ing. Similarly, we took the average of 10 sets 
of results as the final result. The experimental 
results are shown in Figure 8.

Figure 8. Error and miss ratio over σq.

In the result, the KD-tree and KDR-tree curves 
coincide because the KDR-tree retrieval step in 
the experiment is very similar to THE KD-tree. 
The difference is that the KDR-tree needs to tra-
verse the leaf nodes so that the error rate may be 
less than or equal to the error rate of KD-tree. 
Moreover, the fast screening algorithm pro-
posed in [16] can be used for the KDR-tree. It 
is shown that the error ratio and the missing ra-
tio of the R-tree are biased towards 0.5. In the 
R-tree, the eigenvalues are organized into MBR 
forms. Unlike the KD-tree and the KDR-tree, 
the R-tree uses these MBRs instead of the points 
for retrieval. Therefore, the R-tree measurement 
result is smaller, causing the error value to be 
larger than the KD-tree and KDR-tree. On the 
contrary, the loss rate is relatively small.

Algorithm 3. Add.

Input: root R of KDR-tree, point to be added
1.    initialize: curNode = R
2.    while true do
3.        if curNode is leaf node then
4.            insert the node into curNode
5.            TryToSplit(curNode)
6.            return
7.        end if
8.      if point [curNode.splitDim] < curNode.splitVal then
9.            curNode = curNode.left
10.      else
11.          curNode = curNode.right
12.      end if
13.  end while

5. Experiments

In this section, we conduct experiments with 
random and real data, respectively. To deter-
mine if the adaptive K value improves efficien-
cy of the index, we need to compare the search 
algorithm with the KR-tree. At the same time, 
to compare the influence of different distance 
metrics on the retrieval results, we compare the 
search algorithm based on the PROUD and the 
DUST distance metrics. In general, the DUST 
has a higher accuracy and a lower false detec-
tion rate since it makes full use of the uncertain 
sequence. By the experiments with different 
search algorithms we compare the efficiency of 
these algorithms. To facilitate comparison, we 
give two quantitative indicators in Table 2.

Table 2. Quantitative indicators.

Candidates

True False

Real  
Sequence

True TP FN

False FP TN

TPError Ratio TP FP=
+

TPMiss Ratio TP FN=
+

Our experiments were implemented in Python 
3.7 and run on the PC with 2.4 GHz CPU and 
4GB RAM.

5.1. Synthetic data

Time series data contain the noise distribution 
and the real distribution. We hereby set these 
two types of distributions to generate synthet-
ic data. In the experiments, it is assumed that 
the noise distribution of data is a standard nor-
mal distribution and the true distribution is a 
uniform distribution. So, the expected value 
of each data is the expected value of the real 
data distribution. We further assume that the 
expected value is a uniform distribution with 
respect to time and the variance is a uniform 
distribution with respect to the sequence. This 
means that the different timestamps in the same 
sequence have the same variance but different 
mean values while different sequences have dif-
ferent variances. Once a new sequence data is 
generated, we first insert it into the index struc-
ture and then query the candidate set. Since the 
experiments use different index structures, the 
dimensions of each index structure are slightly 
different. Specifically, after feature extraction 
using the DFT, two feature values of the subse-
quences are generated. 
The KDR-tree and the KD-tree require the fea-
ture's dimension to handle point sets, and we 
hence map subsequences to 4-dimensional 
points. On the contrary, the R-tree can work di-
rectly in the 2-dimensional space. To deal with 
real-time data, we focus on the construction of 
index and query. The KD-tree takes each point 
as a node and each node includes a dividing line. 
This means that, as the set of points increases, 
the space becomes more fragmented. At the 
same time, the depth of the tree will increase 
accordingly. Although the R-tree is more flex-
ible than the KD-tree, the space of the R-tree 
can be more time-consuming because random 
MBR can overlap with each other. The R-tree 
is an index for the data of non-zero size and the 
update operation on the MBR is too time con-
suming to meet real-time performance. To ob-
serve the efficiency of different index updates 
and retrievals, we experiment with an update 
and an index operations. We add the synthetic 
data to different index structures and then use 
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the corresponding search algorithm to find the 
candidate set.
All experiments were repeated 20 times. Each 
experiment (randomly) generated 10 batches 
of random data under the corresponding test 
parameters to simulate real-time data. We av-
eraged all test results as the final elapsed time. 
Here, an experiment was carried out under dif-
ferent numbers of processed objects to test the 
efficiency of different indexes. The final result 
is presented in Figure 7.
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ing data. On the contrary, due to the flexibility 
of the MBR, we can quickly locate the MBR, 
where the target is located when the R-tree is 
used for retrieval. Therefore, the R-tree is the 
most efficient in terms of retrieval, but it is the 
least efficient when updating. The KDR-tree 
query efficiency is between the KD-tree update 
and query efficiency. The structure of KDR-tree 
is similar to the KD-tree, and the space is divid-
ed into subspaces that do not overlap with each 
other. Therefore, there is no need to update a 
large number of MBRs when inserting data. Un-
like the KD-tree, the KDR-tree needs to divide 
the space according to a series of rules. The 
division decision is based on the density, the 
area and the variance along the split dimension. 
Therefore, the division of KDR-tree increases 
the time of update, but a reasonable division can 

make the retrieval efficiency almost unchanged 
or even improveed. Due to the split decision, 
the depth of the KDR-tree does not increase lin-
early with the data points. Most importantly, the 
KDR-tree can handle uncertainty time series.
Concerning the effect of noise variance on que-
ry performance, performance of the index varies 
slightly under different noises. The experimen-
tal data is based on the random data generated 
under fixed τ and ε. Each corresponding noise 
variance has 10 sets of random data for test-
ing. Similarly, we took the average of 10 sets 
of results as the final result. The experimental 
results are shown in Figure 8.
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In the result, the KD-tree and KDR-tree curves 
coincide because the KDR-tree retrieval step in 
the experiment is very similar to THE KD-tree. 
The difference is that the KDR-tree needs to tra-
verse the leaf nodes so that the error rate may be 
less than or equal to the error rate of KD-tree. 
Moreover, the fast screening algorithm pro-
posed in [16] can be used for the KDR-tree. It 
is shown that the error ratio and the missing ra-
tio of the R-tree are biased towards 0.5. In the 
R-tree, the eigenvalues are organized into MBR 
forms. Unlike the KD-tree and the KDR-tree, 
the R-tree uses these MBRs instead of the points 
for retrieval. Therefore, the R-tree measurement 
result is smaller, causing the error value to be 
larger than the KD-tree and KDR-tree. On the 
contrary, the loss rate is relatively small.

Algorithm 3. Add.

Input: root R of KDR-tree, point to be added
1.    initialize: curNode = R
2.    while true do
3.        if curNode is leaf node then
4.            insert the node into curNode
5.            TryToSplit(curNode)
6.            return
7.        end if
8.      if point [curNode.splitDim] < curNode.splitVal then
9.            curNode = curNode.left
10.      else
11.          curNode = curNode.right
12.      end if
13.  end while

5. Experiments

In this section, we conduct experiments with 
random and real data, respectively. To deter-
mine if the adaptive K value improves efficien-
cy of the index, we need to compare the search 
algorithm with the KR-tree. At the same time, 
to compare the influence of different distance 
metrics on the retrieval results, we compare the 
search algorithm based on the PROUD and the 
DUST distance metrics. In general, the DUST 
has a higher accuracy and a lower false detec-
tion rate since it makes full use of the uncertain 
sequence. By the experiments with different 
search algorithms we compare the efficiency of 
these algorithms. To facilitate comparison, we 
give two quantitative indicators in Table 2.

Table 2. Quantitative indicators.

Candidates

True False

Real  
Sequence

True TP FN

False FP TN

TPError Ratio TP FP=
+

TPMiss Ratio TP FN=
+

Our experiments were implemented in Python 
3.7 and run on the PC with 2.4 GHz CPU and 
4GB RAM.

5.1. Synthetic data

Time series data contain the noise distribution 
and the real distribution. We hereby set these 
two types of distributions to generate synthet-
ic data. In the experiments, it is assumed that 
the noise distribution of data is a standard nor-
mal distribution and the true distribution is a 
uniform distribution. So, the expected value 
of each data is the expected value of the real 
data distribution. We further assume that the 
expected value is a uniform distribution with 
respect to time and the variance is a uniform 
distribution with respect to the sequence. This 
means that the different timestamps in the same 
sequence have the same variance but different 
mean values while different sequences have dif-
ferent variances. Once a new sequence data is 
generated, we first insert it into the index struc-
ture and then query the candidate set. Since the 
experiments use different index structures, the 
dimensions of each index structure are slightly 
different. Specifically, after feature extraction 
using the DFT, two feature values of the subse-
quences are generated. 
The KDR-tree and the KD-tree require the fea-
ture's dimension to handle point sets, and we 
hence map subsequences to 4-dimensional 
points. On the contrary, the R-tree can work di-
rectly in the 2-dimensional space. To deal with 
real-time data, we focus on the construction of 
index and query. The KD-tree takes each point 
as a node and each node includes a dividing line. 
This means that, as the set of points increases, 
the space becomes more fragmented. At the 
same time, the depth of the tree will increase 
accordingly. Although the R-tree is more flex-
ible than the KD-tree, the space of the R-tree 
can be more time-consuming because random 
MBR can overlap with each other. The R-tree 
is an index for the data of non-zero size and the 
update operation on the MBR is too time con-
suming to meet real-time performance. To ob-
serve the efficiency of different index updates 
and retrievals, we experiment with an update 
and an index operations. We add the synthetic 
data to different index structures and then use 
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are mainly due to the fact that the point-based 
index construction and the MBR-based index 
construction query methods are very different. 
The MBR-based query underestimates the ac-
tual value of the distance metric, but the query 
based on the point set is closer to the true value. 
Hence, the result shows that the error rate of the 
R-tree is higher. Meanwhile, the KDR-tree has 
a lower loss rate than the KD-tree. This means 
that the overall performance of the KDR-tree is 
better than that of the KD-tree.
To fix the parameter ε, we compare the per-
formance of different indexes on τ. The ex-
perimental results are shown in Figure 10. As 
[17] pointed out, the PROUD-based screening 
works only in a small interval of ε. This means 
that the choice of ε becomes very important. 
This is why we chose ε as 16. As τ continues 
to increase, the error rate remains the same or 
decreases. On the other hand, the miss ratio re-
mains the same or increases. It is shown that τ 
has far less impact on the results than ε. This 
is because τ's influence in the filter function is 
small, and the distance that is ultimately used 
for filtering is linear about ε. As shown in Fig-
ure 10, the index structure changes very sta-
bly. As expected, the error rate increases as τ 
increases. The reason why the R-tree does not 
meet our expectations is the fact that the R-tree 
underestimates the metrics.

5.2. Real Data

Archive files contain daily average tempera-
tures of 157 U.S. and 167 international cities. 
Source data for these files are from the Global 
Summary of the Day (GSOD) database archived 
by the National Climatic Data Center (NCDC). 
The daily average temperatures posted on this 
site are computed from 24 hourly temperature 
readings in the Global Summary of the Day 
(GSOD) data. The data fields in each file are 
month, day, year, daily average temperature (F) 
and data containing ''-99'' no-data flag is not 
available. Since the pre-processed point set af-
ter the DFT is of the same dimension, we do not 
need to care about the length of the sequence. 
There are more than 300 cities in the original 
file and about 5,000 data points in each city that 
are not empty. 
Unlike the synthetic data, we read a random 
number of non-null data from a file at the same 
time interval. In the experiments, we read the 
data for 300 cities every 30 ms within 2 minutes. 
If reading a file is finished early in 2 minutes, 
we do nothing. Since the fluctuations of dimen-
sions and values of the real data are larger than 
those of random data, the distance threshold is 
increased correspondingly. We still examine the 
impact of the distance threshold ε first. Then we 
test the impact of τ. The results are shown in 
Figure 11 and Figure 12, respectively.

Figure 10. Error and miss ratio over τ.

(a) PROUD (b) DUST

Next, we need to test the impact of the distance 
threshold ε on the performance. Random data 
is generated based on the same behavior as the 
above experiment. Similarly, τ and σ are fixed 
during the experiment. Each ε corresponds with 
the average of the 10 experiments. Each exper-
iment was carried out in the following context.
1. Data Collection. Suppose the database 

collects data per 30 seconds. Experiments 
randomize the number of each sequence 
in 30 seconds. Finally, we return the true 
value of the data to be updated, the noise 
value, the expected value and the variance 
of the observed sequence, through the sim-
ulated sensor.

2. DFT Preprocess. After collecting the data, 
we use the DFT to extract features. The 
experiments in this paper use 2-dimen-
sional features. Moreover, the feature val-
ue is complexity. Hence the KD-tree and 
KDR-tree are constructed in 4-dimension 
space. The R-tree is built in 2-dimension 
space.

3. Index Update. After the point set of the 
feature space is obtained, the index struc-
ture is updated by using the insert opera-
tion of the corresponding index. The in-
serting may cause the node to be split. 

4. Search. We randomly generate the subse-
quence to be queried (the subsequence is 

shorter to ensure that the distance metric 
of the 2-dimensional eigenvalue is close 
enough to the true value). After extracting 
the features of the subsequence, we use the 
updated index structure to retrieve the set 
of points that match the objective function 
P(Dist(Si[k :k + Len(Q, T ) - 1], Q) ≤ ε) ≥ τ.

5. Calculation of Statistics. Based on the 
real data sequence, we calculate the num-
ber of subsequences that satisfy the objec-
tive function. Based on the candidate set 
obtained from the index structure, we fil-
ter the correct candidate set and the wrong 
candidate set. Eventually, we calculate the 
error ratio and the loss ratio.

Following the experimental step, we set up dif-
ferent ε for the experiments. Experimental re-
sults containing test results under the DUST and 
PROUD distance metrics are shown in Figure 
9. Note that the error rates of KDR-tree and KD-
tree overlap here. With the increasing thresh-
old, the error rates of KD-tree and KDR-tree in-
crease while the loss rate of all index structures 
decreases rapidly. On the contrary, the error rate 
of R-tree drops slightly. It is also shown that the 
R-tree gives a lot of candidate sets, but there are 
a lot of erroneous data in the candidate set. Both 
the KDR-tree and KD-tree give a small num-
ber of candidate sets, where the correct candi-
date takes a large proportion. These differences 

Figure 9. Error and miss ratio over ε.

(a) PROUD (b) DUST
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are mainly due to the fact that the point-based 
index construction and the MBR-based index 
construction query methods are very different. 
The MBR-based query underestimates the ac-
tual value of the distance metric, but the query 
based on the point set is closer to the true value. 
Hence, the result shows that the error rate of the 
R-tree is higher. Meanwhile, the KDR-tree has 
a lower loss rate than the KD-tree. This means 
that the overall performance of the KDR-tree is 
better than that of the KD-tree.
To fix the parameter ε, we compare the per-
formance of different indexes on τ. The ex-
perimental results are shown in Figure 10. As 
[17] pointed out, the PROUD-based screening 
works only in a small interval of ε. This means 
that the choice of ε becomes very important. 
This is why we chose ε as 16. As τ continues 
to increase, the error rate remains the same or 
decreases. On the other hand, the miss ratio re-
mains the same or increases. It is shown that τ 
has far less impact on the results than ε. This 
is because τ's influence in the filter function is 
small, and the distance that is ultimately used 
for filtering is linear about ε. As shown in Fig-
ure 10, the index structure changes very sta-
bly. As expected, the error rate increases as τ 
increases. The reason why the R-tree does not 
meet our expectations is the fact that the R-tree 
underestimates the metrics.

5.2. Real Data

Archive files contain daily average tempera-
tures of 157 U.S. and 167 international cities. 
Source data for these files are from the Global 
Summary of the Day (GSOD) database archived 
by the National Climatic Data Center (NCDC). 
The daily average temperatures posted on this 
site are computed from 24 hourly temperature 
readings in the Global Summary of the Day 
(GSOD) data. The data fields in each file are 
month, day, year, daily average temperature (F) 
and data containing ''-99'' no-data flag is not 
available. Since the pre-processed point set af-
ter the DFT is of the same dimension, we do not 
need to care about the length of the sequence. 
There are more than 300 cities in the original 
file and about 5,000 data points in each city that 
are not empty. 
Unlike the synthetic data, we read a random 
number of non-null data from a file at the same 
time interval. In the experiments, we read the 
data for 300 cities every 30 ms within 2 minutes. 
If reading a file is finished early in 2 minutes, 
we do nothing. Since the fluctuations of dimen-
sions and values of the real data are larger than 
those of random data, the distance threshold is 
increased correspondingly. We still examine the 
impact of the distance threshold ε first. Then we 
test the impact of τ. The results are shown in 
Figure 11 and Figure 12, respectively.
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in 30 seconds. Finally, we return the true 
value of the data to be updated, the noise 
value, the expected value and the variance 
of the observed sequence, through the sim-
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2. DFT Preprocess. After collecting the data, 
we use the DFT to extract features. The 
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sional features. Moreover, the feature val-
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real data sequence, we calculate the num-
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tive function. Based on the candidate set 
obtained from the index structure, we fil-
ter the correct candidate set and the wrong 
candidate set. Eventually, we calculate the 
error ratio and the loss ratio.

Following the experimental step, we set up dif-
ferent ε for the experiments. Experimental re-
sults containing test results under the DUST and 
PROUD distance metrics are shown in Figure 
9. Note that the error rates of KDR-tree and KD-
tree overlap here. With the increasing thresh-
old, the error rates of KD-tree and KDR-tree in-
crease while the loss rate of all index structures 
decreases rapidly. On the contrary, the error rate 
of R-tree drops slightly. It is also shown that the 
R-tree gives a lot of candidate sets, but there are 
a lot of erroneous data in the candidate set. Both 
the KDR-tree and KD-tree give a small num-
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6. Conclusion

In this paper, we use the DFT to map the se-
quence into the feature space and then construct 
the index structure in the control space for com-
parison. Since the DFT guarantees invariance 
of the metric, the index can obtain the metric 
directly, based on the eigenvalues obtained by 
the query. The experimental results show that 
the R-tree is not suitable for dealing with on-
line data. Although the R-tree retrieval is faster, 
the update operations required by the R-tree are 
too complex. On the contrary, although the up-
date of the KD-tree is not complicated, the loss 
rate is relatively high. This is because the data 
points of the KD-tree are used as the point of 
separation of the nodes and spaces of the book 
at the same time, and the retrieval directly using 
the KD-tree cannot guarantee that all the correct 
candidate sets are selected. Therefore, we sep-
arate the storage of the segmentation line and 
the spatial information, and combine the R-tree 
segmentation strategy with the filter optimiza-
tion algorithm [41] while ensuring performance 
and efficiency.
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The result is similar to the case of the synthetic 
data. The loss rates of these three index struc-
tures are all rapidly reduced. The reason why 
the error rate of R-tree rapidly decreased is that 
the R-tree does not introduce the wrong candi-
date set at the same time when the candidate 
sets are introduced. It is shown in Figure 9 that 
the loss rate of the KDR-tree is still superior. In 
the case of using the DUST distance metric, the 
loss rate of the R-tree becomes unstable.

Finally, it is shown in Figure 12 that τ has a 
smaller impact on the results than ε does. The 
reason is that, as the length of the sequence in-
creases, the proportion of ε in the filter func-
tion takes up more and more. Therefore, per-
formance of the index structure on τ seems to 
be stable. R-tree has a high error rate and a 
high loss rate due to excessive data acquisition. 
Once again, it is confirmed that the overall per-
formance of the KDR-tree is better.

Figure 12. Error and miss ratio over τ.
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6. Conclusion

In this paper, we use the DFT to map the se-
quence into the feature space and then construct 
the index structure in the control space for com-
parison. Since the DFT guarantees invariance 
of the metric, the index can obtain the metric 
directly, based on the eigenvalues obtained by 
the query. The experimental results show that 
the R-tree is not suitable for dealing with on-
line data. Although the R-tree retrieval is faster, 
the update operations required by the R-tree are 
too complex. On the contrary, although the up-
date of the KD-tree is not complicated, the loss 
rate is relatively high. This is because the data 
points of the KD-tree are used as the point of 
separation of the nodes and spaces of the book 
at the same time, and the retrieval directly using 
the KD-tree cannot guarantee that all the correct 
candidate sets are selected. Therefore, we sep-
arate the storage of the segmentation line and 
the spatial information, and combine the R-tree 
segmentation strategy with the filter optimiza-
tion algorithm [41] while ensuring performance 
and efficiency.
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