
55CIT. Journal of Computing and Information Technology, Vol. 27, No. 2, June 2019, 55–66
doi: 10.20532/cit.2019.1004579

Tausif Diwan and Jitendra Tembhurne
Indian Institute of Information Technology, Nagpur, India

A Parallelization of Non-Serial
Polyadic Dynamic Programming on
GPU

Parallelization of Non-Serial Polyadic Dynamic Pro-
gramming (NPDP) on high-throughput manycore
architectures, such as NVIDIA GPUs, suffers from
load imbalance, i.e. non-optimal mapping between the
sub-problems of NPDP and the processing elements of
the GPU. NPDP exhibits non-uniformity in the num-
ber of subproblems as well as computational complex-
ity across the phases. In NPDP parallelization, phases
are computed sequentially whereas subproblems of
each phase are computed concurrently. Therefore, it is
essential to effectively map the subproblems of each
phase to the processing elements while implement-
ing thread level parallelism. We propose an adaptive
Generalized Mapping Method (GMM) for NPDP par-
allelization that utilizes the GPU for efficient mapping
of subproblems onto processing threads in each phase.
Input-size and targeted GPU decide the computing
power and the best mapping for each phase in NPDP
parallelization. The performance of GMM is compared
with different conventional parallelization approach-
es. For sufficiently large inputs, our technique outper-
forms the state-of-the-art conventional parallelization
approach and achieves a significant speedup of a fac-
tor 30. We also summarize the general heuristics for
achieving better gain in the NPDP parallelization.

ACM CCS (2012) Classification: Computing method-
ologies → Concurrent computing methodologies →
Concurrent programming languages
Computing methodologies → Parallel computing
methodologies → Parallel algorithms → Massively
parallel algorithms
Computing methodologies → Parallel computing
methodologies → Parallel algorithms → Vector /
streaming algorithms

Keywords: dynamic programming, parallel computing,
GPU, CUDA, NPDP

1. Introduction

NPDP is the most complex class of Dynamic
Programming (DP) with dependencies across
non-consecutive phases and more than one
dependent term in the characteristics equation
by [1]. These dependencies are easily identi-
fied in Matrix Chain Multiplication (MCM),
optimal binary search tree, optimal triangula-
tion problem, and Zukar's algorithm. Uniform
reduction in the number of sub-problems and
uniform increase in sub-problem computation
leads to non-uniformity in the total computa-
tion across NPDP phases. In any DP algorithm,
computation proceeds phase-wise. In NPDP,
subproblems of each phase are dependent on
the subproblems of the previous phases. After
successful completion of a phase, computa-
tion of the subsequent phase is started. How-
ever, sub-problems of a phase are independent
of each other and can be computed in parallel.
The dependencies across the non-consecutive
phases have limited the maximal utilization of
the underlying high performance architecture in
parallelizing the NPDP algorithms.
In NPDP parallelization on multi-core CPU us-
ing any parallel API such as OpenMP, optimal
mapping and effective utilization of cores with
equal workload can be achieved very easily by
choosing an appropriate scheduling technique.
Due to the limited number of processing cores
on multi-core architectures, many-to-one map-
ping between the sub-problems and the pro-
cessing threads does not affect the performance

56 57T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

beyond a tolerance limit. In OpenMP, number
of sub-problems assigned to a thread is defined
by chunk-size parameter and a thread executing
those chunks onto physical processing core is
taken care of by scheduling policies of Open-
MP, as illustrated in [2], [3], [4], [5]. However,
on many-core GPUs, many-to-one mapping be-
tween the sub-problems of a phase and the pro-
cessing threads fails to sustain the maximal uti-
lization for each phase due to the huge threading
capacity of the GPU. In this paper, mapping is
used as an abbreviation for the ''mapping be-
tween the sub-problems of a phase of NPDP
and the processing threads of the GPU''.
We propose a novel MCM parallelization ap-
proach using Compute Unified Device Archi-
tecture (CUDA) on NVIDIA Quadro K6000
GPU. We follow our predecessors in NPDP
parallelization, i.e. we parallelize one phase
of NPDP at a time. After the successful paral-
lelization of one phase, parallel computation
of the subsequent phase is started. In addition,
we employ different computing power for each
phase of parallelization for the optimal mapping
and efficient utilization of the GPU resources.
CUDA selects, at runtime, the appropriate map-
ping for each phase, depending upon the com-
puting resources.
In the initial phases of NPDP computation, the
number of sub-problems is very large; many-
to-one mapping is convenient for this region.
In middle phases, number of sub-problems is
almost under the threading capacity of the GPU
for large size input; one-to-one mapping is an
effective approach in the direction of keeping
all the SMs busy. In later phases, when the com-
putations of one sub-problem are not limited by
several comparisons, one-to-one mapping leads
to under-utilization of the GPU resources. The
large volume of data is also required for the
subproblems computation in the later phases.
We broadly classify the NPDP parallelization
in two categories viz. Conventional Mapping
(CM) approaches and GMM. Under CM ap-
proaches, we implement, compare, and ana-
lyze MCM parallelization using four different
conventional approaches suited for the same
mapping throughout all the phases of NPDP.
None of these approaches is suited for the entire
NPDP computation. Proposed GMM chooses
appropriate mapping for each region of phases

in the direction of optimal utilization of hard-
ware resources, i.e. to keep maximum SMs
busy. For sufficiently large input, we achieve
better speedup using GMM in comparisons
with the best CM parallelization approach. The
Amdahl's law state about the speedup depen-
dency over the fraction of the code being par-
allelized. However, the speedup is computed in
this paper as: speedup = ts /tp, where ts is time of
serial execution and tp represents the time tak-
en by the parallel execution. We generalize the
MCM parallelization results for other NPDP
problems.

2. Literature Review

Parallelization of DP on multi-core architectures
and related issues has been widely discussed in
[6], [7], [8]. This includes category-wise paral-
lelization of DP, effective utilization of multi-
core cache memory, dependence analysis, and
dependency transformations. Parallelization of
DP having more than O(1) data dependency is
studied in Galil and Park [9].
Later, it became the idea for the classification
of DP on the basis of dependent terms in the
recurrence equation. MCM parallelization is
implemented for a parallel system by Lee and
Hong [10]. A slight increase in the number of
operations for computing MCM on a system
of parallel processors is compensated by the
optimal allocation of processing elements to
a part of the MCM. The cache oblivious and
cache aware of DP parallelization and related
issues are discussed in [11]. The importance of
effective utilization of cache memory has been
nicely sketched. Multicore throughput becomes
a bottleneck due to the huge computing demand
originated from various scientific applications.
With the rapid evolution of GPUs, paralleliza-
tion of general purpose applications on ma-
ny-core GPUs has been accelerated tremen-
dously and presented in [12], [13], [14], [15],
[16]. The various issues enlightened by the
research community are efficient utilization
of hardware and software resources of GPUs,
load balancing and optimal utilization of device
cache, and multi-GPU parallelization.
The computational demand of NPDP has mi-
grated from the conventional multi-core to

other NPDP algorithms such as optimal binary
search tree and optimal triangulation has been
parallelized in [23], [24], [25], [26].
Parallelization of MCM on manycore GPU is
experimented in the recent literature that covers
the aspects such as Multi-GPUs, optimal utili-
zation of device memory, etc. This provides a
motivation for performing and exploring par-
allelization of this DP category on the GPUs.
In multi-GPUs parallelization for the Image
Processing, MCM is realized with the help of
two Kepler architectures and remarkable re-
sults are achieved [27]. Specifically for the ro-
botics field, various algorithms belonging to
the Differential Dynamic Programming (DDP)
are parallelized and evaluated on the GPU and
significant improvements are recorded in com-
parison with the multithreaded CPU [28]. The
Pipelining approach is an experiment in the
GPU implementation of parallel DP [29]. Many
subproblems of the computational matrix of DP
are partially computed in a pipeline fashion.

3. MCM and CUDA

3.1. MCM

There are numerous examples of NPDP, but
MCM proposed by Godbole [30] is chosen as
a classic example of it. Formally, MCM is de-
fined as follows: a chain containing the dimen-
sions of n matrices, dimension of matrix mi is
(pi −1 × pi), 1 ≤ i ≤ n, where p[0...n] is the dimen-
sion vector of size (n + 1). The NPDP formu-
lation computes the optimal number of scalar
multiplications needed for the actual multipli-
cation. Let m[i, j] denote the optimal number
of multiplications for multiplying the sequence
of matrices from mi to mj. The m[1, n] holds
the minimum number of scalar multiplications
for multiplying the sequence of n matrices. The
recursive formulation of MCM using DP tech-
nique is expressed as Eq. (1) and illustrated in
[31], [32]. The skeleton and pseudo code corre-
sponding to Eq. (1) are illustrated in Listing 1.
After initializing m[i, i] = 0, ∀i: 1 ≤ i ≤ n, there
remains (n − 1) phases to be computed. The time
complexity of computation of one sub-problem
is Θ(i − j), i.e. the number of comparisons need-
ed for one sub-problem. Conclusively, MCM

throughput efficient many-core i.e. GPU. This
section of literature survey covers the state of
the art in the parallelization of NPDP problems
on GPUs and related issues. Xiao et al. [17]
proposed the behavior of various optimization
techniques such as tiling, memory coalescing,
and matrix realignment in the fine grained par-
allelism of Smith Waterman algorithm. To the
best of our knowledge, this can be considered
as a milestone in the fine grained parallelization
of NPDP on GPU. In the direction of effective
allotment of subproblems to GPU threads, three
schemes viz. single thread, single block, and
multiple blocks are employed for computing a
subproblem of matrix chain product, which has
been discussed in [18]. On the same line, inher-
ent non-uniformity in the NPDP algorithms is
targeted using the thread block analogy i.e. sin-
gle block is employed for each subproblem and
the number of threads in a block is the same as
the number of comparisons required for comput-
ing the subproblem presented by Wu et al. [19].
In addition, two stage adaptive thread model
for the efficient mapping is illustrated by em-
ploying different number of threads for differ-
ent phases. This analogy leads to the creation of
non-manageable thread blocks for the extreme
phases. Though, this is very similar to our work
in the sense that different computing power is
employed to tackle the inherent non-uniformity
in the NPDP problems, but it fails to sustain the
effective mapping for all the phases of NPDP.
Our work should be considered as an extension
of this work in the context of the improvement
in the effective mapping. To compensate the
varying degree of parallelism across the NPDP
phases, an attempt is made to enhance the par-
allelization gain with tiling and efficient shared
memory usage, as illustrated in [20]. Moreover,
Accelerated Massive Parallelism (AMP) in
C++ is utilized for programming the GPUs in
MCM parallelization [21] and significant gain
is achieved.
Thread level task decomposition and level seg-
mentation of parallel MCM are explored theo-
retically and experimentally, and parallelization
efficacy is analyzed in [22]. Though MCM is
a favorite instance in the NPDP category, oth-
er instances are also having the same interest
because the computational matrix, complexity,
and non-uniformity are consistent features for
all the instances. In this series, parallelization of

56 57T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

beyond a tolerance limit. In OpenMP, number
of sub-problems assigned to a thread is defined
by chunk-size parameter and a thread executing
those chunks onto physical processing core is
taken care of by scheduling policies of Open-
MP, as illustrated in [2], [3], [4], [5]. However,
on many-core GPUs, many-to-one mapping be-
tween the sub-problems of a phase and the pro-
cessing threads fails to sustain the maximal uti-
lization for each phase due to the huge threading
capacity of the GPU. In this paper, mapping is
used as an abbreviation for the ''mapping be-
tween the sub-problems of a phase of NPDP
and the processing threads of the GPU''.
We propose a novel MCM parallelization ap-
proach using Compute Unified Device Archi-
tecture (CUDA) on NVIDIA Quadro K6000
GPU. We follow our predecessors in NPDP
parallelization, i.e. we parallelize one phase
of NPDP at a time. After the successful paral-
lelization of one phase, parallel computation
of the subsequent phase is started. In addition,
we employ different computing power for each
phase of parallelization for the optimal mapping
and efficient utilization of the GPU resources.
CUDA selects, at runtime, the appropriate map-
ping for each phase, depending upon the com-
puting resources.
In the initial phases of NPDP computation, the
number of sub-problems is very large; many-
to-one mapping is convenient for this region.
In middle phases, number of sub-problems is
almost under the threading capacity of the GPU
for large size input; one-to-one mapping is an
effective approach in the direction of keeping
all the SMs busy. In later phases, when the com-
putations of one sub-problem are not limited by
several comparisons, one-to-one mapping leads
to under-utilization of the GPU resources. The
large volume of data is also required for the
subproblems computation in the later phases.
We broadly classify the NPDP parallelization
in two categories viz. Conventional Mapping
(CM) approaches and GMM. Under CM ap-
proaches, we implement, compare, and ana-
lyze MCM parallelization using four different
conventional approaches suited for the same
mapping throughout all the phases of NPDP.
None of these approaches is suited for the entire
NPDP computation. Proposed GMM chooses
appropriate mapping for each region of phases

in the direction of optimal utilization of hard-
ware resources, i.e. to keep maximum SMs
busy. For sufficiently large input, we achieve
better speedup using GMM in comparisons
with the best CM parallelization approach. The
Amdahl's law state about the speedup depen-
dency over the fraction of the code being par-
allelized. However, the speedup is computed in
this paper as: speedup = ts /tp, where ts is time of
serial execution and tp represents the time tak-
en by the parallel execution. We generalize the
MCM parallelization results for other NPDP
problems.

2. Literature Review

Parallelization of DP on multi-core architectures
and related issues has been widely discussed in
[6], [7], [8]. This includes category-wise paral-
lelization of DP, effective utilization of multi-
core cache memory, dependence analysis, and
dependency transformations. Parallelization of
DP having more than O(1) data dependency is
studied in Galil and Park [9].
Later, it became the idea for the classification
of DP on the basis of dependent terms in the
recurrence equation. MCM parallelization is
implemented for a parallel system by Lee and
Hong [10]. A slight increase in the number of
operations for computing MCM on a system
of parallel processors is compensated by the
optimal allocation of processing elements to
a part of the MCM. The cache oblivious and
cache aware of DP parallelization and related
issues are discussed in [11]. The importance of
effective utilization of cache memory has been
nicely sketched. Multicore throughput becomes
a bottleneck due to the huge computing demand
originated from various scientific applications.
With the rapid evolution of GPUs, paralleliza-
tion of general purpose applications on ma-
ny-core GPUs has been accelerated tremen-
dously and presented in [12], [13], [14], [15],
[16]. The various issues enlightened by the
research community are efficient utilization
of hardware and software resources of GPUs,
load balancing and optimal utilization of device
cache, and multi-GPU parallelization.
The computational demand of NPDP has mi-
grated from the conventional multi-core to

other NPDP algorithms such as optimal binary
search tree and optimal triangulation has been
parallelized in [23], [24], [25], [26].
Parallelization of MCM on manycore GPU is
experimented in the recent literature that covers
the aspects such as Multi-GPUs, optimal utili-
zation of device memory, etc. This provides a
motivation for performing and exploring par-
allelization of this DP category on the GPUs.
In multi-GPUs parallelization for the Image
Processing, MCM is realized with the help of
two Kepler architectures and remarkable re-
sults are achieved [27]. Specifically for the ro-
botics field, various algorithms belonging to
the Differential Dynamic Programming (DDP)
are parallelized and evaluated on the GPU and
significant improvements are recorded in com-
parison with the multithreaded CPU [28]. The
Pipelining approach is an experiment in the
GPU implementation of parallel DP [29]. Many
subproblems of the computational matrix of DP
are partially computed in a pipeline fashion.

3. MCM and CUDA

3.1. MCM

There are numerous examples of NPDP, but
MCM proposed by Godbole [30] is chosen as
a classic example of it. Formally, MCM is de-
fined as follows: a chain containing the dimen-
sions of n matrices, dimension of matrix mi is
(pi −1 × pi), 1 ≤ i ≤ n, where p[0...n] is the dimen-
sion vector of size (n + 1). The NPDP formu-
lation computes the optimal number of scalar
multiplications needed for the actual multipli-
cation. Let m[i, j] denote the optimal number
of multiplications for multiplying the sequence
of matrices from mi to mj. The m[1, n] holds
the minimum number of scalar multiplications
for multiplying the sequence of n matrices. The
recursive formulation of MCM using DP tech-
nique is expressed as Eq. (1) and illustrated in
[31], [32]. The skeleton and pseudo code corre-
sponding to Eq. (1) are illustrated in Listing 1.
After initializing m[i, i] = 0, ∀i: 1 ≤ i ≤ n, there
remains (n − 1) phases to be computed. The time
complexity of computation of one sub-problem
is Θ(i − j), i.e. the number of comparisons need-
ed for one sub-problem. Conclusively, MCM

throughput efficient many-core i.e. GPU. This
section of literature survey covers the state of
the art in the parallelization of NPDP problems
on GPUs and related issues. Xiao et al. [17]
proposed the behavior of various optimization
techniques such as tiling, memory coalescing,
and matrix realignment in the fine grained par-
allelism of Smith Waterman algorithm. To the
best of our knowledge, this can be considered
as a milestone in the fine grained parallelization
of NPDP on GPU. In the direction of effective
allotment of subproblems to GPU threads, three
schemes viz. single thread, single block, and
multiple blocks are employed for computing a
subproblem of matrix chain product, which has
been discussed in [18]. On the same line, inher-
ent non-uniformity in the NPDP algorithms is
targeted using the thread block analogy i.e. sin-
gle block is employed for each subproblem and
the number of threads in a block is the same as
the number of comparisons required for comput-
ing the subproblem presented by Wu et al. [19].
In addition, two stage adaptive thread model
for the efficient mapping is illustrated by em-
ploying different number of threads for differ-
ent phases. This analogy leads to the creation of
non-manageable thread blocks for the extreme
phases. Though, this is very similar to our work
in the sense that different computing power is
employed to tackle the inherent non-uniformity
in the NPDP problems, but it fails to sustain the
effective mapping for all the phases of NPDP.
Our work should be considered as an extension
of this work in the context of the improvement
in the effective mapping. To compensate the
varying degree of parallelism across the NPDP
phases, an attempt is made to enhance the par-
allelization gain with tiling and efficient shared
memory usage, as illustrated in [20]. Moreover,
Accelerated Massive Parallelism (AMP) in
C++ is utilized for programming the GPUs in
MCM parallelization [21] and significant gain
is achieved.
Thread level task decomposition and level seg-
mentation of parallel MCM are explored theo-
retically and experimentally, and parallelization
efficacy is analyzed in [22]. Though MCM is
a favorite instance in the NPDP category, oth-
er instances are also having the same interest
because the computational matrix, complexity,
and non-uniformity are consistent features for
all the instances. In this series, parallelization of

58 59T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

can be solved using DP approach with time and
space complexity O(n3) and O(n2), respectivel-
ly. However, various heuristics are also exper-
imented to reduce the time complexity for this
category of computation [33].
As we can identify the non-uniformity from
this listing, visualization of this computation is
also sketched in Figure 1. In this example, six
matrices with random p[], i.e. dimension vector
are considered for the MCM computation. The
NPDP phases, subproblems in the phases, and
computational flow are shown in Figure 1.

void NPDP(){//start
..........
for(r=2; r<=n; r++){/*(n-1)phases,
where n is the input size */
 for(i=0; i<=n-r; i++){/*Number of
subproblems in phase r */
 j = linear_function(i,r);
 Initialize NPDP[i][j] = max_int;
 for(k=i; k <= j-1; k++){/*Number of
comparisons needed*/

 }//finalization of NPDP[i][j]
 }//finalization of phase r
}//finalization of NPDP table
…………..
}//close

Listing 1. NPDP Problem Structure.

Figure 1. MCM Computation.

3.2. CUDA

The general purpose graphics processing unit
(GPGPU) came into picture in early 2001 by
projecting the computationally intensive paral-
lel portions of various applications onto graph-
ics processors. Shaders provide strong support
for floating point operations and huge memory
bandwidth makes GPUs quite popular for the
parallelization of general purpose applications
listed by Che et al. [34] and various scientific
applications such as graphics rendering, bioin-
formatics applications [12], [13], fluid dynam-
ics [35], [36], databases [37] and linear algebra
[38], [39].
Parallelization of the aforementioned appli-
cations on GPU can be realized using parallel
APIs such as CUDA, OpenCL, OpenGL, etc.
Among all these, CUDA is quite robust, open
source, and it provides an extension to familiar
C/C++ libraries for adapting GPU. Conclusive-
ly, CUDA is a programming architecture and
model for executing a parallel program over the
graphics processors.
In GPU computing engine, streaming multi-
processor (SM) is a processing unit at broader
level. The SM is further divided into stream-
ing processors (SP). Thread slots, thread block
slots, registers and shared memory are the var-
ious SM resources, all of them should be uti-
lized effectively and efficiently to fully explore
the capacity of the GPU. Kernel is a device
function that executes on the GPU. The grid-
size and block-size are the two important ker-
nel parameters that define the number of blocks
and number of threads in a block respectively,
demonstrated in [40], [41], [42]. Selection of
appropriate grid-size and block-size plays an
important role in the task distribution of a ker-
nel over the SMs. Various architectural specif-
ic parameters of a GPU are maximum no. of
threads in a block, maximum no. of blocks in
an SM, maximum no. of resident threads in an
SM, and maximum no. of resident warps in an
SM. The Quadro K6000 GPU architecture is il-

lustrated in Figure 2. The nomenclatures related
to the architectural parameters of a GPU and
NPDP parameters used in this paper are sum-
marized in Table 1.

Table 1. Nomenclatures.

Symbols Meanings

n Input size, i.e. number of matrices in
MCM Parallelization

l Phase number of NPDP problem;
(2 ≤ l ≤ n), i.e. (n − 1) phases

sm Number of SMs in the targeted GPU
processor

spl
Number of subproblems in phase l, i.e.
(n − l + 1)

ws Warp-size is 32; i.e. implementation
specific

mB Maximum resident blocks in an SM

mTB Maximum threads in a block, i.e. 1024 for
GPUs with computing capability ≥ 2.0

mW Maximum resident warps in an SM

mTM Maximum resident threads in SM, i.e.
min((mW × ws), (mB × mTB))

Figure 2. NVIDIA CUDA Quadro K6000.

4. Parallel Implementation

In CM approaches, same block-size is used
throughout all the phases. We change grid-size
to meet the appropriate mapping. Listing 2 il-
lustrates the pseudo code for achieving a de-
sired mapping in MCM parallelization.

__global__ void MCM(int *p, int n,
int r, int*m){ /*m[i,j] are the
subproblems of a phase */
 Step 1. map each i to thread-id or
block-id depending upon the desired
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks (using Equation(1))

}/* kernel ends */
int main(){
 for(r=2; r<=n; r++)/* number of
 phases*/
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);
 /*grid-size decides the CM
 approaches p,n,r,m indicates matrix
 dimensional vector, no. of
 matrices, phase no., and score
 matrix Respectively */

}

Listing 2. Pseudo code of parallel MCM.

We implement four different CM approaches as
follows:

(i) CM Approach-1: We choose the grid-size
only once depending upon the block-size
and input-size. The grid-size remains the
same for all subsequent phases. This grid-
size achieves one-to-one mapping for the
first phase. Mapping may not remain the
same for the subsequent phases as the total
computational elements are fixed.

(ii) CM Approach-2: In this approach, grid-
size is the same as the number of sub-prob-
lems for each and every phase i.e. we are
trying to implement the sub-problem-block
policy. One sub-problem is solved by one
thread-block. It may be fruitful to employ
a thread-block for a sub-problem belong-
ing to the later phases, but employing a

(1)[] [] []{ }1

0 ()
,

min , 1, ()i k j i k j

if i j
m i j

m i k m k j p p p if i j≤ < −

==  + + + <

58 59T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

can be solved using DP approach with time and
space complexity O(n3) and O(n2), respectivel-
ly. However, various heuristics are also exper-
imented to reduce the time complexity for this
category of computation [33].
As we can identify the non-uniformity from
this listing, visualization of this computation is
also sketched in Figure 1. In this example, six
matrices with random p[], i.e. dimension vector
are considered for the MCM computation. The
NPDP phases, subproblems in the phases, and
computational flow are shown in Figure 1.

void NPDP(){//start
..........
for(r=2; r<=n; r++){/*(n-1)phases,
where n is the input size */
 for(i=0; i<=n-r; i++){/*Number of
subproblems in phase r */
 j = linear_function(i,r);
 Initialize NPDP[i][j] = max_int;
 for(k=i; k <= j-1; k++){/*Number of
comparisons needed*/

 }//finalization of NPDP[i][j]
 }//finalization of phase r
}//finalization of NPDP table
…………..
}//close

Listing 1. NPDP Problem Structure.

Figure 1. MCM Computation.

3.2. CUDA

The general purpose graphics processing unit
(GPGPU) came into picture in early 2001 by
projecting the computationally intensive paral-
lel portions of various applications onto graph-
ics processors. Shaders provide strong support
for floating point operations and huge memory
bandwidth makes GPUs quite popular for the
parallelization of general purpose applications
listed by Che et al. [34] and various scientific
applications such as graphics rendering, bioin-
formatics applications [12], [13], fluid dynam-
ics [35], [36], databases [37] and linear algebra
[38], [39].
Parallelization of the aforementioned appli-
cations on GPU can be realized using parallel
APIs such as CUDA, OpenCL, OpenGL, etc.
Among all these, CUDA is quite robust, open
source, and it provides an extension to familiar
C/C++ libraries for adapting GPU. Conclusive-
ly, CUDA is a programming architecture and
model for executing a parallel program over the
graphics processors.
In GPU computing engine, streaming multi-
processor (SM) is a processing unit at broader
level. The SM is further divided into stream-
ing processors (SP). Thread slots, thread block
slots, registers and shared memory are the var-
ious SM resources, all of them should be uti-
lized effectively and efficiently to fully explore
the capacity of the GPU. Kernel is a device
function that executes on the GPU. The grid-
size and block-size are the two important ker-
nel parameters that define the number of blocks
and number of threads in a block respectively,
demonstrated in [40], [41], [42]. Selection of
appropriate grid-size and block-size plays an
important role in the task distribution of a ker-
nel over the SMs. Various architectural specif-
ic parameters of a GPU are maximum no. of
threads in a block, maximum no. of blocks in
an SM, maximum no. of resident threads in an
SM, and maximum no. of resident warps in an
SM. The Quadro K6000 GPU architecture is il-

lustrated in Figure 2. The nomenclatures related
to the architectural parameters of a GPU and
NPDP parameters used in this paper are sum-
marized in Table 1.

Table 1. Nomenclatures.

Symbols Meanings

n Input size, i.e. number of matrices in
MCM Parallelization

l Phase number of NPDP problem;
(2 ≤ l ≤ n), i.e. (n − 1) phases

sm Number of SMs in the targeted GPU
processor

spl
Number of subproblems in phase l, i.e.
(n − l + 1)

ws Warp-size is 32; i.e. implementation
specific

mB Maximum resident blocks in an SM

mTB Maximum threads in a block, i.e. 1024 for
GPUs with computing capability ≥ 2.0

mW Maximum resident warps in an SM

mTM Maximum resident threads in SM, i.e.
min((mW × ws), (mB × mTB))

Figure 2. NVIDIA CUDA Quadro K6000.

4. Parallel Implementation

In CM approaches, same block-size is used
throughout all the phases. We change grid-size
to meet the appropriate mapping. Listing 2 il-
lustrates the pseudo code for achieving a de-
sired mapping in MCM parallelization.

__global__ void MCM(int *p, int n,
int r, int*m){ /*m[i,j] are the
subproblems of a phase */
 Step 1. map each i to thread-id or
block-id depending upon the desired
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks (using Equation(1))

}/* kernel ends */
int main(){
 for(r=2; r<=n; r++)/* number of
 phases*/
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);
 /*grid-size decides the CM
 approaches p,n,r,m indicates matrix
 dimensional vector, no. of
 matrices, phase no., and score
 matrix Respectively */

}

Listing 2. Pseudo code of parallel MCM.

We implement four different CM approaches as
follows:

(i) CM Approach-1: We choose the grid-size
only once depending upon the block-size
and input-size. The grid-size remains the
same for all subsequent phases. This grid-
size achieves one-to-one mapping for the
first phase. Mapping may not remain the
same for the subsequent phases as the total
computational elements are fixed.

(ii) CM Approach-2: In this approach, grid-
size is the same as the number of sub-prob-
lems for each and every phase i.e. we are
trying to implement the sub-problem-block
policy. One sub-problem is solved by one
thread-block. It may be fruitful to employ
a thread-block for a sub-problem belong-
ing to the later phases, but employing a

(1)[] [] []{ }1

0 ()
,

min , 1, ()i k j i k j

if i j
m i j

m i k m k j p p p if i j≤ < −

==  + + + <

60 61T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

thread-block for a sub-problem belonging
to the initial phase leads to unmanageable
grid-size.

(iii) CM Approach-3: The grid-size is the same
for each and every phase irrespective of
the block-size and input-size. Appropriate
grid-size is chosen for keeping maximal
SMs busy for maximum phases. For the
illustrations of this approach, we consider
two grid-sizes, i.e. 32 and 64 with differ-
ent input-sizes. The notable difference be-
tween this approach and Approach-1 is that
the grid-size is independent of input-size
in this approach, i.e. inadequate grid-size
is no longer an issue in this approach for
moderate input-size.

(iv) CM Approach-4: The processing elements,
i.e. GPU threads are the same as the num-
ber of sub-problems in each phase. For
the fulfilment of one-to-one mapping, the
grid-size is computed depending upon the
block-size and number of sub-problems in
each phase. Due to this, we only achieve
an approximation for one-to-one mapping
as the number of sub-problems would mis-
match mostly with the product of grid-size
and block-size. The grid-size for different
CM approaches is summarized in Table 2.

We observe in the previous sections that each
CM approach has several advantages as well
as several shortcomings. For effective and bal-
anced load distribution of each and every phase

of NPDP, we propose a GMM formulation for
MCM parallelization. The GMM presents the
cumulative advantages of all CM approaches.
In GMM, sub-problems belonging to the initial
phases are mapped to the processing threads
by many-to-one mapping. If the number of
sub-problems in a phase exceeds the threading
capacity of the GPU, multiple sub-problems are
mapped to a single thread. The computations
for solving each sub-problem in these initial
phases are limited by several comparisons only.
Many-to-one mapping exists only when the in-
put-size is very large. The number of sub-prob-
lems decreases uniformly phase-by-phase and,
eventually, it comes under the threading capac-
ity of the GPU. We change the mapping from
many-to-one to one-to-one. This one-to-one
mapping region covers the maximum phases
of NPDP. In one-to-one mapping, the number
of threads generated in each kernel should be
greater than or equal to the number of sub-prob-
lems in the respective phase. For sustaining one-
to-one mapping, we either reduce the block-size
and keep the number of blocks as required or
reduce the grid-size by keeping the block-size
unchanged. Ultimately, these blocks are further
divided into warps and these warps are sched-
uled for execution by warp schedulers. Enough
ready warps are required for each SM for toler-
ating the long latency operations of the running
warp. Reducing grid-size below the number
of SMs leads to several SMs becoming idle as
blocks are directly mapped to SMs. Hence, in
the central computational region of NPDP, the
grid-size is kept unchanged. The block-size is
reduced after each predefined interval of phases
from its maximum supported block-size to an
integral multiple of warp-size.
After a certain phase, the number of sub-prob-
lems is less than that of the processing threads.
After this point, one-to-many mapping is cho-
sen instead of one-to-one, i.e. one sub-problem
is computed by one thread-block. We can se-
lect appropriate block-size. More specifical-
ly, we take an increasing integral multiple of
warp-size as block-size. We call this mapping
as one-to-many2.
When we are not able to keep all the SMs busy
even by choosing one-to-many2 mapping, mul-
tiple blocks are employed for the computa-
tion of one sub-problem. We call this mapping
as one-to-many1. The part of sub-problem is

solved by a thread-block and partial solutions
from all the blocks are combined to generate an
optimal solution for a sub-problem. In GMM,
we express the mapping between the sub-prob-
lems of phase l and the processing elements
of the GPU using CUDA by Eq. (2). Listing 3
presents the kernel parameters for different re-
gions of NPDP adopted in the GMM approach.

5. Results and Discussion

The performance evaluation of parallel MCM
using CM approaches and GMM is experiment-
ed on Quadro K6000 GPU. The GPU has 15
SMs, 192 SPs in each SM, with a global mem-
ory of 12 GB. The CUDA driver runtime ver-
sion is 7.5 and 64-bit Ubuntu 16.04 is used with
GNU GCC compiler 4.9.2. The dimensions of
the matrices that are compatible to the multipli-
cation are randomly generated for experimen-
tation. Figure 3 and Figure 4 present the results
of MCM parallelization using CM Approach-1
and Approach-2 respectively, with different
block-sizes. In Approach-1, total computational
elements are calculated for the very first phase
and the remaining phases are also computed
with the same computing power.Table 2. Grid size strategies for different CM

approaches.

CM Approach grid-size Computation

CM
Approach-1

Computed once to fulfill the
one-to-one mapping for the very
first-phase and remains the same for
all subsequent phases.

CM
Approach-2

Computed for each phase, the same
as the number of subproblems in a
phase.

CM
Approach-3

Predefined irrespective of the
block-size and input-size and remains
the same across all the phases.

CM
Approach-4

Computed for each phase to fulfill
the one-to-one mapping in each
phase.

__global__ void MCM(int *p, int n,
int r, int*m)
{
 /*m[i,j] are the subproblems of a
phase*/
 Step 1. map each i to thread-id or
block-id depending upon the desired
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks
(using Equation(1))

}/* kernel ends */
void main()
 {//Compute n1 and n2
 for(r=2; r<n1; r++)/*Many-to-one
 Mapping */
 MCM<<<full threading
 capacity>>>(p, n, r, m);
 grid-size = sm // Number of SMs;
 for(r=n1; r<n2; r++)/*one-to-one
 Mapping */
 {/*block-size is ranging from
 maximum supported block-size to k
 times warp-size to fulfil the
 requirement of one-to-one mapping */
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);

 }
 block-size = warp-size;
 for(r=n2; r<n-sm; r++){/*One-to-ma-
 ny2 Mapping */
 MCM<<<n-r+1, block-size>>>(p, n,
 r, m);
 /* block-size is increasing integral
 multiple of warp-size */
 }
 for(r=n-sm; r<=n; r++)/*One-to-many1
 Mapping */
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);
 }

Listing 3. Pseudo code of parallel MCM using GMM
Approach.

(2)

1

2

()
(())

(() ())
()

l

l
l

l

l

one to many if sp sm
one to many if sm sp k ws sm

M
one to one if k ws sm sp mTM sm

many to one if sp mTM sm

− − < 
 − − ≤ ≤ × × =  − − × × < ≤ × 
 − − > × 

Figure 3. MCM parallelization with different block-size
using Approach-1.

60 61T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

thread-block for a sub-problem belonging
to the initial phase leads to unmanageable
grid-size.

(iii) CM Approach-3: The grid-size is the same
for each and every phase irrespective of
the block-size and input-size. Appropriate
grid-size is chosen for keeping maximal
SMs busy for maximum phases. For the
illustrations of this approach, we consider
two grid-sizes, i.e. 32 and 64 with differ-
ent input-sizes. The notable difference be-
tween this approach and Approach-1 is that
the grid-size is independent of input-size
in this approach, i.e. inadequate grid-size
is no longer an issue in this approach for
moderate input-size.

(iv) CM Approach-4: The processing elements,
i.e. GPU threads are the same as the num-
ber of sub-problems in each phase. For
the fulfilment of one-to-one mapping, the
grid-size is computed depending upon the
block-size and number of sub-problems in
each phase. Due to this, we only achieve
an approximation for one-to-one mapping
as the number of sub-problems would mis-
match mostly with the product of grid-size
and block-size. The grid-size for different
CM approaches is summarized in Table 2.

We observe in the previous sections that each
CM approach has several advantages as well
as several shortcomings. For effective and bal-
anced load distribution of each and every phase

of NPDP, we propose a GMM formulation for
MCM parallelization. The GMM presents the
cumulative advantages of all CM approaches.
In GMM, sub-problems belonging to the initial
phases are mapped to the processing threads
by many-to-one mapping. If the number of
sub-problems in a phase exceeds the threading
capacity of the GPU, multiple sub-problems are
mapped to a single thread. The computations
for solving each sub-problem in these initial
phases are limited by several comparisons only.
Many-to-one mapping exists only when the in-
put-size is very large. The number of sub-prob-
lems decreases uniformly phase-by-phase and,
eventually, it comes under the threading capac-
ity of the GPU. We change the mapping from
many-to-one to one-to-one. This one-to-one
mapping region covers the maximum phases
of NPDP. In one-to-one mapping, the number
of threads generated in each kernel should be
greater than or equal to the number of sub-prob-
lems in the respective phase. For sustaining one-
to-one mapping, we either reduce the block-size
and keep the number of blocks as required or
reduce the grid-size by keeping the block-size
unchanged. Ultimately, these blocks are further
divided into warps and these warps are sched-
uled for execution by warp schedulers. Enough
ready warps are required for each SM for toler-
ating the long latency operations of the running
warp. Reducing grid-size below the number
of SMs leads to several SMs becoming idle as
blocks are directly mapped to SMs. Hence, in
the central computational region of NPDP, the
grid-size is kept unchanged. The block-size is
reduced after each predefined interval of phases
from its maximum supported block-size to an
integral multiple of warp-size.
After a certain phase, the number of sub-prob-
lems is less than that of the processing threads.
After this point, one-to-many mapping is cho-
sen instead of one-to-one, i.e. one sub-problem
is computed by one thread-block. We can se-
lect appropriate block-size. More specifical-
ly, we take an increasing integral multiple of
warp-size as block-size. We call this mapping
as one-to-many2.
When we are not able to keep all the SMs busy
even by choosing one-to-many2 mapping, mul-
tiple blocks are employed for the computa-
tion of one sub-problem. We call this mapping
as one-to-many1. The part of sub-problem is

solved by a thread-block and partial solutions
from all the blocks are combined to generate an
optimal solution for a sub-problem. In GMM,
we express the mapping between the sub-prob-
lems of phase l and the processing elements
of the GPU using CUDA by Eq. (2). Listing 3
presents the kernel parameters for different re-
gions of NPDP adopted in the GMM approach.

5. Results and Discussion

The performance evaluation of parallel MCM
using CM approaches and GMM is experiment-
ed on Quadro K6000 GPU. The GPU has 15
SMs, 192 SPs in each SM, with a global mem-
ory of 12 GB. The CUDA driver runtime ver-
sion is 7.5 and 64-bit Ubuntu 16.04 is used with
GNU GCC compiler 4.9.2. The dimensions of
the matrices that are compatible to the multipli-
cation are randomly generated for experimen-
tation. Figure 3 and Figure 4 present the results
of MCM parallelization using CM Approach-1
and Approach-2 respectively, with different
block-sizes. In Approach-1, total computational
elements are calculated for the very first phase
and the remaining phases are also computed
with the same computing power.Table 2. Grid size strategies for different CM

approaches.

CM Approach grid-size Computation

CM
Approach-1

Computed once to fulfill the
one-to-one mapping for the very
first-phase and remains the same for
all subsequent phases.

CM
Approach-2

Computed for each phase, the same
as the number of subproblems in a
phase.

CM
Approach-3

Predefined irrespective of the
block-size and input-size and remains
the same across all the phases.

CM
Approach-4

Computed for each phase to fulfill
the one-to-one mapping in each
phase.

__global__ void MCM(int *p, int n,
int r, int*m)
{
 /*m[i,j] are the subproblems of a
phase*/
 Step 1. map each i to thread-id or
block-id depending upon the desired
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks
(using Equation(1))

}/* kernel ends */
void main()
 {//Compute n1 and n2
 for(r=2; r<n1; r++)/*Many-to-one
 Mapping */
 MCM<<<full threading
 capacity>>>(p, n, r, m);
 grid-size = sm // Number of SMs;
 for(r=n1; r<n2; r++)/*one-to-one
 Mapping */
 {/*block-size is ranging from
 maximum supported block-size to k
 times warp-size to fulfil the
 requirement of one-to-one mapping */
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);

 }
 block-size = warp-size;
 for(r=n2; r<n-sm; r++){/*One-to-ma-
 ny2 Mapping */
 MCM<<<n-r+1, block-size>>>(p, n,
 r, m);
 /* block-size is increasing integral
 multiple of warp-size */
 }
 for(r=n-sm; r<=n; r++)/*One-to-many1
 Mapping */
 MCM<<<grid-size, block-size>>>(p,
 n, r, m);
 }

Listing 3. Pseudo code of parallel MCM using GMM
Approach.

(2)

1

2

()
(())

(() ())
()

l

l
l

l

l

one to many if sp sm
one to many if sm sp k ws sm

M
one to one if k ws sm sp mTM sm

many to one if sp mTM sm

− − < 
 − − ≤ ≤ × × =  − − × × < ≤ × 
 − − > × 

Figure 3. MCM parallelization with different block-size
using Approach-1.

62 63T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

Mapping gets changed accordingly and even-
tually poor load balance arises among the GPU
threads. In Approach-2, lesser speedup is ob-
tained as compared to Approach-1. We con-
clude that block-subproblem policy performs
worse for initial phases because of the two
reasons: ample number of blocks and whole
thread-block are actually not required for per-
forming several comparisons of a sub-problem.
Approach-2 performs the worst for later phases
when the number of sub-problems is less than
the number of SMs. A sub-problem with huge
computation should not be catered by a single
thread-block.
Figure 5 and Figure 6 highlight the results of
CM Approach-3 with grid-size 32 and 64 re-

spectively. Comparatively more speedup is
obtained in Approach-3 as we fixed the grid-
size throughout all the phases of NPDP. These
grid-sizes produce enough blocks in each phase
to keep all the SMs busy, but non-optimal map-
ping for several phases still persists. On the
basis of peak speedup attained in these results,
we conclude that managing larger grid is also a
bottleneck for CUDA runtime.

Figure 7. MCM parallelization with different block-size
using Approach-4.

Figure 7 shows the outcome of MCM paral-
lelization using CM Approach-4. This ap-
proach is suitable for the initial phase of com-
putation whereas it leads to the worst mapping
for later phases of NPDP. It leads to the ideal-
ization of more SMs for later phases. Achiev-
ing one-to-one mapping is not easy in case of
fixed block-size strategy. This approach per-

forms the worst in comparison with all three
previous CM approaches.
We observe that the smaller block-size produc-
es better results in NPDP parallelization. Large
block-size degrades the performance because
of under-utilization of SMs for later phases.
For small input-size, we don't get significant
difference in the achieved speedup. As we in-
crease the input-size, notable difference in the

speedup is seen. Approach-3 performs better as
compared to other CM approaches because of
steady and appropriate grid-size.
The comparative study among the gains of
CM approaches and GMM is shown in Figure
8. In GMM, desired grid-size and block-size
are computed for each and every region of the
NPDP to meet the necessary mapping expressed
in Eq. (2). The significant gain in the speedup is
obtained in GMM in comparison with the best
CM approach, i.e. Approach-3. Partitioning the
computational region of NPDP as per the Eq.
(2) and selecting the appropriate computing
power for each phase lead to better mapping for
the entire NPDP computation and maximum
utilization of SMs in all the phases. In compar-
isons of these results with earlier state-of-art by
Wu et al. [19], the maximum achieved speedup
was 13.40×, whereas speedup using GMM ap-
proach is more than 30×.

6. Conclusions

We propose, formulate, and analyze a compar-
ative investigation among CM approaches and

the proposed GMM in the GPU parallelization
of NPDP. MCM is chosen for the implemen-
tation of all the CM approaches and GMM.
GMM outperforms the state of the art by em-
ploying pre-calculated computing resources for
each and every phase that in turn achieves an
optimal mapping for the respective phase.
Among the outcomes of the CM approaches,
approach 3 performs much better for sufficient-
ly large size input, as illustrated in the results
section. The enhanced speedup is due to the
adequate number of threads and the number of
blocks in the parallelization of each phase. Suf-
ficient number of blocks would lead to keeping
maximum SMs busy. The probable bottleneck
of this approach is the non-suitability for the
initial phases of NPDP. We also conclude that
generation of maximal computing elements
does not necessarily draw the efficient map-
ping in GPU parallelization. Sufficient number
of blocks with sufficient threads in each block
would cater the subproblems well. Sufficient
number of blocks means all the SMs should
be busy as blocks are directly mapped to SMs.
Sufficient threads in a block means that enough
warps should be there for each SM.
Efficient mapping plays a vital role in the max-
imal utilization of the GPU. Performance deg-
radation due to the non-uniformity in the com-
putations across the phases of NPDP is counter
balanced by the suitable mapping. There may
be little deviations in the results of NPDP par-
allelization if we use other advanced GPU or
multiple GPUs. As the computational pattern
and parallelization strategy is the same for the
other problems of NPDP, GMM approach is ap-
plicable for them, too. Parallelization of other
NPDP instances and related issues shall be fu-
eled with this work. We also abridged the liter-
ature gap by providing this work on NPDP par-
allelization. Effective tiled mapping for NPDP
parallelization is our ongoing work.

References

[1] G. Tan et al., ''Improving Performance of Dynam-
ic Programming via Parallelism and Locality on
Multicore Architectures'', IEEE Transaction on
Parallel Distributed Systems, vol. 20, no. 2, pp.
261‒274, 2009.
http://dx.doi.org/10.1109/TPDS.2008.78

Figure 8. Comparative illustration among CM
approaches and GMM.

Figure 4. MCM parallelization with different block-size
using Approach-2.

Figure 5. MCM parallelization using Approach-3 with
block-size 32.

Figure 6. MCM parallelization using Approach-3 with
block-size 64.

http://dx.doi.org/10.1109/TPDS.2008.78

62 63T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

Mapping gets changed accordingly and even-
tually poor load balance arises among the GPU
threads. In Approach-2, lesser speedup is ob-
tained as compared to Approach-1. We con-
clude that block-subproblem policy performs
worse for initial phases because of the two
reasons: ample number of blocks and whole
thread-block are actually not required for per-
forming several comparisons of a sub-problem.
Approach-2 performs the worst for later phases
when the number of sub-problems is less than
the number of SMs. A sub-problem with huge
computation should not be catered by a single
thread-block.
Figure 5 and Figure 6 highlight the results of
CM Approach-3 with grid-size 32 and 64 re-

spectively. Comparatively more speedup is
obtained in Approach-3 as we fixed the grid-
size throughout all the phases of NPDP. These
grid-sizes produce enough blocks in each phase
to keep all the SMs busy, but non-optimal map-
ping for several phases still persists. On the
basis of peak speedup attained in these results,
we conclude that managing larger grid is also a
bottleneck for CUDA runtime.

Figure 7. MCM parallelization with different block-size
using Approach-4.

Figure 7 shows the outcome of MCM paral-
lelization using CM Approach-4. This ap-
proach is suitable for the initial phase of com-
putation whereas it leads to the worst mapping
for later phases of NPDP. It leads to the ideal-
ization of more SMs for later phases. Achiev-
ing one-to-one mapping is not easy in case of
fixed block-size strategy. This approach per-

forms the worst in comparison with all three
previous CM approaches.
We observe that the smaller block-size produc-
es better results in NPDP parallelization. Large
block-size degrades the performance because
of under-utilization of SMs for later phases.
For small input-size, we don't get significant
difference in the achieved speedup. As we in-
crease the input-size, notable difference in the

speedup is seen. Approach-3 performs better as
compared to other CM approaches because of
steady and appropriate grid-size.
The comparative study among the gains of
CM approaches and GMM is shown in Figure
8. In GMM, desired grid-size and block-size
are computed for each and every region of the
NPDP to meet the necessary mapping expressed
in Eq. (2). The significant gain in the speedup is
obtained in GMM in comparison with the best
CM approach, i.e. Approach-3. Partitioning the
computational region of NPDP as per the Eq.
(2) and selecting the appropriate computing
power for each phase lead to better mapping for
the entire NPDP computation and maximum
utilization of SMs in all the phases. In compar-
isons of these results with earlier state-of-art by
Wu et al. [19], the maximum achieved speedup
was 13.40×, whereas speedup using GMM ap-
proach is more than 30×.

6. Conclusions

We propose, formulate, and analyze a compar-
ative investigation among CM approaches and

the proposed GMM in the GPU parallelization
of NPDP. MCM is chosen for the implemen-
tation of all the CM approaches and GMM.
GMM outperforms the state of the art by em-
ploying pre-calculated computing resources for
each and every phase that in turn achieves an
optimal mapping for the respective phase.
Among the outcomes of the CM approaches,
approach 3 performs much better for sufficient-
ly large size input, as illustrated in the results
section. The enhanced speedup is due to the
adequate number of threads and the number of
blocks in the parallelization of each phase. Suf-
ficient number of blocks would lead to keeping
maximum SMs busy. The probable bottleneck
of this approach is the non-suitability for the
initial phases of NPDP. We also conclude that
generation of maximal computing elements
does not necessarily draw the efficient map-
ping in GPU parallelization. Sufficient number
of blocks with sufficient threads in each block
would cater the subproblems well. Sufficient
number of blocks means all the SMs should
be busy as blocks are directly mapped to SMs.
Sufficient threads in a block means that enough
warps should be there for each SM.
Efficient mapping plays a vital role in the max-
imal utilization of the GPU. Performance deg-
radation due to the non-uniformity in the com-
putations across the phases of NPDP is counter
balanced by the suitable mapping. There may
be little deviations in the results of NPDP par-
allelization if we use other advanced GPU or
multiple GPUs. As the computational pattern
and parallelization strategy is the same for the
other problems of NPDP, GMM approach is ap-
plicable for them, too. Parallelization of other
NPDP instances and related issues shall be fu-
eled with this work. We also abridged the liter-
ature gap by providing this work on NPDP par-
allelization. Effective tiled mapping for NPDP
parallelization is our ongoing work.

References

[1] G. Tan et al., ''Improving Performance of Dynam-
ic Programming via Parallelism and Locality on
Multicore Architectures'', IEEE Transaction on
Parallel Distributed Systems, vol. 20, no. 2, pp.
261‒274, 2009.
http://dx.doi.org/10.1109/TPDS.2008.78

Figure 8. Comparative illustration among CM
approaches and GMM.

Figure 4. MCM parallelization with different block-size
using Approach-2.

Figure 5. MCM parallelization using Approach-3 with
block-size 32.

Figure 6. MCM parallelization using Approach-3 with
block-size 64.

http://dx.doi.org/10.1109/TPDS.2008.78

64 65T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

[2] R. Chandra et al., ''Parallel Programming in
OpenMP'', Morgan Kaufmann Publishers, USA,
2001.

[3] R. Blikberg and T. Sorevik, ''Load Balancing
and OpenMP Implementation of Nested Parallel-
ism'', Parallel Computing, vol. 31, no. 10‒12, pp.
984‒998, 2005.
http://dx.doi.org/10.1016/j.parco.2005.03.018

[4] B. Chapman et al., ''Using OpenMP: Portable
Shared Memory Parallel Programming'', The
MIT Press, USA, 2007.

[5] OpenMP specifications. (2017). Retrieved (14
April, 2018) from
http://www.openmp.org/specs.

[6] Z. Galil and K. Park, ''Dynamic Program-
ming with Convexity, Concavity and Sparsity'',
Theoretical Computer Science, vol. 92, no. 1, pp.
49‒76, 1999.
http://dx.doi.org/10.1016/0304-3975(92)90135-3

[7] P. G. Bradford, ''Efficient Parallel Dynamic Pro-
gramming'', Indiana University, Technical Report
352, 1992.

[8] S. Huang et al., ''Parallel Dynamic Program-
ming'', IEEE Transaction on Parallel and Dis-
tributed Systems, vol. 5, no. 3, pp. 326‒328,
http://dx.doi.org/1994. 10.1109/71.277784

[9] Z. Galil and K. Park, ''Parallel Algorithms for Dy-
namic Programming Recurrences with more than
O(1) Dependency'', Journal of Parallel and Dis-
tributed Computing, vol. 21, no. 2, pp. 213‒222,
1994.
http://dx.doi.org/10.1006/jpdc.1994.1053

[10] H. Lee and S. J. Hong, ''Processor Allocation and
Task Scheduling of Matrix Chain Products on
Parallel Systems'', IEEE Transactions on Parallel
Distributed Systems, vol. 14, no. 4, pp. 394‒407,
2003.
http://dx.doi.org/10.1109/TPDS.2003.1195411

[11] R. Chowdhury and V. Ramachandran, ''Cache-ef-
ficient Dynamic Programming Algorithms for
Multicores'', Department of Computer Sciences,
UT-Austin, Technical Report, TR-08-16, 2008.

[12] G. Tan et al., ''Locality and Parallelism Optimi-
zation for Dynamic Programming Algorithm in
Bioinformatics'', in Proc. of the ACM/IEEE Con-
ference on Supercomputing, 2006, pp. 11‒17.
http://dx.doi.org/10.1109/SC.2006.41

[13] S. Tang et al., ''Easy PDP: An Efficient Paral-
lel Dynamic Programming Runtime System for
Computational Biology'', IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 5,
pp. 862‒872, 2011.
http://dx.doi.org/10.1109/TPDS.2011.218

[14] S. Ryoo et al., ''Optimization Principles and Ap-
plication Performance Evaluation of a Multi-
threaded GPU Using CUDA'', in Proc. of the 13th

ACM Symposium on Principles and Practice of
Parallel Programming, 2008, pp. 73‒82.
http://dx.doi.org/10.1145/1345206.1345220

[15] S. Solomon and P. Thulasiraman, ''Performance
Study of Mapping Irregular Computations on
GPUs'', in Proc. of the IEEE Int. Symposium
on Parallel and Distributed Processing, 2010,
pp. 1‒8.
http://dx.doi.org/10.1109/IPDPSW.2010.5470770

[16] D. Strnad and N. Guid. ''Parallel Alpha-beta Al-
gorithm on the GPU'', CIT. Journal of Computing
and Information Technology, vol. 19, no. 4, pp.
269‒274, 2011.
http://dx.doi.org/10.2498/cit.1002029

[17] S. Xiao et al., ''On the Robust Mapping of Dy-
namic Programming onto a Graphics Processing
Unit'', in Proc. of the 15th Int. Conference on Par-
allel and Distributed Systems (ICPADS-2009),
2009, pp. 26‒33.
http://dx.doi.org/10.1109/ICPADS.2009.110

[18] K. Nishida et al., ''Accelerating the Dynamic
Programming for Matrix Chain Product on the
GPU'', in Proc. of the 2nd Int. Conference on
Networking and Computing (ICNC-2011), 2011,
pp. 320‒326.
http://dx.doi.org/10.1109/ICNC.2011.62

[19] C. C. Wu et al., ''Optimizing Dynamic Program-
ming on Graphics Processing Units via Adaptive
Thread-Level Parallelism'', in Proc. of the 17th
Int. Conference on Parallel and Distributed Sys-
tems (ICPADS-2011), 2011, pp. 96‒103.
http://dx.doi.org/10.1109/ICPADS.2011.92

[20] C. C. Wu et al., ''Optimizing Dynamic Program-
ming on Graphics Processing Units Via Data
Reuse and Data Prefetch with Inter-Block Bar-
rier Synchronization'', in Proc. of the IEEE Int.
Conference on Parallel and Distributed Systems,
2012, pp. 45‒52.
http://dx.doi.org/10.1109/ICPADS.2012.17

[21] K. Shyamala et al., ''Design and Implementation
of GPU-based Matrix Chain Multiplication using
C++ AMP'', in Proc. of the 2nd Int. Conf. on Elec-
trical, Computer and Communication Technolo-
gies (ICECCT), 2017, pp. 1‒6.
http://dx.doi.org/10.1109/ICECCT.2017.8117870

[22] B. B. Mabrouk et al., ''Theoretical and Experi-
mental Study of a Parallel Algorithm Solving the
Matrix Chain Product Problem'' in Proc. of the
Int. Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, 2017, pp.
341‒347.
https://csce.ucmss.com/cr/books/2017/LFS/
CSREA2017/PDP6155.pdf.

[23] B. Han and L. Yongquan, ''Research on Opti-
mization and Parallelization of Optimal Binary
Search Tree Using Dynamic Programming'', in
Proc. of the 2nd Int. Conference on Electronic

and Mechanical Engineering and Information
Technology, 2012.
https://doi.org/10.2991/emeit.2012.45

[24] Y. Ito and K. Nakano, ''A GPU Implementation
of Dynamic Programming for the Optimal Poly-
gon Triangulation'', IEICE Transactions on In-
formation and Systems, vol. E96.D, no. 12, pp.
2596‒2603, 2013.
https://doi.org/10.1587/transinf.E96.D.2596

[25] J. F. Myoupo and V. K. Tchendji, ''Parallel Dy-
namic Programming for Solving the Optimal
Search Binary Tree Problem on CGM'', Int. J. of
High Performance Computing and Networking,
vol. 7, no. 4, pp. 269‒280, 2014.
http://dx.doi.org/10.1504/IJHPCN.2014.062729

[26] P. Ganapathi, ''Automatic Discovery of Efficient
Divide-&-Conquer Algorithms for Dynamic Pro-
gramming Problems'', PhD Thesis, Stony Brook
University, 2016.

[27] J. Ke et al., ''Optimized GPU implementation for
Dynamic Programming in Image Data Process-
ing'', in Proc. of the 35th Int. Performance Com-
puting and Communications Conference (IPC-
CC), 2016, pp. 1‒7.
http://dx.doi.org/10.1109/PCCC.2016.7820646

[28] B. Plancher and S. Kuindersma, ''A Performance
Analysis of Parallel Differential Dynamic Pro-
gramming on a GPU'', in Proc. of the Int. Work-
shop on the Algorithmic Foundations of Robotics
(WAFR), 2018.
https://agile.seas.harvard.edu/files/agile/files/
gpu-ddp.pdf.

[29] M. Miyazaki, and S. Matsumae, ''A Pipeline
Implementation for Dynamic Programming on
GPU'', in Proc. of the 6th Int. Symp. on Comput-
ing and Networking Workshops (CANDARW),
2018, pp. 305‒309.
http://dx.doi.org/10.1109/CANDARW.2018.00063

[30] S. S. Godbole, ''On Efficient Computation of Ma-
trix Chain Products'', IEEE Transactions on Com-
puters, vol. C-22, no. 9, pp. 864‒866, 1973.
http://dx.doi.org/10.1109/TC.1973.5009182

[31] T. H. Cormen et al., ''Introduction to Algorithm''
2nd ed., PHI Learning Private Limited, New
York, 2008.

[32] J. Leung, ''Handbook of scheduling: algorithms,
models, and performance analysis'', Chapman &
Hall/CRC, New York, 2004.

[33] B. Suvarna and T. Maruthi Padmaja, ''Enhanced
Matrix Chain Multiplication'', J. of Cyber Securi-
ty and Mobility, vol. 7, no. 4, pp. 409‒420, 2018.
http://dx.doi.org/10.13052/jcsm2245-1439.743

[34] S. Che et al., ''A Performance Study of General
Purpose Applications on Graphics Processors us-
ing CUDA'', J. of Parallel and Distributed Com-
puting, vol. 68, no. 10, pp. 1370‒1380, 2008.
https://doi.org/10.1016/j.jpdc.2008.05.014

[35] A. C. Crespo et al., ''GPUs, a New Tool of Ac-
celeration in CFD: Efficiency and Reliability on
Smoothed Particle Hydrodynamics Methods'',
PLoS ONE, vol. 6(6): e20685, 2011.
https://doi.org/10.1371/journal.pone.0020685

[36] K. E. Niemeyer and C. J. Sung, ''Recent Progress
and Challenges in Exploiting Graphics Proces-
sors in Computational Fluid Dynamics'', J. of Su-
percomputer, vol. 67, no. 2, pp. 528‒564, 2014.
https://doi.org/10.1007/s11227-013-1015-7

[37] P. Bakkum and K. Skadron, ''Accelerating SQL
Database Operations on a GPU with CUDA'', in
Proc. of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units,
2010, pp. 94‒103.
http://dx.doi.org/10.1145/1735688.1735706

[38] Ph. Tillet et al., ''Towards Performance-Portable,
Scalable, and Convenient Linear Algebra''. in
Proc. of the 5th USENIX Workshop on Hot Topics
in Parallelism, 2013.
h t t p s : / / p d f s . s e m a n t i c s c h o l a r. o rg / f 6 f 2 /
216c4172748e8ca7c423d447e5804174e1df.pdf.

[39] J. D. Carvalho Maia, ''GPU Linear Algebra Li-
braries and GPGPU Programming for Accelerat-
ing MOPAC Semiempirical Quantum Chemistry
Calculations'', J. of Chemical Theory and Compu-
tation, vol. 8, no. 9, pp. 3072‒3081, 2012.
http://dx.doi.org/10.1021/ct3004645

[40] NVIDIA Corporation, ''CUDA Programming
Guide 4.2'', 2012.
https://developer.download.nvidia.com/compute/
D e v Z o n e / d o c s / h t m l / C / d o c / C U D A _ C _
Programming_Guide.pdf

[41] D. B. Kirk and W. Wen-mei Hwu, ''Programming
Massively Parallel Processors'', Elsevier Inc.,
USA, 2010.

[42] E. Kandrot and J. Sanders, ''CUDA by Example:
An Introduction to General-purpose GPU Pro-
gramming'', Addison-Wesley, New York, 2011.

Received: January 2019
Revised: March 2019
Accepted: April 2019

http://dx.doi.org/10.1016/j.parco.2005.03.018
http://www.openmp.org/specs
http://dx.doi.org/10.1016/0304-3975(92)90135-3
http://dx.doi.org/1994. 10.1109/71.277784
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1109/TPDS.2003.1195411
http://dx.doi.org/10.1109/SC.2006.41
http://dx.doi.org/10.1109/TPDS.2011.218
http://dx.doi.org/10.1145/1345206.1345220
http://dx.doi.org/10.1109/IPDPSW.2010.5470770
http://dx.doi.org/10.2498/cit.1002029
http://dx.doi.org/10.1109/ICPADS.2009.110
http://dx.doi.org/10.1109/ICNC.2011.62
http://dx.doi.org/10.1109/ICPADS.2011.92
http://dx.doi.org/10.1109/ICPADS.2012.17
http://dx.doi.org/10.1109/ICECCT.2017.8117870
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/PDP6155.pdf
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/PDP6155.pdf
https://doi.org/10.2991/emeit.2012.45
https://doi.org/10.1587/transinf.E96.D.2596
http://dx.doi.org/10.1504/IJHPCN.2014.062729
http://dx.doi.org/10.1109/PCCC.2016.7820646
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
http://dx.doi.org/10.1109/CANDARW.2018.00063
http://dx.doi.org/10.1109/TC.1973.5009182
http://dx.doi.org/10.13052/jcsm2245-1439.743
https://doi.org/10.1016/j.jpdc.2008.05.014
https://doi.org/10.1371/journal.pone.0020685
https://doi.org/10.1007/s11227-013-1015-7
http://dx.doi.org/10.1145/1735688.1735706
https://pdfs.semanticscholar.org/f6f2/216c4172748e8ca7c423d447e5804174e1df.pdf
https://pdfs.semanticscholar.org/f6f2/216c4172748e8ca7c423d447e5804174e1df.pdf
http://dx.doi.org/10.1021/ct3004645
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

64 65T. Diwan and J. Tembhurne A Parallelization of Non-Serial Polyadic Dynamic Programming on GPU

[2] R. Chandra et al., ''Parallel Programming in
OpenMP'', Morgan Kaufmann Publishers, USA,
2001.

[3] R. Blikberg and T. Sorevik, ''Load Balancing
and OpenMP Implementation of Nested Parallel-
ism'', Parallel Computing, vol. 31, no. 10‒12, pp.
984‒998, 2005.
http://dx.doi.org/10.1016/j.parco.2005.03.018

[4] B. Chapman et al., ''Using OpenMP: Portable
Shared Memory Parallel Programming'', The
MIT Press, USA, 2007.

[5] OpenMP specifications. (2017). Retrieved (14
April, 2018) from
http://www.openmp.org/specs.

[6] Z. Galil and K. Park, ''Dynamic Program-
ming with Convexity, Concavity and Sparsity'',
Theoretical Computer Science, vol. 92, no. 1, pp.
49‒76, 1999.
http://dx.doi.org/10.1016/0304-3975(92)90135-3

[7] P. G. Bradford, ''Efficient Parallel Dynamic Pro-
gramming'', Indiana University, Technical Report
352, 1992.

[8] S. Huang et al., ''Parallel Dynamic Program-
ming'', IEEE Transaction on Parallel and Dis-
tributed Systems, vol. 5, no. 3, pp. 326‒328,
http://dx.doi.org/1994. 10.1109/71.277784

[9] Z. Galil and K. Park, ''Parallel Algorithms for Dy-
namic Programming Recurrences with more than
O(1) Dependency'', Journal of Parallel and Dis-
tributed Computing, vol. 21, no. 2, pp. 213‒222,
1994.
http://dx.doi.org/10.1006/jpdc.1994.1053

[10] H. Lee and S. J. Hong, ''Processor Allocation and
Task Scheduling of Matrix Chain Products on
Parallel Systems'', IEEE Transactions on Parallel
Distributed Systems, vol. 14, no. 4, pp. 394‒407,
2003.
http://dx.doi.org/10.1109/TPDS.2003.1195411

[11] R. Chowdhury and V. Ramachandran, ''Cache-ef-
ficient Dynamic Programming Algorithms for
Multicores'', Department of Computer Sciences,
UT-Austin, Technical Report, TR-08-16, 2008.

[12] G. Tan et al., ''Locality and Parallelism Optimi-
zation for Dynamic Programming Algorithm in
Bioinformatics'', in Proc. of the ACM/IEEE Con-
ference on Supercomputing, 2006, pp. 11‒17.
http://dx.doi.org/10.1109/SC.2006.41

[13] S. Tang et al., ''Easy PDP: An Efficient Paral-
lel Dynamic Programming Runtime System for
Computational Biology'', IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 5,
pp. 862‒872, 2011.
http://dx.doi.org/10.1109/TPDS.2011.218

[14] S. Ryoo et al., ''Optimization Principles and Ap-
plication Performance Evaluation of a Multi-
threaded GPU Using CUDA'', in Proc. of the 13th

ACM Symposium on Principles and Practice of
Parallel Programming, 2008, pp. 73‒82.
http://dx.doi.org/10.1145/1345206.1345220

[15] S. Solomon and P. Thulasiraman, ''Performance
Study of Mapping Irregular Computations on
GPUs'', in Proc. of the IEEE Int. Symposium
on Parallel and Distributed Processing, 2010,
pp. 1‒8.
http://dx.doi.org/10.1109/IPDPSW.2010.5470770

[16] D. Strnad and N. Guid. ''Parallel Alpha-beta Al-
gorithm on the GPU'', CIT. Journal of Computing
and Information Technology, vol. 19, no. 4, pp.
269‒274, 2011.
http://dx.doi.org/10.2498/cit.1002029

[17] S. Xiao et al., ''On the Robust Mapping of Dy-
namic Programming onto a Graphics Processing
Unit'', in Proc. of the 15th Int. Conference on Par-
allel and Distributed Systems (ICPADS-2009),
2009, pp. 26‒33.
http://dx.doi.org/10.1109/ICPADS.2009.110

[18] K. Nishida et al., ''Accelerating the Dynamic
Programming for Matrix Chain Product on the
GPU'', in Proc. of the 2nd Int. Conference on
Networking and Computing (ICNC-2011), 2011,
pp. 320‒326.
http://dx.doi.org/10.1109/ICNC.2011.62

[19] C. C. Wu et al., ''Optimizing Dynamic Program-
ming on Graphics Processing Units via Adaptive
Thread-Level Parallelism'', in Proc. of the 17th
Int. Conference on Parallel and Distributed Sys-
tems (ICPADS-2011), 2011, pp. 96‒103.
http://dx.doi.org/10.1109/ICPADS.2011.92

[20] C. C. Wu et al., ''Optimizing Dynamic Program-
ming on Graphics Processing Units Via Data
Reuse and Data Prefetch with Inter-Block Bar-
rier Synchronization'', in Proc. of the IEEE Int.
Conference on Parallel and Distributed Systems,
2012, pp. 45‒52.
http://dx.doi.org/10.1109/ICPADS.2012.17

[21] K. Shyamala et al., ''Design and Implementation
of GPU-based Matrix Chain Multiplication using
C++ AMP'', in Proc. of the 2nd Int. Conf. on Elec-
trical, Computer and Communication Technolo-
gies (ICECCT), 2017, pp. 1‒6.
http://dx.doi.org/10.1109/ICECCT.2017.8117870

[22] B. B. Mabrouk et al., ''Theoretical and Experi-
mental Study of a Parallel Algorithm Solving the
Matrix Chain Product Problem'' in Proc. of the
Int. Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, 2017, pp.
341‒347.
https://csce.ucmss.com/cr/books/2017/LFS/
CSREA2017/PDP6155.pdf.

[23] B. Han and L. Yongquan, ''Research on Opti-
mization and Parallelization of Optimal Binary
Search Tree Using Dynamic Programming'', in
Proc. of the 2nd Int. Conference on Electronic

and Mechanical Engineering and Information
Technology, 2012.
https://doi.org/10.2991/emeit.2012.45

[24] Y. Ito and K. Nakano, ''A GPU Implementation
of Dynamic Programming for the Optimal Poly-
gon Triangulation'', IEICE Transactions on In-
formation and Systems, vol. E96.D, no. 12, pp.
2596‒2603, 2013.
https://doi.org/10.1587/transinf.E96.D.2596

[25] J. F. Myoupo and V. K. Tchendji, ''Parallel Dy-
namic Programming for Solving the Optimal
Search Binary Tree Problem on CGM'', Int. J. of
High Performance Computing and Networking,
vol. 7, no. 4, pp. 269‒280, 2014.
http://dx.doi.org/10.1504/IJHPCN.2014.062729

[26] P. Ganapathi, ''Automatic Discovery of Efficient
Divide-&-Conquer Algorithms for Dynamic Pro-
gramming Problems'', PhD Thesis, Stony Brook
University, 2016.

[27] J. Ke et al., ''Optimized GPU implementation for
Dynamic Programming in Image Data Process-
ing'', in Proc. of the 35th Int. Performance Com-
puting and Communications Conference (IPC-
CC), 2016, pp. 1‒7.
http://dx.doi.org/10.1109/PCCC.2016.7820646

[28] B. Plancher and S. Kuindersma, ''A Performance
Analysis of Parallel Differential Dynamic Pro-
gramming on a GPU'', in Proc. of the Int. Work-
shop on the Algorithmic Foundations of Robotics
(WAFR), 2018.
https://agile.seas.harvard.edu/files/agile/files/
gpu-ddp.pdf.

[29] M. Miyazaki, and S. Matsumae, ''A Pipeline
Implementation for Dynamic Programming on
GPU'', in Proc. of the 6th Int. Symp. on Comput-
ing and Networking Workshops (CANDARW),
2018, pp. 305‒309.
http://dx.doi.org/10.1109/CANDARW.2018.00063

[30] S. S. Godbole, ''On Efficient Computation of Ma-
trix Chain Products'', IEEE Transactions on Com-
puters, vol. C-22, no. 9, pp. 864‒866, 1973.
http://dx.doi.org/10.1109/TC.1973.5009182

[31] T. H. Cormen et al., ''Introduction to Algorithm''
2nd ed., PHI Learning Private Limited, New
York, 2008.

[32] J. Leung, ''Handbook of scheduling: algorithms,
models, and performance analysis'', Chapman &
Hall/CRC, New York, 2004.

[33] B. Suvarna and T. Maruthi Padmaja, ''Enhanced
Matrix Chain Multiplication'', J. of Cyber Securi-
ty and Mobility, vol. 7, no. 4, pp. 409‒420, 2018.
http://dx.doi.org/10.13052/jcsm2245-1439.743

[34] S. Che et al., ''A Performance Study of General
Purpose Applications on Graphics Processors us-
ing CUDA'', J. of Parallel and Distributed Com-
puting, vol. 68, no. 10, pp. 1370‒1380, 2008.
https://doi.org/10.1016/j.jpdc.2008.05.014

[35] A. C. Crespo et al., ''GPUs, a New Tool of Ac-
celeration in CFD: Efficiency and Reliability on
Smoothed Particle Hydrodynamics Methods'',
PLoS ONE, vol. 6(6): e20685, 2011.
https://doi.org/10.1371/journal.pone.0020685

[36] K. E. Niemeyer and C. J. Sung, ''Recent Progress
and Challenges in Exploiting Graphics Proces-
sors in Computational Fluid Dynamics'', J. of Su-
percomputer, vol. 67, no. 2, pp. 528‒564, 2014.
https://doi.org/10.1007/s11227-013-1015-7

[37] P. Bakkum and K. Skadron, ''Accelerating SQL
Database Operations on a GPU with CUDA'', in
Proc. of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units,
2010, pp. 94‒103.
http://dx.doi.org/10.1145/1735688.1735706

[38] Ph. Tillet et al., ''Towards Performance-Portable,
Scalable, and Convenient Linear Algebra''. in
Proc. of the 5th USENIX Workshop on Hot Topics
in Parallelism, 2013.
h t t p s : / / p d f s . s e m a n t i c s c h o l a r. o rg / f 6 f 2 /
216c4172748e8ca7c423d447e5804174e1df.pdf.

[39] J. D. Carvalho Maia, ''GPU Linear Algebra Li-
braries and GPGPU Programming for Accelerat-
ing MOPAC Semiempirical Quantum Chemistry
Calculations'', J. of Chemical Theory and Compu-
tation, vol. 8, no. 9, pp. 3072‒3081, 2012.
http://dx.doi.org/10.1021/ct3004645

[40] NVIDIA Corporation, ''CUDA Programming
Guide 4.2'', 2012.
https://developer.download.nvidia.com/compute/
D e v Z o n e / d o c s / h t m l / C / d o c / C U D A _ C _
Programming_Guide.pdf

[41] D. B. Kirk and W. Wen-mei Hwu, ''Programming
Massively Parallel Processors'', Elsevier Inc.,
USA, 2010.

[42] E. Kandrot and J. Sanders, ''CUDA by Example:
An Introduction to General-purpose GPU Pro-
gramming'', Addison-Wesley, New York, 2011.

Received: January 2019
Revised: March 2019
Accepted: April 2019

http://dx.doi.org/10.1016/j.parco.2005.03.018
http://www.openmp.org/specs
http://dx.doi.org/10.1016/0304-3975(92)90135-3
http://dx.doi.org/1994. 10.1109/71.277784
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1109/TPDS.2003.1195411
http://dx.doi.org/10.1109/SC.2006.41
http://dx.doi.org/10.1109/TPDS.2011.218
http://dx.doi.org/10.1145/1345206.1345220
http://dx.doi.org/10.1109/IPDPSW.2010.5470770
http://dx.doi.org/10.2498/cit.1002029
http://dx.doi.org/10.1109/ICPADS.2009.110
http://dx.doi.org/10.1109/ICNC.2011.62
http://dx.doi.org/10.1109/ICPADS.2011.92
http://dx.doi.org/10.1109/ICPADS.2012.17
http://dx.doi.org/10.1109/ICECCT.2017.8117870
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/PDP6155.pdf
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/PDP6155.pdf
https://doi.org/10.2991/emeit.2012.45
https://doi.org/10.1587/transinf.E96.D.2596
http://dx.doi.org/10.1504/IJHPCN.2014.062729
http://dx.doi.org/10.1109/PCCC.2016.7820646
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
http://dx.doi.org/10.1109/CANDARW.2018.00063
http://dx.doi.org/10.1109/TC.1973.5009182
http://dx.doi.org/10.13052/jcsm2245-1439.743
https://doi.org/10.1016/j.jpdc.2008.05.014
https://doi.org/10.1371/journal.pone.0020685
https://doi.org/10.1007/s11227-013-1015-7
http://dx.doi.org/10.1145/1735688.1735706
https://pdfs.semanticscholar.org/f6f2/216c4172748e8ca7c423d447e5804174e1df.pdf
https://pdfs.semanticscholar.org/f6f2/216c4172748e8ca7c423d447e5804174e1df.pdf
http://dx.doi.org/10.1021/ct3004645
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

66 T. Diwan and J. Tembhurne

Contact addresses:
Tausif Diwan

Indian Institute of Information Technology
Nagpur

India
e-mail: tausif.diwan@cse.iiitn.ac.in

Jitendra Tembhurne
Indian Institute of Information Technology

Nagpur
India

e-mail: jitendra.tembhurne@cse.iiitn.ac.in

Tausif Diwan received the M.Tech. and PhD degrees from the Depart-
ment of Computer Science and Engineering, VNIT Nagpur, India, in
2011 and 2017, respectively. From June 2012 to July 2019, he was
associated with the Department of Computer Science and Engineer-
ing, RCOEM Nagpur, India as an Assistant Professor. He joined IIIT
Nagpur as an Assistant Professor in the Department of Computer Sci-
ence and Engineering in July 2019. His research areas include parallel
computing, analysis of algorithm, machine learning, and deep learning.

JiTenDra Tembhurne received his BE degree in Computer Technology
from KITS, Ramtek, Nagpur, India in 2003. He received the ME degree
in Computer Science and Engineering from MGMCoE, Nanded, India
in 2011 and the PhD degree in Computer Science and Engineering from
VNIT, Nagpur, India in 2017. He joined as a Lecturer the Department
of Computer Technology, KITS, Ramtek, Nagpur in 2005, where he
was promoted to the position of Assistant Professor in 2010. Afterwards
he joined the Department of Computer Science and Engineering, Indi-
an Institute of Information Technology, Nagpur, India, as an Assistant
Professor in 2018. His research interests include deep learning, parallel
computing, algorithms on multi-core and many-core architectures, data
mining, and security.

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1 1
 747
 281
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

