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A Parallelization of Non-Serial 
Polyadic Dynamic Programming on 
GPU

Parallelization of Non-Serial Polyadic Dynamic Pro-
gramming (NPDP) on high-throughput manycore 
architectures, such as NVIDIA GPUs, suffers from 
load imbalance, i.e. non-optimal mapping between the 
sub-problems of NPDP and the processing elements of 
the GPU. NPDP exhibits non-uniformity in the num-
ber of subproblems as well as computational complex-
ity across the phases. In NPDP parallelization, phases 
are computed sequentially whereas subproblems of 
each phase are computed concurrently. Therefore, it is 
essential to effectively map the subproblems of each 
phase to the processing elements while implement-
ing thread level parallelism. We propose an adaptive 
Generalized Mapping Method (GMM) for NPDP par-
allelization that utilizes the GPU for efficient mapping 
of subproblems onto processing threads in each phase. 
Input-size and targeted GPU decide the computing 
power and the best mapping for each phase in NPDP 
parallelization. The performance of GMM is compared 
with different conventional parallelization approach-
es. For sufficiently large inputs, our technique outper-
forms the state-of-the-art conventional parallelization 
approach and achieves a significant speedup of a fac-
tor 30. We also summarize the general heuristics for 
achieving better gain in the NPDP parallelization.

ACM CCS (2012) Classification: Computing method-
ologies → Concurrent computing methodologies → 
Concurrent programming languages
Computing methodologies → Parallel computing 
methodologies → Parallel algorithms → Massively 
parallel algorithms
Computing methodologies → Parallel computing 
methodologies → Parallel algorithms → Vector / 
streaming algorithms

Keywords: dynamic programming, parallel computing, 
GPU, CUDA, NPDP

1. Introduction

NPDP is the most complex class of Dynamic 
Programming (DP) with dependencies across 
non-consecutive phases and more than one 
dependent term in the characteristics equation 
by [1]. These dependencies are easily identi-
fied in Matrix Chain Multiplication (MCM), 
optimal binary search tree, optimal triangula-
tion problem, and Zukar's algorithm. Uniform 
reduction in the number of sub-problems and 
uniform increase in sub-problem computation 
leads to non-uniformity in the total computa-
tion across NPDP phases. In any DP algorithm, 
computation proceeds phase-wise. In NPDP, 
subproblems of each phase are dependent on 
the subproblems of the previous phases. After  
successful completion of a phase, computa-
tion of the subsequent phase is started. How-
ever, sub-problems of a phase are independent 
of each other and can be computed in parallel. 
The dependencies across the non-consecutive 
phases have limited the maximal utilization of 
the underlying high performance architecture in 
parallelizing the NPDP algorithms.
In NPDP parallelization on multi-core CPU us-
ing any parallel API such as OpenMP, optimal 
mapping and effective utilization of cores with 
equal workload can be achieved very easily by 
choosing an appropriate scheduling technique. 
Due to the limited number of processing cores 
on multi-core architectures, many-to-one map-
ping between the sub-problems and the pro-
cessing threads does not affect the performance 
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beyond a tolerance limit. In OpenMP, number 
of sub-problems assigned to a thread is defined 
by chunk-size parameter and a thread executing 
those chunks onto physical processing core is 
taken care of by scheduling policies of Open-
MP, as illustrated in [2], [3], [4], [5]. However, 
on many-core GPUs, many-to-one mapping be-
tween the sub-problems of a phase and the pro-
cessing threads fails to sustain the maximal uti-
lization for each phase due to the huge threading 
capacity of the GPU. In this paper, mapping is 
used as an abbreviation for the ''mapping be-
tween the sub-problems of a phase of NPDP 
and the processing threads of the GPU''.
We propose a novel MCM parallelization ap-
proach using Compute Unified Device Archi-
tecture (CUDA) on NVIDIA Quadro K6000 
GPU. We follow our predecessors in NPDP 
parallelization, i.e. we parallelize one phase 
of NPDP at a time. After the successful paral-
lelization of one phase, parallel computation 
of the subsequent phase is started. In addition, 
we employ different computing power for each 
phase of parallelization for the optimal mapping 
and efficient utilization of the GPU resources. 
CUDA selects, at runtime, the appropriate map-
ping for each phase, depending upon the com-
puting resources.
In the initial phases of NPDP computation, the 
number of sub-problems is very large; many-
to-one mapping is convenient for this region. 
In middle phases, number of sub-problems is 
almost under the threading capacity of the GPU 
for large size input; one-to-one mapping is an 
effective approach in the direction of keeping 
all the SMs busy. In later phases, when the com-
putations of one sub-problem are not limited by 
several comparisons, one-to-one mapping leads 
to under-utilization of the GPU resources. The 
large volume of data is also required for the 
subproblems computation in the later phases.
We broadly classify the NPDP parallelization 
in two categories viz. Conventional Mapping 
(CM) approaches and GMM. Under CM ap-
proaches, we implement, compare, and ana-
lyze MCM parallelization using four different 
conventional approaches suited for the same 
mapping throughout all the phases of NPDP. 
None of these approaches is suited for the entire 
NPDP computation. Proposed GMM chooses 
appropriate mapping for each region of phases 

in the direction of optimal utilization of hard-
ware resources, i.e. to keep maximum SMs 
busy. For sufficiently large input, we achieve 
better speedup using GMM in comparisons 
with the best CM parallelization approach. The 
Amdahl's law state about the speedup depen-
dency over the fraction of the code being par-
allelized. However, the speedup is computed in 
this paper as: speedup = ts /tp, where ts is time of 
serial execution and tp represents the time tak-
en by the parallel execution. We generalize the 
MCM parallelization results for other NPDP 
problems.

2. Literature Review

Parallelization of DP on multi-core architectures 
and related issues has been widely discussed in 
[6], [7], [8]. This includes category-wise paral-
lelization of DP, effective utilization of multi-
core cache memory, dependence analysis, and 
dependency transformations. Parallelization of 
DP having more than O(1) data dependency is 
studied in Galil and Park [9].
Later, it became the idea for the classification 
of DP on the basis of dependent terms in the 
recurrence equation. MCM parallelization is 
implemented for a parallel system by Lee and 
Hong [10]. A slight increase in the number of 
operations for computing MCM on a system 
of parallel processors is compensated by the 
optimal allocation of processing elements to 
a part of the MCM. The cache oblivious and 
cache aware of DP parallelization and related 
issues are discussed in [11]. The importance of 
effective utilization of cache memory has been 
nicely sketched. Multicore throughput becomes 
a bottleneck due to the huge computing demand 
originated from various scientific applications.
With the rapid evolution of GPUs, paralleliza-
tion of general purpose applications on ma-
ny-core GPUs has been accelerated tremen-
dously and presented in [12], [13], [14], [15], 
[16]. The various issues enlightened by the 
research community are efficient utilization 
of hardware and software resources of GPUs, 
load balancing and optimal utilization of device 
cache, and multi-GPU parallelization.
The computational demand of NPDP has mi-
grated from the conventional multi-core to 

other NPDP algorithms such as optimal binary 
search tree and optimal triangulation has been 
parallelized in [23], [24], [25], [26].
Parallelization of MCM on manycore GPU is 
experimented in the recent literature that covers 
the aspects such as Multi-GPUs, optimal utili-
zation of device memory, etc. This provides a 
motivation for performing and exploring par-
allelization of this DP category on the GPUs. 
In multi-GPUs parallelization for the Image 
Processing, MCM is realized with the help of 
two Kepler architectures and remarkable re-
sults are achieved [27]. Specifically for the ro-
botics field,  various algorithms belonging to 
the Differential Dynamic Programming (DDP) 
are parallelized and evaluated on the GPU and 
significant improvements are recorded in com-
parison with the multithreaded CPU [28]. The 
Pipelining approach is an experiment in the 
GPU implementation of parallel DP [29]. Many 
subproblems of the computational matrix of DP 
are partially computed in a pipeline fashion.

3. MCM and CUDA

3.1. MCM

There are numerous examples of NPDP, but 
MCM proposed by Godbole [30] is chosen as 
a classic example of it. Formally, MCM is de-
fined as follows: a chain containing the dimen-
sions of n matrices, dimension of matrix mi is 
( pi −1 × pi), 1 ≤ i ≤ n, where p[0...n] is the dimen-
sion vector of size (n + 1). The NPDP formu-
lation computes the optimal number of scalar 
multiplications needed for the actual multipli-
cation. Let m[i, j] denote the optimal number 
of multiplications for multiplying the sequence 
of matrices from mi to mj. The m[1, n] holds 
the minimum number of scalar multiplications 
for multiplying the sequence of n matrices. The 
recursive formulation of MCM using DP tech-
nique is expressed as Eq. (1) and illustrated in 
[31], [32]. The skeleton and pseudo code corre-
sponding to Eq. (1) are illustrated in Listing 1. 
After initializing m[i, i] = 0, ∀i: 1 ≤ i ≤ n, there 
remains (n − 1) phases to be computed. The time 
complexity of computation of one sub-problem 
is Θ(i − j), i.e. the number of comparisons need-
ed for one sub-problem. Conclusively, MCM 

throughput efficient many-core i.e. GPU. This 
section of literature survey covers the state of 
the art in the parallelization of NPDP problems 
on GPUs and related issues. Xiao et al. [17] 
proposed the behavior of various optimization 
techniques such as tiling, memory coalescing, 
and matrix realignment in the fine grained par-
allelism of Smith Waterman algorithm. To the 
best of our knowledge, this can be considered 
as a milestone in the fine grained parallelization 
of NPDP on GPU. In the direction of effective 
allotment of subproblems to GPU threads, three 
schemes viz. single thread, single block, and 
multiple blocks are employed for computing a 
subproblem of matrix chain product, which has 
been discussed in [18]. On the same line, inher-
ent non-uniformity in the NPDP algorithms is 
targeted using the thread block analogy i.e. sin-
gle block is employed for each subproblem and 
the number of threads in a block is the same as 
the number of comparisons required for comput-
ing the subproblem presented by Wu et al. [19]. 
In addition, two stage adaptive thread model 
for the efficient mapping is illustrated by em-
ploying different number of threads for differ-
ent phases. This analogy leads to the creation of 
non-manageable thread blocks for the extreme 
phases. Though, this is very similar to our work 
in the sense that different computing power is 
employed to tackle the inherent non-uniformity 
in the NPDP problems, but it fails to sustain the 
effective mapping for all the phases of NPDP. 
Our work should be considered as an extension 
of this work in the context of the improvement 
in the effective mapping. To compensate the 
varying degree of parallelism across the NPDP 
phases, an attempt is made to enhance the par-
allelization gain with tiling and efficient shared 
memory usage, as illustrated in [20]. Moreover, 
Accelerated Massive Parallelism (AMP) in 
C++ is utilized for programming the GPUs in 
MCM parallelization [21] and significant gain 
is achieved.
Thread level task decomposition and level seg-
mentation of parallel MCM are explored theo-
retically and experimentally, and parallelization 
efficacy is analyzed in [22]. Though MCM is 
a favorite instance in the NPDP category, oth-
er instances are also having the same interest 
because the computational matrix, complexity, 
and non-uniformity are consistent features for 
all the instances. In this series, parallelization of 
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beyond a tolerance limit. In OpenMP, number 
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effective approach in the direction of keeping 
all the SMs busy. In later phases, when the com-
putations of one sub-problem are not limited by 
several comparisons, one-to-one mapping leads 
to under-utilization of the GPU resources. The 
large volume of data is also required for the 
subproblems computation in the later phases.
We broadly classify the NPDP parallelization 
in two categories viz. Conventional Mapping 
(CM) approaches and GMM. Under CM ap-
proaches, we implement, compare, and ana-
lyze MCM parallelization using four different 
conventional approaches suited for the same 
mapping throughout all the phases of NPDP. 
None of these approaches is suited for the entire 
NPDP computation. Proposed GMM chooses 
appropriate mapping for each region of phases 
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section of literature survey covers the state of 
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employed to tackle the inherent non-uniformity 
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because the computational matrix, complexity, 
and non-uniformity are consistent features for 
all the instances. In this series, parallelization of 
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can be solved using DP approach with time and 
space complexity O(n3) and O(n2), respectivel-
ly. However, various heuristics are also exper-
imented to reduce the time complexity for this 
category of computation [33].
As we can identify the non-uniformity from 
this listing, visualization of this computation is 
also sketched in Figure 1. In this example, six 
matrices with random p[], i.e. dimension vector 
are considered for the MCM computation. The 
NPDP phases, subproblems in the phases, and 
computational flow are shown in Figure 1.

void NPDP(){//start
..........
for(r=2; r<=n; r++){/*(n-1)phases, 
where n is the input size */
  for(i=0; i<=n-r; i++){/*Number of 
subproblems in phase r */
  j = linear_function(i,r);
  Initialize NPDP[i][j] = max_int;
  for(k=i; k <= j-1; k++){/*Number of 
comparisons needed*/ 
  .............
  }//finalization of NPDP[i][j]
  }//finalization of phase r
}//finalization of NPDP table
…………..
}//close

Listing 1. NPDP Problem Structure.

Figure 1. MCM Computation.

3.2. CUDA

The general purpose graphics processing unit 
(GPGPU) came into picture in early 2001 by 
projecting the computationally intensive paral-
lel portions of various applications onto graph-
ics processors. Shaders provide strong support 
for floating point operations and huge memory 
bandwidth makes GPUs quite popular for the 
parallelization of general purpose applications 
listed by Che et al. [34] and various scientific 
applications such as graphics rendering, bioin-
formatics applications [12], [13], fluid dynam-
ics [35], [36], databases [37] and linear algebra 
[38], [39].
Parallelization of the aforementioned appli-
cations on GPU can be realized using parallel 
APIs such as CUDA, OpenCL, OpenGL, etc. 
Among all these, CUDA is quite robust, open 
source, and it provides an extension to familiar 
C/C++ libraries for adapting GPU. Conclusive-
ly, CUDA is a programming architecture and 
model for executing a parallel program over the 
graphics processors.
In GPU computing engine, streaming multi-
processor (SM) is a processing unit at broader 
level. The SM is further divided into stream-
ing processors (SP). Thread slots, thread block 
slots, registers and shared memory are the var-
ious SM resources, all of them should be uti-
lized effectively and efficiently to fully explore 
the capacity of the GPU. Kernel is a device 
function that executes on the GPU. The grid-
size and block-size are the two important ker-
nel parameters that define the number of blocks 
and number of threads in a block respectively, 
demonstrated in [40], [41], [42]. Selection of 
appropriate grid-size and block-size plays an 
important role in the task distribution of a ker-
nel over the SMs. Various architectural specif-
ic parameters of a GPU are maximum no. of 
threads in a block, maximum no. of blocks in 
an SM, maximum no. of resident threads in an 
SM, and maximum no. of resident warps in an 
SM. The Quadro K6000 GPU architecture is il-

lustrated in Figure 2. The nomenclatures related 
to the architectural parameters of a GPU and 
NPDP parameters used in this paper are sum-
marized in Table 1.

Table 1. Nomenclatures.

Symbols Meanings

n Input size, i.e. number of matrices in 
MCM Parallelization

l Phase number of NPDP problem; 
(2 ≤ l ≤ n), i.e. (n − 1) phases

sm Number of SMs in the targeted GPU 
processor

spl
Number of subproblems in phase l, i.e. 
(n − l + 1)

ws Warp-size is 32; i.e. implementation 
specific

mB Maximum resident blocks in an SM

mTB Maximum threads in a block, i.e. 1024 for 
GPUs with computing capability ≥ 2.0

mW Maximum resident warps in an SM

mTM Maximum resident threads in SM, i.e. 
min((mW × ws), (mB × mTB))

Figure 2. NVIDIA CUDA Quadro K6000.

4. Parallel Implementation

In CM approaches, same block-size is used 
throughout all the phases. We change grid-size 
to meet the appropriate mapping. Listing 2 il-
lustrates the pseudo code for achieving a de-
sired mapping in MCM parallelization.

__global__ void MCM(int *p, int n, 
int r, int*m){  /*m[i,j] are the  
subproblems of a phase */
 Step 1. map each i to thread-id or 
block-id depending   upon the desired 
mapping
 Step 2. for each such i, m[i,j] is 
computed by a thread/block/multi-
blocks (using Equation(1))
 ..............
}/* kernel ends */
int main(){  ..........
  for(r=2; r<=n; r++)/* number of  
  phases*/
  MCM<<<grid-size, block-size>>>(p, 
  n, r, m);
  /*grid-size decides the CM  
  approaches p,n,r,m indicates matrix 
  dimensional vector, no. of  
  matrices, phase no., and score  
  matrix Respectively */
    ..........
}

Listing 2. Pseudo code of parallel MCM.

We implement four different CM approaches as 
follows:

(i) CM Approach-1: We choose the grid-size 
only once depending upon the block-size 
and input-size. The grid-size remains the 
same for all subsequent phases. This grid-
size achieves one-to-one mapping for the 
first phase. Mapping may not remain the 
same for the subsequent phases as the total 
computational elements are fixed.

(ii) CM Approach-2: In this approach, grid-
size is the same as the number of sub-prob-
lems for each and every phase i.e. we are 
trying to implement the sub-problem-block 
policy. One sub-problem is solved by one 
thread-block. It may be fruitful to employ 
a thread-block for a sub-problem belong-
ing to the later phases, but employing a 

(1)[ ] [ ] [ ]{ }1

0 ( )
,

min , 1, ( )i k j i k j

if i j
m i j

m i k m k j p p p if i j≤ < −

==  + + + <
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ly. However, various heuristics are also exper-
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category of computation [33].
As we can identify the non-uniformity from 
this listing, visualization of this computation is 
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are considered for the MCM computation. The 
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cations on GPU can be realized using parallel 
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Among all these, CUDA is quite robust, open 
source, and it provides an extension to familiar 
C/C++ libraries for adapting GPU. Conclusive-
ly, CUDA is a programming architecture and 
model for executing a parallel program over the 
graphics processors.
In GPU computing engine, streaming multi-
processor (SM) is a processing unit at broader 
level. The SM is further divided into stream-
ing processors (SP). Thread slots, thread block 
slots, registers and shared memory are the var-
ious SM resources, all of them should be uti-
lized effectively and efficiently to fully explore 
the capacity of the GPU. Kernel is a device 
function that executes on the GPU. The grid-
size and block-size are the two important ker-
nel parameters that define the number of blocks 
and number of threads in a block respectively, 
demonstrated in [40], [41], [42]. Selection of 
appropriate grid-size and block-size plays an 
important role in the task distribution of a ker-
nel over the SMs. Various architectural specif-
ic parameters of a GPU are maximum no. of 
threads in a block, maximum no. of blocks in 
an SM, maximum no. of resident threads in an 
SM, and maximum no. of resident warps in an 
SM. The Quadro K6000 GPU architecture is il-

lustrated in Figure 2. The nomenclatures related 
to the architectural parameters of a GPU and 
NPDP parameters used in this paper are sum-
marized in Table 1.

Table 1. Nomenclatures.

Symbols Meanings

n Input size, i.e. number of matrices in 
MCM Parallelization

l Phase number of NPDP problem; 
(2 ≤ l ≤ n), i.e. (n − 1) phases

sm Number of SMs in the targeted GPU 
processor

spl
Number of subproblems in phase l, i.e. 
(n − l + 1)

ws Warp-size is 32; i.e. implementation 
specific

mB Maximum resident blocks in an SM

mTB Maximum threads in a block, i.e. 1024 for 
GPUs with computing capability ≥ 2.0

mW Maximum resident warps in an SM

mTM Maximum resident threads in SM, i.e. 
min((mW × ws), (mB × mTB))

Figure 2. NVIDIA CUDA Quadro K6000.

4. Parallel Implementation

In CM approaches, same block-size is used 
throughout all the phases. We change grid-size 
to meet the appropriate mapping. Listing 2 il-
lustrates the pseudo code for achieving a de-
sired mapping in MCM parallelization.

__global__ void MCM(int *p, int n, 
int r, int*m){  /*m[i,j] are the  
subproblems of a phase */
 Step 1. map each i to thread-id or 
block-id depending   upon the desired 
mapping
 Step 2. for each such i, m[i,j] is 
computed by a thread/block/multi-
blocks (using Equation(1))
 ..............
}/* kernel ends */
int main(){  ..........
  for(r=2; r<=n; r++)/* number of  
  phases*/
  MCM<<<grid-size, block-size>>>(p, 
  n, r, m);
  /*grid-size decides the CM  
  approaches p,n,r,m indicates matrix 
  dimensional vector, no. of  
  matrices, phase no., and score  
  matrix Respectively */
    ..........
}

Listing 2. Pseudo code of parallel MCM.

We implement four different CM approaches as 
follows:

(i) CM Approach-1: We choose the grid-size 
only once depending upon the block-size 
and input-size. The grid-size remains the 
same for all subsequent phases. This grid-
size achieves one-to-one mapping for the 
first phase. Mapping may not remain the 
same for the subsequent phases as the total 
computational elements are fixed.

(ii) CM Approach-2: In this approach, grid-
size is the same as the number of sub-prob-
lems for each and every phase i.e. we are 
trying to implement the sub-problem-block 
policy. One sub-problem is solved by one 
thread-block. It may be fruitful to employ 
a thread-block for a sub-problem belong-
ing to the later phases, but employing a 
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thread-block for a sub-problem belonging 
to the initial phase leads to unmanageable 
grid-size.

(iii) CM Approach-3: The grid-size is the same 
for each and every phase irrespective of 
the block-size and input-size. Appropriate 
grid-size is chosen for keeping maximal 
SMs busy for maximum phases. For the 
illustrations of this approach, we consider 
two grid-sizes, i.e. 32 and 64 with differ-
ent input-sizes. The notable difference be-
tween this approach and Approach-1 is that 
the grid-size is independent of input-size 
in this approach, i.e. inadequate grid-size 
is no longer an issue in this approach for 
moderate input-size.

(iv) CM Approach-4: The processing elements, 
i.e. GPU threads are the same as the num-
ber of sub-problems in each phase. For 
the fulfilment of one-to-one mapping, the 
grid-size is computed depending upon the 
block-size and number of sub-problems in 
each phase. Due to this, we only achieve 
an approximation for one-to-one mapping 
as the number of sub-problems would mis-
match mostly with the product of grid-size 
and block-size. The grid-size for different 
CM approaches is summarized in Table 2.

We observe in the previous sections that each 
CM approach has several advantages as well 
as several shortcomings. For effective and bal-
anced load distribution of each and every phase 

of NPDP, we propose a GMM formulation for 
MCM parallelization. The GMM presents the 
cumulative advantages of all CM approaches. 
In GMM, sub-problems belonging to the initial 
phases are mapped to the processing threads 
by many-to-one mapping. If the number of 
sub-problems in a phase exceeds the threading 
capacity of the GPU, multiple sub-problems are 
mapped to a single thread. The computations 
for solving each sub-problem in these initial 
phases are limited by several comparisons only.
Many-to-one mapping exists only when the in-
put-size is very large. The number of sub-prob-
lems decreases uniformly phase-by-phase and, 
eventually, it comes under the threading capac-
ity of the GPU. We change the mapping from 
many-to-one to one-to-one. This one-to-one 
mapping region covers the maximum phases 
of NPDP. In one-to-one mapping, the number 
of threads generated in each kernel should be 
greater than or equal to the number of sub-prob-
lems in the respective phase. For sustaining one-
to-one mapping, we either reduce the block-size 
and keep the number of blocks as required or 
reduce the grid-size by keeping the block-size 
unchanged. Ultimately, these blocks are further 
divided into warps and these warps are sched-
uled for execution by warp schedulers. Enough 
ready warps are required for each SM for toler-
ating the long latency operations of the running 
warp. Reducing grid-size below the number 
of SMs leads to several SMs becoming idle as 
blocks are directly mapped to SMs. Hence, in 
the central computational region of NPDP, the 
grid-size is kept unchanged. The block-size is 
reduced after each predefined interval of phases 
from its maximum supported block-size to an 
integral multiple of warp-size.
After a certain phase, the number of sub-prob-
lems is less than that of the processing threads. 
After this point, one-to-many mapping is cho-
sen instead of one-to-one, i.e. one sub-problem 
is computed by one thread-block. We can se-
lect appropriate block-size. More specifical-
ly, we take an increasing integral multiple of 
warp-size as block-size. We call this mapping 
as one-to-many2.
When we are not able to keep all the SMs busy 
even by choosing one-to-many2 mapping, mul-
tiple blocks are employed for the computa-
tion of one sub-problem. We call this mapping 
as one-to-many1. The part of sub-problem is 

solved by a thread-block and partial solutions 
from all the blocks are combined to generate an 
optimal solution for a sub-problem. In GMM, 
we express the mapping between the sub-prob-
lems of phase l and the processing elements 
of the GPU using CUDA by Eq. (2). Listing 3 
presents the kernel parameters for different re-
gions of NPDP adopted in the GMM approach.

5. Results and Discussion

The performance evaluation of parallel MCM 
using CM approaches and GMM is experiment-
ed on Quadro K6000 GPU. The GPU has 15 
SMs, 192 SPs in each SM, with a global mem-
ory of 12 GB. The CUDA driver runtime ver-
sion is 7.5 and 64-bit Ubuntu 16.04 is used with 
GNU GCC compiler 4.9.2. The dimensions of 
the matrices that are compatible to the multipli-
cation are randomly generated for experimen-
tation. Figure 3 and Figure 4 present the results 
of MCM parallelization using CM Approach-1 
and Approach-2 respectively, with different 
block-sizes. In Approach-1, total computational 
elements are calculated for the very first phase 
and the remaining phases are also computed 
with the same computing power.Table 2. Grid size strategies for different CM  

approaches.

CM Approach grid-size Computation

CM  
Approach-1

Computed once to fulfill the 
one-to-one mapping for the very 
first-phase and remains the same for 
all subsequent phases.

CM  
Approach-2

Computed for each phase, the same 
as the number of subproblems in a 
phase.

CM  
Approach-3

Predefined irrespective of the 
block-size and input-size and remains 
the same across all the phases.

CM  
Approach-4

Computed for each phase to fulfill 
the one-to-one mapping in each 
phase.

__global__ void MCM(int *p, int n, 
int r, int*m)
{
    /*m[i,j] are the subproblems of a 
phase*/
 Step 1. map each i to thread-id or 
block-id depending upon the desired 
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks
(using Equation(1))
 ..............
}/* kernel ends */
void main()
 {//Compute n1 and n2
 for(r=2; r<n1; r++)/*Many-to-one  
 Mapping */
   MCM<<<full threading  
 capacity>>>(p, n, r, m);
 grid-size = sm // Number of SMs;
 for(r=n1; r<n2; r++)/*one-to-one  
 Mapping */
 {/*block-size is ranging from  
 maximum supported block-size to k  
 times warp-size to fulfil the  
 requirement of one-to-one mapping */
   MCM<<<grid-size, block-size>>>(p,  
 n, r, m);
    ...............
 }
 block-size = warp-size;
 for(r=n2; r<n-sm; r++){/*One-to-ma- 
 ny2 Mapping */
   MCM<<<n-r+1, block-size>>>(p, n,  
 r, m);
 /* block-size is increasing integral  
 multiple of warp-size */
 }
 for(r=n-sm; r<=n; r++)/*One-to-many1   
 Mapping */
   MCM<<<grid-size, block-size>>>(p,  
 n, r, m);
 }

Listing 3. Pseudo code of parallel MCM using GMM 
Approach.
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Figure 3. MCM parallelization with different block-size 
using Approach-1.
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thread-block for a sub-problem belonging 
to the initial phase leads to unmanageable 
grid-size.

(iii) CM Approach-3: The grid-size is the same 
for each and every phase irrespective of 
the block-size and input-size. Appropriate 
grid-size is chosen for keeping maximal 
SMs busy for maximum phases. For the 
illustrations of this approach, we consider 
two grid-sizes, i.e. 32 and 64 with differ-
ent input-sizes. The notable difference be-
tween this approach and Approach-1 is that 
the grid-size is independent of input-size 
in this approach, i.e. inadequate grid-size 
is no longer an issue in this approach for 
moderate input-size.

(iv) CM Approach-4: The processing elements, 
i.e. GPU threads are the same as the num-
ber of sub-problems in each phase. For 
the fulfilment of one-to-one mapping, the 
grid-size is computed depending upon the 
block-size and number of sub-problems in 
each phase. Due to this, we only achieve 
an approximation for one-to-one mapping 
as the number of sub-problems would mis-
match mostly with the product of grid-size 
and block-size. The grid-size for different 
CM approaches is summarized in Table 2.

We observe in the previous sections that each 
CM approach has several advantages as well 
as several shortcomings. For effective and bal-
anced load distribution of each and every phase 

of NPDP, we propose a GMM formulation for 
MCM parallelization. The GMM presents the 
cumulative advantages of all CM approaches. 
In GMM, sub-problems belonging to the initial 
phases are mapped to the processing threads 
by many-to-one mapping. If the number of 
sub-problems in a phase exceeds the threading 
capacity of the GPU, multiple sub-problems are 
mapped to a single thread. The computations 
for solving each sub-problem in these initial 
phases are limited by several comparisons only.
Many-to-one mapping exists only when the in-
put-size is very large. The number of sub-prob-
lems decreases uniformly phase-by-phase and, 
eventually, it comes under the threading capac-
ity of the GPU. We change the mapping from 
many-to-one to one-to-one. This one-to-one 
mapping region covers the maximum phases 
of NPDP. In one-to-one mapping, the number 
of threads generated in each kernel should be 
greater than or equal to the number of sub-prob-
lems in the respective phase. For sustaining one-
to-one mapping, we either reduce the block-size 
and keep the number of blocks as required or 
reduce the grid-size by keeping the block-size 
unchanged. Ultimately, these blocks are further 
divided into warps and these warps are sched-
uled for execution by warp schedulers. Enough 
ready warps are required for each SM for toler-
ating the long latency operations of the running 
warp. Reducing grid-size below the number 
of SMs leads to several SMs becoming idle as 
blocks are directly mapped to SMs. Hence, in 
the central computational region of NPDP, the 
grid-size is kept unchanged. The block-size is 
reduced after each predefined interval of phases 
from its maximum supported block-size to an 
integral multiple of warp-size.
After a certain phase, the number of sub-prob-
lems is less than that of the processing threads. 
After this point, one-to-many mapping is cho-
sen instead of one-to-one, i.e. one sub-problem 
is computed by one thread-block. We can se-
lect appropriate block-size. More specifical-
ly, we take an increasing integral multiple of 
warp-size as block-size. We call this mapping 
as one-to-many2.
When we are not able to keep all the SMs busy 
even by choosing one-to-many2 mapping, mul-
tiple blocks are employed for the computa-
tion of one sub-problem. We call this mapping 
as one-to-many1. The part of sub-problem is 

solved by a thread-block and partial solutions 
from all the blocks are combined to generate an 
optimal solution for a sub-problem. In GMM, 
we express the mapping between the sub-prob-
lems of phase l and the processing elements 
of the GPU using CUDA by Eq. (2). Listing 3 
presents the kernel parameters for different re-
gions of NPDP adopted in the GMM approach.

5. Results and Discussion

The performance evaluation of parallel MCM 
using CM approaches and GMM is experiment-
ed on Quadro K6000 GPU. The GPU has 15 
SMs, 192 SPs in each SM, with a global mem-
ory of 12 GB. The CUDA driver runtime ver-
sion is 7.5 and 64-bit Ubuntu 16.04 is used with 
GNU GCC compiler 4.9.2. The dimensions of 
the matrices that are compatible to the multipli-
cation are randomly generated for experimen-
tation. Figure 3 and Figure 4 present the results 
of MCM parallelization using CM Approach-1 
and Approach-2 respectively, with different 
block-sizes. In Approach-1, total computational 
elements are calculated for the very first phase 
and the remaining phases are also computed 
with the same computing power.Table 2. Grid size strategies for different CM  

approaches.

CM Approach grid-size Computation

CM  
Approach-1

Computed once to fulfill the 
one-to-one mapping for the very 
first-phase and remains the same for 
all subsequent phases.

CM  
Approach-2

Computed for each phase, the same 
as the number of subproblems in a 
phase.

CM  
Approach-3

Predefined irrespective of the 
block-size and input-size and remains 
the same across all the phases.

CM  
Approach-4

Computed for each phase to fulfill 
the one-to-one mapping in each 
phase.

__global__ void MCM(int *p, int n, 
int r, int*m)
{
    /*m[i,j] are the subproblems of a 
phase*/
 Step 1. map each i to thread-id or 
block-id depending upon the desired 
mapping
 Step 2. for each such i, m[i,j] is
computed by a thread/block/multi-
blocks
(using Equation(1))
 ..............
}/* kernel ends */
void main()
 {//Compute n1 and n2
 for(r=2; r<n1; r++)/*Many-to-one  
 Mapping */
   MCM<<<full threading  
 capacity>>>(p, n, r, m);
 grid-size = sm // Number of SMs;
 for(r=n1; r<n2; r++)/*one-to-one  
 Mapping */
 {/*block-size is ranging from  
 maximum supported block-size to k  
 times warp-size to fulfil the  
 requirement of one-to-one mapping */
   MCM<<<grid-size, block-size>>>(p,  
 n, r, m);
    ...............
 }
 block-size = warp-size;
 for(r=n2; r<n-sm; r++){/*One-to-ma- 
 ny2 Mapping */
   MCM<<<n-r+1, block-size>>>(p, n,  
 r, m);
 /* block-size is increasing integral  
 multiple of warp-size */
 }
 for(r=n-sm; r<=n; r++)/*One-to-many1   
 Mapping */
   MCM<<<grid-size, block-size>>>(p,  
 n, r, m);
 }

Listing 3. Pseudo code of parallel MCM using GMM 
Approach.
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Figure 3. MCM parallelization with different block-size 
using Approach-1.
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Mapping gets changed accordingly and even-
tually poor load balance arises among the GPU 
threads. In Approach-2, lesser speedup is ob-
tained as compared to Approach-1. We con-
clude that block-subproblem policy performs 
worse for initial phases because of the two 
reasons: ample number of blocks and whole 
thread-block are actually not required for per-
forming several comparisons of a sub-problem. 
Approach-2 performs the worst for later phases 
when the number of sub-problems is less than 
the number of SMs. A sub-problem with huge 
computation should not be catered by a single 
thread-block.
Figure 5 and Figure 6 highlight the results of 
CM Approach-3 with grid-size 32 and 64 re-

spectively. Comparatively more speedup is 
obtained in Approach-3 as we fixed the grid-
size throughout all the phases of NPDP. These 
grid-sizes produce enough blocks in each phase 
to keep all the SMs busy, but non-optimal map-
ping for several phases still persists. On the 
basis of peak speedup attained in these results, 
we conclude that managing larger grid is also a 
bottleneck for CUDA runtime.

Figure 7. MCM parallelization with different block-size 
using Approach-4.

Figure 7 shows the outcome of MCM paral-
lelization using CM Approach-4. This ap-
proach is suitable for the initial phase of com-
putation whereas it leads to the worst mapping 
for later phases of NPDP. It leads to the ideal-
ization of more SMs for later phases. Achiev-
ing one-to-one mapping is not easy in case of 
fixed block-size strategy. This approach per-

forms the worst in comparison with all three 
previous CM approaches.
We observe that the smaller block-size produc-
es better results in NPDP parallelization. Large 
block-size degrades the performance because 
of under-utilization of SMs for later phases. 
For small input-size, we don't get significant 
difference in the achieved speedup. As we in-
crease the input-size, notable difference in the 

speedup is seen. Approach-3 performs better as 
compared to other CM approaches because of 
steady and appropriate grid-size.
The comparative study among the gains of 
CM approaches and GMM is shown in Figure 
8. In GMM, desired grid-size and block-size 
are computed for each and every region of the 
NPDP to meet the necessary mapping expressed 
in Eq. (2). The significant gain in the speedup is 
obtained in GMM in comparison with the best 
CM approach, i.e. Approach-3. Partitioning the 
computational region of NPDP as per the Eq. 
(2) and selecting the appropriate computing 
power for each phase lead to better mapping for 
the entire NPDP computation and maximum 
utilization of SMs in all the phases. In compar-
isons of these results with earlier state-of-art by 
Wu et al. [19], the maximum achieved speedup 
was 13.40×, whereas speedup using GMM ap-
proach is more than 30×.

6. Conclusions

We propose, formulate, and analyze a compar-
ative investigation among CM approaches and 

the proposed GMM in the GPU parallelization 
of NPDP. MCM is chosen for the implemen-
tation of all the CM approaches and GMM. 
GMM outperforms the state of the art by em-
ploying pre-calculated computing resources for 
each and every phase that in turn achieves an 
optimal mapping for the respective phase.
Among the outcomes of the CM approaches, 
approach 3 performs much better for sufficient-
ly large size input, as illustrated in the results 
section. The enhanced speedup is due to the 
adequate number of threads and the number of 
blocks in the parallelization of each phase. Suf-
ficient number of blocks would lead to keeping 
maximum SMs busy. The probable bottleneck 
of this approach is the non-suitability for the 
initial phases of NPDP. We also conclude that 
generation of maximal computing elements 
does not necessarily draw the efficient map-
ping in GPU parallelization. Sufficient number 
of blocks with sufficient threads in each block 
would cater the subproblems well. Sufficient 
number of blocks means all the SMs should 
be busy as blocks are directly mapped to SMs. 
Sufficient threads in a block means that enough 
warps should be there for each SM.
Efficient mapping plays a vital role in the max-
imal utilization of the GPU. Performance deg-
radation due to the non-uniformity in the com-
putations across the phases of NPDP is counter 
balanced by the suitable mapping. There may 
be little deviations in the results of NPDP par-
allelization if we use other advanced GPU or 
multiple GPUs. As the computational pattern 
and parallelization strategy is the same for the 
other problems of NPDP, GMM approach is ap-
plicable for them, too. Parallelization of other 
NPDP instances and related issues shall be fu-
eled with this work. We also abridged the liter-
ature gap by providing this work on NPDP par-
allelization. Effective tiled mapping for NPDP 
parallelization is our ongoing work.
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Mapping gets changed accordingly and even-
tually poor load balance arises among the GPU 
threads. In Approach-2, lesser speedup is ob-
tained as compared to Approach-1. We con-
clude that block-subproblem policy performs 
worse for initial phases because of the two 
reasons: ample number of blocks and whole 
thread-block are actually not required for per-
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putation whereas it leads to the worst mapping 
for later phases of NPDP. It leads to the ideal-
ization of more SMs for later phases. Achiev-
ing one-to-one mapping is not easy in case of 
fixed block-size strategy. This approach per-

forms the worst in comparison with all three 
previous CM approaches.
We observe that the smaller block-size produc-
es better results in NPDP parallelization. Large 
block-size degrades the performance because 
of under-utilization of SMs for later phases. 
For small input-size, we don't get significant 
difference in the achieved speedup. As we in-
crease the input-size, notable difference in the 

speedup is seen. Approach-3 performs better as 
compared to other CM approaches because of 
steady and appropriate grid-size.
The comparative study among the gains of 
CM approaches and GMM is shown in Figure 
8. In GMM, desired grid-size and block-size 
are computed for each and every region of the 
NPDP to meet the necessary mapping expressed 
in Eq. (2). The significant gain in the speedup is 
obtained in GMM in comparison with the best 
CM approach, i.e. Approach-3. Partitioning the 
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(2) and selecting the appropriate computing 
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blocks in the parallelization of each phase. Suf-
ficient number of blocks would lead to keeping 
maximum SMs busy. The probable bottleneck 
of this approach is the non-suitability for the 
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warps should be there for each SM.
Efficient mapping plays a vital role in the max-
imal utilization of the GPU. Performance deg-
radation due to the non-uniformity in the com-
putations across the phases of NPDP is counter 
balanced by the suitable mapping. There may 
be little deviations in the results of NPDP par-
allelization if we use other advanced GPU or 
multiple GPUs. As the computational pattern 
and parallelization strategy is the same for the 
other problems of NPDP, GMM approach is ap-
plicable for them, too. Parallelization of other 
NPDP instances and related issues shall be fu-
eled with this work. We also abridged the liter-
ature gap by providing this work on NPDP par-
allelization. Effective tiled mapping for NPDP 
parallelization is our ongoing work.
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