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A Shapelet Transform Classifi cation 
over Uncertain Time Series

A shapelet is a time-series subsequence that can repre-
sent local, phase-independent similarity in shape. Time 
series classification with subsequences can save com-
puting cost, improve computing speed and improve 
algorithm accuracy. The shapelet-based approaches 
for time series classification have an advantage of in-
terpretability. Concentrating on uncertain time series, 
this paper tries to apply the shapelet-based method 
to classify uncertain time series. Due to the high di-
mensions of time series, the number of the generat-
ed candidate shapelets is generally huge. As a result, 
the calculation amount is large too. To deal with this 
problem, in this paper, we introduce a piecewise linear 
representation (PLR) method for uncertain time series 
based on key points so that the traditional shapelet dis-
covery algorithm can be improved efficiently. We ver-
ify our approach with experiments. The experimental 
results show that the proposed shapelet algorithm can 
be used for uncertain time series and it can provide 
classification accuracy well while reducing time cost.
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1. Introduction

A time series is a sequence of ordered and equal-
ly spaced fixed values [1]. Time series data ex-
tensively exist in many real-world applications. 
It is necessary to provide accurate data analysis 
results and ensure the efficiency of the data rep-
resentation and calculation process. Actually, 
one focus of time series studies is to process and 
analyze time series, which can provide founda-
tional support for practical applications of time 
series data. Currently, time series analysis is re-
ceiving increasing attention, both from acade-
my and industry. Common time series analysis 
mainly includes forecasting and analyzing data 
trend [2], clustering data [3], classification data 
[4], outlier detection [5] and so on. 
Classification is an important research topic 
in the field of data mining. Time series data 
classification is also an important task of time 
series analysis. In recent years, time series 
classification has been widely used in devise 
applications. In network security monitoring, 
for example, the program cannot prevent at-
tacks from malicious files that have never been 
encountered [7]. In this context, we can create 
an "entropy" time series to represent each file's 
content and then we apply a time series classifi-
cation method to identify the malware. For ex-
ample again, in meteorology domain, weather 
conditions are predicted according to satellite 
cloud image classification [8], in which house-
holds use electricity according to equipment to 
distinguish different household appliances [8].
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In the context of traditional data classification, 
the classification criterion, which is determined 
by specific attribute value, plays a crucial role. 
Being a kind of sequence type data, however, 
time series data do not have obvious attribute 
characteristics because they appear in order ac-
cording to the time point [6]. Here the order of 
data directly reflects the relationship between 
time series data. To classify time series data, 
many approaches have been proposed, includ-
ing classifications based on the nearest neigh-
bor and shapelets. The nearest neighbor (1-
NN) classification is based on full-time domain 
features. Note that 1-NN classifier can lead to 
dimensional disaster problems because time 
series are typically high- dimensional data and 
data volume is very large. In addition, as a lazy 
classifier, 1-NN does not provide insights into 
time series data.
The shapelet-based classification uses local 
time series instead of full-time domain features 
in 1-NN classification to classify time series. 
This can effectively avoid phase offset and 
noise influence and can improve classification 
accuracy [10]. Moreover, this kind of classifier 
allows interpretation of the classification while 
maintaining its accuracy [11]. Due to its high 
efficiency and interpretability, it has become a 
common method for processing time series data 
in the field of data mining. Here we summarize 
the advantages of the shapelet-based classifiers 
as follows:
1. Shapelets can provide interpretable clas-

sification results for time series. Previous 
classifiers for time series do not have such 
interpretability.

2. Shapelet-based classification considers 
only local features of time series and this 
can avoid noise, phase shift errors etc. As 
a result, shapelet-based classification is 
more accurate and robust.

In addition, suppose that we classify a time se-
ries with length m and each piece has length l. 
Let k be the number of training sets. Then the 
time complexity of shapelet-based classification 
is O(ml). But, for the classification method based 
on the nearest neighbor, its time complexity is 
O(km3) [12]. Note that time series are usually 
high-dimensional and the time complexity of 
calculating time series distance is very high. To 
this end, a piecewise linear representation (PLR) 

of time series is proposed for high-dimensional 
time series data. The PLR reflects the perception 
of sequence data understood by the human visu-
al system well. It can implement data reduction 
and improve the operation speed. Nowadays, the 
PLR has been applied for time series analysis.
Note that, in time series, it is usually assumed 
that all values on time stamps are accurate and 
clear, and time series is a real-numbered se-
quence of fixed-point fixed values. However, 
this assumption is not always true. In many 
practical situations, time series data are gener-
ally collected by manual recording or physical 
devices (e.g., wireless sensors). At this point, it 
is possible that the values of time series data 
contain uncertainty [6]. Actually, data uncer-
tainty is common and inherent in most real ap-
plications. So, some efforts have been devoted 
to investigating uncertain time series with a 
special focus on similarity measures of uncer-
tain time series. We argue that some classifi-
cation approaches for general time series have 
been proposed, but the classification of uncer-
tain time series is still scarce. To the best of our 
knowledge, this paper is the first effort to inves-
tigate the classification of uncertain time series.
In this paper, we concentrate on the classifica-
tion of uncertain time series. Based on the idea 
of dimension reduction of time series data, we 
propose a shapelet filter pruning algorithm to 
remove similar shapelets in the candidate sub-
sequences of shapelets. We reduce the number 
of shapelets and achieve a faster classification 
of uncertain time series. The main contributions 
of this paper are summarized as follows:
1. We propose a PLR for uncertain time series 

based on key points. We generate a low-di-
mensional time series, meanwhile ensur-
ing that the data features do not disappear. 
This can help to improve the efficiency of 
the subsequent classification algorithm.

2. We propose a filtering pruning algorithm 
to remove similar shapelets in the candi-
date subsequence of shapelets and reduce 
the number of shapelet candidate sets.

3. We analyze the efficiency of the proposed 
algorithm and compare it with other shape-
let-based classification algorithms.

The rest of this paper is organized as follows. 
We present related work in Section 2. Section 



17A Shapelet Transform Classification over Uncertain Time Series

It should be noted that, in the above methods, 
the shapelet classifiers are embedded in a deci-
sion tree. It means that the shapelet discovery 
process is performed recursively. As a result, the 
shapelet discovery algorithm must cost a lot of 
time. In addition, the feature extraction of time 
series and the classifier construction are tightly 
coupled together. This makes it difficult to adapt 
shapelets and further construct other classifiers, 
say SVM, Bayesian networks, and so on.
In [11], Bagnall et al. thought that it is necessary 
to separate the shapelet extraction from classi-
fication process. In their approach, the shapelet 
discovery process is used as a separate prepro-
cessing step. After that, a new dataset is con-
structed by using shapelet transformation. Fi-
nally, based on the constructed new dataset, the 
classification of time series can be performed by 
using multiple classifiers. It is shown that their 
approach reduces the coupling of shapelet dis-
covery and classifier construction. In [15] and 
[16], Lines et al. investigated time series-orient-
ed shapelet transformation classification meth-
od. They realized the decoupling of the shapelet 
discovery process and classifier construction. 
By constructing new classification datasets 
before building the classifier, their method im-
proves classification accuracy and maintains 
the interpretability of shapelet-based classifi-
cation of time series. Converting a time series 
classification problem to an alternate data space 
prior to classification can provide a higher level 
of improvement than developing a classifier.

3. Background and Notations

3.1. Definitions and Notations

Definition 1 (Time series subsequence). A 
continuous sequence of U that starts from time 
position i and ends at time position j is called a 
time series subsequence (time series for short), 
denoted as S [17], where U represents a uni-
verse of discourse.

S = [ti, ti + 1, ..., tj]

Here, S represents a subsequence of length 
j  i + 1 that is selected from U. A subsequence 
represents the subsequence that is selected by 
any sliding window.

3 introduces the notations and definitions con-
cerning uncertain time series and time series 
classification. In Section 4, we present the PLR 
for uncertain time series based on the key points 
and investigate binary tree construction. In Sec-
tion 5, we propose the shapelet-based selection 
algorithm and the shapelet pruning algorithm. 
Section 6 shows the analysis and experimental 
results of our approach. Section 7 summarizes 
the work of this paper.

2. Related Work
There are some classification approaches for 
time series. In addition to 1-NN and decision 
tree classifiers, one can use other classification 
methods. Among them, shapelet-based classifi-
cation for time series has attracted more atten-
tion due to its high efficiency and simplicity as 
well as its flexibility to take advantage of mul-
tiple classifiers.
A shapelet is a subsequence of time series that 
can exhibit the features of the sequence class 
well [10]. The first shapelet discovery classifi-
cation algorithm for time series was proposed in 
[13], where all subsequences that may become 
shapelets are extracted and then the shapelet 
with the largest information is recursively se-
lected by means of information gain evaluation. 
Here a decision tree is established and the shape-
lets are applied as the splitting nodes of the es-
tablished decision tree. This method can provide 
not only the classification results but also an 
interpretable classification process. Mueen, Ke-
ogh and Young in [10] thought that the decision 
tree formed by the original shapelet discovery 
algorithm cannot provide a complete decision 
tree for machine learning. To deal with the prob-
lem that only a single shapelet may not be able 
to distinguish different categories of time series, 
a more explanatory logic-based shapelet method 
was proposed to construct a decision tree in [10]. 
For the high time-consuming methods, various 
acceleration techniques have been employed to 
accelerate the construction of the classifier. Rak-
thanmanon et al. in [14] proposed a fast shapelet 
discovery algorithm based on Symbol Aggre-
gate Approximation (SAX). Their approach can 
improve the efficiency of shapelet discovery 
while the classification accuracy is maintained.
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In the classical time series, it is always assumed 
that the value at a given time position is precise 
and certain. Data from real-world applications, 
however, may be imperfect and it is rarely the 
case that such an assumption can fully be sat-
isfied. To represent and process uncertain data, 
probability theory has been applied to enhance 
various data models. With the probability theo-
ry, an uncertain data can be modeled by a prob-
ability distribution, which is generally repre-
sented by a probability density function (pdf). 
To simplify the representation and processing 
of uncertain data, a pdf is also simply charac-
terized by the mean and variance in some appli-
cation scenarios. Such a representation of un-
certain data has been applied in uncertain time 
series (e.g., [1]). Following this step, in this pa-
per, we adopt the pdf with a form of mean and 
variance as the underlying distributions of un-
certain values in uncertain time series. Here the 
variances may differ for different time points. 
Note that there may be some complex distribu-
tions which need additional parameters. At this 
point, the complex distributions can be trans-
formed into the underlying distributions.
Definition 2 (Uncertain time series). Uncer-
tain time series (UTS) consists of observations 
at fixed, equally spaced time points, in which 
the value at each time point is uncertain [1].

T = [v1, v2, …, vn]

Here we have vi = (ti, ui, pj), in which ti denotes 
the ith sampling time point, ui denotes the ob-
servation value at ti, and pi represents the prob-
ability density at ti with the form of f ( μj, σj) [1]. 
Then we have uj = rj + ej, where rj is the real 
value and ej is the error value.
Figure 1 shows a continuous uncertain time se-
ries. The value of each time point is a random 
variable subject to a certain probability distri-
bution with a mean of μj and variance of σj. The 
error function may be an arbitrary probability 
distribution.
Definition 3 (Uncertain time series distance). 
Given two uncertain time series T1 and T2, the 
distance between T1 and T2 is represented by 
dist(T1, T2), which returns a non-negative value, 
indicating the distance between T1 and T2 [18].

dist(T1, T2 ) = (E(T1)  E(T2 ))2 + Var (T1) + Var (T2 )

It can be intuitively observed from the above 
formula that the expected distance can reflect 
data uncertainty well. First, (E(T1)  E(T2))2 
can become smaller along with decreasing the 
distance difference. Second, Var(T1) + Var(T2) 
indicates that the distance between two time 
points can become larger along with increas-

Figure 1. A continuous uncertain time series.
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ing the errors in the uncertain time series. It 
is shown that the expected distance takes the 
mean and the variance of uncertain time series 
into account, which are two important parame-
ters of the uncertain time series. So, it is feasi-
ble to describe uncertain time series data with 
the expectation and variance of uncertain data.
This paper focuses on uncertain time series 
classification with shapelets. For this purpose, 
we need to evaluate subsequence quality ac-
cording to the distance from subsequence to un-
certain time series. In Definition 4, we present a 
distance definition of subsequence to uncertain 
time series.
Definition 4 (Distance of subsequence to un-
certain time series). Let T be an uncertain time 
series and S be a subsequence with length l in 
T. Also, let Tl represent all subsequences with 
length l in T. Then, the distance between S and 
T is defined as the minimum of the distances of 
S to Tl and we have

subDist(S, T ) = min{dist(S, Tl )}.

Definition 5 (Information gain). A shapelet is 
determined by a subsequence S in DB, where 
DB is a set of subsequences. Then the shapelet 
divides DB into two parts: DL and DR. The in-
formation gain is calculated as follows.
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D DE DB E D E DDB DB

 

  

Here

DL = {subdist(S, Ti)  ε | Ti  DB} and

DR = {subdist(S, Ti) > ε | Ti  DB}

We use E() to represent the information entro-
py of the dataset. The definition of information 
gain is used to represent the quality of the time 
series of candidate shapelet segmentation [13]. 
The greater the information gain, the better the 
distinguishability of this shapelet. So, informa-
tion gain can help to distinguish different se-
quence types.

3.2. Shapelet Transformation

In this paper, we classify time series based on 
shapelet transformation. In this method, the 

most important thing is to find the best set of 
shapelets, through which the raw data is mapped 
to new data space.
The classification algorithm based on shapelet 
transformation mainly consists of three steps. 
We first need to find all the time series subse-
quences as candidates, and then evaluate all 
candidates and choose the best shapelet set 
based on the chosen assessment. Here, each 
shapelet represents an attribute and its attribute 
value is the distance between it and the time 
series. We finally create a new data set, which 
uses shapelets as feature points, and then com-
plete the classification by using general classi-
fication methods. 
We briefly describe shapelet transformation 
processing in Algorithm 1. The input of this 
algorithm includes the pruned shapelet set and 
the time series set to be transformed. The out-
put of this algorithm is the transformed data set. 
The algorithm calculates the distance of a time 
series to all shapelets in the shapelet collection 
and forms a series of new data in order (Steps 
4‒7). The data is stored in the transformed data 
set (Step 8). The above steps are iterated until 
all the data in the time series set is traversed 
(Steps 2‒3).

Algorithm 1.  Shapelet transformation.

Input: PrunedShapelet, time series set DB
Output: TD
1.   TD ← ;
2.   for Ti in DB do  //each time series in DB
3.        transformed ← ;
4.        for j = 0 to |PrunedShapelet| do
5.               S = PrunedShapelet.get(j)
6.               dist = subDist(S, Ti)   
7.               transformed.add(dist); 
8.              TD.add(transformed);
9.        end for
10.   end for
11.   return TD

4. PLR for Uncertain Time Series

We can identify several dimensionality reduc-
tion representation methods of time series in 
the context of certain time series [17]: symbol 
aggregate approximation (SAX), piecewise ag-
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gregate approximate (PAA), piecewise linear 
representation (PLR), domain transformation 
representing, model representing, and so on. 
Among them, the PLR method is simple and 
more in line with the visual reflection of the 
human visual system on the sequence data. In 
this paper, we adopt the PLR method to per-
form data dimensionality reduction of uncertain 
time series.
According to the partitioning strategy in the 
PLR, we identify two kinds of PLR. The first 
one is to segment the fitting error. This kind of 
PLR uses the straight line that connects the end-
point of the segment and the starting point to fit 
the original time series. Then the least squares 
between the fitting curve and the original time 
series can be guaranteed, and the error is mini-
mal. Note that this method focuses only on the 
local minimum error of the sequence and does 
not take characteristic changes in the whole se-
quence into account. The second kind of PLR 
is the segment determined by the special points 
that can classify time series, say local extremum 
points and boundary values points. This method 
can avoid the global feature missing occurred in 
the first kind of PLR. The shortcoming of this 
method is that we need different methods to 
determine the feature points and these methods 
may produce large segmentation fitting errors.
By default, for the uncertain time series the el-
ements on all timestamps obey a certain proba-
bility distribution function, where a mean val-
ue is used to calculate the fitting error of each 
time point. Then, the linear segmentation inter-
polation process can be performed. We apply a 
binary tree to store the key point error function. 
To achieve a more efficient selection process, 
we need a simple dimension reduction method 
of uncertain time series based on key points. 
In this way, we can improve the extraction ef-
ficiency process while we maintain computa-
tional accuracy to achieve stable classification 
accuracy. The existing dimensionality reduc-
tion work on time series is mainly for certain 
time series.

4.1. PLR of Uncertain Time Series Based 
on Key Points

For an uncertain time series, we propose a sim-
ple linear segmentation interpolation method 

based on key points to achieve data dimension-
ality reduction. In uncertain time series, the 
true values of all elements on timestamps are 
infinitely close to the mean of the probability 
distribution function, where the mean value is 
used to calculate the fitting error of each time 
point for linear segmentation processing.
Our method firstly finds the key points in un-
certain time series according to the weight of 
fragments, then splits uncertain time series into 
several time segments with the key points, and 
finally completes the piecewise linear repre-
sentation of the sequence. Here, all key points 
are put into a binary tree. Considering the un-
certainty in time series and avoiding excessive 
noise reduction, we build a binary tree accord-
ing to the index of the selected point. 
In the built tree, each node stores the key point 
and the error function that corresponds to the 
key point. By obtaining key points in the binary 
tree, the number of segments directly achieves 
a fast PLR. Compared with the ordinary time 
series piecewise linear representation method, 
our method comprehensively considers the 
global error, segmentation error, and single in-
dex point error, and to the great extent retains 
the global and local features of time series in 
the dimension reduction process. In the follow-
ing, we present the definition of key points in 
the uncertain time series.
Definition 6 (Key point in uncertain time se-
ries). In the PLR process of uncertain time se-
ries, the key points must satisfy the following 
two conditions:

 ● they should be located in the uncertainty 
time series fragment with the largest weight, 
and

 ● the fitting error in the uncertain time series 
segment should be the largest.

In Definition 6, the weight of the indeterminate 
time series segment is related to all single point 
fitting errors in the segment.
Let U = [u1, u2, ..., un] be a given uncertain time 
series, where ui represents the random variable 
at time point i and obeys the probability distri-
bution f ( μi, σi). Then we can get the vertical dis-
tance from the point to the fitted curve (i.e. the 
fitting error). The calculation formula is shown 
as follows.
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The weight of an indeterminate time series seg-
ment is represented as follows.

weight = max{dsum, 2 × dmax}

Here, dsum represents the sum of the fitting er-
rors of the points and dmax represents the single 
point maximum fitting error. The maximum fit-
ting error multiplied by 2 is applied in order to 
stress the overall error caused by a single erro-
neous point.

Figure 2. Example of a single point error.

Figure 2 shows the case when the overall error 
is small, but the single point error is large. 
By default, the true values of elements on all 
timestamps are infinitely close to the mean of 
the probability distribution function, where the 
mean value is used to represent the value at the 
time point. Then, the fitting error of each point 
is calculated and the linear segmentation pro-
cessing is performed.
In Figure 2, the solid black line indicates the 
original sequence before segmentation. The line 
segmentation error threshold is set to 6, and the 
segmentation result is represented with the grey 
dotted line in Figure 2. A point with an index of 
10 is considered to be a split point. Then the fit 
line is divided into two segments with a fitting 
error of 6 on the left and a fitting error of 4 on 
the right, respectively. Among them, the fitting 
error on the left is caused by 5 points, the single 
point error is 1 or 2, and the fitting effect is close 
to the original data. The fitting error on the right 
is only caused by a single point. The fitting error 
of index point 14 in Figure 2 is 4 and the fitting 

effect at this time is not ideal. A simple method 
that is based on segmentation of the overall er-
ror segmentation may result in an unsatisfactory 
segmentation result because such a method ne-
glects the case when there is a large single point 
error in the segmentation.
In response to this deficiency, we apply a key 
point-based segmentation method. Compared to 
the general segmentation points, the key points 
contain more features of the sequence data and 
they can result in a good segmentation fit line. By 
adding a constant factor to the weight function, 
the observation point with a large fitting error is 
taken into account within the function and this 
can avoid the situation shown in Figure 3. The 
purpose why we use segmentation to represent 
uncertain time series is to reduce the dimension-
ality of uncertain time series. For this purpose, 
we need to maintain the original features of data 
as much as possible in the dimension reduction 
process. As shown in the weight function defi-
nition, when the weight of the segment is large, 
the fitting effect is poor at this time point. The 
reason may be that the overall error of the seg-
ment is large or the single point error is large. At 
this time point, the time series segment with the 
highest weight should be continuously segment-
ed. When the piecewise fitting error is less than 
the threshold and the single point error distance 
is greater than 1/2 threshold, the segmentation 
for the time point continues.

Figure 3. Time series fragment segmentation point 
selection.

Figure 3 shows a detailed fragmentation di-
agram. As shown in Figure 3, the black line 
shows the raw data (the first half of line is cov-
ered by the grey line and the last half of the line 



22 R. Ma, L. Zuo and L. Yan

is covered by the light-grey line). The light-
grey dashed line represents a non-KP piece-
wise fitting line, and the fitting distance of the 
segment is smaller than the threshold 6. Note 
that the single point fitting error of the index 
point 14 is 4, which is greater than 3. At this 
moment, the segmentation is performed. The 
final fitted line is indicated by the grey dashed 
line in Figure 3.
In the linear segmentation process of uncertain 
time series, the initial situation is that the en-
tire sequence is regarded as the first segment 
by default. Depending on the segment weight 
and on whether a segmentation will continue or 
not, each segment for the time series segmenta-
tion should preferably retain the overall or local 
shape characteristics of the sequence. In order to 
segment the time series segmentation, we need 
to compare the fitting distance of each time 
point in the segment, mark the time point with 
the largest single point fitting distance as the key 
point, and then use the key point as the dividing 
point to preserve the global feature of uncertain 
time series to the greatest extent. At the same 
time, for the case that the segmentation fitting 
error is small and the deviation of a certain time 
point in the segment is large, the segmentation is 
performed again, until the local features of un-
certain time series are well reflected.

4.2. Binary Tree Construction

In order to quickly perform linear segmenta-
tion of uncertain time series, the mean value 
of the random variable at a time point is used 
to represent uncertain data value. For uncertain 
value on the timestamp in an uncertain time se-
ries, we apply a binary tree to store the error 
function, which corresponds to the selected key 
point. The choice of key points ensures that the 
characteristics of data fluctuations are reflected. 
This can avoid the missing and excessive noise 
removal of data feature points. As a result, we 
improve the extraction efficiency in the classi-
fication algorithm of uncertain time series and, 
meanwhile, we maintain the calculation accura-
cy to obtain stable classification accuracy.
For a node that is inserted into the binary tree, we 
have to consider the index position, the observa-
tion value, the probability density function, the 
selection order, the left and right weights of the 

corresponding key points, and the left and right 
child nodes. Let TreeNode be an insertion node 
and its formal definition is given as follows.

TreeNode = {index, value, rank, f ( μ, σ), 
weightl, weightr, childl, childr}

In the segmentation process, the key points 
with the largest fitting error are used for seg-
mentation, and two new slice objects segment 
(slice.pb, slice.pmax) and segment (slice.pmax,  
slice.pe) are generated after segmentation. The 
key points and related information are stored in 
the binary tree. The segmenting process is iter-
atively handled until there is not any segment 
that needs to be segmented.
By constructing a binary tree, the information 
of uncertain data in time series is not lost and 
the required key points can be obtained from 
the tree according to the given number of time 
series fragments or fragment weights. Con-
structing a binary tree cannot only help the sub-
sequent classification on uncertain time series 
but also improve the extraction efficiency by 
maintaining the calculation accuracy and ob-
taining stable classification accuracy. The clas-
sification algorithm has an advantage of being  
explanatory. Note that high dimensionality of 
time series can lead to a high time cost in the 
distance calculation, which makes the efficien-
cy of the entire classification process lower. 
Therefore, a dimensionality reduction in data 
can effectively alleviate this problem.
For the uncertain time series after PLR, we can 
use the shapelet selection algorithm and pruning 
strategy to obtain a small number of sets of op-
timal feature subsequences of retained time se-
ries. We further use the shapelet transformation 
algorithm to get a new data set. This new data 
set is small and meanwhile it retains the ability 
to represent data characteristics. For new data 
sets, we can flexibly use different classifiers to 
achieve uncertain time series classification.

5. Shapelet-Based Classification for 
Uncertain Time Series

We apply the shapelet transformation method 
to perform the classification of uncertain time 
series. First, all subsequences of uncertain time 
series constitute a set of candidate shapelets. 
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Second, all candidate subsequences are evalu-
ated according to the information gain assess-
ment in order to select the best shapelets. Let 
each shapelet represent an attribute and then its 
value is the distance between the attribute to the 
time series. This creates a new data set. Finally, 
for the new data set, the general classification 
methods (e.g., Naive Bayes, decision trees and 
SVMs) can be used for classification.

5.1. Shapelet-Based Selection Algorithm

In [16], a caching algorithm was introduced for 
storing k best shapelets from a dataset in a sin-
gle traversal. This algorithm traverses all can-
didate shapelets at a time, calculates the max-
imum information gain of all sub-sequences, 
stores them in the shapelet set, sorts them by 
information entropy size, removes self-simi-
lar sequences, and finally collates and extracts 
the first k shapelets. Obviously, the number of 
shapelets generated with this algorithm is very 
large and there must be redundancy. The situa-
tion becomes worse in the context of an uncer-
tain time series. So, it is necessary to optimize 
this algorithm and eliminate redundant shape-
lets so that it can participate in the shapelet con-
version classification well.

Algorithm 2.  All shapelet selection.

Input: DB, min, max
Output: CandShapelet
1.   CandShapelet = ;
2.   for Ti in DB do
3.      shapelets = 
4.         for l = min: max do
5.             cand = generateCandidates(Ti, l)
6.             for all subsequence S in cand do
7.                ds = subDist(S, DB)
8.                quality = assessCandidate(S, ds)  //max 
                   information gain
9.            shapelets.add(S, quality);
10.           end for
11.       end for
12.   sortByQuality(shapelets)  //sort by information 
        gain
13.   removeSelfSimilar(shapelets) //remove 
        selt-similar subsequences 
14.   CandShapelet.add(shapelets)
15.   end for
16.   return CandShapelet

Following the step of the algorithm developed 
in [16], we propose Algorithm 2 for a shape-
let selection. Algorithm 2 iterates through all 
subsequences, calculates their distance to all 
uncertain time series, evaluates the maximum 
information gain, adds them to the candidate 
shapelets, and then arranges them in descend-
ing order of their information gain. Finally, we 
can get all shapelet collections after removing 
self-similar shapelets in the same time series.

5.2. Shapelet Pruning Algorithm

This section describes a filtering pruning 
method to remove similar features. This allows 
feature subsequences with discriminative ad-
vantages to participate in data conversion. For 
this purpose, we iterate through all time series, 
perform pruning filtering on all the generated 
sub-sequences, remove similar sub-sequences, 
and then improve the quality of elements in 
the shapelet.
Given two shapelets S1 and S2 as well as their 
corresponding distance thresholds ε1 and ε2, 
let S1 and S2 be in the same time series class 
label and subDist(S1, S2)  ε1. At this point, it 
can be determined that S1 and S2 are similar. 
Here ε1 is a distance threshold that is capable of 
obtaining the maximum information gain, and 
subDist(S1, S2)  ε1 means that S1 and S2 have 
similar shapes. In other words, S1 can replace S2 
in most cases.

Figure 4. Five shapelets and the degree of matching 
when overlapping each other.

Figure 4 shows the top five best shapelets ex-
tracted by the method in [16]. It is shown in Fig-
ure 4 that these data have great similarity when 
they ate matched. Using a pruning strategy can 
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effectively reduce similar shapelets while pre-
serving the shapelets that represent time series 
features very well.
Similar shapelets in the same time series are re-
garded to be self-similarity, which is removed 
in Algorithm 2 (Step 13). Then, two shapelets 
to be compared generally exist in different time 
series. In this paper, we propose Algorithm 3 as 
our pruning algorithm.

Algorithm 3.  Shapelet pruning.

Input: CandShapelet
Output: PrunedCandidate
1.   PrunedCandidate ← ;
2.   for i = 1:|CandShapelet| do
3.       shapelet = CandShapelet[i]
4.       PrunedCandidate.add(shapelet)
5.       ts = shapelet.splitThreshold
6.        for u = (i + 1) : |CandShapelet| do 
7.           prun = CandShapelet[u]
8.           dist = Dist(prun, shapelet)
9.              if (dist  ts) //If the distance is less than ts 
10.               if (prun.label! = shapelet)// the class is 
                    different, keep
11.                  PrunedCandidate.add(prun)
12.            else    //If the distance is greater than the ts, 
                 keep it 
13.               PrunedCandidate.add(prun) 
14.      end for
15. end for
16. return PrunedCandidate

For each shapelet in the candidate shapelets, 
Algorithm 3 compares it with the shapelet that 
is better than it (Steps 2‒6). When the distance 
between these two shapelets is less than the cor-
responding threshold, Algorithm 3 compares 
their class labels. When their class labels are 
the same, we do not need to make a place in the 
shapelet collection (Steps 6‒11); otherwise, we 
put them in the PrunedShapelet (Steps 12‒13). 

Finally, we get a collection of dissimilar shape-
lets for shapelet transformation classification.

Figure 5 shows the top ten best shapelets gener-
ated for the Gun_Point dataset in [16]. It is ob-
served that there are significant similarity and 
difference between these data (left), which can 
be regarded as two different types of feature 
subsequences. These two clusters can inter-
pret the time series in an explanatory manner. 
Using the shapelet pruning algorithm and the 
expected distance for distance calculation, we 
remove the similar shaplelets in the same time 
series. We leave only a single shapelet to form 
a new shapelet data set (right) for subsequent 
data conversion and achieve a shapelet-based 
classification for uncertain time series.

6. Experimental Results and Analysis

In this section, we illustrate with experiments 
the feasibility and advantages of our approach 
for uncertain time series classification. First, we 
compare the proposed shapelet transformation 
classification algorithm with the algorithms pro-
posed in [14], [16] and [19] in order to illustrate 
the usability of shapelets in classifying uncer-
tain time series. Second, with different classifi-
ers to classify test dataset, we illustrate that the 
pruning algorithm and PLR method proposed in 
this paper can provide better accuracy.

We used Java language to implement the algo-
rithm proposed in the paper. Our experiments 
run in a laptop with AMD processor, Win10 op-
erating system, and 8GB system memory.

Figure 5. Top 10 shapelets of the Gun_Point dataset.
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6.1. Experimental Datasets

In the experiments, 17 datasets in UCR time se-
ries data [20] were used as the test targets. All 
datasets consist of a training set and a testing 
set. Among them, the training set is used to per-
form shapelet selection discovery and classifier 
construction, and the test set is used to evaluate 
the classification accuracy of the classifier.
We artificially add interference to the UCR data 
to obtain uncertain data. Following the under-
lying distributions of uncertain time series that 
are discussed in Section 3.1 (that is, a form of 
mean and variance), we here apply values in 
(0, 1) as noises, which are randomly generat-
ed and may be positive or negative. The same 
processing is performed for all sequences. The 
function of arbitrary distribution with the ex-
pectation of 0 and the variance of σ are used as 
the error function at each time point. Then the 
data is processed by the phased error function 
according to the distribution trend of the data 
itself, 0.1σ  2σ is used for the data of different 
time periods as the variance of the error func-
tion. Here σ represents the standard deviation of 
the sample itself.

6.2. Classification Effect Comparison

We compare our method with three shape-
let-based classification methods, which are FS 
[14], ST [16] and LS [19], respectively. The FS 
represents the SAX-based fast shapelet algo-
rithm proposed in [14], the ST represents the 
shapelet transformation algorithm proposed in 
[16], and the LS is the machine learning-based 
shapelet algorithm proposed in [19]. In this pa-
per, we use decision tree classifier in the classi-
fication experiments and our method is referred 
to as the STU. Note that, in the experiments, 
the methods of FS, ST and LS were proposed 
for certain time series and our method of STU 
is for uncertain time series. 
We want to demonstrate that the shapelet trans-
formations of uncertain time series can main-
tain the similar accuracy of classification results 
with respect to the shapelet transformations 
of certain time series. For each original data-
set in UCR (certain time series), say GunPoin, 
we respectively applied the methods of FS, ST 
and LS and obtained their accuracy of classi-

fication. Then, for the selected original dataset 
we created the corresponding uncertain dataset 
(uncertain time series), which was used by the 
STU, and obtained its classification accuracy. 
Table 1 presents the classification accuracy ob-
tained with the above-mentioned four different 
methods.

Table 1. Classification accuracy with different shapelet 
optimization methods.

Dataset ST FS LS STU
Syn_Con 0.897 0.777 0.783 0.833
GunPoin 0.925 0.866 0.980 0.930

CBF 0.864 0.865 0.934 0.876
Face (all) 0.607 0.658 0.592 0.632
OSULeaf 0.583 0.593 0.516 0.600
Swe_Leaf 0.664 0.670 0.721 0.675
50Words 0.769 0.633 0.657 0.777

Trace 1.000 1.000 1.000 1.000
Two_Patt 0.695 0.644 0.652 0.670

Wafer 0.960 0.948 0.978 0.935
Light-2 0.777 0.783 0.815 0.773
Light-7 0.726 0.644 0.795 0.719
ECG 0.997 0.924 0.996 0.989
Adiac 0.783 0.593 0.522 0.784
Yoga 0.670 0.664 0.721 0.629
Beef 0.900 0.567 0.867 0.916

Coffee 0.964 0.929 1.000 0.983
Average 0.811 0.750 0.796 0.807

In Table 1, for a given dataset with certain 
numbers of classes, we extract its feature sub-
sequence fragments and then calculate the dis-
tances between all shapelets and the time series 
to be measured. The class of the shapelet with 
the shortest distance to the time series to be 
measured will be the class of the time series to 
be measured. Generally, we have a number of 
the extracted shapelets due to a dataset with nu-
merous classes. The final accuracy measured is 
determined by the approaches for extracting the 
shapelets and calculating the distances.
As we know, the C4.5 and 1NN classifiers are 
commonly used in time series for classification. 
In addition to the methods of FS, ST and LS, 
we also compared the classification accuracy 
of the C4.5, 1NN and STU. Similarly, we used 
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the original datasets (certain time series) in the 
C4.5 and 1NN and the corresponding uncer-
tain datasets (uncertain time series) in the STU. 
Table 2 presents the classification accuracy 
obtained with the methods of C4.5, 1NN and 
STU. Note that the C4.5 and the ST are identi-
cal for time series classification and, as a result, 
they have the same classification accuracy on 
the same datasets.

Table 2. Classification accuracy with different classifiers.

Dataset C4.5 1NN STU
Syn_Con 0.897 0.983(6) 0.833
GunPoin 0.925 0.913(0) 0.930

CBF 0.864 0.96(11) 0.876
Face (all) 0.607 0.808(3) 0.632
OSULeaf 0.583 0.662(7) 0.600
Swe_Leaf 0.664 0.846(2) 0.675
50Words 0.769 0.758(6) 0.777

Trace 1.000 0.99(3) 1.000
Two_Patt 0.695 0.998 (4) 0.670

Wafer 0.960 0.995 (1) 0.935
Light-2 0.777 0.869 (6) 0.773
Light-7 0.726 0.712 (5) 0.719
ECG 0.997 0.88(0) 0.989
Adiac 0.783 0.609 (3) 0.784
Yoga 0.670 0.845 (2) 0.629
Beef 0.900 0.667 (0) 0.916

Coffee 0.964 1.000 (0) 0.983
Average 0.811 0.853 0.807

Note that the ST method in Table 1 and the 
C4.5 method in Table 2 are identical because 
they apply the same method in [16]. Therefore, 
the shapelet optimization method ST produces 
the same exact results in Table 1 as the classi-
fier C4.5. in Table 2. It is shown in Table 1 and 
Table 2 that our method can provide the similar 
classification accuracy with other five methods. 
For the given 17 datasets, totally speaking, the 
STU method provides a better classification ac-
curacy than the methods of ST, C4.5 and 1NN, 
and almost the same classification accuracy as 
the LS method. Note that the classification ac-
curacy provided by the STU method is not bet-
ter than the classification accuracy provided by 
the FS method. But the STU method can deal 

with the classification of uncertain time series 
and other five methods can classify only certain 
time series.

6.3. Algorithm Efficiency Analysis

As we know, the number of time series is usu-
ally very large and the training process has high 
time complexity. Many efforts have been de-
voted to reducing the complexity of the training 
process [13], [10], [15]. Suppose that the num-
ber of time series objects in the dataset is k and 
the average length of each time series is m. In 
[13], Ye and Keogh used SDEA (Subsequence 
Distance Early Abandon) and AEP (Admissi-
ble Entropy Pruning) to reduce running time 
and their method has the time complexity of 
O(m4k2). Mueen et al. in [10] tried to reduce this 
complexity by caching distance calculations for 
future use. They introduced a pruning strategy 
and achieved an order of magnitude faster than 
the method in [13]. In [15], Hill et al. used hier-
archical clustering to obtain different shapelets. 
The worst-case time complexity of hierarchi-
cal clustering is O(k3) and after optimization, 
the complexity of hierarchical clustering is 
still O(k2logk). The 1-NN classifier focuses on 
classifying time series with optimal accuracy, 
which provides the best classification accuracy. 
However, the use of DTW-based 1-NN classifi-
ers is less suitable for time series classification 
because it has the O(k4m4) complexity of each 
instance in the training set.
The time complexity of the shapelet filter-
ing pruning method proposed in this paper is 
O(k2m2). It is shown that the shapelet classifi-
cation algorithm used in this paper has a low 
algorithm complexity, and good interpretabili-
ty. So, the method proposed in the paper is a 
classification method with better comprehen-
sive performance. The main advantage of the 
1-NN classification method is only in its clas-
sification accuracy. In some research fields that 
classification is completed according to feature 
types (say image recognition and gesture rec-
ognition), and it is very necessary to provide an 
interpretable process for classification. Classi-
fication metrics in these areas are not limited 
to classification accuracy. Classification algo-
rithm based on shapelets has such an advantage 
in interpretability.
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7. Conclusion

This paper presents a transformation for un-
certain time series classification. We provide a 
new algorithm that just scans the datasets once 
and uses the pruning strategy to remove similar 
shapelets. Experimental results show that the 
proposed classifier can perform uncertain time 
series classification better on most datasets 
compared with the other classifiers. Compared 
with other algorithms, the algorithm proposed 
in the paper can provide similar accuracy and 
less time complexity. More importantly, the 
proposed algorithm can provide good interpret-
ability in uncertain time series classification.
Although the dimensionality reduction process 
can reduce the partial complexity, our method 
still inevitably produces some errors. Based on 
the characteristics of uncertainty in time series 
data, one of the directions for our future work is 
to achieve better shapelet extraction.
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