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Given two distinct vertices (nodes) source s and target 
t of a graph G = (V, E), the two node-disjoint paths 
problem is to identify two node-disjoint paths between 
s  V and t  V. Two paths are node-disjoint if they 
have no common intermediate vertices. In this paper, 
we present an algorithm with O(m)-time complexity 
for finding two node-disjoint paths between s and t in 
arbitrary graphs where m is the number of edges. The 
proposed algorithm has a wide range of applications in 
ensuring reliability and security of sensor, mobile and 
fixed communication networks.
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1. Introduction

Given two distinct vertices (nodes) s and t of a 
graph G = (V, E) with set of vertices V and set 
of edges E, paths P1 and P2 from vertex s to ver-
tex t are said to be node-disjoint iff paths P1 and 
P2 do not contain any common vertices except 
for the endpoints.
The two node-disjoint paths problem is to find 
two node-disjoint paths from source vertex s to 
target vertex t [2]. The two node-disjoint paths 
problem is a fundamental problem with abun-
dant number of applications in diverse areas 
including VLSI layout [3], [4], [5], reliable net-
work routing [6], secure message transmission 

[7], [2], and network survivability [8]. For in-
stance, perfectly secure transmission can be im-
plemented using node disjoint paths by breaking 
up data into several shares and sending them 
along the disjoint paths. This simple expedient 
makes it difficult for an adversary with bounded 
eavesdropping capability to intercept a trans-
mission or tamper with it. In addition, the same 
crucial message can be sent over multiple dis-
joint paths in networks that are prone to message 
losses to avoid omission failures or, in the pres-
ence of faults, information on re-routing of traf-
fic along the network can be provided. Recently, 
[8] introduced a new strategy for using network 
coding over p-Cycles to provide 1 + N protec-
tion against single link failures in optical hyper-
cube networks. Protection paths and cycles are 
commonly used in optical networks to enhance 
performance and reliability [9], [10], [11], [12].
The two node-disjoint path problem and its vari-
ations are fundamental and extensively studied 
in graph theory. Algorithms to find edge-disjoint 
paths were proposed in [13], [14], [15], [16], 
[17], [3]. Ford and Fulkerson [18] proposed an 
O(m)-time algorithm to find edge-disjoint paths 
between two nodes. Node-disjoint paths can 
also be computed in O(m)-time using the same 
method after applying a graph transformation 
with nodesplitting. Later, Suurballe-Tarjan [19], 
[13] and Bhandari [20] proposed algorithms 
that can be used to solve both the edge and the 
node-disjoint paths problems with O(m + nlogn) 
time complexity based on the same method (us-
ing Dijkstra's algorithm implemented using Fi-



2 M. H. Karaata

bonacci heaps) where n is the number of nodes 
in the graph. These algorithms involve calls to a 
regular shortest path algorithm; however, they 
require different graph transformations (e.g., re-
moving links, changing link metrics) to ensure 
that the pair of edge-disjoint paths between a 
source and destination with the minimum sum 
of the metrics on the two paths is obtained (as-
suming that at least one pair of disjoint paths 
exists). The graph transformations of Bhandari 
algorithm may generate links with negative 
metrics, as a result, it requires an associated 
shortest path algorithm such as BFS to handle 
graphs with negative link metrics. The run-times 
of Suurballe and Bhandari algorithms are about 
the same; however, the latter may be more read-
ily extensible to other applications [20]. For that 
purpose, each node on the initial shortest path 
between the source and the destination is split 
into two nodes and another graph is constructed 
by a graph transformation process satisfying a 
number of properties.
Itai and Rodeh [21] presented an algorithm to 
compute two spanning trees of an undirected 
graph G rooted at s such that for any node v the 
two tree paths from s to v are edge-disjoint. If G 
is 2-node connected then the two paths are also 
node-disjoint. The algorithm of Itai and Rodeh 
computes the two spanning trees via an s – t 
numbering [22].
Another sequential solution to the problem of 
finding two disjoint paths between two end-
points in arbitrary graphs is presented in [23]. 
This solution is based on identifying kernels 
using fundamental cycles in the graph. The first 
distributed algorithm for finding two node-dis-
joint paths in arbitrary graphs based on the same 
idea of identifying kernels using fundamental 
cycles of Ishida et al. [23] is given in [24]. In 
addition, sequential solutions to the problem 
based on network flow also exists [17].
A distributed synchronous and asynchronous 
algorithm for disjoint paths is proposed in [25] 
for message passing system model. This algo-
rithm makes use of some ideas from [19], [13] 
and reduced [19] approach into the problem of 
finding minimal shortest path instead of aug-
mented path.
Our proposed algorithm has O(m)-time com-
plexity whereas Suurballe-Tarjan and Bhandari 
algorithms have O(m + nlogn)-time complexity 

while guaranteeing some properties about the 
paths found. The algorithm by Itai and Rodeh 
[21] can also be used to solve the disjoint paths 
problem with the same time complexity as ours. 
On the other hand, our algorithm has a very sim-
ple basis given as a simple lemma and adopts an 
entirely different approach. The node disjoint 
paths algorithms based on Maximum-Flow 
computation such as Ford-Fulkerson and Suur-
balle-Tarjan [19], [13] involve a number of 
phases after the discovery of a shortest path be-
tween two endpoints. First, the initial graph is 
transformed into a new graph where arc weights 
and directions are recomputed. Second, each 
node on the shortest path is split and addition-
al arcs are introduced leading to a new graph. 
Third, another shortest path is constructed be-
tween the two endpoints in the newly obtained 
graph. Fourth, paths common between the two 
constructed disjoint paths and the cycles that 
do not contain both the endpoints are removed 
prior to constructing the two disjoint paths. On 
the other hand, the proposed algorithm is not 
Maximum-Flow computation based and the ba-
sis of the algorithm is given in the form of a 
single lemma. It requires only the identification 
of link paths prior to the construction of the dis-
joint paths. Therefore, the proposed algorithm 
is simpler and more understandable than those 
based on Maximum-Flow computation. In ad-
dition, most solutions available in the literature 
[23], [24], [19], [13] suffer from being overly 
complex or being unfit for use in distributed 
applications. These drawbacks primarily stem 
from the adaptation of solutions to other fun-
damental problems such as edge-disjoint paths, 
fundamental cycles (and kernel) and network 
flow to the solution of the node-disjoint paths 
problem. In addition, many of these solutions 
require the discovery of some global properties 
of the entire graph instead of local properties. 
These impose severe restrictions to the adapta-
tion of the solutions to distributed applications. 
Therefore, it is not clear how these solutions 
could be used to devise a distributed solution to 
the node-to-node disjoint paths problem.
In this paper, we present a novel O(m)-time 
sequential algorithm for finding two node-dis-
joint paths between two distinct vertices s and 
t in arbitrary graphs. The proposed algorithm 
is based on a new method of identifying link 
paths, which is a simple property of general 
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Pi1, 1  i  k, is referred to as the prede-
cessor of Pi.

(iii) For each i, 1  i  k, vertex oi on P is select-
ed to maximize ds(wi).

(iv) The terminus of the last link path Pk is tar-
get wk = t.

P(v, w) denotes the subpath of P with origin v 
and terminus w. P(v, w], P[v, w), and P[v, w] 
denote the same path excluding the terminus, 
origin, and both the origin and the terminus of 
the subpath P(v, w), respectively. Let P1, P2, ..., 
Pk be a sequence of link paths in G for a shortest 
path P between s and t. Also, let oi and wi for 
0  i  k denote the origin and the terminus of 
link path Pi. Let P′ = P1 P[w1, o3] P3 P[w3, o5] 
P5...P2l +1 where 2l + 1  k and 2(l + 1) + 1  k, 
and P″ = P(s, o2) P2 P[w2, o4] P4...P2l where 
2l  k and 2(l + 1)  k be two paths in G. Using 
the above definitions, we define paths P1 and 
P2 as follows. If k is odd, P1 = P′ and P2 = P″ 
P[wk  1, t). Otherwise, P1 = P′ P[wk  1, t) and 
P2 = P″.
The following lemma establishes the basis of 
the proposed algorithm.
Lemma 1. Let P be an arbitrary path between 
two arbitrary but distinct vertices s and t in 
G = (V, E). Graph G contains two node-disjoint 
paths P1 and P2 between endpoints s and t iff 
there exists a maximal sequence of link paths 
P1, P2, ..., Pk in G for P satisfying the four con-
ditions for being a sequence of link paths.
Proof. For the ''if '' direction, we prove the con-
trapositive. We assume that the sequence of link 
paths LP = P1, P2, ..., Pk does not exist and we 
show that two disjoint paths do not exist. Ob-
serve that the sequence LP = P1, P2, ..., Pk does 
not exist if at least one of link paths Pi  i  k 
does not exist. First, if the link path P1 does not 
exist, then the successor of s on P is common 
for all the paths starting from s. Now, consider 
the case where link paths P1, P2, ..., Pi, 1  i  k, 
exist and the next link path Pi +1 does not ex-
ist. Analogously to the above, the terminus of 
Pi is common for all the paths starting from s. 
Thus, in both cases, two disjoint paths between 
s and t cannot exist, hence, the result. For the 
''only if '' direction, we prove by construction. 
We assume that if the sequence of link paths 
LP = P1, P2, ..., Pk exists, then two disjoint 

graphs given as a single lemma in the paper. In 
addition, the proposed algorithm is designed in 
a way to ease its transformation to a distributed 
implementation. As a result, the proposed ap-
proach is well suited for devising distributed 
and fault-tolerant solutions to the problem. It 
is anticipated that this work will initiate further 
work in the area of distributed and fault tolerant 
computing.
The paper is organized as follows. Section 2 
presents the basis of the algorithm and some 
required notations for the formal description 
of the algorithm. Section 3 presents the two 
node-disjoint paths algorithm. In Section 4, we 
provide a correctness proof and the proofs of 
the time complexity bound of the algorithm. We 
conclude the paper in Section 5 with some final 
remarks.

2. Basis of Algorithm
In this section, we present the basis of the pro-
posed solution. Let G = (V, E) be a graph with 
two distinct vertices s, t  V such that G con-
tains two node-disjoint paths between s and t. 
We first define link paths to facilitate the de-
scription of the basis of the algorithm.
Definition 1. Let P be a path between s and t 
and ds(v) the distance of vertex v on P from ver-
tex s. A link path of path P in G is a path disjoint 
from P except for its endpoints that extend from 
a vertex o on P to a vertex w on P such that w 
is the farthest vertex reachable from o, i.e., the 
distance from o to w is maximal. A vertex is 
said to be reachable from another vertex if the 
graph contains a path connecting them.
Let us now define LP = P1, P2, ..., Pk to be a 
maximal sequence of link paths of path P in G, 
each of which has its endpoints on P such that 
the following four conditions are satisfied by LP. 

(i) P1 is the first link path with origin o1(= s) 
and terminus w1.

(ii) Each link path Pi1 where 1  i  k has a 
successor link path Pi that extends from its 
origin oi to its terminus wi such that 

1 2 1
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paths P1 and P2 exist and can be constructed as 
follows: 
(i) if k is even (k = 2l), then P1 = P1, P(w1, o3), 

P3, P(w3, o5), ..., P2i + 1, P(w2i + 1, o2i + 3), ..., 
P2l 1, P(w2l 1, w2l = t] and P2 = P[o1 = s, o2), 
P2, P(w2, o4), P4, ..., P(w2i, o2i + 2), P2i + 2, ..., 
P(w2l2, o2l), P2l (see Figure 1); 

(ii) otherwise, i.e., k is odd (k = 2l + 1), then 
P1 = P1, P(w1, o3), P3, P(w3, o5), P5, ..., 
P(w2i + 1, o2i + 3), P2i + 3, ..., P(w2l1, o2l + 1), 
P2l + 1 and P2 = P[o1 = s, o2), P2, P(w2, o4), 
P4, P(w4, o6), ..., P2i, P(w2i, o2i + 2), ..., P2l; 
P(w2l, w2l + 1 = t].   □

The proposed algorithm constructs the two 
node-disjoint paths between s V and t V in 
four phases executed in sequence, namely the 
forest construction, the discovery of the farthest 
reachable vertex on the shortest path, the con-
struction of link-paths, and the node-disjoint 
paths construction phases.
We assume that a shortest path P from s to t has 
been constructed. In the first phase, a spanning 
forest is constructed, where each tree in the for-
est is rooted at a vertex on P with certain prop-
erties. The constructed forest is used to find, 
for each vertex v on P, the farthest vertex w on 
P reachable via path Pv disjoint from P and to 
discover path Pv from v to w. Then, in the sec-
ond phase, for each vertex v on P, the farthest 
vertex on P reachable from v via a path disjoint 
from P is discovered. Subsequently, in the third 
phase, link paths P1, P2, ..., Pk are identified as 
follows. First, link path P1 is identified as a path 
originating at s ( = o1) with terminus w1 such that 
P1 is disjoint from P (except for its endpoints) 
and w1 is the farthest reachable such vertex on 
path P. Second, link path P2 is identified as a 
path disjoint from P (except for its endpoints) 
originating at vertex o2 on subpath P[s, w1] of 
P and terminating at vertex w2 on P such that 
ds(w2) is maximal. Third, link path P3 is iden-
tified as a path disjoint from P (except for its 
endpoints) originating at vertex o3 on subpath 
P[w1, w2] of P and terminating at vertex w3 on 
P such that ds(w3) is maximal. In the same man-
ner, P4 is identified with its origin on subpath 
P[w2, w3] of P with its terminus w4 on P such 
that ds(w4) is maximal, and so on. Then, in the 
fourth phase, two node-disjoint paths P1 and P2 
are identified using the link paths P1, P2, ..., Pk 
and shortest path P as follows. The maximal 

sequence of link paths with odd subscripts P1, 
P3, ..., P2l + 1 where 2l + 1 = k or P1, P3, ..., P2l 1 
where 2l = k (depending on whether k is odd 
or even) are used to construct path P1, whereas 
the maximal sequence of link paths with even 
subscripts P2, P4, ..., P2l where 2l  k are used 
to construct P2. In each sequence, for every pair 
of consecutive paths in the sequence, such as P1 
and P3 in the sequence of odd subscripted link 
paths, the terminus of each link path and the ori-
gin of the subsequent link path are connected by 
a segment of P between the terminus of the first 
link path of the pair and the origin of the subse-
quent link path on P to construct a disjoint path.
Figure 1 depicts a graph with source vertex s, 
target vertex t and its link paths P1, P2, P3 and 
P4 for shortest path P (shown by a thick line) 
from s to t to illustrate the above approach. 
Note that, although not shown, we assume that 
each of the link paths P1, P2, P3 and P4 con-
tain multiple vertices on them other than their 
endpoints to make P a shortest path in G. Ob-
serve that link path P2 is a successor of link 
path P1, P3 is a successor link path of P2, and 
so on. Figure 2 shows the same graph shown 
in Figure 1 with the node-disjoint paths P1 and 
P2 identified to illustrate the approach to con-
struct the node-disjoint paths. Observe that the 
figure depicts node-disjoint path P1 shown with 
thicker lines and P2 shown with thick lines. No-
tice that the odd subscripted link paths P1 and 
P3 are used to construct node-disjoint path P1, 
whereas, the even subscripted link paths P2 and 
P4 are used to construct node-disjoint path P2. 
Also notice that subpaths P[w1, o3] and P[w3, t) 
of P are added to the link paths P1 and P3 to 
construct P1. Similarly, subpaths P(s, o2] and 
P[w2, o4] of P are added to the link paths P2 and 
P4 to construct P2.

3. Algorithm

In this section, we provide a formal description 
of the algorithm to find two disjoint paths.
Let G = (V, E) be a simple undirected graph 
with two distinct vertices s, t  V such that two 
node-disjoint paths exist between s and t. Let 
P = (VP, EP ) be a shortest path in G from s 
to t. For the sake of brevity, we do not present 
the algorithm to construct P. Instead, we assume 
that path P is constructed using an algorithm 
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available in the literature, such as [26]. We also 
assume that for each vertex v on P, the ds-val-
ue ds(v) of vertex v denoting its distance from 
source vertex s is also computed and available 
to our algorithm. We present our proposed algo-
rithm in the next four subsections, where each 
subsection contains part of the algorithm imple-
menting a phase of the algorithm.

3.1. Forest Construction

In the first phase of the algorithm, for each ver-
tex r on P, a maximal BFS tree Tr = (VT, ET) 
called link tree rooted at r is constructed in G. 
The tree Tr satisfies that each vertex w in G is 
a descendant of r in Tr iff w is reachable from 
r through a path in G not on P and ds(r) is min-
imum. That is, each vertex w in G is a descen-
dant of root r on P iff it is reachable from r via a 
path in G not on P such that r is the root among 
all such roots on P that makes ds(r) minimum. 
Forest F is defined as the set of all link trees 
rooted at nodes on P.
Prior to presenting the algorithm to construct 
forest F, we need the following definitions. 
Variables VT and ET denote a set of vertices 
and edges included in forest F constructed thus 
far, respectively. Variable Q denotes a queue of 
vertices that have not been visited yet. Variable 
m(v) for each vertex v  V denotes whether or 
not vertex v has been visited in the process of 
constructing F. Variable p(v) for each vertex 
v  V denotes the parent of vertex v. Ordered 
set P = s, v1, v2, ..., vk, t denotes a shortest path in 

G from vertex s to vertex t. Statement for each 
 v  P  in order executes its body for each 
value v assigned in order from ordered set P. If 
phrase in reverse order is used instead of in 
order, the body is executed for each element of 
the ordered set P in reverse order. A variation of 
the statement for each  v  P |  predicate  
ensures that the body is executed for those v 
that satisfy predicate  predicate . Variable 
pred(v) denotes the predecessor of vertex v on 
P. The algorithm requires the following input 
parameters: set of vertices V, set of edges E in 
G, and an ordered set of vertices of a shortest 
path P between s and t.
The implementation of the first phase of the al-
gorithm to construct a maximal BFS forest F 
of G with the aforementioned property is given 
with Algorithm 1.

3.2. Discovery of the Farthest Reachable 
Vertex on the Shortest Path

The objective of the second phase is to allow 
each vertex r on P to discover the ds-value of 
the terminus vertex w with the largest ds-value 
(if it exists) of potential link paths originating 
at r. A potential link path is a path in G disjoint 
from P except for its endpoints which are on P.
To implement the objective of the second phase, 
each vertex v in VT maintains a variable l(v) that 
stores the maximal ds-value among reachable 
vertices on P from v through a potential link 
path if it has such a reachable vertex(vertices), 
and 0 otherwise. This is implemented as fol-

Figure 1. A graph with its link paths identified for source s and target t.

Figure 2. A graph with its node-disjoint paths identified for source s and target t using the identified link paths.
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lows. First, for each vertex in VT , the l-value 
of each vertex is assigned 0. After that, in a 
bottom up manner, starting from leaves, each 
vertex computes its l-value as the maximum of 
l-values of its children in VT and its neighbors' 
ds-value on P. When the l-value is computed 
for a vertex v, it discovers the farthest reachable 
vertex on P from v through a segment of link 
path originating at vertex r on P (as l(v) rep-
resents the ds-value of such vertex on P). The 
computation of the l-values in Tr marks link 
paths originating at r as maximal paths with or-
igin r on the vertices whose l-values are equal 
to l(r). Algorithm 2 provides an implementation 
of the second phase of the algorithm.
Thus far, we presented the first two phases of 
the algorithm where each vertex r on P dis-
covers the ds-value of the farthest vertex on P 
reachable from r via a link path. In addition, 
each vertex r on P marks the link path origi-
nating at r. These link paths (or subset of them) 
will be used to construct the two disjoint paths 
in the later phases.

3.3. Identification of Link Paths

We now present the third phase of the algorithm 
to identify origins and terminuses of all link 
paths in LP = P1, P2, ...,Pk using information 
collected in the previous two phases. For that 
purpose, first, vertex s = o1 is identified as the 
origin of the first link path P1. We know that l(s) 
contains the ds-value of the farthest vertex from 
s on P reachable via a link path. The vertex with 
ds-value equal to l(s) is identified as the termi-
nus w1 of P1. Then, in order to find the origin 
of P2, the vertex with the largest l-value in the 
interval [s, w1] is identified as the origin o2 of 
P2. Observe that l(o2) contains the ds-value of 
the farthest vertex from o2 reachable via a link 
path which is the terminus w2 of P2. Then, for 
each link path Pi, 2  i  k, the origin oi of link 
path Pi is identified as the vertex with the larg-
est l-value on P[wi 2, wi  1], while the terminus 
wi of Pi is identified as the vertex whose ds-val-
ue is equal to l(oi). For example, origin o3 of P3 
is the vertex that has the largest l-value among 
vertices on P[w1, w2] and terminus w3 of P3 is 
the vertex whose ds-value is equal to l(o3).
Figure 3 illustrates the approach adopted by the 
third phase of the algorithm. In the figure, the 

numbers above the vertices denote the ds-val-
ues, whereas the numbers below the vertices 
denote the l-values of the corresponding verti-
ces. Since the l-value of s is 2, P1 extends from 
s to w1. The origin of P2 is o2 since o2 has the 
largest l-value of 4 among vertices on P[0, 2]. 
Similarly, since o3 has the largest l-value of 6 
among the vertices on P[2, 4], the origin of P3 is 
o3, and so on. We now describe the implementa-
tion details of the above approach. For each ver-
tex v  VT , three integer variables tc(v), tn(v), 
and or(v) are maintained by the algorithm. The 
two variables tc(v) and tn(v) are used to hold 
the ds-value of current and next terminuses, re-
spectively, of link paths as the vertices on P are 
traversed starting from s towards t.
For each i, 1  i  k, tn-values are used to find the 
largest l-value encountered thus far among ver-
tices on P[wi  1, wi] (or from the origin of P1 to 
its terminus for i = 2) towards t on P. Whereas, 
tc-values are used to propagate the largest l-val-
ue found between wi  1 and wi on P (using tn-val-
ues), from terminus wi to terminus wi + 1 on P. 
The reason for using two variables to find and 
propagate the largest l-value from the origin 
of a link path to its terminus is as follows. Ob-
serve that for i, 1  i  k, we need to separately 
propagate the largest l-value on P[wi, wi + 1] that 
was found on P[wi  1, wi] and find the largest 
l-value found so far on P[wi, wi + 1]. Propagat-
ing the first value is necessary for identifying 
wi +1, while finding the second value is required 
for identifying wi + 2. Since the propagating and 
finding the values takes place on the same in-
terval and they depend on each other, the dis-
covery and the propagation on both cannot be 
implemented using a single integer variable. 
Therefore, we use two variables, namely tn and 
tc for each vertex to implement the discovery 
and the propagation of the largest l-values.
The tc and tn-values are computed in the follow-
ing manner. The tn-value of node s and upon its 
discovery, tn-value of the terminus wi of each 
link path Pi, 1  i  k, is assigned 0. Then, ev-
ery other vertex assigns to its tn-value the larg-
est of its predecessor's tn-value and its l-value. 
Upon completion of these assignments, for each 
i, 1  i  k, tn(pred(wi), where wi is the termi-
nus of link path Pi, contains the largest l-value 
among vertices on P[wi  1, wi] (or P[s, w1] for 
i = 1). To discover the terminus of each link path 
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Algorithm 1.  Forest construction.

1.   procedure TWODISJOINTPATHALGORITHM(V, E, P)
2.         boolean m(v) :false for each vertex v V ;
3.         vertexId p(v) for each vertex v V ;
4.         vertexSet VT  ;
5.         edgeSet ET  ;
6.         queue Q  ;
7.         for all v P in order do
8.               VT : VT 

∩

 {v};
9.               m(v) : true;
10.             addQueue(Q, v);
11.              while empty(Q) do
12.                   x  remQueue(Q);
13.                    if {x P → ds(x)  ds(v) = 1} then
14.                          pred(x)  v;
15.                    end if
16.                    for all w V \ P |{x, w} E  {x, w}  ET  m(x)  m(w) do
17.                          addQueue(Q, w);
18.                          m(w)  true;
19.                          p(w)  x;
20.                          VT : VT 

∩

 {w};
21.                          ET : ET 

∩

 {x, w};
22.                    end for
23.              end while
24.        end for
25.  end procedure

Algorithm 2.  Discovery of the farthest reachable vertex on the shortest path.

1.   integer l(v) for each vertex v VT ;
2.   m(v) : false; l(v)  0; for each vertex v VT ;
3.   for all v VT | m(v)  {v, w} ET

 {(p(w)  v → m(w)} do
4.         l(v) :max{max{v, z} ET

 z P {v, w P → ds(w) ds(v) 1}{ds(z)},
5.                                       max{v, z} ET

 p(z)  v zP {l(z)}, 0};
6.         m(v)  true;
7.         end for

Figure 3. The origins and the terminuses with their ds and l-values of its link paths of a graph for source s and 
target t are shown.
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Pi, 1  i  k, the largest l-value among vertices 
on subpath P[wi  2, wi  1] kept in tn(pred(wi  1)) 
needs to be propagated towards t up to the vertex 
whose ds-value is equal to tn(pred(wi  1)) so that 
this vertex is identified as the terminus of Pi + 1. 
This is implemented using the tc-value comput-
ed at the same time with tn-value for each vertex 
as follows. The l-value of s is assigned to tc(s) 
and upon its discovery, the terminus wi of each 
link path Pi, 1  i  k, assigns tn(pred(wi)) to 
tc(wi). Then, each of the consecutive vertices as-
signs its tc-value, the tc-value of its predecessor 
in P. This propagation continues until encoun-
tering the (terminus) vertex whose ds-value is 
equal to the propagated value. That is, each ter-
minus wi, 1  i  k, of a link path is discovered 
by node wi on P upon discovering that ds(wi) 
= tc(pred(wi)) holds. When tn and tc-values of 
all the vertices on P are computed, each ver-
tex whose ds and its predecessor's tc-values are 
equal is identified as a terminus vertex of a link 
path. In this manner, the tc and tn-values of the 
vertices on P are computed in order, and the ter-
minuses of the link paths in LP are identified 
one after the other.
We now describe how variable or(v) is used to 
identify origins of link paths. Upon discovering 
all terminuses of link paths, observe that pre-
decessor of wi stores in tn(pred(wi)) the largest 
l-value found in the interval [wi  2, wi  1], for 
2  i  k. In order to find origin oi, tn(pred(wi)) 
is assigned to or(pred(wi)) and the or-value is 
propagated toward s until meeting a vertex on 
P with l-value equal to the propagated or-value. 
This vertex is identified as the origin oi of Pi. 
This procedure is applied to all vertices on P 
starting from t until reaching s and identifying 
the origins of link paths.
Next, we describe the details of identifying the 
origins of link paths. After all tc and tn-values of 
vertices on P are computed (and the identification 
of the terminuses of the link paths), or-values of 
vertices on P are computed in reverse order of 
vertices in P as follows. First, or(t) is assigned 
0. In reverse order of vertices in P[wk  1, wk], 
each vertex assigns 0 to its or-value when it 
copies its successor's or-value. In this process, 
upon identifying itself as a terminus vertex by 
discovering that tn(wk  1) = 0, vertex wk  1 as-
signs tn(pred(wk  1)) to or(wk  1). Then, the value 
in or(wk  1) is propagated towards vertex s in re-
verse order of vertices as vertices in ordered set 

P(wk  2, wk  1) copy the or-value of their succes-
sors to their or-values. The propagation of the 
value continues until vertex ok on P[wk  2, wk  1] 
such that l(ok) = or(ok) holds. Observe that the 
vertex on subpath P[wi  2, wi  1] with the largest 
l-value is the origin oi of link path Pi. In order 
for vertex oi, 1  i  k, to discover that it is the 
origin of Pi, the tn-value of pred(wi  1) contain-
ing the largest l-value on P[wi  2, wi  1] needs to 
be propagated towards s until the vertex whose 
l-value is equal to tc(pred(wi  1)) is encountered 
using the or-values. For that purpose, first, the 
largest l-value on subpath P[wi  1, wi] stored in 
tn(pred(wi)) is assigned to or(wi). Subsequently, 
this value is propagated using the or-values of 
vertices on subpath P(oi, wi  1) towards s until 
the vertex oi with l-value is equal to the prop-
agated value. Then, vertex oi whose or-value 
is equal to its l-value is identified as the origin 
of link path Pi. The above approach is imple-
mented through the following actions. For each 
vertex v on P in reverse order, if v = pred(wi), 
i.e., v is the predecessor of terminus wi of a link 
path Pi, for 1  i  k, the value tn(pred(wi)) is 
assigned to or(wi), if v = pred(oi), i.e., v is the 
predecessor of origin oi of link path Pi, zero is 
assigned to or(v), and otherwise, or(suc(v)) is 
assigned to or(v).
Figure 4 illustrates the usage of tn and tc-val-
ues for the propagation of the l-values and the 
discovery of terminuses of link paths. In Figure 
4, the numbers below the vertices denote the 
ds-values of the vertices, whereas, the numbers 
above the vertices denote the l-values of the 
vertices. Vertices s, t, and those that are termi-
nuses of link paths are denoted by filled circles 
to indicate the vertices whose tn-values are 0. 
Each row of arrows in the figure denotes the 
propagation of values using variables tc, tn, or 
or-value direction in which the computation of 
a variable is carried out. The top row of arrows 
in the figure illustrates the computation of the 
tn-values, whereas the second and the third rows 
of arrows illustrate the computation of the tc and 
or-values, respectively, of the vertices on P. The 
number above each arrow denotes the values as-
signed to tc, tn, or or-values of the vertices in 
the subpath of P above the arrows. As shown 
by the arrows, l-value of s propagates towards 
t until the vertex whose ds-value is 2 using the 
tc-values. Observe that since tc-values of verti-
ces are used to propagate 2 from the vertex with 
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ds-value 1 to the one with ds-value 2, they cannot 
be used to propagate 4. Therefore, tn-values are 
used to carry 4 until the vertex with ds-value 4.
The tn-value of s, the origin of P1, is set to 0 and 
tn-values are computed towards t incrementally 
to collect the largest l-value on P encountered 
so far until the terminus w1 of P1, the vertex 
whose ds-value is 2 in the figure. Upon com-
pletion of this, tn(w1) is set to 0 and the tn-value 
of the predecessor of w1 (pred(w1)) contains the 
largest l-value on P(s, w1]. Then, the tn-value of 
pred(w1) is assigned to the tc-value of w1 and 
this value is propagated using tc-values over 
the subpath P(w1, w2) until encountering ver-
tex (w2) whose ds-value is equal to propagated 
value to identify the terminus w2 of P2 in the 
aforementioned manner. While this propagation 
takes place, the largest l-value on P(w1, w2) is 
found using the tn-values. In this manner, the tn 
and tc-values are computed and the terminuses 
of link paths are identified. However, the ori-
gins of link paths are not yet explicitly identi-
fied when the aforementioned computation is 
carried out starting at s and continuing towards 
t. For that purpose, the or-values are computed 
as follows. First or(t) is assigned 0. Notice that 
in Figure 4, the vertex with ds-value of 6 starts 
the propagation of value 7, and it continues until 
reaching the vertex with l-value of 7. Then, this 
vertex is identified as the origin of a link path. 
Similarly, the vertex with ds-value of 4, starts 
the propagation of value 6, and it continues until 
reaching the vertex with l-value of 6. Then, this 
vertex is identified as the origin of a link path.
Algorithm 3 shows the third phase of the algo-
rithm implementing the above strategy. In the 

description of the algorithm suc(v) refers to the 
successor of vertex v on P.
When the third phase of the algorithm termi-
nates, the following propositions hold. As a re-
sult, the origins and the terminuses of link paths 
are identified.

Proposition 1. Vertex v P is the terminus of a 
link path iff tc(pred(v)) = ds(v) holds.

Proposition 2. Vertex v P is the origin of a 
link path iff l(v)  or(v) holds.

Algorithm 3.  Construction of link-paths.

1.   integer tc(v); tn(v), or(v) for each vertex v V ;
2.   tc(s) : l(s);
3.   tn(s) : 0;
4.   for all v  P \{s} in order do
5.         if ds(v)  tc(pred(v)) then
6.               tc(v) : tc(pred(v));
7.               tn(v) : max{tn(pred(v)); l(v)};
8.         else
9.               tc(v) : tn(pred(v));
10.             tn(v) : 0;
11.       end if
12. end for
13. or(t) : 0;
14. for all v P \ t in reverse order do
15.       if tn(v)  0 then
16.             if (l(suc(v)) = or(suc(v))) then
17.                   or(v) : 0;
18.             else
19.                   or(v) : or(suc(v));
20.             end if
21.       else
22.             or(v) : tn(pred(v));
23.       end if
24. end for

Figure 4. The figure illustrates the computation of tn, tc and or-values of vertices on a shortest path between 
two endpoints s and t in the third phase of the algorithm.
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3.4. Construction of Disjoint Paths

We now present the fourth phase of the algo-
rithm that constructs the node-disjoint paths P1 
and P2 based on the previous three phases.
Using the link paths and the shortest path P, 
node-disjoint paths P1 and P2 are constructed as 
follows. First, the first vertex on each is deter-
mined to be s. Second, the second vertex on P1 
is determined to be the neighbor of s on P1, i.e., 
the second vertex on P1 is assumed to be the 
neighbor of s with the largest l-value. In addi-
tion, the second vertex on P2 is determined to be 
the neighbor of vertex s on P. After determin-
ing the first two vertices on P1 and P2, disjoint 
paths P1 and P2 are extended in the same man-
ner, as follows. Let v be the last vertex on the 
disjoint path, either P1 or P2, constructed thus 
far. Notice that vertex v can either be a vertex 
on P or on a link path. We first consider the case 
where v is on path P. If l(v)  or(v) holds for v 
on path P, then the next vertex is determined 
to be the neighbor of v with the largest l-value, 
i.e., the next vertex is the second vertex on the 
link path whose origin is v. Otherwise, the next 
vertex is the successor of v on P. We now con-
sider the case where vertex v is on a link path. 
In this case, the next vertex is determined to be 
the next vertex on the link path. Recall that the 
successor of vertex v on a link path is a child of 
v in T with the largest l-value. The construction 
of each disjoint-path ends after the target vertex 
t is added to the path.
We need the following definitions to facilitate 
the description of the fourth phase of the al-
gorithm. Function app(P, v) appends vertex v 
at the end of path P. Function succP(v) returns 
the successor of vertex v on path P. Function 
last(P) returns the last vertex on path P. Nv de-
notes the neighboring vertices of vertex v in G.

4. Correctness

In this section, we present a number of lemmas 
to establish the correctness of the proposed al-
gorithm.
Lemma 2. After the completion of the first 
phase of the algorithm, a tree T  (VT, ET ) rooted 
at vertex s is constructed in G such that for each 
vertex v and w on P, if ds(v)  ds(w)  1, then 

vertex v is the parent of vertex w, and for each 
vertex v on P, each vertex w in G′  (V \ P, E \ PE) 
where PE denotes the set of edges connecting 
consecutive vertices in P, reachable via a path 
in G′ from vertex v on P such that ds(v) is mini-
mal, is a descendant of v.
Proof. Observe that, in the first phase of the 
algorithm, vertices on P are added to T in or-
der. Also observe that after each vertex v on P 
is added, all the vertices in G reachable from v 
via a path that does not contain a vertex on P 
are added in a BFS manner. Hence, proof fol-
lows.   □
Lemma 3. Upon completion of this phase, 
l(v)-value of each vertex on P denotes the 
ds-value of the farthest vertex from s on P 
reachable via a path disjoint from P (except for 
its endpoints.)
Proof. Observe that for each vertex v T, the 
second phase of the algorithm computes the 
largest ds-value among vertices on P that are in-
cident on a non-tree edge connecting these ver-
tices on P to descendants of v in T and assigns 
it to its l-value, l(v) in a bottom-up manner in T. 
Hence, proof follows.   □
Lemma 4. Let LP  P1, P2, ..., Pk be a se-
quence of link paths in G for source s, target t 
and shortest path P between s and t. P1 is a link 
path with origin s and terminus v(l(s)), where 
v(l(s)) denotes the vertex on P with ds-val-
ue equal to l(s). P2 is a link path with origin 
o2  v(maxl(s, v(l(s)))) and terminus v(l(o2)), 
where maxl(v1, v2) denotes the largest l-value 
among vertices on the subpath of P that extends 
from v1 to v2 on P. For each link path Pi, 2  i  k, 
the origin oi of link path Pi is identified as the 
vertex with the largest l-value among vertices 
on P with the ds-value on P(ds(wi  2), ds(wi 1)), 
where wi  2 is the terminus of link path Pi  2 and 
oi 1 is the origin of link path Pi 1. Whereas the 
terminus of each link path Pi, 0  i  k, with 
origin oi is vertex v(l(oi)).
Proof. Clearly the first link path P1 originates at 
s. Since l(s) denotes the ds-value of the farthest 
reachable vertex from s on P reachable via a 
path disjoint from P, and by Lemma 3 and the 
definition of link paths, P1 terminates at v(l(s)). 
Also by Lemma 3 and the definition of link 
paths P2 is a link path extending from origin 
o2  v(maxl(s, v(l(s)))) to v(l(o2)).
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Notice that for 1  i  k, the origin oi of Pi is the 
vertex with the largest l-value on P(oi  1, wi 1). 
Since the origin oi + 1 of Pi + 1 needs to be on 
P(oi, wi) but cannot be on P(oi  1, wi), origin 
oi + 1 is on P(wi  1, wi). Inductively, by Lemma 3 
and the above, it is easy to show that for each 
link path Pi, 2  i  k, the origin oi of link path 
Pi is identified as the vertex with the largest 
l-value among vertices on P with the ds-value 
on P(ds(wi  2), ds(wi  1)), where wi  2 is the ter-
minus of link path Pi  2 and wi  1 is the terminus 
of link path Pi  1, whereas the terminus of each 
link path Pi, 0  i  k, with origin oi is vertex 
v(l(oi)).   □
Lemma 5. Upon completion of the third phase 
of the algorithm, each vertex of a link path dis-
covers whether or not it is an origin or a termi-
nus of a link path only using the variables of 
the vertex.
Proof. Let Pi, 0  i  k, be a link path with ori-
gin oi and terminus wi.
In the third phase of the algorithm, using the tn 
and tc-values, the terminus of each link path Pi 
starting from link path P1, one after the other, 
is identified as follows. On path P1, value l(s) 
is copied form a vertex to another towards t us-

ing tc-values, when the copied value is equal to 
the ds-value of a vertex, this vertex is identified 
as the terminus of P1. While value l(s) is cop-
ied to vertex w1, tn-values are used to find and 
copy the largest l-value on P[s, w1]. This larg-
est value is used to identify the terminus of P2 
in the same manner by copying the value start-
ing from w1 from a vertex to another towards t 
using tc-values. For the subsequent link paths, 
tn-values are used to find the largest l-value be-
tween two consecutive terminuses wi and wi +1 
and this value is copied form a vertex to anoth-
er from the latter terminus wi +1 towards t using 
tc-values to discover terminus wi + 2. Upon dis-
covery of each terminus, its tn-value is set to 
zero to start discovering the next largest l-val-
ue between the terminus and the consecutive 
terminus. Based on these arguments, it is easy 
to inductively show that all terminuses of link 
paths are identified and their tn-values are set 
to zero upon completion of the third phase of 
the algorithm.
Now, we are to show whether or not a vertex is 
the origin of a link path using only the variables 
of the vertex. Notice that after the third phase of 
the algorithm is completed and the terminuses 
are identified, tn(s)  0 and tn(wi)  0 hold for 
each Pi, 0  i  k. Also notice that after the third 

Algorithm 4.  Node-disjoint paths construction.

1.   path P1, P2 : s;
2.   app(P1, v), where v Ns | j Ns

{l(v)  l( j)};
3.   app(P2, succP (s));
4.   complete-path(P1);
5.   complete-path(P2);
6.   terminate;
7.   function complete-path(Q);
8.   while last(Q)  t do
9.         if (last(Q)  P) then
10.             if (l(last(Q))  or(last(Q))) then
11.                   app(Q, v), where v Nlast(Q) | j Nlast(Q)

{l(v)  l( j)};
12.             else
13.                   app(P2, succP (s));
14.             end if
15.       else
16.             app(Q, v), where v Nlast(Q) | last(Q)  p(v)  l(last(Q))  l(v);
17.       end if
18. end while
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phase of the algorithm is completed, all the fol-
lowings hold.
For every vertex v on P[oi, wi], tn(v) denotes the 
largest l-value among vertices on P[oi, v]. For 
each terminus vertex wi, 0  i  k  1, tn(pred(wi)) 
denotes the largest l-value of vertices on 
P[wi, wi + 1] and the l-value of the vertex that is 
the origin of link path Pi + 2. tn(pred(t)) denotes 
the largest l-value (if any) of a potential link 
path between wk  1 and wk. Otherwise, i.e., if no 
potential link path exists between wk  1 and wk, 
tn(pred(t)) denotes 0.
For every i, 0  i  k , or-values of all the vertices 
on path P[wi, wi + 1] contain value tn(pred(wi)) 
which is the l-value of the origin of Pi + 2.
Therefore, for each i, 0  i  k, or-values of all 
vertices on path P(wi, wi +1) denote the largest 
l-value of vertices on P[wi, wi +1). Since the ori-
gin of each link path Pi + 2, 1  i  k  1 is the ver-
tex with the largest l-value on path P[wi, wi + 1], 
then vertex with the largest l-value on this path 
is the origin of a link path iff l(v)  or(v). Hence, 
the proof follows.   □
Lemma 6. Paths P1 and P2 constructed by the 
algorithm are disjoint between s and t.
Proof. First observe that both P1 and P2 start 
at s and the second vertex on P1 is the second 
vertex on P1, whereas the second vertex on P2 is 
the second vertex on P. Notice that these choic-
es of the second vertices on both P1 and P2 are 
not necessarily unique, however, the choice 
made leads to the construction of disjoint paths.
Now, we are to show that function call com-
plete-path(P1) constructs P1 by including all 
odd numbered link paths, subpaths of P con-
necting the terminus of one odd numbered 
link path to the origin of the consecutive odd 
numbered link path, and if the terminus of the 
last odd numbered link path is not t, the sub-
path of P connecting the terminus of the last 
odd numbered link path and t. Clearly, func-
tion complete-path(P1) in each step adds a new 
vertex v to the constructed path whose last 
vertex is v′ that satisfies the following. If v′ is 
on P and v′ is not an origin of a link path, i.e., 
(tc(v′)  or(v′)). If v is the next vertex on P, v′ 
is on a link path, v is the next vertex on the link 
path. Otherwise, if v′ is the origin of a link path, 
then v is the next node on the link path with v 
as its origin.

Observe that this scheme ensures that after in-
cluding an odd numbered link path in P1 and a 
number of vertices towards t are added to P1 
until encountering the next origin of a link path 
which happens to be the origin of the consec-
utive odd numbered link path or t. This is be-
cause the origin of the even numbered consec-
utive link path precedes the odd numbered link 
path on P. It is easy to see that disjoint path P2 
is constructed in an analogous manner. It is also 
easy to see that, since odd numbered and even 
numbered link paths are node-disjoint, afore-
mentioned subpaths of P connecting odd num-
bered and even numbered subpaths are disjoint, 
and P(s, o2) is included only in P2 and P(wk 1, t) 
is included in one of the disjoint paths P1 or P2, 
paths P1 and P2 are disjoint.   □
Lemma 7. The proposed algorithm has time 
complexity of O(m).
Proof. It is easy to see that the first, the second, 
the third and the fourth phases of the algorithm 
have the time complexities of O(m), O(m), 
O(D), and O(n), respectively, where D denotes 
the diameter of the graph. Hence, the proof fol-
lows.   □
The following lemma establishes the correct-
ness of the proposed algorithm whose proof 
follows from Lemmas 6 and 7.
Lemma 8. The proposed algorithm constructs 
two node-disjoint paths P1 and P2 from s to t in 
O(m)-time.

5. Conclusion

In this paper, we presented a sequential algo-
rithm for finding two disjoint paths in arbitrary 
graphs. Given two distinct vertices s and t of a 
graph G, the disjoint paths problem is to deter-
mine all disjoint paths between s and t. It is an 
open problem to devise an algorithm for finding 
all disjoint paths algorithm in arbitrary graphs 
based on the proposed approach. We are cur-
rently devising a distributed implementation of 
the proposed approach.

It is anticipated that the entirely new proposed 
approach will initiate further research in this 
area with numerous useful applications.
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