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Information uncertainty extensively exists in the re-
al-world applications, and uncertain data process and 
analysis have been a crucial issue in the area of data 
and knowledge engineering. In this paper, we concen-
trate on uncertain time series data clustering, in which 
the uncertain values at time points are represented 
by probability density function. We propose a hybrid 
clustering approach for uncertain time series. Our 
clustering approach first partitions the uncertain time 
series data into a set of micro-clusters and then merges 
the micro-clusters following the idea of hierarchical 
clustering. We evaluate our approach with experi-
ments. The experimental results show that, compared 
with the traditional UK-means clustering algorithm, 
the Adjusted Rand Index (ARI) of our clustering re-
sults have an obviously higher accuracy. In addition, 
the time efficiency of our clustering approach is sig-
nificantly improved.
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1. Introduction

A time series is an ordered sequence of data and 
each element of the time series is indexed by a 
time point. Being one of the most common data 
types, time series data widely exists in various 
application fields such as GIS [12], stock mar-

ket [1], astronomy [21], medical applications 
[37], meteorology [18], biological science [19]. 
In addition, some multimedia data (e.g., audio 
and image data) can be transformed into time 
series data [32]. 

Its unique time-dependent and high-dimension-
al characteristics makes the trend of the prop-
erty information more visible. As a lot of time 
series data are becoming available, how to deal 
with time series data effectively and efficiently 
is of crucial importance and has attracted more 
attention. Much work was devoted to propos-
ing various solutions to analyze time series 
data. For the analysis of time series data, vari-
ous issues have been investigated in literature. 
Among these issues, time series data clustering 
is one of main problems.

Data clustering is one of the essential tasks in 
data mining, which can provide information on 
the similar features of objects for analysis. Due 
to pretreatment steps or subroutines in many 
other techniques (say, classification [29]), data 
clustering has gained substantial attention [17]. 
Currently, many data clustering algorithms 
have been developed [35], among which the 
K-means is the most used clustering algorithm 
that can put the samples into clusters of the 
nearest cluster center iteratively. In the context 
of time series data, there are some efforts de-
voted to time series clustering [4], [13]. In the 
areas of scientific and engineering applications, 
for example, time series data clustering espe-
cially plays an important role. In [21], coronal 
mass ejection (CME) data are modeled as time 
series and the problem of magnetic cloud (MC) 
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this can result in error clustering results. In ad-
dition, time series data is also different from 
stream data which are a series of data generated 
continuously. Time points are not the concern 
of stream data. So, the clustering algorithm for 
uncertain data streams cannot be directly ap-
plied to cluster uncertain time series as well. 
Based on the ULDTW distance for similarity 
calculation, in [41], an improved UK-means 
clustering algorithm named UKMeansULDTW 
was proposed for clustering uncertain time se-
ries. The UK-means clustering has some in-
herent difficulties in time performance and 
effectiveness [17] and, on the other hand, the 
ULDTW distance has high complexity in sim-
ilarity calculation. In this paper, we propose an 
algorithm for clustering uncertain time series 
data by using the UK-means clustering algo-
rithm and the hierarchical clustering algorithm, 
which can improve the performance of uncer-
tain time series clustering.

3. Clustering Uncertain Time Series 
Data with UK-Means and  
Hierarchical Clustering

The hierarchical clustering includes agglomer-
ative hierarchical clustering and split hierarchi-
cal clustering. Being different from the partition 
clustering that compares the similarity between 
each sample and the cluster center, the hierar-
chical clustering focuses on clusters and com-
pares the whole relationships among all clusters 
during the iteration process. This can weaken 
the effect of sample monomer on clustering re-
sults to some extent. Formally, given a sample 
set with n data items, say D = {x1, x2, ..., xn}, let 
xi ∈D (1 ≤ i ≤ n) have m dimensional attributes. 
Then, by means of agglomeration or splitting, 
the hierarchical clustering will gradually cluster 
(partition) D into k sub-clusters, say C = {C1, 
C2, ..., Ck}, where D = C1 

∩ C2 
∩ ... ∩ Ck. Note 

that each data item in D can be included in one 
sub-cluster only. That is, for xi ∈Cj (1 ≤ i ≤ n, 
1 ≤ j ≤ k), we have xi ∉Cm (1 ≤ m ≤ k and m ≠ j).
Being different from the partition clustering, it 
is not needed to set the numbers of final clus-
ters at the beginning of the hierarchical clus-
tering. The numbers of final sample categories 
are dynamically determined during the hier-

Considering the large dimension of time series, 
clustering time series approaches are main-
ly focused on partitioning and density-based 
methods. In [6], [22], [23], genetic algorithms 
were applied for partitional clustering and these 
approaches have competitive performance in 
comparison with classical clustering methods. 
A medoid-based ACO clustering algorithm was 
proposed by using ant colony optimization in 
[25], [24]. The K-shape algorithm proposed in 
[27] is a time series clustering algorithm based 
on the extensible iterative refinement process. 
Furthermore, in [13], a hybrid algorithm was 
proposed based on the advantages of Fuzzy 
C-means clustering (FCM) and Fuzzy C-me-
doids clustering (FCMdd). A recent survey on 
time series clustering is presented in [4].
For clustering uncertain data, the UK-means 
clustering algorithm was proposed in [7], which 
is the first uncertain data-clustering algorithm 
targeting location of devices. The UK-means 
clustering algorithm applies the probability 
density function to represent the next possi-
ble position of the object. Identifying that the 
UK-means clustering has some difficulties of 
time performance and effectiveness because of 
the uncertainty of objects, some modified UK-
means clustering mechanisms were proposed in 
[17]. In [14], based on probability distribution 
similarity, an approach for clustering uncertain 
data was proposed. Along with a plethora of im-
plementations of algorithms, distance measures, 
indexing techniques, evaluation measures and 
visualization components, a general framework 
for clustering uncertain data was proposed in 
[36]. Instead of a partitional or a density-based 
clustering approach, the hierarchical clustering 
paradigm was considered in [10]. 
Note that most work on uncertain data clus-
tering only considers static uncertain data and 
ignores the situation that a large number of un-
certain data arrives continuously. Few efforts 
investigate the issue of clustering uncertain data 
streams (e.g., [2] and [15]). Being very different 
from static data, time series data is a set of val-
ues in order of time, where different time points 
represent the same attributes and the relative 
position between them cannot be exchanged. 
So, the clustering algorithm for static uncertain 
data cannot be used to cluster uncertain time 
series directly because the interdependence of 
time series at time points is not considered and 

or non-MC distinction in CME data is solved 
by clustering and visualizing time series data 
[20]. Considering the large dimension of given 
time series, K-means algorithm is used to pro-
cess time series data due to its high efficiency.

Note that data in practical applications are not 
always certain and accurate. It is a common 
case that the initial collected data may contain 
uncertainty [38]. Several scenarios can result 
in uncertain data, say accuracy of equipment, 
location tracking system, personal privacy en-
cryption and so on [38], [30]. Uncertain data 
widely exist in the real life and uncertain data 
processing has been hereby investigated in di-
verse communities. In the context of databases, 
viewed from the data granularity perspective, 
we can identify two major categories of uncer-
tain data [38]. The first one is about the uncer-
tainty in objects, which means that it cannot be 
determined definitely if an object exists, and 
the second one is about the uncertainty of data 
values, which means that the attribute values 
of objects are not accurate. With an increase in 
the amount of uncertain data available, cluster-
ing of uncertain data, which is a crucial issue 
in uncertain data processing, has become cen-
tral in uncertain data mining [10]. Some clus-
tering algorithms that tackle these issues have 
been proposed in the last two decades [3], [17]. 
Furthermore, there are a few efforts that try to 
cluster uncertain data streams [2], [15].

Uncertain time series data also exists in many 
practical applications such as data recording of 
moving objects, weather forecast and sensor 
network monitoring. Typically, uncertain time 
series data can occur in two scenarios. The first 
one is related to physical collection of time se-
ries data. The accuracy of data obtained from 
a wireless sensor, for example, is associated 
with a certain error distribution. The second 
one is related to privacy preservation of time 
series data and a certain degree of uncertainty 
is sometimes introduced into a time series in-
tentionally. To deal with uncertain time series, 
several issues have been investigated, mainly 
including similarity measurements of uncertain 
time series based on different uncertain time 
series models [39], [5], [34], [26], [9] as well 
as matching and queries [33], [11]. We argue 
that there are many works on handling uncer-
tain time series as well as clustering crisp data 

(including common and time series data) and 
uncertain common data. However, clustering 
of uncertain time series data is scarcely inves-
tigated in the literature. Based on an improved 
UK-means, in [41], an algorithm of clustering 
uncertain time series data named “UKMean-
sULDTW” was proposed. It adopts ULDTW 
distance with limited width instead of the clas-
sical DTW (Dynamic Time Warping) distance 
to calculate the similarity between uncertain 
time series and cluster center. But the perfor-
mance of this clustering algorithm is a problem 
due to some inherent difficulties in the UK-
means clustering [17].

In this paper, we concentrate on clustering un-
certain time series data, where the uncertain 
values at time points are represented by a prob-
ability density function (PDF). We calculate the 
similarity between samples through the proba-
bility density. First, with the UK-means cluster-
ing algorithm based on the Euclidean distance, 
uncertain time series data are partitioned into 
a set of micro-clusters. There is a high degree 
of clustering in each micro-cluster and the time 
series within the micro-cluster are very similar. 
Second, based on the set of micro-clusters, an 
improved DTW distance is applied as similari-
ty measure to merge the micro-clusters, follow-
ing the idea of hierarchical clustering, until the 
number of the target clusters is obtained. 

The remainder of this paper is organized as fol-
lows. Section 2 presents the related work on 
time series data clustering, uncertain data clus-
tering and uncertain time series data cluster-
ing. In Section 3, we introduce the UK-means 
clustering algorithm as well as the hierarchical 
clustering algorithm, and then propose a hybrid 
approach for clustering uncertain time series by 
jointly using the UK-means clustering and hier-
archical clustering algorithms. Section 4 shows 
the results of the experiment. Finally, Section 5 
concludes this paper.

2. Related Work

Data clustering is an important topic in the re-
search area of data mining. Many efforts have 
been carried out for clustering time series data 
and clustering uncertain data.
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generally applied to represent the difference 
between the real and recorded values at time 
points. That is, the real value real(value) has an 
error error(α) with respect to the recorded value 
record.

Let X be the uncertain time series and c be any 
cluster center. Then the expected distance be-
tween X and c is calculated as follows.

( ) ( )2

2

1

,

( )

j j

m

i ji i i
i

ED X c E X c

x c f x dx
=

= −

= −∑ ∫

Here ||  ||2 represents the Euclidean distance be-
tween any two time points and   f (xi) represents 
the probability density function of X at the time 
point i. With the formula above, we present the 
following UK-means algorithm based on the 
Euclidian expected distance for the uncertain 
time series data.

By utilizing the efficiency of traditional UK-
means clustering algorithm, the sample sets are 
divided into K* micro-clusters and then initial-
izing the uncertain time series datasets is com-
pleted. When K* is large enough, the distribu-
tion range of each micro-cluster is limited and 
the samples in each micro-cluster have a similar 
trend. Then, the distance between the samples 
and the cluster centers can be directly calculat-
ed with the Euclidean distance.
Note that the partition-based UK-means cluster-
ing algorithm is simple and highly efficient. But 
it greatly depends on the initial cluster centers. 
When the initial cluster centers are not select-
ed properly, the number of iterations possibly 
increases or the clustering results are only lo-
cally optimal. If the cluster centers are random-
ly selected, we do need to perform clustering 
several times to verify the clustering algorithm. 
This procedure increases time consumption. In 
addition, the agglomerative hierarchical clus-
tering algorithm initially treats each sample as 
a cluster. As a result, too many iterations might 
be needed and the calculation time of the algo-
rithm is increased.

archy partitions according to the indicators of 
agglomeration or splitting. Figure 1 illustrates 
the bottom-up processing of agglomerative hi-
erarchical clustering.
In Figure 1, each data item xi ∈D (1 ≤ i ≤ n) 
is initially treated as a separate cluster Ci

(0) 
with a cluster identifier, where (0) means the 
layer identification of the cluster and i means 
the order of the cluster at the layer. Then we 
have C1

(0), C2
(0), ..., Cn

(0). We choose two clus-
ters that have the shortest distance (e.g., C1

(0) 
and C2

(0)) and merge them into a new cluster. 
The other clusters that are not to be merged and 
the newly generated cluster form an upper lay-
er and are re-assigned new cluster identifiers. 
Then we have C1

(1), C2
(1), ..., C(n - 1)

(1), in which 
C2

(1), ..., C(n - 1)
(1) correspond to C3

(0), ..., Cn
(0), 

respectively, and C1
(1) is the newly generated 

cluster formed by merging C1
(0) and C2

(0). We 
repeat this merging process until a final clus-
ter is obtained or the pre-determined conditions 
are satisfied. It is shown that the processing 
of hierarchical clustering forms a tree. Its leaf 
nodes correspond to the initial statuses of the 
data items to be clustered, and its root node is 
the final clustering result. The layer-by-layer 
changes from leaf nodes to root node reflect the 
merging process of hierarchical clustering.
In this paper, we cluster the uncertain time se-
ries data following the idea of the bottom-up 
processing of agglomerative hierarchical clus-
tering.. For this purpose, we need to deal with 
two problems. The first one is how to create the 
initial clusters for the uncertain time series data. 
We may treat each original uncertain time se-

ries as an initial cluster. But this can result in a 
large number of initial clusters (it is especially 
true for massive uncertain time series) and too 
many iterations, increasing the computing cost. 
The second one is how to choose two clusters 
that have the shortest distance for merging from 
the base clusters. For the first problem, we ap-
ply the UK-means clustering algorithm based 
on the Euclidean distance to create the initial 
clusters for the uncertain time series data. For 
the second problem, we introduce an improved 
DTW distance to calculate the similarity of two 
clusters.

3.1. UK-Means for Uncertain Time Series

To cluster uncertain data, the traditional 
K-means algorithm was extended and the UK-
means algorithm was proposed in [7]. In the 
UK-means algorithm, the expected distance is 
applied to calculate the distance between the 
samples and the cluster centers. Here, uncertain 
time series data is a special kind of uncertain 
data.
Definition. An uncertain time series X is a set of 
ordered series represented by a tuple (  f (xi), ti) 
as follows.

X = {(  f (x1), t1 ), (  f (x2), t2 ), ..., (  f (xm), tm )}, 
(i = 1, 2, ..., m)

Here, (  f (xi), ti) meats the recorded value at the 
time point t_i, which is represented as the prob-
ability density function. In the practical appli-
cations, the probability error function (PEF) is 

Input: uncertain time series set D = {x1, x2, ..., xn}, the number of micro-clusters K*, and the max number of  
iterations T;

Output: the marked sample set C
1. Let numeric (length = n):C                     // record the marker that each sample belongs to
2. Select K* cluster centers randomly and get c = {c1, c2, ..., cK*}                     // initialize cluster centers
3. t = 0                     // t is used to record the number of iterations
4. repeat 
5. for each sample xi in D do
6. minED = Inf
7. cIndex = 0
8. for each cluster center ck in c do
9. Calculate ED (xi, ck)                     // calculate the expected distance between xi and ck
10. if (minED < ED (xi, ck)) do
11. minED = ED (xi, ck)
12. cIndex = k
13. end if
14. end for
15. Assign xi to the cluster represented by ccIndex and mark C [i] with cIndex 
16. end for
17. Update all cluster centers
18. t = t + 1
19. until no any changes happen in the samples of each cluster or t > T
20. return C

Algorithm 1. UK-means.

Figure 1. Bottom-up processing of agglomerative hierarchical clustering.
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merging process of hierarchical clustering.
In this paper, we cluster the uncertain time se-
ries data following the idea of the bottom-up 
processing of agglomerative hierarchical clus-
tering.. For this purpose, we need to deal with 
two problems. The first one is how to create the 
initial clusters for the uncertain time series data. 
We may treat each original uncertain time se-

ries as an initial cluster. But this can result in a 
large number of initial clusters (it is especially 
true for massive uncertain time series) and too 
many iterations, increasing the computing cost. 
The second one is how to choose two clusters 
that have the shortest distance for merging from 
the base clusters. For the first problem, we ap-
ply the UK-means clustering algorithm based 
on the Euclidean distance to create the initial 
clusters for the uncertain time series data. For 
the second problem, we introduce an improved 
DTW distance to calculate the similarity of two 
clusters.

3.1. UK-Means for Uncertain Time Series

To cluster uncertain data, the traditional 
K-means algorithm was extended and the UK-
means algorithm was proposed in [7]. In the 
UK-means algorithm, the expected distance is 
applied to calculate the distance between the 
samples and the cluster centers. Here, uncertain 
time series data is a special kind of uncertain 
data.
Definition. An uncertain time series X is a set of 
ordered series represented by a tuple (  f (xi), ti) 
as follows.

X = {(  f (x1), t1 ), (  f (x2), t2 ), ..., (  f (xm), tm )}, 
(i = 1, 2, ..., m)

Here, (  f (xi), ti) meats the recorded value at the 
time point t_i, which is represented as the prob-
ability density function. In the practical appli-
cations, the probability error function (PEF) is 

Input: uncertain time series set D = {x1, x2, ..., xn}, the number of micro-clusters K*, and the max number of  
iterations T;

Output: the marked sample set C
1. Let numeric (length = n):C                     // record the marker that each sample belongs to
2. Select K* cluster centers randomly and get c = {c1, c2, ..., cK*}                     // initialize cluster centers
3. t = 0                     // t is used to record the number of iterations
4. repeat 
5. for each sample xi in D do
6. minED = Inf
7. cIndex = 0
8. for each cluster center ck in c do
9. Calculate ED (xi, ck)                     // calculate the expected distance between xi and ck
10. if (minED < ED (xi, ck)) do
11. minED = ED (xi, ck)
12. cIndex = k
13. end if
14. end for
15. Assign xi to the cluster represented by ccIndex and mark C [i] with cIndex 
16. end for
17. Update all cluster centers
18. t = t + 1
19. until no any changes happen in the samples of each cluster or t > T
20. return C

Algorithm 1. UK-means.

Figure 1. Bottom-up processing of agglomerative hierarchical clustering.
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method, a quasi-noise ratio ω is set for cluster 
merge. The cluster that does not participate in 
any merge at the current layer is identified as a 
quasi-noise cluster, which is no longer involved 
in further merge. Concretely, in the step 19, to 
upgrade the cluster set at one layer to an upper 
layer, we identify all cluster centers that have 
the shortest distances to each cluster and create 
a set denoted Min(C ) = {C1, C2, ..., Ck}. Here 
Ci means the cluster center that has the short-
est distance to the cluster center Ci. If there is a 
cluster center for which the corresponding clus-
ter is not the nearest one among all clusters, it 
is regarded as the quasi-noise ratio cluster and 
is no longer involved in the subsequent merge 
process. This can effectively reduce the sensi-
tivity of the clustering algorithm to noise points 
and improve the accuracy of clustering.
In the step 20 of Algorithm 2, to update the 
cluster centers, we calculate the ULDTW dis-

tance between each sample and the current 
cluster center and then calculate new cluster 
centers according to the matching path path. 
This can detect the time displacement error be-
tween the samples in the cluster well. Only the 
ULDTW distance between the sample in the 
current cluster and its cluster center is calculat-
ed each time, and as a result, less calculations 
for the ULDTW are needed compared with the 
UKMeansULDTW algorithm in [41].

4. Experiments

4.1. Construction of Uncertain Time Series

UCR [8] is a time series database which contains 
many time series sets in different areas, cover-
ing a variety of time series sets of different time 

3.2. A Hybrid Clustering Approach for 
Uncertain Time Series

By merging the UK-means clustering algorithm 
and the agglomerative hierarchical clustering 
algorithm, we propose a hybrid clustering algo-
rithm named HybridCluster for uncertain time 
series data. Firstly, we utilize the traditional UK-
means algorithm to partition the uncertain time 
series data into K* micro-clusters, where K* is 
less than the number of actual categories in the 
samples, so that the samples in each micro-clus-
ter can be clustered as much as possible. Second-
ly, we utilize the hierarchical algorithm to cluster 
the K* micro-clusters instead of the initial sam-
ples. This can significantly speed up the itera-
tions of the hierarchical clustering algorithm.
In the hierarchical clustering algorithm, to 
merge two clusters, we need to calculate the 
distance between their cluster centers. For this 
purpose, we introduce an improved DTW dis-
tance named ULDTW instead of the original 
DTW. Compared with the DTW distance, the 
ULDTW distance can precisely calculate com-
plex similarities of uncertain time series be-
cause it can solve the problem of time displace-
ment error between time series [41].
Considering the time complexity of DTW, we 
apply the method mentioned in [16], which 
uses a window to limit the width of the match-
ing path in a certain area. Here path [i, j] must 
satisfy the limit that j - r ≤ i ≤ j + r, where 
path [i, j] records the corresponding points (i, j) 
of the matching path and r represents the lim-
ited width of the window. Finally, we apply the 
Euclidean distance to the traditional DTW dis-
tance and then get the ULDTW distance. The 
similarity between the uncertain time series and 
cluster center should satisfy the following:

1. t = [V][T].
2. Ct is temporal class.

Then we have:
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Here Xi represents the subsequence (x1, x2, ..., 
xi) of X. We can see from this formula that in 
the process of matching the optimal path, the 
matching path must be incremental in time, 
which also satisfies the time order of the time 
series. As a result, the ULDTW distance be-
tween the uncertain time series X and the de-
terministic time series Y can be expressed as 
follows.

( ) ( ), ,p qULDTW X Y udtw X Y=

Finally, we have the HybridCluster clustering 
algorithm described in Algorithm 2, which is 
more suitable for uncertain time series.
Some discussions of Algorithm 2 are presented 
as follows.
In the step 2 of Algorithm 2, the selected K* 
should be larger than K, the number of actual 
categories in the sample set, as much as pos-
sible. If K* is too small, on the one hand, the 
UK-means algorithm can generate some clus-
ters that are too large. The sample distribution 
within a large cluster is not similar enough and 
this implies that the samples in the micro-clus-
ter have different categories. On the other hand, 
too large K* can result in too many initial clus-
ters for the hierarchical clustering algorithm 
and this leads to the increase in the number of 
iterations. In this way, the goal of efficiency im-
provement by partitioning micro-clusters with 
the UK-means algorithm cannot be reached. 
So, we apply K* ≥ θK (K* ∈+) to select K*, 
where the numbers of sample sets and sample 
categories are taken into account when θ is se-
lected. Generally, we have θ ∈(1-10). Then, ac-
cording to the concrete number of categories in 
the sample set, we can partition the sample into 
θK micro-clusters so that the sample number 
in a micro-cluster can be reduced as much as 
possible and the distribution range of the mi-
cro-cluster is as small as possible.
In the step 13 of Algorithm 2, we calculate the 
cluster centers by using the expected means. 
Here the value of each cluster center is deter-
minate and the distance between cluster centers 
can be calculated with the DTW distance.
In the step 19 of Algorithm 2, we adopt the qua-
si-noise ratio mechanism that uses a single-lay-
er and multi-cluster merge method. With this 

Input: uncertain time series set D = {x1, x2, ..., xn}, the number of clusters K, the max number of iterations T,  
convergence threshold θ, and window width r;

Output: the marked sample set C
1. Let numeric (length = n):C                     // record the marker that each sample belongs to
2. Select proper K*                     // initialize the number of micro-clusters
3. C = UK-means (D, K*, T, θ)                     // get the set of micro-clusters after partitioning
4. for Ci ∈ C do
5. Ci = Ci

(0)                     // initialize the layer number of each micro-cluster
6. Update each cluster center
7. end for
8. numOfCluster = K*                     // record the cluster number in each layer
9. Let Matrix (ncol = numOfCluster, nrow = numOfCluster):centerDist 

// record the distance between cluster centers 
// numOfCluster is the number of clusters in the current layer 

10. repeat
11. for i in 1: (numOfCluster - 1) do
12. for j in (i + 1): numOfCluster do
13. centerDist [i, j] = DTW (ci, cj, r)$dist

//calculate the distance between any two cluster centers with DTW
14. end for
15. end for
16. Find from centerDist the sign of the pair of clusters whose centers have a shortest distance
17. (Ci, Cj) = min arg (centerDist)
18. Update the sign of samples in Ci and Cj, and update the center of new cluster
19. Upgrade all clusters to upper layer and their layer number is plus 1
20. Update the DTW distance between center of new cluster and the center of other clusters, and update  

centerDist
21. numOfCluster = numOfCluster - 1
22. until numOfCluster = K
23. return C

Algorithm 2. HybridCluster.
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method, a quasi-noise ratio ω is set for cluster 
merge. The cluster that does not participate in 
any merge at the current layer is identified as a 
quasi-noise cluster, which is no longer involved 
in further merge. Concretely, in the step 19, to 
upgrade the cluster set at one layer to an upper 
layer, we identify all cluster centers that have 
the shortest distances to each cluster and create 
a set denoted Min(C ) = {C1, C2, ..., Ck}. Here 
Ci means the cluster center that has the short-
est distance to the cluster center Ci. If there is a 
cluster center for which the corresponding clus-
ter is not the nearest one among all clusters, it 
is regarded as the quasi-noise ratio cluster and 
is no longer involved in the subsequent merge 
process. This can effectively reduce the sensi-
tivity of the clustering algorithm to noise points 
and improve the accuracy of clustering.
In the step 20 of Algorithm 2, to update the 
cluster centers, we calculate the ULDTW dis-

tance between each sample and the current 
cluster center and then calculate new cluster 
centers according to the matching path path. 
This can detect the time displacement error be-
tween the samples in the cluster well. Only the 
ULDTW distance between the sample in the 
current cluster and its cluster center is calculat-
ed each time, and as a result, less calculations 
for the ULDTW are needed compared with the 
UKMeansULDTW algorithm in [41].

4. Experiments

4.1. Construction of Uncertain Time Series

UCR [8] is a time series database which contains 
many time series sets in different areas, cover-
ing a variety of time series sets of different time 

3.2. A Hybrid Clustering Approach for 
Uncertain Time Series

By merging the UK-means clustering algorithm 
and the agglomerative hierarchical clustering 
algorithm, we propose a hybrid clustering algo-
rithm named HybridCluster for uncertain time 
series data. Firstly, we utilize the traditional UK-
means algorithm to partition the uncertain time 
series data into K* micro-clusters, where K* is 
less than the number of actual categories in the 
samples, so that the samples in each micro-clus-
ter can be clustered as much as possible. Second-
ly, we utilize the hierarchical algorithm to cluster 
the K* micro-clusters instead of the initial sam-
ples. This can significantly speed up the itera-
tions of the hierarchical clustering algorithm.
In the hierarchical clustering algorithm, to 
merge two clusters, we need to calculate the 
distance between their cluster centers. For this 
purpose, we introduce an improved DTW dis-
tance named ULDTW instead of the original 
DTW. Compared with the DTW distance, the 
ULDTW distance can precisely calculate com-
plex similarities of uncertain time series be-
cause it can solve the problem of time displace-
ment error between time series [41].
Considering the time complexity of DTW, we 
apply the method mentioned in [16], which 
uses a window to limit the width of the match-
ing path in a certain area. Here path [i, j] must 
satisfy the limit that j - r ≤ i ≤ j + r, where 
path [i, j] records the corresponding points (i, j) 
of the matching path and r represents the lim-
ited width of the window. Finally, we apply the 
Euclidean distance to the traditional DTW dis-
tance and then get the ULDTW distance. The 
similarity between the uncertain time series and 
cluster center should satisfy the following:

1. t = [V][T].
2. Ct is temporal class.

Then we have:
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Here Xi represents the subsequence (x1, x2, ..., 
xi) of X. We can see from this formula that in 
the process of matching the optimal path, the 
matching path must be incremental in time, 
which also satisfies the time order of the time 
series. As a result, the ULDTW distance be-
tween the uncertain time series X and the de-
terministic time series Y can be expressed as 
follows.

( ) ( ), ,p qULDTW X Y udtw X Y=

Finally, we have the HybridCluster clustering 
algorithm described in Algorithm 2, which is 
more suitable for uncertain time series.
Some discussions of Algorithm 2 are presented 
as follows.
In the step 2 of Algorithm 2, the selected K* 
should be larger than K, the number of actual 
categories in the sample set, as much as pos-
sible. If K* is too small, on the one hand, the 
UK-means algorithm can generate some clus-
ters that are too large. The sample distribution 
within a large cluster is not similar enough and 
this implies that the samples in the micro-clus-
ter have different categories. On the other hand, 
too large K* can result in too many initial clus-
ters for the hierarchical clustering algorithm 
and this leads to the increase in the number of 
iterations. In this way, the goal of efficiency im-
provement by partitioning micro-clusters with 
the UK-means algorithm cannot be reached. 
So, we apply K* ≥ θK (K* ∈+) to select K*, 
where the numbers of sample sets and sample 
categories are taken into account when θ is se-
lected. Generally, we have θ ∈(1-10). Then, ac-
cording to the concrete number of categories in 
the sample set, we can partition the sample into 
θK micro-clusters so that the sample number 
in a micro-cluster can be reduced as much as 
possible and the distribution range of the mi-
cro-cluster is as small as possible.
In the step 13 of Algorithm 2, we calculate the 
cluster centers by using the expected means. 
Here the value of each cluster center is deter-
minate and the distance between cluster centers 
can be calculated with the DTW distance.
In the step 19 of Algorithm 2, we adopt the qua-
si-noise ratio mechanism that uses a single-lay-
er and multi-cluster merge method. With this 

Input: uncertain time series set D = {x1, x2, ..., xn}, the number of clusters K, the max number of iterations T,  
convergence threshold θ, and window width r;

Output: the marked sample set C
1. Let numeric (length = n):C                     // record the marker that each sample belongs to
2. Select proper K*                     // initialize the number of micro-clusters
3. C = UK-means (D, K*, T, θ)                     // get the set of micro-clusters after partitioning
4. for Ci ∈ C do
5. Ci = Ci

(0)                     // initialize the layer number of each micro-cluster
6. Update each cluster center
7. end for
8. numOfCluster = K*                     // record the cluster number in each layer
9. Let Matrix (ncol = numOfCluster, nrow = numOfCluster):centerDist 

// record the distance between cluster centers 
// numOfCluster is the number of clusters in the current layer 

10. repeat
11. for i in 1: (numOfCluster - 1) do
12. for j in (i + 1): numOfCluster do
13. centerDist [i, j] = DTW (ci, cj, r)$dist

//calculate the distance between any two cluster centers with DTW
14. end for
15. end for
16. Find from centerDist the sign of the pair of clusters whose centers have a shortest distance
17. (Ci, Cj) = min arg (centerDist)
18. Update the sign of samples in Ci and Cj, and update the center of new cluster
19. Upgrade all clusters to upper layer and their layer number is plus 1
20. Update the DTW distance between center of new cluster and the center of other clusters, and update  

centerDist
21. numOfCluster = numOfCluster - 1
22. until numOfCluster = K
23. return C

Algorithm 2. HybridCluster.
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dimension, different classes, and different num-
bers of samples. In order to evaluate the per-
formances of the clustering algorithm proposed 
in the paper, we utilize the sample sets in UCR 
as our testing data. For the purpose of making 
a comparison, we follow the steps described in 
[14] to construct uncertain time series datasets. 
We apply different norm distribution functions 
with expectation of 0 and variance of 0.1σ - 
0.2σ as the error function at different time peri-
ods, in which σ is the standard variance of each 
raw sample.
With the construction method of uncertain data 
above, we can construct uncertain time series as 
our test datasets. We selected eight sets of data 
that contain different number of classes as our 
test datasets, which were also applied in [41]. 
These test datasets are shown in Table 1. We 
explain their characteristic parameters: K is the 
number of sample classes, N is the number of 
samples of each dataset, and M is the sample 
dimension (i.e., the time span).

4.2. Experimental Results and Analysis

To compare our algorithm proposed in this pa-
per with the traditional UK-means algorithm 
and the UKMeansDTW algorithm proposed in 
[41], Adjusted Rand Index (ARI) [40], which 
is the same evaluation criterion in [7], is ap-
plied to evaluate the clustering results of our 
clustering algorithm named HybridCluster. 
We compare each pair of all the samples, and 
calculate the probability of two samples that 
belong to the same class and are grouped into 
the same cluster as well as the probability of 
two samples that do not belong to the same 
class and are grouped into different clusters. 
We set ARI in [-1, 1], where the closer the 
ARI is to 1, the more accurate the clustering 
results are.
The experiments in this paper are implemented 
in R. Table 2 shows the results of the traditional 
UK-means algorithm, the UKMeansDTW al-
gorithm in [41], and HybridCluster proposed in 
this paper. It is shown in Table 2 that, compared 
with the UKMeansULDTW algorithm, the ARI 
of the HybridCluster algorithm has a little dete-
rioration for partial uncertain time series data-
sets. But, compared with the traditional UK-

means algorithm, the ARI of the HybridCluster 
algorithm shows significant improvement. For 
the hierarchical clustering, the HybridClus-
ter algorithm proposed in the paper adopts the 
ULDTW distance to calculate the distances 
between samples and cluster centers as well 
as distances between cluster centers so that the 
ubiquitous displacement error of time between 
time series data can be mined. We analyze the 
reason why the clustering results of the Hybrid-
Cluster algorithm show a little deterioration for 
partial uncertain time series datasets with re-
spect to the UKMeansULDTW algorithm. Our 
findings imply that only the distances between 
cluster centers and cluster centers are consid-
ered when merging clusters with the hierarchi-
cal clustering algorithm. At this point, more and 
more samples in the clusters and their increas-
ingly complex distributions cause the fact that 
the cluster centers cannot represent all sam-
ples fatefully. Thus, errors consequently arise 
in the cluster merges. The UKMeansULDTW 
algorithm greatly depends on the initial cluster 
centers and its clustering results are therefore 
unstable.

The clustering results of the HybridCluster algo-
rithm, UKMeansDTW algorithm and UKMeans 
algorithm are evaluated and shown in  Table 2. 
Now we evaluate the time efficiencies of these 
approaches. Taking into account the uncertain 
time series datasets that have different sizes and 
dimensions presented n Table 1, Table 3 shows 
the comparison of the efficiencies of clustering 
results by using the UKMeansDTW in [41] and 
the HybridCluster proposed in this paper.

It is shown in Table 3 that, compared with the 
UKMeansULDTW algorithm, the time effi-
ciency of the HybridCluster algorithm is sig-
nificantly improved. In addition, the Hybrid-
Cluster algorithm obtains the initial clusters of 
the datasets by using the traditional UK-means 
algorithm. As a result, the distribution range of 
initial clusters basically covers the areas of the 
uncertain time series, and this hereby reduces 
the sensitivity of the clustering algorithm to 
randomly selected initial cluster centers. Based 
on the initial clusters, the samples in similar 
clusters are gradually merged by using the ag-
glomerative hierarchical clustering algorithm 
and the time of clustering finally tends to be 
stable.

Table 2. The results of HybridCluster, UKMeansDTW and UK-means.

Dataset
ARI K* in  

HybridCluster
Window width 

r of DTWHybridCluster UKMeansDTW UKMeans

Plane 8 0.956 1 0.832 28 5

Coffe 1 1 0.794 0.669 6 3

Symbols 7 0.747 0.753 0.711 8 8

OliveOil 5 0.736 0.718 0.541 8 1

BeetleFly 2 0.734 0.805 0.477 6 1

Synthetic Control 6 0.741 0.77 0.592 15 10

DistalPhalanx- 
OutlineAgeGroup 3 0.568 0 .611 0 .527 9 5

ProximalPhalanx-  
OutlineAgeGroup 4 0.606 0 .545 0 .528 18 1

Table 3. The efficiencies of HybridCluster and UKMeansDTW.

Dataset UKMeansDTW 
(second)

HybridCluster 
(second)

K* in  
HybridCluster

Window width 
r of DTW

% of  
improvement

Plane 8 253.8 61.8 28 5 75.7

Coffe 1 74.4 22.6 6 3 69.6

Symbols 7 171.6 37.7 8 8 78.0

OliveOil 5 346.8 50.4 8 1 85.5

BeetleFly 2 193.8 51.4 6 1 73.1

Synthetic Control 6 287.4 32.2 15 10 88.8

DistalPhalanx- 
OutlineAgeGroup 3 81.7 11.6 9 5 85.8

ProximalPhalanx-  
OutlineAgeGroup 4 102.6 28.8 18 1 71.9

Table 1. Experimental datasets.

Dataset K/N/M Dataset K/N/M
Coffe 2/56/286 Plane 7/105/144

BeetleFly 2/40/512 OliveOil 4/30/570
DistalPhalanxOutlineAgeGroup 3/140/80 Symbols 6/25/398

ProximalPhalanxOutlineAgeGroup 3/205/80 Synthetic Control 6/300/60
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dimension, different classes, and different num-
bers of samples. In order to evaluate the per-
formances of the clustering algorithm proposed 
in the paper, we utilize the sample sets in UCR 
as our testing data. For the purpose of making 
a comparison, we follow the steps described in 
[14] to construct uncertain time series datasets. 
We apply different norm distribution functions 
with expectation of 0 and variance of 0.1σ - 
0.2σ as the error function at different time peri-
ods, in which σ is the standard variance of each 
raw sample.
With the construction method of uncertain data 
above, we can construct uncertain time series as 
our test datasets. We selected eight sets of data 
that contain different number of classes as our 
test datasets, which were also applied in [41]. 
These test datasets are shown in Table 1. We 
explain their characteristic parameters: K is the 
number of sample classes, N is the number of 
samples of each dataset, and M is the sample 
dimension (i.e., the time span).

4.2. Experimental Results and Analysis

To compare our algorithm proposed in this pa-
per with the traditional UK-means algorithm 
and the UKMeansDTW algorithm proposed in 
[41], Adjusted Rand Index (ARI) [40], which 
is the same evaluation criterion in [7], is ap-
plied to evaluate the clustering results of our 
clustering algorithm named HybridCluster. 
We compare each pair of all the samples, and 
calculate the probability of two samples that 
belong to the same class and are grouped into 
the same cluster as well as the probability of 
two samples that do not belong to the same 
class and are grouped into different clusters. 
We set ARI in [-1, 1], where the closer the 
ARI is to 1, the more accurate the clustering 
results are.
The experiments in this paper are implemented 
in R. Table 2 shows the results of the traditional 
UK-means algorithm, the UKMeansDTW al-
gorithm in [41], and HybridCluster proposed in 
this paper. It is shown in Table 2 that, compared 
with the UKMeansULDTW algorithm, the ARI 
of the HybridCluster algorithm has a little dete-
rioration for partial uncertain time series data-
sets. But, compared with the traditional UK-

means algorithm, the ARI of the HybridCluster 
algorithm shows significant improvement. For 
the hierarchical clustering, the HybridClus-
ter algorithm proposed in the paper adopts the 
ULDTW distance to calculate the distances 
between samples and cluster centers as well 
as distances between cluster centers so that the 
ubiquitous displacement error of time between 
time series data can be mined. We analyze the 
reason why the clustering results of the Hybrid-
Cluster algorithm show a little deterioration for 
partial uncertain time series datasets with re-
spect to the UKMeansULDTW algorithm. Our 
findings imply that only the distances between 
cluster centers and cluster centers are consid-
ered when merging clusters with the hierarchi-
cal clustering algorithm. At this point, more and 
more samples in the clusters and their increas-
ingly complex distributions cause the fact that 
the cluster centers cannot represent all sam-
ples fatefully. Thus, errors consequently arise 
in the cluster merges. The UKMeansULDTW 
algorithm greatly depends on the initial cluster 
centers and its clustering results are therefore 
unstable.

The clustering results of the HybridCluster algo-
rithm, UKMeansDTW algorithm and UKMeans 
algorithm are evaluated and shown in  Table 2. 
Now we evaluate the time efficiencies of these 
approaches. Taking into account the uncertain 
time series datasets that have different sizes and 
dimensions presented n Table 1, Table 3 shows 
the comparison of the efficiencies of clustering 
results by using the UKMeansDTW in [41] and 
the HybridCluster proposed in this paper.

It is shown in Table 3 that, compared with the 
UKMeansULDTW algorithm, the time effi-
ciency of the HybridCluster algorithm is sig-
nificantly improved. In addition, the Hybrid-
Cluster algorithm obtains the initial clusters of 
the datasets by using the traditional UK-means 
algorithm. As a result, the distribution range of 
initial clusters basically covers the areas of the 
uncertain time series, and this hereby reduces 
the sensitivity of the clustering algorithm to 
randomly selected initial cluster centers. Based 
on the initial clusters, the samples in similar 
clusters are gradually merged by using the ag-
glomerative hierarchical clustering algorithm 
and the time of clustering finally tends to be 
stable.

Table 2. The results of HybridCluster, UKMeansDTW and UK-means.

Dataset
ARI K* in  

HybridCluster
Window width 

r of DTWHybridCluster UKMeansDTW UKMeans

Plane 8 0.956 1 0.832 28 5

Coffe 1 1 0.794 0.669 6 3

Symbols 7 0.747 0.753 0.711 8 8

OliveOil 5 0.736 0.718 0.541 8 1

BeetleFly 2 0.734 0.805 0.477 6 1

Synthetic Control 6 0.741 0.77 0.592 15 10

DistalPhalanx- 
OutlineAgeGroup 3 0.568 0 .611 0 .527 9 5

ProximalPhalanx-  
OutlineAgeGroup 4 0.606 0 .545 0 .528 18 1

Table 3. The efficiencies of HybridCluster and UKMeansDTW.

Dataset UKMeansDTW 
(second)

HybridCluster 
(second)

K* in  
HybridCluster

Window width 
r of DTW

% of  
improvement

Plane 8 253.8 61.8 28 5 75.7

Coffe 1 74.4 22.6 6 3 69.6

Symbols 7 171.6 37.7 8 8 78.0

OliveOil 5 346.8 50.4 8 1 85.5

BeetleFly 2 193.8 51.4 6 1 73.1

Synthetic Control 6 287.4 32.2 15 10 88.8

DistalPhalanx- 
OutlineAgeGroup 3 81.7 11.6 9 5 85.8

ProximalPhalanx-  
OutlineAgeGroup 4 102.6 28.8 18 1 71.9

Table 1. Experimental datasets.

Dataset K/N/M Dataset K/N/M
Coffe 2/56/286 Plane 7/105/144

BeetleFly 2/40/512 OliveOil 4/30/570
DistalPhalanxOutlineAgeGroup 3/140/80 Symbols 6/25/398

ProximalPhalanxOutlineAgeGroup 3/205/80 Synthetic Control 6/300/60
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Figure 2 presents the clustering times of using 
the UKMeansULDTW algorithm and the Hy-
bridCluster algorithm after the cluster centers 
of the same dataset are randomly selected for 
several times, respectively. It is shown in Fig-
ure 2 that when it comes to UKMeansULDTW 
there is a different cluster center used each time 
and this results in unsteady iterations, namely, 
the timing of each execution varies consider-
ably. Furthermore, the execution times of the 
HybridCluster algorithm are not affected by the 
randomly selected initial cluster centers and the 
timing of clustering for the same dataset tends 

to be stable no matter how many attrempts of 
random tests are made.

5. Conclusion

The UK-means algorithm has been widely ap-
plied to tackle the problem of clustering un-
certain data. In the context of uncertain time 
series data, uncertain values at time points are 
represented by probability density functions. 
For the purpose of clustering uncertain time se-
ries data, in this paper, we apply the UK-means 

clustering algorithm based on the Euclidean 
distance to partition the initial uncertain time 
series data into a set of micro-clusters. Based 
on the micro-clusters, we apply an improved 
DTW distance to calculate the similarity of the 
micro-clusters and then merge the micro-clus-
ters until the number of the target clusters is 
obtained by following the idea of hierarchical 
clustering. We demonstrate our clustering ap-
proach for uncertain time series data with ex-
periments. The experimental results show that, 
compared with the traditional UK-means algo-
rithm, the ARI of our clustering approach has 
a significant improvement. The experimental 
results also show that, compared with the ex-
isting approach for clustering uncertain time 
series data, the time efficiency of our clustering 
approach is significantly improved as well. In 
our future work, we will evaluate and analyze 
our clustering approach on massive uncertain 
time series data sets.
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Figure 2 presents the clustering times of using 
the UKMeansULDTW algorithm and the Hy-
bridCluster algorithm after the cluster centers 
of the same dataset are randomly selected for 
several times, respectively. It is shown in Fig-
ure 2 that when it comes to UKMeansULDTW 
there is a different cluster center used each time 
and this results in unsteady iterations, namely, 
the timing of each execution varies consider-
ably. Furthermore, the execution times of the 
HybridCluster algorithm are not affected by the 
randomly selected initial cluster centers and the 
timing of clustering for the same dataset tends 

to be stable no matter how many attrempts of 
random tests are made.

5. Conclusion

The UK-means algorithm has been widely ap-
plied to tackle the problem of clustering un-
certain data. In the context of uncertain time 
series data, uncertain values at time points are 
represented by probability density functions. 
For the purpose of clustering uncertain time se-
ries data, in this paper, we apply the UK-means 

clustering algorithm based on the Euclidean 
distance to partition the initial uncertain time 
series data into a set of micro-clusters. Based 
on the micro-clusters, we apply an improved 
DTW distance to calculate the similarity of the 
micro-clusters and then merge the micro-clus-
ters until the number of the target clusters is 
obtained by following the idea of hierarchical 
clustering. We demonstrate our clustering ap-
proach for uncertain time series data with ex-
periments. The experimental results show that, 
compared with the traditional UK-means algo-
rithm, the ARI of our clustering approach has 
a significant improvement. The experimental 
results also show that, compared with the ex-
isting approach for clustering uncertain time 
series data, the time efficiency of our clustering 
approach is significantly improved as well. In 
our future work, we will evaluate and analyze 
our clustering approach on massive uncertain 
time series data sets.
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