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For network control systems (NCSs) with parameter 
uncertainties, packet loss and time-delays, the design 
for the observer and robust H∞ fault-tolerant control-
ler is discussed with the event-triggered mechanism. 
The random Markov jumping system is used to de-
scribe the NCSs with faults. In order to reduce the fre-
quency of data transmission and save network channel 
resources, the discrete event-triggered mechanism is 
utilized, which allows the NCS to transmit the signal 
when the trigger condition is met only. Under this 
mechanism the system states are estimated by the ob-
server provided, while a robust fault-tolerant control-
ler is designed for actuator failures, so that the NCSs 
can remain stable in the event of failures. Finally, the 
proposed method is verified by simulation, the respec-
tive results showing its validity and feasibility.
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1. Introduction

Computer technology and network communi-
cation technology have developed rapidly. In 
the development of control theory and control 
engineering, computer technology and network 
communication technology have been absorbed 
and merged, making both control systems more 
complex and the controlled objects more diver-
sified. This combination of multiple fields has 
led to the emergence and rapid development of 
Network Control Systems (NCSs) [1–4], which 
are closed-loop feedback control systems 

formed over a communication network. NCSs 
are not only widely used in the fields of com-
plex industrial control, but also in such military 
fields as guidance and control. 
On the one hand, the combination of the con-
trol system and the network enables the control 
field to advance and bring many advantages. 
On the other hand, due to the diversity and un-
predictability of networks, their use also brings 
new problems to the control systems. For ex-
ample, network randomness can cause failures 
such as induced time delays, data packet drop-
outs, communication constraints, and quanti-
zation errors, which can affect system perfor-
mance and even undo stability [5–9]. In [6], 
the problem of simultaneous H∞ stability in a 
large-scale physically interconnected system 
working in multiple operating modes is stud-
ied. The focus is on the design of distributed 
controllers to make the mean square error stable 
in the large-scale system. In [7], a robust H∞ 
control problem is proposed for a class of lin-
ear time-varying NCSs with uncertainties and 
external disturbances, which simultaneously 
considers both delay and data packet dropouts. 
A fault-tolerant robust non-fragile H∞ filtering 
problem for networked control systems with 
sensor failures is studied in [8]. 
Network failures make the control system more 
complicated. In the actual process of the sys-
tem, components such as sensors and actuators 
may fail. At the same time, the system will also 
be affected by external disturbances. These 
factors will affect the stability of the system. 
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necessary to consider the observer-based con-
trol problem. In this paper, for NCSs with pa-
rameter uncertainties, time delays, data packet 
dropouts, and communication constraints, un-
der the event-triggered mechanism, the design 
for the observer and robust H∞ fault-tolerant 
controller are discussed. The research object 
NCSs are described as random Markov jump-
ing systems. The event-triggered mechanism 
was introduced in order to weaken the influ-
ence of network failures. The network system 
can transmit the signal when the trigger condi-
tion is met. Time delays and packet dropouts 
can be regarded as not satisfying the triggering 
conditions. By designing the state observer, 
the operating states of the NCSs are estimat-
ed. For random actuators failures, the robust 
fault-tolerant controller is given to keep the 
system stable even in cases of failure. The pur-
pose is to make NCSs have fault tolerance and 
anti- disturbance capabilities. Finally, the ef-
fectiveness of the proposed method is verified 
by simulation and compared with the existing 
methods.

2. Problem Statements

2.1. System Modeling

We consider NCSs based on the event-triggered 
mechanism, as shown in Figure 1, where τ1 and 
τ2 are random time delays. τ1 is the time delay 
from the controller to the actuator, τ2 is the time 
delay from the sensor to the controller, 0 < τm ≤ 
τi ≤ τM (i = 1, 2), where τm and τM are the mini-
mum and maximum time-delays, respectively.
Given the probability space (Ω, F, P), where 
Ω is the sample space, F is the σ algebraic sub-
set of the sample space, and P is the measured 
probability in F. Assuming that there are net-
work failures such as random time delays, pack-
et dropouts, and communication constraints in 
the communication of the link in the NCSs, the 
NCSs model is generally established as the fol-
lowing multi-delays Markov jumping system 
with parameter uncertainties:

ly applied to NCSs [26–34]. Compared to the 
time-triggered mechanism, the event-triggered 
mechanism enables the system to form a path 
only when the data meets the trigger condition. 
Time delay and packet dropouts caused by time 
triggering during network transmission cannot 
form a path. The event-triggered mechanism 
can effectively eliminate the impact of time 
delay and packet dropouts on the system, while 
also reducing the amount of data transmission 
in the system and saving network resources. In 
[26], an event-triggered fuzzy adaptive com-
pensation controller is constructed for uncer-
tain stochastic nonlinear systems with given 
transient specification and actuator failures. 
In [27], an event-triggered control problem of 
uncertain nonlinear systems caused by actuator 
failures is studied. The failure of the actuator 
is allowed to be unknown, and the total num-
ber of failures can be unlimited. The paper [30] 
is concerned with event-triggered H∞ control 
for a class of nonlinear networked control sys-
tems: an event-triggered transmission scheme 
is introduced to select 'necessary' sampled 
data packets to be transmitted so that precious 
communication resources can be saved signifi-
cantly. In [33], a systematic methodology for 
the design of (distributed) dynamic quantizers 
is proposed to ensure input-to-state stability 
of a size-adjustable set around the origin. To 
save communication resources, the transmis-
sion instants of each sensor are determined by 
event-triggering mechanisms. In [34], the stat-
ic and dynamic event-triggered control strat-
egies are proposed that aim at reducing the 
utilization of communication resources while 
guaranteeing desired stability and performance 
criteria and a strictly positive lower bound on 
the inter-event times despite the presence of 
packet losses. 
In summary, the application of the event-trig-
gered mechanism in recent years has attracted 
the attention of many scholars, whose research 
has improved the performance of NCSs. 
At present, most research results of the 
event-triggered scheme assume that the states 
for the controlled object are measurable. How-
ever, the NCSs in actual engineering are dis-
tributed real-time feedback systems. When 
technology and other conditions are restrict-
ed, it is very difficult to obtain all the states' 
information for the controlled object, so it is 

Therefore, when NCSs are discussed, many 
factors are considered, which makes the NCSs 
research more challenging.
Among the faults caused by networking, the 
most common ones are network-induced time 
delays and data packet dropouts [10–12]. H∞ 
output feedback control for NCSs with time de-
lay, data packet dropout, and disorder that oc-
curred in both sensor-to-controller and control-
ler-to-actuator channels, is considered in [11]. 
In [12], the problem of data-based network con-
trol for a class of nonlinear systems is solved. 
By using a packet-based transmission mecha-
nism and a model-free adaptive control algo-
rithm, a data-based network predictive control 
method is proposed to actively compensate for 
the random RTT delay. 
Therefore, it is of great research value and prac-
tical significance to explore some control meth-
ods to minimize or eliminate the impact of the 
above two faults in system operation. At pres-
ent, many scholars have studied this and pro-
posed many effective control methods [13–15], 
here including robust control, random control, 
event-triggered mechanism, time-delays com-
pensation control, and the like. 
In NCSs, the state at the current moment is re-
lated to the previous moment, which is very 
similar to Markov chains. At the same time, 
network states are random, while the Markov 
process is also a random process, so this latter 
can accurately show the states of network sys-
tems. Based on the above characteristics, the re-
search of NCSs can be regarded as the research 
of systems with Markov process [16–20]. Spe-
cifically, the Markov jumping system is a ran-
dom hybrid system with Markov process. This 
hybrid system can describe several different 
modes at the same time, and the modes can be 
transferred and switched through the Markov 
chain. This feature of the Markov jumping sys-
tem accurately describes the sudden change for 
the network states. 
In actual engineering applications, it is inev-
itable that some unpredictable emergencies 
will occur during system operation, especially 
in network communication systems. Based on 
this, the use of the Markov jumping system is 
an effective method to model complex NCSs. 
But at present, the research of robust fault-tol-
erant control (FTC) stability for the Markov 

jumping system in a networked environment is 
still not unflawed, and further research is still 
needed. 
For some problems, such as actuator failures 
and external disturbances in the system, it is 
necessary to design a robust fault-tolerant con-
trol to ensure the stability of the system [21–
25]. Robust fault-tolerant control refers to the 
design of control methods when there are faults 
or other uncertain factors in the system so that 
the system can still operate stably and achieve 
the desired performance. Therefore, the re-
search of robust fault-tolerant control for NCSs 
is of great significance. In fact, the research 
on fault analysis and fault-tolerant control for 
NCSs with time delay and packet dropouts has 
attracted many scholars' attention in the recent 
years. In [21], a new data-based FTC scheme is 
proposed in a parameter-dependent form. The 
time-varying parameters are adjusted online 
based on an adaptive method to automatical-
ly compensate the uncertainties, disturbances, 
and actuator faults. In [22], direct adaptive 
state feedback control schemes are developed 
to solve the robust fault-tolerant compensa-
tion control problem for linear time-invariant 
continuous-time systems with actuator failures 
and external disturbances. The problem of sen-
sor fault estimation and fault-tolerant control 
for a class of Takagi-Sugeno Markovian jump 
systems, which are subjected to sensor faults 
and partially unknown transition rates, is ad-
dressed in [23]. This paper describes the de-
sign of a fault-tolerant controller with a guar-
anteed cost for a new network control system 
with time-varying sensor faults. Based on the 
time delay of the network transmission envi-
ronment, a network control system with sensor 
failure is modeled as a discrete-time system 
with uncertain parameters in [25]. 
In NCSs, the traditional time-triggered mecha-
nism has good predictability and realizability. 
However, the time-triggered mechanism has 
also disadvantages. The network control system 
based on the time-triggered mechanism period-
ically sends sampled signals to the controller, 
which produces a large number of redundant 
signals be transmitted over the communication 
channel. The possibility of data packet colli-
sion and network congestion in the communi-
cation channel is thus increased. Therefore, the 
event-triggered mechanism has been gradual-
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criteria and a strictly positive lower bound on 
the inter-event times despite the presence of 
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In summary, the application of the event-trig-
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time delay of the network transmission envi-
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In NCSs, the traditional time-triggered mecha-
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occur, and useless data may occupy the net-
work channel excessively, which will cause the 
NCSs to crash. For these network problems, the 
event-triggered mechanism can be introduced 
in the system (as shown in Figure 1). A func-
tion related to the states at the sampling time is 
constructed in the event-triggered mechanism, 
comparing whether the states at the sampling 
time or the state errors meet the trigger condi-
tion, so as to determine whether the state data is 
transmitted. Data that does not meet the trigger 
conditions will not trigger the channel to cause 
data to be transmitted. Therefore, the event-trig-
gered mechanism can eliminate the adverse ef-
fects of time delay and packet dropouts network 
failures, and at the same time, the amount of 
transmitted data is reduced, so that the network 
congestion problem is alleviated. 
Assumption 1. The system states are completely 
measurable, driven by events, and the sampling 
time is h. ik h = tk h + lh represents the current 
sampling time, l is a positive integer (l ≥ 0), 
while tk h is the moment when the data is suc-
cessfully transmitted. 
Assumption 2. The event-triggered mechanism 
does not affect the detection of fault informa-
tion in the system, i.e., the whole fault informa-
tion will be transmitted to the observer at the 
sampling time. 
Remark. Considering system performance re-
quirements and changes in real-time status, in 
order to make data transmission related only to 
the status and status error of the system at the 
sampling moment, an event-triggered commu-
nication mechanism (5) based on the sampling 
moment is created. This makes data transmis-
sion a variable cycle. 
Definition 1. Considering the limited capacity 
of the channel, an event-triggered mechanism is 
adopted to reduce the amount of data transmis-
sion in the network. The event-triggered mech-
anism is defined as follows:

{ ( ) ( )
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where Σ is the event-triggered matrix, and β 
∈[0, 1) is the event-triggered parameter. The 
state error of transmission is as follows:

( ) ( ) ( )x k k ke i h x i h x t h= −             (6)

Definition 1 indicates that the release time 
tk +1h of the next sampling state is obtained by 
equation (5). According to this event-triggered 
mechanism, the received current sampling data 
x(tk h + lh) will be filtered. The sampled data 
that meets this condition is sent to the control-
ler, otherwise the current sampled data is dis-
carded.
Definition 2. At the time of transmission, there 
may be time delays caused by various informa-
tion transmissions, and the time difference of 
sampled data in the NCSs is t - ik h. We define 
the maximum network delay as τ(t) and 0 < τm 
≤ τ(t) ≤ τM, where τm and τM are the upper and 
lower bounds of the time-delay, respectively. 
Let τs = τM - τm.

2.3. Closed-loop System Based on  
Event-triggered Mechanism

The state feedback controller based on the 
event-triggered mechanism is designed as:
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Based on the event-triggered mechanism and 
the output y(tk h), the server is designed as: 
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where ˆ( )x t ∈n is the estimated value of the 
observation state, ˆ( )y t ∈p is the observation 
output value, and Gi is the state observer gain 
matrix. The residual rr(t), state estimation er-
ror   e(t) and residual estimation error re(t) are 
respectively defined, as follows:
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Where {r (t), t ≥ 0} is a continuous-time Mar-
kov chain defined in the probability space (Ω, 
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In equation (1), x(t) ∈n is the state vector, 
u(t) ∈m is the input vector, y(t) ∈p is the 
output vector, f (t) ∈r is the unknown actuator 
fault in the system, and ω(t ) ∈q is the external 
disturbance that satisfies ω(t ) ∈L2 [0, ∞). A(r (t )),  
Ad (r (t )), B(r (t )), Bd (r (t )), C(r (t )), D(r (t )) and 
E(r (t )) are the known matrices with appropriate 
dimensions. ∆A(r (t )) and ∆B(r (t )) are the un-
certainties of the parameter matrices in the sys-
tem. For r(t) = i, i ∈S, the uncertainty matrices 
satisfy the following equation

[∆Ai    ∆Bi] = MF(t)[Nai    Nbi]           (3)

where M, Nai and Nbi are the known matrices 
with appropriate dimensions, and F(t) is an 
unknown time-varying matrix that satisfies 
FT(t)F(t) ≤ I. I is the unit matrix with appropri-
ate dimensions. The superscript "T" represents 
the transpose of a matrix. 
Considering the system failures caused by the 
actuators, the matrix L = diag{l1, l2, ..., lm} is 
introduced to represent the actuator failures. 
lm = 0 denotes the complete failure of the m-th 
actuator, while lm = 1 denotes its normal opera-
tion. Finally, lm ∈(0, 1) means partial failure of 
the m-th actuator. 
In order to facilitate the description of the 
faults form, assume Ei = -(Bi + ∆Bi) and Lu(t) 
= u(t) - f(t), so that the system (1) can be trans-
formed into the following form:
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where Ai, Adi, Bi, Bdi, Ci and Di, are the known 
matrices with appropriate dimensions.

2.2. Event-triggered Mechanism

In the process of data transmission through the 
network systems, the problems of network-in-
duced time-delay and data packet dropouts may 

Figure 1. Structure diagram of networked control system based on event triggering.
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occur, and useless data may occupy the net-
work channel excessively, which will cause the 
NCSs to crash. For these network problems, the 
event-triggered mechanism can be introduced 
in the system (as shown in Figure 1). A func-
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fects of time delay and packet dropouts network 
failures, and at the same time, the amount of 
transmitted data is reduced, so that the network 
congestion problem is alleviated. 
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where Σ is the event-triggered matrix, and β 
∈[0, 1) is the event-triggered parameter. The 
state error of transmission is as follows:

( ) ( ) ( )x k k ke i h x i h x t h= −             (6)

Definition 1 indicates that the release time 
tk +1h of the next sampling state is obtained by 
equation (5). According to this event-triggered 
mechanism, the received current sampling data 
x(tk h + lh) will be filtered. The sampled data 
that meets this condition is sent to the control-
ler, otherwise the current sampled data is dis-
carded.
Definition 2. At the time of transmission, there 
may be time delays caused by various informa-
tion transmissions, and the time difference of 
sampled data in the NCSs is t - ik h. We define 
the maximum network delay as τ(t) and 0 < τm 
≤ τ(t) ≤ τM, where τm and τM are the upper and 
lower bounds of the time-delay, respectively. 
Let τs = τM - τm.

2.3. Closed-loop System Based on  
Event-triggered Mechanism

The state feedback controller based on the 
event-triggered mechanism is designed as:

( ) [ )1( ) , ,i k k M k Mu t K x t h t t h t hτ τ+= ∈ +    (7)

where Ki is the feedback control gain. From 
Definition 1 and Definition 2, we get:

( )( ) ( )( )
( ) ( )( ) ( )( )2

( )

.

i x k

i x k

u t K x t t e i h

u t K x t t e i h

τ

τ τ

 = − −


− = − −     

 (8)
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where ˆ( )x t ∈n is the estimated value of the 
observation state, ˆ( )y t ∈p is the observation 
output value, and Gi is the state observer gain 
matrix. The residual rr(t), state estimation er-
ror   e(t) and residual estimation error re(t) are 
respectively defined, as follows:

x t A r t A r t x t

A r t x t E r t f t
B
d

( ) ( ) ( ) ( )

( ) ( ) ( )

� � � � � �� � �

� � �� � � � � �

�

�1
rr t B r t u t

B r t u t D r t t
y t C r

d

( ) ( ) ( )

( ) ( ) ( )

( ) (

� � � � �� � �

� � �� � � � �
�

�

� �2

tt x t) ( ).� �

�

�

�
�
�

�

�
�
�

   (1)

Where {r (t), t ≥ 0} is a continuous-time Mar-
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( )ˆ( ) ( ) ( )rr t W y t y t= −               (10)

ˆ( ) ( ) ( )e t x t x t= −                    (11)

( ) ( ) ( )e rr t r t f t= −                  (12)

where W is the residual gain matrix. 
From equation (11), the following state estima-
tion system error can be obtained:
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From equations (10) and (12), the residual esti-
mation error can be obtained:
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From equation (4) and (8), and Definition 2, the 
event-triggered closed-loop control system can 
be obtained:
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where ( )bi i i i di iK B B LK B K= + ∆ + .

2.4. Several Lemmas

In this section, several related lemmas are giv-
en. 
Lemma 1 (Schur Complement) [35]. For a giv-
en symmetric matrix 
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the following three equations are equivalent:

S < 0
S11 < 0, 1

22 12 11 12 0TS S S S−− <        (16)
S22 < 0, 1

11 12 22 12 0TS S S S−− < .

Lemma 2 [36]. For any positive definite sym-
metric matrix W∈n×n, parameter τ (0 ≤ τ ≤ τM ), 
and vector function x: [- τM    0] → n, the fol-
lowing integral inequality holds
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Lemma 3 [37]. Assuming that f1, f2, ..., fN: m → 
 have positive values in an open subset D of 
m, then in D the reciprocal convex combina-
tion of fi (t) satisfies the constraint:
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where {gi, j : m → , gj, i(t) = gi, j(t)}.
Lemma 4 [38]. Given the matrices Y, U and V 
with appropriate dimensions, and Y that is sym-
metrical, then:

( ) ( ) 0T T TY UF t V V F t U+ + <

for all F(t) satisfying FT(t)F(t) ≤ I (I is the iden-
tity matrix), if and only if there exists a scalar 
α > 0 such that:

1 0T TY UU V Vα α−+ + < .

3. Markov Jump NCSs Performance 
Analysis Based on Observer 

The NCSs in actual engineering are distribut-
ed real-time feedback systems. Sometimes it is 
very difficult to obtain all the state information 
for the controlled object. Therefore, it is nec-
essary to consider the observer-based control 
problem. 
Theorem 1. For the state estimation error sys-
tem (13), given positive scalars τm, τM, τs, γ1, γ2 
and α, if there are positive definite symmetric 
matrices Pi, W, Qi (i = 1, 2) and Ri(i = 1, 2, 3), 
for which the following linear matrix inequality 
holds
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then there is an observer (9), which makes 
the error dynamic system (13) asymptotically 
stable and has H∞ performance. The mark   is 
used as an ellipsis for the symmetrically trans-
posed part of the matrix.
Proof: Choose the Lyapunov-Krasovskii func-
tion, as follows:

1

2

0
1

0
2

3

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

m

m

M

m

M

m

M

T
i

t T
t

t T
t

t T
mt

t T
Mt

t T
st

V t e t P e t

e s Q e s ds

e s Q e s ds

e s R e s dsd

e s R e s dsd

e s R e s dsd

τ

τ
τ

τ θ

τ θ

τ
τ θ

τ θ

τ θ

τ θ

−

−

−

− +

− +

−

− +

= +

+

+

+

+

∫

∫

∫ ∫

∫ ∫

∫ ∫

 

 

 

    

 (20)



62 63X. Fu and X. Geng Event-triggered Observer-based Robust H∞ Fault-tolerant Control for Markov Jumping NCSs

( )ˆ( ) ( ) ( )rr t W y t y t= −               (10)

ˆ( ) ( ) ( )e t x t x t= −                    (11)

( ) ( ) ( )e rr t r t f t= −                  (12)

where W is the residual gain matrix. 
From equation (11), the following state estima-
tion system error can be obtained:

( )
( ) ( )
( ) ( )

( ) ( )

( )

i i

di i i

i i

i

e t A A e t

A G C e t

B B f t
D t

τ

ω

= + ∆ +

− − −

+ ∆ +



        

 (13)
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then there is an observer (9), which makes 
the error dynamic system (13) asymptotically 
stable and has H∞ performance. The mark   is 
used as an ellipsis for the symmetrically trans-
posed part of the matrix.
Proof: Choose the Lyapunov-Krasovskii func-
tion, as follows:
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Taking the derivative of the function V(t), the 
results are as follows:
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From Lemma 2 and Lemma 3, the following in-
equalities can be obtained:
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then the equation (21) can be written as follows:
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According to Lemma 4, the uncertain term can 
be eliminated. From Lemma 1, we can get:

1
1 1 1 1

ˆ T TM M N Nα α−Φ = Φ + +
   

         (30)

where

1

1 2 3

0 0 0 0

0 0

T T
i

T T T
m M s

M M P

M R M R M Rτ τ τ

= 




,

[ ]1 0 0 0 0 0 0 0 0ai biN N N= −


,

ˆ
*

a b

c

Φ Φ 
Φ =  Φ 

.                    (31)

In summary, the following inequality can be 
obtained:
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When f (t) = 0 and ω(t) = 0, the error system 
is asymptotically stable. For any ω(t) ∈[0, ∞), 
integrating from t0 to t on both sides, we can get 
the following:
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In the zero initial state, when t → ∞, the follow-
ing inequality holds:
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It shows that the error system is stable and 
meets the H∞ performance. The proof is thus 
complete.
Based on the analysis of the H∞ performance 
of the error system, combined with the idea of 
congruent transformation and variable replace-
ment, the solution of the observer matrix is giv-
en below. 
Corollary. For the state estimation error sys-
tem (13), given positive scalar τm, τM, τs, γ1, γ2, 
a, b, c and α if there are positive definite sym-
metric matrices Pi, Ti W, Qi (i = 1, 2) and Ri (i = 
1, 2, 3), the following linear matrix inequality 
holds:
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Taking the derivative of the function V(t), the 
results are as follows:
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From Lemma 2 and Lemma 3, the following in-
equalities can be obtained:
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According to Lemma 4, the uncertain term can 
be eliminated. From Lemma 1, we can get:
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In summary, the following inequality can be 
obtained:
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When f (t) = 0 and ω(t) = 0, the error system 
is asymptotically stable. For any ω(t) ∈[0, ∞), 
integrating from t0 to t on both sides, we can get 
the following:
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In the zero initial state, when t → ∞, the follow-
ing inequality holds:
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It shows that the error system is stable and 
meets the H∞ performance. The proof is thus 
complete.
Based on the analysis of the H∞ performance 
of the error system, combined with the idea of 
congruent transformation and variable replace-
ment, the solution of the observer matrix is giv-
en below. 
Corollary. For the state estimation error sys-
tem (13), given positive scalar τm, τM, τs, γ1, γ2, 
a, b, c and α if there are positive definite sym-
metric matrices Pi, Ti W, Qi (i = 1, 2) and Ri (i = 
1, 2, 3), the following linear matrix inequality 
holds:
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the closed-loop system asymptotically stable. 
Combining the ideas of congruent transforma-
tion and variable replacement, the gain matrix 
solution of the fault-tolerant controller is given. 
Theorem 2. For the closed-loop control system 
(15), given positive scalars τm, τM, τs, γ, α and 
β ∈[0, 1), if there are positive definite symmet-
ric matrices Xi, Yi, S, Ui (i = 1, 2) and Vi(i = 
1, 2, 3), for any actuator failures, the following 
linear matrix inequality holds.
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m
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s

V M
V M
V M

τ
τ
τ

 
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  

,

( )27
T

m i di i iP A TCτΦ = − ,

( )28
T

M i di i iP A TCτΦ = − ,

( )29
T

s i di i iP A TCτΦ = − ,

57
T

m i iB PτΦ = − ,

58
T

M i iB PτΦ = − ,

59
T

s i iB PτΦ = − ,

67 i
T

m iD Pτ=Φ ,

68 M i
T
iD PτΦ = .

Then, there is an observer Gi = Pi
-1Ti, which 

makes the system asymptotically stable. 
Proof: Multiply both ends of Φ by the following 
diagonal matrix and its transpose

{
}1 1 1

1 2 3i i i

diag I I I I I I

PR PR PR I I I− − − .

From

( ) ( )

2 1

1

2

0,

i i i i i

i i i i i

a R aP PR P

aR P R aR P

−

−

− + −
≤

− − −

≤

the following transformation can be obtained
1 2

1 1
1 2

2 2
1 2

3 3

2
2
2

i i i

i i i

i i i

PR P aP a R
PR P bP b R
PR P cP c R

−

−

−

− ≤ − +
− ≤ − +
− ≤ − +           

 (36)

Let PiGi = Ti. The matrix inequality Φ can be 
available. Then, the observer gain matrix is 
Gi = Pi

-1Ti. The proof is thus complete.

4. Fault-tolerant Controller Design 
with Actuator Failure 

The robust fault-tolerant control design based 
on the event-triggered mechanism is proposed 
in this section. Fault-tolerant control can re-
duce the effect of actuator failure and keep 

1 0 0
* 0
* *

f

I
I

I

α
α

− −
 Ψ = − 
 − 

,

11 1 1 2

1

2

,

T
i i

S

ij j
j

XA A X X U V V

X P Xδ
=

Ψ = + − − + + +

∑

( )12 di i di iA X B L B YΨ = + + ,

13 12X VΨ = − ,

14 22X VΨ = − ,

( )15 i di iB L B YΨ = − + ,

( )22 32X S VβΨ = − + ,

( )25 2X SβΨ = − − ,

33 1 2 1 34X U U V VΨ = − + − + + ,

34 2XΨ = ,

44 2 2 36X U V VΨ = − + + + ,

( )( )55 1 2X SβΨ = − − ,

( )27
T

m di i i di iA X B LY B YτΨ = + + ,

( )28
T

M di i i di iA X B LY B YτΨ = + + ,

( )29
T

s di i i di iA X B LY B YτΨ = + + ,

( )57
TT

m i i diY B L BτΨ = − + ,

( )58
TT

M i i diY B L BτΨ = − + ,

( )59
TT

s i i diY B L BτΨ = − + .

Then the fault-tolerant controller is 

Ki = Yi Xi
-1,

which can make the system stable and meet a 
certain H∞ performance. 

Proof: Choose the Lyapunov-Krasovskii func-
tion, as follows:
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1
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2

3

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) .
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M
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T
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t
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t

t T
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t T
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t T
st

V t x t Px t

x s Q x s ds

x s Q x s ds

x s R x s dsd

x s R x s dsd
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τ
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τ θ

τ

τ θ

τ θ

τ θ

τ θ

−

−

−

− +

− +

−

− +
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+

+

+

+

∫

∫

∫ ∫

∫ ∫

∫ ∫

 

 

 

    

 (38)

Taking the derivation of V(t) and introducing 
the event-triggered mechanism, the following 
expression can be obtained:

( )

( ) ( )

( ) ( )

1
1

1 2

2
2 1

2
1 2

2
2 3

3

2

.

m m m m

M M

m

M

m

M

S
T T

i ij j
j

T T

T T
m

t T T
m Mt

t T T
M st

t T T
s x k x kt

T
x k x k

V t x Px P x Q x

x Q x x Q x

x Q x x R x

x R xds x R x

x R xds x R x

x R xds e i h e i h

e i h e i h

τ τ τ τ

τ τ

τ

τ

τ

τ

δ

τ

τ τ

τ τ

τ

=

−

−

−

−

= + + −

+ −

+ −

+ −

+ −

+ Σ −

Σ

∑

∫

∫

∫





 

   

   

 

(39)

Let
( ) ( )x t tδη= ,

[ ]0 0i i di bi bi iA A A K K Dδ = + ∆ − − ,

( )
m M

T T T T T T T
xt x x x x eτ τ τη ω =  .

According to Lemma 1, Lemma 2 and the 
event-triggered mechanism, equation (39) can 
be written as:

( ) ( ) ( ) ( ) ( )

( )
( )

2

2 2
1 2

2
3

T T

T
m M

s

V t y t y t t t

t R R

R t

γ ω ω

η τ δ δ τ δ δ

τ δ δ η

+ −

≤

Ψ + +
+ 





   

 (40)
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the closed-loop system asymptotically stable. 
Combining the ideas of congruent transforma-
tion and variable replacement, the gain matrix 
solution of the fault-tolerant controller is given. 
Theorem 2. For the closed-loop control system 
(15), given positive scalars τm, τM, τs, γ, α and 
β ∈[0, 1), if there are positive definite symmet-
ric matrices Xi, Yi, S, Ui (i = 1, 2) and Vi(i = 
1, 2, 3), for any actuator failures, the following 
linear matrix inequality holds.

* 0
* *

a b c

d e

f

 Ψ Ψ Ψ
 Ψ = Ψ Ψ < 
 Ψ           

 (37)

where,

11 12 13 14 15

22 3 3 25

33 34

44

55
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* 0
* * 0 0
* * * 0 0
* * * * 0
* * * * *

i i
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D X
V V

Iγ

Ψ Ψ Ψ Ψ Ψ 
 Ψ − − Ψ 
 Ψ Ψ

Ψ =  Ψ 
 Ψ
 

− 

,

27 28 29

57 58 59

0 0 0
0 0 0

T T T
m i M i s i

b

T T T
m i M i s i

XA XA XA

D D D

τ τ τ

τ τ τ

 
 Ψ Ψ Ψ 
 
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 Ψ Ψ Ψ
 
  
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0 0 0

T T
ai i

T
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T
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M XN XC

N LY
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 
 
 
 
 Ψ =
 
 

− 
 
 

,

1
1

1
2

1
3

0 0
* 0
* *

d

V
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−

−

−

 −
 Ψ = − 
 − 

,

1

2

3

0 0
0 0
0 0

m
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s

V M
V M
V M

τ
τ
τ

 
 Ψ =  
  

,

( )27
T

m i di i iP A TCτΦ = − ,

( )28
T

M i di i iP A TCτΦ = − ,

( )29
T

s i di i iP A TCτΦ = − ,

57
T

m i iB PτΦ = − ,

58
T

M i iB PτΦ = − ,

59
T

s i iB PτΦ = − ,

67 i
T

m iD Pτ=Φ ,

68 M i
T
iD PτΦ = .

Then, there is an observer Gi = Pi
-1Ti, which 

makes the system asymptotically stable. 
Proof: Multiply both ends of Φ by the following 
diagonal matrix and its transpose

{
}1 1 1

1 2 3i i i

diag I I I I I I

PR PR PR I I I− − − .

From

( ) ( )

2 1

1

2

0,

i i i i i

i i i i i

a R aP PR P

aR P R aR P

−

−

− + −
≤

− − −

≤

the following transformation can be obtained
1 2

1 1
1 2

2 2
1 2

3 3

2
2
2

i i i

i i i

i i i

PR P aP a R
PR P bP b R
PR P cP c R

−

−

−

− ≤ − +
− ≤ − +
− ≤ − +           

 (36)

Let PiGi = Ti. The matrix inequality Φ can be 
available. Then, the observer gain matrix is 
Gi = Pi

-1Ti. The proof is thus complete.

4. Fault-tolerant Controller Design 
with Actuator Failure 

The robust fault-tolerant control design based 
on the event-triggered mechanism is proposed 
in this section. Fault-tolerant control can re-
duce the effect of actuator failure and keep 

1 0 0
* 0
* *

f

I
I

I

α
α

− −
 Ψ = − 
 − 

,

11 1 1 2

1

2

,

T
i i

S

ij j
j

XA A X X U V V

X P Xδ
=

Ψ = + − − + + +

∑

( )12 di i di iA X B L B YΨ = + + ,

13 12X VΨ = − ,

14 22X VΨ = − ,

( )15 i di iB L B YΨ = − + ,

( )22 32X S VβΨ = − + ,

( )25 2X SβΨ = − − ,

33 1 2 1 34X U U V VΨ = − + − + + ,

34 2XΨ = ,

44 2 2 36X U V VΨ = − + + + ,

( )( )55 1 2X SβΨ = − − ,

( )27
T

m di i i di iA X B LY B YτΨ = + + ,

( )28
T

M di i i di iA X B LY B YτΨ = + + ,

( )29
T

s di i i di iA X B LY B YτΨ = + + ,

( )57
TT

m i i diY B L BτΨ = − + ,

( )58
TT

M i i diY B L BτΨ = − + ,

( )59
TT

s i i diY B L BτΨ = − + .

Then the fault-tolerant controller is 

Ki = Yi Xi
-1,

which can make the system stable and meet a 
certain H∞ performance. 

Proof: Choose the Lyapunov-Krasovskii func-
tion, as follows:
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∫
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∫ ∫
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 
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 (38)

Taking the derivation of V(t) and introducing 
the event-triggered mechanism, the following 
expression can be obtained:

( )

( ) ( )
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2
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2
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2
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m m m m
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x Q x x Q x
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δ
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τ τ
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τ
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−
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−

−
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+ −

+ −

+ −

+ −
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∑

∫

∫

∫





 

   

   

 

(39)

Let
( ) ( )x t tδη= ,

[ ]0 0i i di bi bi iA A A K K Dδ = + ∆ − − ,

( )
m M

T T T T T T T
xt x x x x eτ τ τη ω =  .

According to Lemma 1, Lemma 2 and the 
event-triggered mechanism, equation (39) can 
be written as:

( ) ( ) ( ) ( ) ( )

( )
( )

2

2 2
1 2

2
3

T T

T
m M

s

V t y t y t t t

t R R

R t

γ ω ω

η τ δ δ τ δ δ

τ δ δ η

+ −

≤

Ψ + +
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
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11 12 1 2

22 3 3 3

33 3

44

2

* 2 0
* * 0 0
* * * 0 0
* * * * 0
* * * * *

0

i bi i i
T

T

R R PK PD
R R R

R

I

β

β
γ

 Ψ Ψ −
 Ψ + − Σ 
 Ψ −

Ψ =  
Ψ 

 Σ −Σ
 

−  
Ψ <

 









   

(41)

( ) ( )11

1 1 2
1

,

T
i i i i i i

S
T

i i ij j
j

P A A A A P

Q R R C C Pδ
=

Ψ = + ∆ + + ∆ +

− − + +∑



( )12 i di biP A KΨ = + ,

22 3 3 32 TR R R βΨ = − − − + Σ ,

33 1 2 1 3Q Q R RΨ = − + − − ,

44 2 2 3Q R RΨ = − − − .

According to Lemma 1, equation (40) can be 
written as:

2 2 2
1 2 3m M sR R Rτ δ δ τ δ δ τ δ δΨ + + + = Ψ .   (42)

According to Lemma 4, the parameter uncer-
tain terms in the matrix can be eliminated. We 
can then get:

1
2 2 2 2

ˆ T TM M N Nα α−Ψ = Ψ + +
   

.        (43)

Let

2

1 2 3

0 0 0 0 0T T
i

T T T
m M s

M M P

M R M R M Rτ τ τ

= 




,

( ) ( )
]

2 0 0

0 0 0 0 .

T T
ai bi i bi iN N N LK N LK= −



ˆ ˆ
ˆ 0

ˆ*
a b

c

 Ψ Ψ
Ψ = < 

Ψ                 
 (44)

11 12 1 2 15

22 3 3 3

33 3

44

2

ˆ ˆ ˆ

* 2 0
* * 0 0ˆ
* * * 0 0
* * * * 0
* * * * *

i i
T

T

a

R R PD
R R R

R

I

β

β
γ

 Ψ Ψ Ψ
 

Ψ + − Σ 
 Ψ −

Ψ =  
Ψ 

 Σ −Σ 
−  







,

17 18 19

27 28 29

57 58 59

67 68 69

ˆ ˆ ˆ

ˆ ˆ ˆ

0 0 0ˆ
0 0 0

ˆ ˆ ˆ

ˆ ˆ ˆ

b

 Ψ Ψ Ψ
 
Ψ Ψ Ψ 
 
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Ψ Ψ Ψ 
 Ψ Ψ Ψ 

,
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2
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 Ψ = − 
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,

11 1 1 2
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ˆ

,

T T
i i i i i i

S

ij j
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P A A P Q R R C C

Pδ
=

Ψ = + + − − + +

∑

( )12
ˆ

i di i i di iP A B LK B KΨ = + + ,

( )15
ˆ

i i i di iP B LK B KΨ = − + ,

17 1
ˆ T

m iA RτΨ = ,

18 2
ˆ T

M iA RτΨ = ,

19 3
ˆ T

s iA RτΨ = ,

( )27 1
ˆ T

m di i i di iA B LK B K RτΨ = + + ,

( )28 2
ˆ T

M di i i di iA B LK B K RτΨ = + + ,

69 3
ˆ T

s iD RτΨ = ,

( )29 3
ˆ T

s di i i di iA B LK B K RτΨ = + + ,

( )57 1
ˆ TT

m i i diK B L B RτΨ = − + ,

68 2
ˆ T

M iD RτΨ = ,

( )58 2
ˆ TT

M i i diK B L B RτΨ = − + ,

( )59 3
ˆ TT

s i i diK B L B RτΨ = − + ,

67 1
ˆ T

m iD RτΨ = .

Multiply both sides of Ψ by the diagonal matrix

{
}

1 1 1 1 1

1 1 1
1 2 3

i i i i idiag P P P P P

I R R R I I

− − − − −

− − − ,

and let X = Pi
-1, Ki X = Y, Ui = Qi, Vi = Ri, Σ 

-1 
= S.
From

( ) ( )

2 1

1

2

0,

i i i i i

i i i i i

a R aP PR P

aR P R aR P

−

−

− + −
≤

− − −

≤

the following expressions can be obtained:

1 1 1 1

1 1 1 1

2 2
2 2

i i i i i i

i i i i i i

P Q P P Q X U
P R P P R X V

− − − −

− − − −

 ≥ − = −


≥ − = −      
 (45)

Therefore, the matrix inequality Ψ can be ob-
tained. In summary, it can be concluded that

2( ) ( ) ( ) ( ) ( )

( ) ( )

T T

T

V t y t y t t t

t t

γ ω ω

η η

+ −
≤

Ψ



      

 (46)

If Ψ < 0 then ( ) 0V t < , the error system is as-
ymptotically stable. For any ω(t) ∈[0, ∞), inte-
grating both sides of (46), we can get:

( )

( )
0

0

2

( )

( ) ( ) ( ) ( )
t T T

t

V t V t

y t y t t t dtγ ω ω

−

<

− −∫        

 (47)

In the zero initial state, when t → ∞ , the fol-
lowing inequality holds:

2

0 0
( ) ( ) ( ) ( )T Ty t y t dt t t dtγ ω ω

∞ ∞
<∫ ∫     

 (48)

That is, the closed-loop system of fault-toler-
ant control has certain disturbance suppression, 
and the system can achieve asymptotic stability. 
The proof is thus complete. 

5. Numerical Simulation 

In order to verify the effectiveness of the pro-
posed algorithm in the Markov jump NCSs, 
the corresponding matrices and parameters are 
chosen, as follows. 
The minimum and maximum values of the time 
delay are τm = 0.01 and τM = 0.03, the event-trig-
gered parameter is β = 0.2, while the sampling 
time is h = 0.1 s. 
Consider that the system switches between two 
modes, S = {1, 2}. The state probability transi-
tion rates matrix and the system parameter ma-
trices of the two modes are given as:

0.4 0.4
0.3 0.3

δ
− 

=  − 

Mode 1:

1

1.2 0.8
0.7 1

A
− 

=  − 
,
 

1

0.7 0.3
1 0dA

− 
=  
 

,

1

1 0
0 0.8

B  
=  − 

,
 

1

0.1 0.3
0 0.6dB  

=  
 

,

1

1 0
0 1

C  
=  
 

,
 

1

0
0.5

D  
=  − 

.

Mode 2:

2

3 1
2 1

A
− 

=  − 
,
 

2

2.3 1.1
0.7 0.1dA
− 

=  − 
,

2

1 0
0 0.5

B  
=  
 

,
 

2

0.5 0
0 0.1dB  

=  
 

,

2

1 0
0 1

C  
=  
 

,
 

2

0
0.2

D  
=  − 

.

The uncertain term matrices ∆Ai and ∆Bi satis-
fy the equation (3), where M = [0.2   0.1]T, Nai 
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Therefore, the matrix inequality Ψ can be ob-
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If Ψ < 0 then ( ) 0V t < , the error system is as-
ymptotically stable. For any ω(t) ∈[0, ∞), inte-
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In the zero initial state, when t → ∞ , the fol-
lowing inequality holds:
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That is, the closed-loop system of fault-toler-
ant control has certain disturbance suppression, 
and the system can achieve asymptotic stability. 
The proof is thus complete. 

5. Numerical Simulation 

In order to verify the effectiveness of the pro-
posed algorithm in the Markov jump NCSs, 
the corresponding matrices and parameters are 
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delay are τm = 0.01 and τM = 0.03, the event-trig-
gered parameter is β = 0.2, while the sampling 
time is h = 0.1 s. 
Consider that the system switches between two 
modes, S = {1, 2}. The state probability transi-
tion rates matrix and the system parameter ma-
trices of the two modes are given as:
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The uncertain term matrices ∆Ai and ∆Bi satis-
fy the equation (3), where M = [0.2   0.1]T, Nai 
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after adopting fault-tolerant control, which 
shows that the designed robust fault-tolerant 
controller can effectively reduce the impact of 
both faults and external disturbances. The ef-
fectiveness of the fault-tolerant control method 
is thus proven. 

Under the event-triggered mechanism, the re-
lease instants and release interval are shown in 
Figure 10. If the time-triggered mechanism is 
adopted, the control task needs to be executed 
300 times. By using the event-triggered mech-
anism described in this paper, the control task 
is executed 248 times, thus saving 52 commu-
nication instances. It can be seen that, based on 
ensuring the asymptotic stability of the NCS, 
the event-triggered mechanism is well-applied 
to reduce the number of data transmissions in 
the channel, hence saving network resources. 
The validity of the designed event-triggered 
mechanism and controller is thus verified.

= [0.3   0.1] and F(t) = sint are selected. The 
external disturbance is ω(t) = 0.1 sin0.5t. Other 
parameters are defined as γ1 = 1.7, γ2 = 2.5, γ = 
1, α = 1, a = 0.1, b = 0.2, c = 0.3.
According to Corollary, the observer gain ma-
trix and residual gain matrix can be solved as:

1

0.6764 0.4810
0.4235 0.1443

G  
=  
 

,

1

2.1208 1.1614
1.1614 1.6549

W  
=  
 

,

2

3.5578 1.1641
1.6781 0.7568

G
− 

=  − 
,

2

0.6782 0.4783
0.4783 0.8285

W
− 

=  − − 
.

The system states and estimated states are 
shown in Figure 2 and Figure 3. It can be seen 
that the state curves observed by the observ-
er are very close to the actual system. This 
shows that the observer designed in this paper 
can approximate the real states of the system, 
which proves that the observer has good per-
formance. 
As a comparison, according to the method in the 
reference [39], the state curves of the observer 
are shown in Figure 4 and Figure 5. It can be 
seen that the method in the reference shows a 
relatively large error for state estimation.

Next, fault tolerance performance is verified 
through simulation for two cases. Assume that 
the two types of actuator failure matrix are de-
fined as:

1

0.2 0
0 0.8

L L  
= =  

 
, or 2

1 0
0 0

L L  
= =  

 
.

According to Theorem 2, the gain matrices of 
the fault-tolerant controller and the event-trig-
gered matrices in the case of corresponding 
faults can be obtained as follows. 
When L1 fails, the matrix of the fault-tolerant 
controller and the event-triggered matrix are:

1

0.0148 0.0109
0.0102 0.0102

K
− 

=  − 

1

1.1898 0.1318
0.1318 2.0166
− 

Σ =  − 

2

2.0012 0.201
0.2031 0.0207

K
− 

=  − 

2

0.2213 0.1228
0.1228 0.4397
− 

Σ =  − 

Now, the system state curves are shown in Fig-
ure 6 and Figure 7.
When L2 fails, the matrix of the fault-tolerant 
controller and the event-triggered matrix are:

Figure 2. State x1 response curve. Figure 3. State x2 response curve.

1

3.2017 0.0228
0.0238 2.2307

K
− 

=  − 

1

2.1995 0.0548
0.0548 2.1432
− 

Σ =  − 

2

1.0311 0.0206
0.0398 0.4116

K
− − 

=  − 

2

0.7627 1.2355
1.2355 1.2624
− 

Σ =  −  .

At this time, the system state curves are shown 
in Figure 8 and Figure 9.
It can be seen from Figure 6 to Figure 9 that 
when the actuators have partial or complete 
failure, the system state can quickly stabilize 

Figure 4. State x1 curves in the reference. Figure 5. State x2 curves in the reference.

Figure 6. State x1 under L1 fault condition. Figure 7. State x2 under L1 fault condition.
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after adopting fault-tolerant control, which 
shows that the designed robust fault-tolerant 
controller can effectively reduce the impact of 
both faults and external disturbances. The ef-
fectiveness of the fault-tolerant control method 
is thus proven. 

Under the event-triggered mechanism, the re-
lease instants and release interval are shown in 
Figure 10. If the time-triggered mechanism is 
adopted, the control task needs to be executed 
300 times. By using the event-triggered mech-
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is executed 248 times, thus saving 52 commu-
nication instances. It can be seen that, based on 
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to reduce the number of data transmissions in 
the channel, hence saving network resources. 
The validity of the designed event-triggered 
mechanism and controller is thus verified.
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external disturbance is ω(t) = 0.1 sin0.5t. Other 
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shown in Figure 2 and Figure 3. It can be seen 
that the state curves observed by the observ-
er are very close to the actual system. This 
shows that the observer designed in this paper 
can approximate the real states of the system, 
which proves that the observer has good per-
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As a comparison, according to the method in the 
reference [39], the state curves of the observer 
are shown in Figure 4 and Figure 5. It can be 
seen that the method in the reference shows a 
relatively large error for state estimation.
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According to Theorem 2, the gain matrices of 
the fault-tolerant controller and the event-trig-
gered matrices in the case of corresponding 
faults can be obtained as follows. 
When L1 fails, the matrix of the fault-tolerant 
controller and the event-triggered matrix are:
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At this time, the system state curves are shown 
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failure, the system state can quickly stabilize 
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Figure 10. Release instants and release interval.

As a comparison, and according to the method 
from [40], the state curves under fault L1 con-
dition are shown in Figure 11 and Figure 12. It 
can be seen that the state changes in the case of 

failure are more obvious when using the meth-
od from the reference.
In summary, the above simulations show that 
the observer and robust fault-tolerant controller 
design proposed in this paper are effective. 

6. Conclusion

In this paper a kind of parameter uncertain-
ty random time-delay Markov jumping sys-
tem is used to describe NCSs with time delay, 
communication constraints and other network 
faults. In order to eliminate the influence of 
time delay and communication constraints on 
NCSs, an event-triggered mechanism is intro-
duced. This event-triggered mechanism enables 
the transmission signal in NCSs to form a path 
when the trigger condition is met only, thus ef-

fectively reducing the occupation of network 
data channels and solving the above communi-
cation constraints. Subsequently an observer is 
designed to estimate the system states, and a ro-
bust fault-tolerant controller design is proposed 
for actuator failures in NCSs. The sufficient 
condition for the existence of the fault-tolerant 
controller under the event-triggered mechanism 
is given, too. Finally, both the effectiveness and 
feasibility of the proposed method are verified 
by simulation. 
Based on the event-triggered mechanism, the 
observer and fault-tolerant controller are de-
signed in this paper without considering the 
saturation of sensors or actuators. However, 
in actual systems, due to the limitations of the 
system itself, information security and commu-
nication technology, the infinite amplitude sig-
nals cannot be provided by sensors or actuators. 
For this reason, sensor or actuator saturation 
will occur. Therefore, in this case the control 
analysis and design research of NCSs based on 
the event-triggered mechanism are the topics 
for future work. In addition, the analysis and 
design of NCSs under multiple triggering strat-
egies are also worthy of attention.
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Figure 10. Release instants and release interval.

As a comparison, and according to the method 
from [40], the state curves under fault L1 con-
dition are shown in Figure 11 and Figure 12. It 
can be seen that the state changes in the case of 

failure are more obvious when using the meth-
od from the reference.
In summary, the above simulations show that 
the observer and robust fault-tolerant controller 
design proposed in this paper are effective. 

6. Conclusion

In this paper a kind of parameter uncertain-
ty random time-delay Markov jumping sys-
tem is used to describe NCSs with time delay, 
communication constraints and other network 
faults. In order to eliminate the influence of 
time delay and communication constraints on 
NCSs, an event-triggered mechanism is intro-
duced. This event-triggered mechanism enables 
the transmission signal in NCSs to form a path 
when the trigger condition is met only, thus ef-

fectively reducing the occupation of network 
data channels and solving the above communi-
cation constraints. Subsequently an observer is 
designed to estimate the system states, and a ro-
bust fault-tolerant controller design is proposed 
for actuator failures in NCSs. The sufficient 
condition for the existence of the fault-tolerant 
controller under the event-triggered mechanism 
is given, too. Finally, both the effectiveness and 
feasibility of the proposed method are verified 
by simulation. 
Based on the event-triggered mechanism, the 
observer and fault-tolerant controller are de-
signed in this paper without considering the 
saturation of sensors or actuators. However, 
in actual systems, due to the limitations of the 
system itself, information security and commu-
nication technology, the infinite amplitude sig-
nals cannot be provided by sensors or actuators. 
For this reason, sensor or actuator saturation 
will occur. Therefore, in this case the control 
analysis and design research of NCSs based on 
the event-triggered mechanism are the topics 
for future work. In addition, the analysis and 
design of NCSs under multiple triggering strat-
egies are also worthy of attention.
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