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Software testing is an important stage in the software 
development process, which is the key to ensure soft-
ware quality and improve software reliability. Software 
fault localization is the most important part of software 
testing. In this paper, the fault localization problem is 
modeled as a combinatorial optimization problem, us-
ing the function call path as a starting point. A heuris-
tic search algorithm based on hybrid genetic simulated 
annealing algorithm is used to locate software defects. 
Experimental results show that the fault localization 
method, which combines genetic algorithm, simulated 
annealing algorithm and function correlation analysis 
method, has a good effect on single fault localization 
and multi-fault localization. It greatly reduces the re-
quirement of test case coverage and the burden of the 
testers, and improves the effect of fault localization.
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fect analysis
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1. Introduction

Software testing is an important process in soft-
ware engineering. It is the final inspection of 
products in each stage of software development 
before software release, and a process of detect-
ing software faults and fixing them in order to 
ensure correctness, completeness, and consis-
tency of software products. Software fault lo-
calization technology is an analysis method to 
locate the defects when some test cases fail to 
execute after the execution of test case sets [1].

Effective fault localization method can short-
en the development cycle and improve the ef-
ficiency of error localization. Traditional soft-
ware testing mainly focuses on manual testing, 
such as adding breakpoints to the program for 
single-step debugging, which is helpful for tes-
ters to be more familiar with the system and 
business processes, but it is time-consuming 
and labor-intensive and cannot guarantee the 
adequacy of testing. Traditional testing plays a 
very important role in the initial product testing, 
guarantees the quality of software to a certain 
extent and proves the importance of software 
testing. However, with the continuous itera-
tion of products, the number of development 
iterations increases and testing becomes more 
and more complex. Manual testing gradually 
exposes many shortcomings and limitations. 
Especially when there is a high requirement 
for real-time and concurrency, manual testing 
is far from reaching the test goal. Therefore, 
traditional testing modes and methods must be 
reformed to improve testing efficiency. Auto-
mated testing technology emerges at the right 
moment [2, 3]. Compared with traditional man-
ual testing, automated testing improves testing 
efficiency, reliability, and adequacy. Automa-
tion and semi-automation can greatly avoid the 
disadvantages brought by manual debugging, 
so the research of automatic fault localization 
has become one of the most popular research 
directions in software testing. 
Existing genetic algorithms are affected by 
their poor local search ability when solving 
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task models the fault localization problem and 
finds an optimal population, while retrieval of 
the initial population and fitness function de-
sign have been completed in the first phase. 
Thus, the second phase will focus on the design 
of a genetic operator, and on the temperature 
schedule; the last phase will map the optimal 
population obtained from the previous phase to 
concrete functions, so that the results can assist 
developers to localize faults.

3.1. Population Initialization and Fitness 
Function Design

3.1.1. Chromosome Encoding

According to the fault localization problem, we 
only need to know whether a function contains 
faults. Therefore, we design a binary vector to 
represent candidate fault distribution:

C = {c1, c2, c3, ..., cn}.

Here, n is the number of functions in the tested 
program, cj shows whether there is a fault in 
function cj, and if cj = 1, then function cj is con-
sidered to be faulty. If cj = 0, then function cj is 
considered to be free of faults in the candidate 
fault distribution.

3.1.2. Population Construction

In order to obtain a population constructed by 
multiple individuals, we first convert the exe-
cution path to chromosome codes. Based on the 
failure mechanism, we propose the following 
assumptions: (1) succeeded path may contain 
faults; (2) failed path must contain faults; (3) the 
common part of success path and failure path is 
a relatively low possibility to contain faults; (4) 
functions that exist only on failure paths have 
the highest possibility to contain faults. 
Based on the above assumptions, we design a 
Total-Greedy (TG) algorithm to construct the 
initial population.

mization method. In order to prevent premature 
puberty, HGSA preserves the diversity of the 
population while ensuring high adaptability of 
the population [9, 10].
There are many ways to combine GA (Genet-
ic Algorithm) with SA (Simulated Annealing). 
This paper adopts an integrated idea. This idea 
takes advantage of the characteristics of SA 
heuristic search algorithm, combining SA heu-
ristic search algorithm with a genetic algorithm, 
so as to change the algorithmic structure of GA, 
which improves the local search ability of ge-
netic algorithm while retaining its global search 
ability. The optimum ideas are as follows: 

Step 1: Initialization. Generating an initial 
feasible solution population with high 
quality and diversity by appropriate 
strategies. 

Step 2: Using annealing temperature to control 
the number of iterations and termina-
tion conditions.

Step 3: Adding simulated annealing operation 
to selection operator and using metrop-
olis criterion to select individuals re-
tained to the next generation.

Step 4: Perform genetic operations, such as 
crossover, mutation, etc.

Step 5: Repeat Step 2, Step 3 and Step 4 until 
the termination condition of the algo-
rithm is satisfied.

3. Proposed Approach

The entire process of our approach can be con-
sidered in three phases: the population initial-
ization and fitness function design phase com-
bined with the function call path, hybrid genetic 
simulated annealing algorithm based candidate 
population distribution heuristic search phase, 
and fault localization phase according to opti-
mal population. Among the three phases, the 
main tasks of the first phase are chromosome 
encoding, population construction, fitness func-
tion design, and function relationship analysis. 
All the tasks in phase one are used to configure 
the input for the next phase; the second phase 

search problems, which leads to inefficiency 
in practical application, and the difference be-
tween the final solution and the optimal solu-
tion is too large. In addition, most of the ex-
isting path-based defect location methods are 
based on the code level. For practical applica-
tions, there is often a large amount of code, and 
the number of paths obtained at the code lev-
el increases explosively [4, 5]. To solve these 
problems, a fault localization method based on 
hybrid genetic simulated annealing algorithm is 
proposed in this paper. It transforms fault lo-
calization into a software engineering problem 
based on search. This method uses the correla-
tion degree between functions in the function 
call path as a penalty factor of fitness function 
of hybrid genetic simulated annealing algo-
rithm, constructing the initial population and 
fitness function required by the algorithm. The 
location of faults is obtained from the results of 
the algorithm.

2. Concepts

2.1. Terminology Definitions

Definition 1. Function Call Graph. The call re-
lationship between functions can be expressed 
as a directed graph G = <V, R>. V is a set of 
nodes, and each node represents a function. 
R = {(x, y) | x, y ∈V} is a set of arcs in the di-
graph, representing the call relationship or se-
quential execution relationship between func-
tions. The arc e = (T(e), H(e)) connects two 
adjacent nodes T(e) and H(e) in G. T(e) is the 
arc head and H(e) is the arc tail.
Definition 2. Function Call Path. Function call 
path describes the execution path of the pro-
gram source code in terms of function as a basic 
unit [6, 7]. W is a sequence of nodes Wi = (V1, 
V2, …, Vm). Adjacent nodes in a path represent 
call relationships or sequential execution rela-
tionships.
Definition 3. Test Suite T = {t1, t2, …, tm} rep-
resents the test case set. ti represents the ith test 
case of the test case set.
Definition 4. Coverage Matrix M = (Mij) de-
notes the coverage relationship between T and 
W. M is a matrix of m*n, and line i represents 

the function coverage of the ith test case and the 
jth column shows the coverage of the jth func-
tion by different test cases. Each Mij represents 
the coverage of the jth function by the ith test 
case. Mij = 1 indicates that the test case i cov-
ers function j, and Mij = 0 indicates that the test 
case i does not cover function j.
Definition 5. Failure Test Case Coverage Ma-
trix MF = (Mij) is part of the coverage matrix M, 
which contains only coverage information for 
failed test cases.
Definition 6. Successful Test Case Coverage 
Matrix Mp = (Mij) is part of the coverage matrix 
M, which contains only coverage information 
for successful test cases.
Definition 7. Result Vector R = {r1, r2, …, rm} 
represents the test results of test cases. ri rep-
resents the execution result of the ith test case. 
ri = 0 means that the ith test case succeeded in 
the execution; ri = 1 means that the ith test case 
failed in the execution.
Definition 8. Adjacent Functions. Adjacent 
functions are represented by arcs in directed 
graph G = <V, R> of function call relationship. 
Formal description: Two adjacent nodes T(e) 
and H(e) connected by arc e = (T(e), H(e)) in G 
are called adjacent functions.
Definition 9. Correlation Degree. The number 
of common paths of adjacent functions rep-
resents the correlation degree Crr between func-
tions. Formal description: Crr = e ∈{W1, W2, …, 
Wm}, Wi represents the effective path in digraph 
G, that is, the function call path. Crr denotes the 
number of paths containing e.
Definition 10. Evaluation Index of Multi-fault 
Localization. The multi-fault localization eval-
uation index returns the percentage of the code 
that needs to be checked to detect all faults.

2.2. Hybrid Genetic Simulated Annealing 
Algorithm

The Hybrid Genetic Simulated Annealing 
(HGSA) algorithm incorporates the idea of lo-
cal search algorithm into the traditional genetic 
algorithm, strengthens the local search ability 
of genetic algorithms and further improves op-
timization quality and search efficiency, so as to 
make up for the shortcomings of the single opti-
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where ∅(C ) is the ability of C to explain failure 
test cases. The definition of ∅(C ) is
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In the formulas above, Mij is an element in Defi-
nition 4 Coverage Matrix, |TF | is the number 
of failed test cases, and ∅(C ) is the ability of 
candidate fault distribution C to explain failure 
test cases. If all the functions that C considers 
containing faults exist on the failure execution 
paths, we believe that C is able to explain fail-
ure test cases. On the contrary, if none of the 
functions on the failure execution path exists in 
C, then we think C is not able to explain that 
failure test case.
In formula (4), |TP | is the number of succeeded 
test cases in the test case set. P(C ) and R(C ) 
are two penalty functions. P(C ) is the number 
of test cases that C can explain. If a function 
in C is executed by a succeeded test case, then 
P(C ) increases by one. R(C ) is another pen-
alty function which is designed to deal with 
the propagation effect of faults. If a candidate 
fault distribution determines that the number of 
faulty functions is greater than 2, then we need 
to check how many combinations of adjacent 
functions there are. If we assume that there 
are m combinations, then we obtain m correla-
tions and sum them up, and the sum is R(C ). 
Otherwise, if Nf is less than 2, R(C ) will be 0. 
Benefiting from these two penalty factors, we 
are able to greatly enhance the efficiency of 
fault localization. Given a fault distribution, 
the higher its Pro-Ochiai, the better its effect of 
fault localization.

3.2. Optimization of HGSA

Hybrid Genetic Simulating Annealing (HGSA) 
algorithm starts with a subset of feasible can-
didate solutions (initial population), utilizing 

fitness function to keep the superior while 
dropping the inferior ones. It evolves to gener-
ate new individuals and to make sure that high-
er quality ones survive to the next generation. 
In each generation, HGSA makes selections, 
crossovers, and mutations according to fitness 
function and Metropolis criterion, in order to 
generate new individuals. HGSA utilizes the 
decrease of temperature to control the iteration 
until reaching the stopping temperature, and the 
final population will be the near-optimal solu-
tion to the problem.
The algorithm uses the population generated by 
TG as the initial population and Pro-Ochiai as 
the fitness function. The algorithm of HGSA is 
described as below.

Algorithm 2. HGSA algorithm.

Input: coverage matrix M, result vector R, initial  
            temperature T
Output: near-optimal solution population P
1.    pop ← TG(M, R, Np)
2.    CandidatePool ← pop
3.    Repeat
4.        T ← T* (1-coolingRate)
5.        Cselected ← select(pop, roulettewheel, GGAP)
6.        Ccrossover ← crossover(Ccrossover, Crossover_ 
            Rate, SA())
7.        Cmutated ← Φ
8.        for all C ∈Ccrossover do
9.            if mutate(C) ≤ Pm then
10.              Cmutated ← mutate(C)
11.          end if 
12.      end for
13.      recombine(pop, Cmutated)
14.      CandidatePool ← CandidatePool 

∩
 Cmutated

15.  until T ≤ Tend
16.  P ← map(CandidatePool)
17.  return P

The selection operator should let the elite in-
dividuals survive to the next generation or  let 
their children survive to the next generation. 
The parameter GGAP (0 < GGAP ≤ 1) is used 
to determine the proportion of chosen individu-
als in a population. Roulettewheel refers to the 
roulette operator we use, which is similar to the 
casino game.

Algorithm 1. Total-Greedy (TG) algorithm.

Input: coverage matrix M, result vector R, number of  
            individuals in population p Np
Output: Initial population P
1.    create the failure matrix Mnp

2.    create the diagonal matrix Mt
3.    while scan M do
4.        if the value of R is 1 && path include function  
           then
5.            add the vector to Mnp
6.        end if
7.    end while
8.    create the Map < Integer, Integer > total
9.    while scan Mnp do
10.      total ← count sum of each column in the  
           matrix Mnp
11.  end while
12.  length ← number of failure cases
13.  while scan Mt  do
14.      distribution ← an individual of Mt
15.      fitness ← the ability to interpret a failure case
16.      while fitness < length do
17.          change distribution according to total 
18.          fitness ← the ability to interpret a failure case
19.      end while
20.  end while
21.  P = Mt
22.  return P

TG is an algorithm which can guarantee di-
versity of the population, while not hurting the 
quality of individuals. The algorithm first ex-
tracts failure coverage matrix Mnp from cover-
age matrix M and result vector R, and calculates 
the occurrences (assigned to ''total'') of failure 
functions according to Mnp, then generates a di-
agonal matrix representing n individuals, where 
each individual (candidate fault distribution)  
contains only one faulty statement, that is, there 
will be only one ''1'' element in the binary vec-
tor, while other elements are all ''0''. According 
to the diagonal matrix, the algorithm estimates 
whether each individual is able to explain all 
the failed test cases. If one individual fails to 
explain, it will be fixed based on ''total'', using 
roulette strategy to choose the function posi-
tion, until an individual C is able to explain all 
the failure test cases. The Np individuals gener-
ated by the TG algorithm have good quality and 

diversity, because each individual is extended 
from different fault locations. The high quality 
initial population will benefit from the conver-
gence speed of the hybrid genetic simulated an-
nealing algorithm.

3.1.3. Correlation Between Functions

In a program, a function is not isolated, but is 
associated with function call paths to imple-
ment specific tasks. Therefore, functions on the 
same function call path are related to each oth-
er. We quantify the relationship to correlation 
base on the following assumptions:
Assumption 1. Adjacent functions have the 
highest correlation, while the correlation be-
tween non-adjacent functions can be neglected.
Assumption 2. Correlation between two adja-
cent functions is proportional to the number of 
function call paths containing both of the func-
tions.
Under the above assumptions, adjacent func-
tions refer to functions adjacent to each other in 
one function call path, therefore, one function 
may have multiple adjacent functions, since it 
may occur in multiple function call paths.

3.1.4. Fitness Function

Similarity coefficients like Tarantula [13] and 
Ochiai [14] can detect suspiciousness of the 
program. However, functions in a program are 
not independent, they will affect each other, 
which will make the results detected from sus-
piciousness quite different from actual results. 
Thus, we have designed a Pro-Ochiai formula 
using the correlation between functions as a 
penalty function.
Pro-Ochiai suspiciousness formula is extended 
from Multi-Ochiai [14], introducing a penalty 
function to measure the suspiciousness of can-
didate fault distribution. Consider a candidate 
fault distribution C: its suspiciousness can be 
calculated by the following formulas.

( )

Pro-Ochiai( )
( )

( ) ( ) ( )F

C
C

T C P C R C

=
∅

=
× ∅ + +

        (1)



104 105Z. Zhang and Y. Mu Fault Localization Based on Hybrid Genetic Simulated Annealing Algorithm

where ∅(C ) is the ability of C to explain failure 
test cases. The definition of ∅(C ) is

( )1, 1( )
i F F

n
j ijjM M i TC C Mρ =∈ ≤ ≤∅ = ×∑ ∑ ,  (2)

where ρ(x) is defined as:

( )
1, 0
0, 0

x
x

x
ρ

>
=  =

.                     (3)

P(C ) is defined as:

1, 1( )
i P P

n
j ijjM M i TP C C M=∈ ≤ ≤= ×∑ ∑ .     (4)

In the formulas above, Mij is an element in Defi-
nition 4 Coverage Matrix, |TF | is the number 
of failed test cases, and ∅(C ) is the ability of 
candidate fault distribution C to explain failure 
test cases. If all the functions that C considers 
containing faults exist on the failure execution 
paths, we believe that C is able to explain fail-
ure test cases. On the contrary, if none of the 
functions on the failure execution path exists in 
C, then we think C is not able to explain that 
failure test case.
In formula (4), |TP | is the number of succeeded 
test cases in the test case set. P(C ) and R(C ) 
are two penalty functions. P(C ) is the number 
of test cases that C can explain. If a function 
in C is executed by a succeeded test case, then 
P(C ) increases by one. R(C ) is another pen-
alty function which is designed to deal with 
the propagation effect of faults. If a candidate 
fault distribution determines that the number of 
faulty functions is greater than 2, then we need 
to check how many combinations of adjacent 
functions there are. If we assume that there 
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Otherwise, if Nf is less than 2, R(C ) will be 0. 
Benefiting from these two penalty factors, we 
are able to greatly enhance the efficiency of 
fault localization. Given a fault distribution, 
the higher its Pro-Ochiai, the better its effect of 
fault localization.

3.2. Optimization of HGSA

Hybrid Genetic Simulating Annealing (HGSA) 
algorithm starts with a subset of feasible can-
didate solutions (initial population), utilizing 

fitness function to keep the superior while 
dropping the inferior ones. It evolves to gener-
ate new individuals and to make sure that high-
er quality ones survive to the next generation. 
In each generation, HGSA makes selections, 
crossovers, and mutations according to fitness 
function and Metropolis criterion, in order to 
generate new individuals. HGSA utilizes the 
decrease of temperature to control the iteration 
until reaching the stopping temperature, and the 
final population will be the near-optimal solu-
tion to the problem.
The algorithm uses the population generated by 
TG as the initial population and Pro-Ochiai as 
the fitness function. The algorithm of HGSA is 
described as below.

Algorithm 2. HGSA algorithm.

Input: coverage matrix M, result vector R, initial  
            temperature T
Output: near-optimal solution population P
1.    pop ← TG(M, R, Np)
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3.    Repeat
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5.        Cselected ← select(pop, roulettewheel, GGAP)
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∩
 Cmutated
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The parameter GGAP (0 < GGAP ≤ 1) is used 
to determine the proportion of chosen individu-
als in a population. Roulettewheel refers to the 
roulette operator we use, which is similar to the 
casino game.

Algorithm 1. Total-Greedy (TG) algorithm.

Input: coverage matrix M, result vector R, number of  
            individuals in population p Np
Output: Initial population P
1.    create the failure matrix Mnp

2.    create the diagonal matrix Mt
3.    while scan M do
4.        if the value of R is 1 && path include function  
           then
5.            add the vector to Mnp
6.        end if
7.    end while
8.    create the Map < Integer, Integer > total
9.    while scan Mnp do
10.      total ← count sum of each column in the  
           matrix Mnp
11.  end while
12.  length ← number of failure cases
13.  while scan Mt  do
14.      distribution ← an individual of Mt
15.      fitness ← the ability to interpret a failure case
16.      while fitness < length do
17.          change distribution according to total 
18.          fitness ← the ability to interpret a failure case
19.      end while
20.  end while
21.  P = Mt
22.  return P

TG is an algorithm which can guarantee di-
versity of the population, while not hurting the 
quality of individuals. The algorithm first ex-
tracts failure coverage matrix Mnp from cover-
age matrix M and result vector R, and calculates 
the occurrences (assigned to ''total'') of failure 
functions according to Mnp, then generates a di-
agonal matrix representing n individuals, where 
each individual (candidate fault distribution)  
contains only one faulty statement, that is, there 
will be only one ''1'' element in the binary vec-
tor, while other elements are all ''0''. According 
to the diagonal matrix, the algorithm estimates 
whether each individual is able to explain all 
the failed test cases. If one individual fails to 
explain, it will be fixed based on ''total'', using 
roulette strategy to choose the function posi-
tion, until an individual C is able to explain all 
the failure test cases. The Np individuals gener-
ated by the TG algorithm have good quality and 

diversity, because each individual is extended 
from different fault locations. The high quality 
initial population will benefit from the conver-
gence speed of the hybrid genetic simulated an-
nealing algorithm.

3.1.3. Correlation Between Functions

In a program, a function is not isolated, but is 
associated with function call paths to imple-
ment specific tasks. Therefore, functions on the 
same function call path are related to each oth-
er. We quantify the relationship to correlation 
base on the following assumptions:
Assumption 1. Adjacent functions have the 
highest correlation, while the correlation be-
tween non-adjacent functions can be neglected.
Assumption 2. Correlation between two adja-
cent functions is proportional to the number of 
function call paths containing both of the func-
tions.
Under the above assumptions, adjacent func-
tions refer to functions adjacent to each other in 
one function call path, therefore, one function 
may have multiple adjacent functions, since it 
may occur in multiple function call paths.

3.1.4. Fitness Function

Similarity coefficients like Tarantula [13] and 
Ochiai [14] can detect suspiciousness of the 
program. However, functions in a program are 
not independent, they will affect each other, 
which will make the results detected from sus-
piciousness quite different from actual results. 
Thus, we have designed a Pro-Ochiai formula 
using the correlation between functions as a 
penalty function.
Pro-Ochiai suspiciousness formula is extended 
from Multi-Ochiai [14], introducing a penalty 
function to measure the suspiciousness of can-
didate fault distribution. Consider a candidate 
fault distribution C: its suspiciousness can be 
calculated by the following formulas.

( )

Pro-Ochiai( )
( )

( ) ( ) ( )F

C
C

T C P C R C

=
∅

=
× ∅ + +

        (1)
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in Figure 1(a), HGSA has similar defect posi-
tioning effects to Wong3 and Ochiai and is su-
perior to Tarantula. Figure 1 (b) shows that the 
average positioning effect of HGSA is better. 
Figure 1 (a) and (b) show the defect positioning 
effect of each method from the box row dia-
gram. Comparing the results of the two meth-
ods, HGSA's defect positioning effect is not 
inferior to the other three methods.

4.2.2. Multi-Fault Localization Empirical 
Evaluation

In the experiments with multiple faults localiza-
tion, this paper selects multiple defect versions 
of four multi-fault Siemens programs (print_to-
kens, print_tokens2, replace, and tot_info) to 
evaluate multi-fault location problems. In the 
experiment, only the executable statements are 
considered. For each faulty version of the target 
program, run the corresponding algorithm 30 
times and calculate the average, then get a list 
of corresponding suspicious functions. Final-
ly,  check each function according to the suspi-
ciousness from high to low. Unlike single fault 
localization, the following metrics are used to 
evaluate the positioning of the method:

1. use the multi-fault localization standard of 
Definition 10, which effectively evaluates 
the effectiveness of multi-fault localiza-
tion;

2. use the metrics of the percentage of the 
correct diagnosis, fitting the effect curve of 
fault localization and visually showing the 
effect of each fault localization method.

The traditional EXAM standard is used to eval-
uate experimental results. Table 2 shows the 
overall positioning effect of each algorithm ap-
plied to various incorrect versions of Siemens 
Suites. Each data R% in the table indicates the 
percentage of the total number of source code 
the method needs to review when locating the 
number of defects in R%. The first column indi-
cates the percentage of the number of reviewed 
source codes. In this paper, the values are di-
vided into ten intervals, and the proportion of 
faults that can be located in each interval is ob-
tained. This data is an important indicator for 
measuring the effect of defect location.

Table 2. Method effect table.

Check code 
percentage HGSA Tarantula Wong3 Ochiai

1% 45.18 13.93 29.55 36.36

1% ~ 10% 72.72 55.73 63.64 70.45

10% ~ 20% 77.24 61.47 65.91 75.00

20% ~ 30% 86.36 71.31 77.27 81.81

30% ~ 40% 90.91 79.51 79.55 86.36

40% ~ 50% 95.45 86.89 81.82 90.91

50% ~ 60% 98 87.71 86.36 95.45

60% ~ 70% 100 88.53 90.91 95.45

70% ~ 80% 100 92.63 93.18 98

80% ~ 90% 100 100 100 100

90% ~ 100% 100 100 100 100

(b)(a)

Figure 1. Comparison of single defect positioning results.

The crossover operator should combine parts of 
the parents to generate a new individual. HGSA 
uses shuffle crossover operator, which can im-
prove diversity of the population. Concrete 
operations of the crossover operator are: from 
one of the parents select an entry with a certain 
probability at the same coordinate, and assign 
it to the child. Parameter Crossover_Rate is the 
possibility, and parameter SA() refers to the 
simulated annealing after the crossover.
The mutation operator should introduce chang-
es to the children generated by the crossover 
operator, in order to speed the convergence uti-
lizing mutation operator’s ability of local ran-
dom search when the solution has been close to 
the optimal solution due to genetic algorithm. 
Obviously, the function granularity in function 
call path and the aggregation effect of faults 
make parameter Pm smaller. The ordinary muta-
tion operator used in this paper should decrease 
the number of mutations and guarantee the pop-
ulation quality.

3.3. Fault Localization

After obtaining the optimal candidate faults 
distribution, we need to convert the popula-
tion to suspiciousness ranking list of functions. 
Obviously, the higher the suspiciousness of a 
function in the candidate faults distribution, the 
higher the function's possibility of obtaining 
faults. If there is only one function in the can-
didate faults distribution with the highest sus-
piciousness, then we consider that this function 
contains faults; if there are multiple functions in 
the candidate faults distribution with the high-
est suspiciousness, we need to make a ranking 
list of functions according to other candidate 
faults distributions with high suspiciousness.

4. Experiment and Evaluation 

4.1. Evaluation Data Set

This paper uses the programs in Siemens Suites 
and GNU Software as experimental data. All 
these programs are from the SIR library. Sie-
mens Suites is a small-scale program, and GNU 
Software is a large-scale program. Siemens 
Suites consists of seven programs, including 

print_tokens, print_tokens2, replace, schedule, 
schedule2, tcas, and tot_info. Each set of pro-
grams has multiple different defect versions 
and one correct version. Each version contains 
a manually implanted defect. There are many 
programs in GNU Software, and we have se-
lected two programs: gzip and grep.
Experimental parameters are set in Table 1, 
where Ti represents the initial temperature 
during the simulated annealing algorithm, Te 
represents the termination temperature of the 
simulated annealing process, coolingRate rep-
resents the decay rate of the temperature, and 
GGAP represents the proportion of the selected 
individual in each iteration to the candidate to 
be selected. Pc indicates the probability that the 
genes at the same position on two individual 
chromosomes will cross, and Pm represents the 
probability of chromosomal variation.

Table 1. Parameter settings in the experiment.

Ti Te coolingRate GGAP Pc Pm

1000 1 0.997 0.4 0.7 0.001

4.2. Experiment and Evaluation

4.2.1. Empirical Evaluation of Single Defect 
Location

This paper uses several classic defect localiza-
tion methods to compare with HGSA, These de-
fect localization methods are Tarantula, Wong3 
[15] and Ochiai, and the target programs are 
Siemens Suites and GNU Software. The ex-
periment mainly evaluates effectiveness of the 
algorithm from the positioning effect of a sin-
gle defect version, and the standard adopted is 
EXAM. It refers to the percentage of program 
entities that need to be reviewed when finding 
the wrong program entity as a percentage of all 
program entities.
The experimental results are shown in Figures 
1(a) and (b), and the data for Tarantula, Wong3 
and Ochiai are quoted from literature. The ordi-
nate in the figure indicates the percentage of all 
functions to be examined for finding the defect 
function, and the abscissa indicates the corre-
sponding fault localization method. As shown 
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The crossover operator should combine parts of 
the parents to generate a new individual. HGSA 
uses shuffle crossover operator, which can im-
prove diversity of the population. Concrete 
operations of the crossover operator are: from 
one of the parents select an entry with a certain 
probability at the same coordinate, and assign 
it to the child. Parameter Crossover_Rate is the 
possibility, and parameter SA() refers to the 
simulated annealing after the crossover.
The mutation operator should introduce chang-
es to the children generated by the crossover 
operator, in order to speed the convergence uti-
lizing mutation operator’s ability of local ran-
dom search when the solution has been close to 
the optimal solution due to genetic algorithm. 
Obviously, the function granularity in function 
call path and the aggregation effect of faults 
make parameter Pm smaller. The ordinary muta-
tion operator used in this paper should decrease 
the number of mutations and guarantee the pop-
ulation quality.

3.3. Fault Localization

After obtaining the optimal candidate faults 
distribution, we need to convert the popula-
tion to suspiciousness ranking list of functions. 
Obviously, the higher the suspiciousness of a 
function in the candidate faults distribution, the 
higher the function's possibility of obtaining 
faults. If there is only one function in the can-
didate faults distribution with the highest sus-
piciousness, then we consider that this function 
contains faults; if there are multiple functions in 
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these programs are from the SIR library. Sie-
mens Suites is a small-scale program, and GNU 
Software is a large-scale program. Siemens 
Suites consists of seven programs, including 
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and one correct version. Each version contains 
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GGAP represents the proportion of the selected 
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chromosomes will cross, and Pm represents the 
probability of chromosomal variation.

Table 1. Parameter settings in the experiment.

Ti Te coolingRate GGAP Pc Pm

1000 1 0.997 0.4 0.7 0.001

4.2. Experiment and Evaluation

4.2.1. Empirical Evaluation of Single Defect 
Location

This paper uses several classic defect localiza-
tion methods to compare with HGSA, These de-
fect localization methods are Tarantula, Wong3 
[15] and Ochiai, and the target programs are 
Siemens Suites and GNU Software. The ex-
periment mainly evaluates effectiveness of the 
algorithm from the positioning effect of a sin-
gle defect version, and the standard adopted is 
EXAM. It refers to the percentage of program 
entities that need to be reviewed when finding 
the wrong program entity as a percentage of all 
program entities.
The experimental results are shown in Figures 
1(a) and (b), and the data for Tarantula, Wong3 
and Ochiai are quoted from literature. The ordi-
nate in the figure indicates the percentage of all 
functions to be examined for finding the defect 
function, and the abscissa indicates the corre-
sponding fault localization method. As shown 



108 109Z. Zhang and Y. Mu Fault Localization Based on Hybrid Genetic Simulated Annealing Algorithm

[6] L. Danfeng, "Research on Defect Location Meth-
od Based on FCP Path Slice", Master Disserta-
tion, Beijing Information Science and Technolo-
gy University, pp. 18‒22, 2016.

[7] L. Danfeng and M. Yongmin, "Research of 
Fault Location Based on Function Calling Path 
and Faults Correlation Analysis", Applica-
tion Research of Computers, vol. 33, no. 8, pp. 
2363‒2370, 2016. 
http://dx.chinadoi.cn/10.3969/j.issn.1001-3695.2
016.08.028

[8] L. Jingyu and Z. Fengyu, "Research on Codes 
Defect Localization Rules by Calculating De-
fect Contribution Rate", Application Research of 
Computers, vol. 32, no. 9, pp. 2702‒2707, 2015.
http://dx.chinadoi.cn/10.3969/j.issn.1001-3695.2
015.09.033

[9] X. Chen et al., "Review of Dynamic Fault Local-
ization Approaches Based on Program Spetrum", 
Journal of Software, vol. 26, no. 2, pp. 390‒412, 
2015.
http://www.jos.org.cn/1000-9825/4708.htm

[10] W. U. Xiao-Ping et al., "Research of Software De-
fect Prediction Model Based on LASSO-SVM", 
Application Research of Computers, vol. 30, no. 
9, pp. 2748‒2751, 2013. 
http://dx.chinadoi.cn/10.3969/j.issn.1001-3695.2
013.09.047

[11] F. C. Meng et al., "Solving SaaS Components Op-
timization Placement Problem with Hybrid Ge-
netic and Simulated Annealing Algorithm", Jour-
nal of Software, vol. 27, no. 4, pp. 916‒932, 2016. 
http://www.cnki.net/kcms/doi/10.13328/j.cnki.
jos.004965.html

[12] J. A. Jones et al., "Visualization of Test Informa-
tion to Assist Fault Localization", in Proc. of the 
IEEE Int. Conference on Software Engineering 
(ICSE'02), 2002, pp. 467‒477.
http://dx.doi.org/10.1145/581396.581397

[13] R. Abreu et al., "On the Accuracy of Spec-
trum-based Fault Localization", in Proc. of the 
Testing: Academic and Industrial Conference 
Practice and Research Techniques-Mutation (TA-
ICPART-MUTATION'07), 2007, pp. 89‒98.
http://dx.doi.org/10.1109 /TAIC.PART.2007.13

[14] W. Zan et al., "Genetic Algorithm Based Multiple 
Faults Localization Technique", Journal of Soft-
ware, vol. 27, no. 4, pp. 879‒900, 2016. 
http://www.cnki.net/kcms/doi/10.13328/j.cnki.
jos.004970.html

[15] W. E. Wong et al., "Effective Fault Localization 
using Code Coverage", in Proc. of the 31st An-
nual International Computer Software and Appli-
cations Conference (COMPSAC '07), 2007, pp. 
449‒456. 
http://dx.doi.org/10.1109/COMPSAC.2007. 109

Received: November 2020
Revised: January 2021
Accepted: March 2021

Contact addresses:
Zhihua Zhang

Beijing Information Science and Technology University 
Beijing 

China
e-mail: zhang_zh@bistu.edu.cn

Yongmin Mu
Beijing Key Laboratory of Internet Culture and Digital  

Dissemination Research 
Beijing

China
e-mail: yongminmu@163.com

Zhihua Zhang received the BSc degree and the MSc in computer sci-
ence from the Harbin University of Science and Technology in 1993 and 
1996, respectively. She is currently an associate professor of computer 
science and software engineering with Beijing Information Science and 
Technology University, China. She has long been engaged in software 
engineering teaching, and participated in related research work. Her re-
search interests include software testing, software quality assurance and 
programming languages.

Yongmin Mu received the PhD degree in computer and automation 
from the China University of Mining and Technology in 1997. His re-
search interests include software testing technology and test automation. 
Currently, he is a professor from the School of Computer, Beijing Infor-
mation Science and Technology University, China. He is currently the 
director of the Open laboratory. He has long been engaged in architec-
ture design, development and testing method of large scale software sys-
tem. He has undertaken many national-level provincial and ministerial 
research projects.

Figure 2 is a line chart of the data in Table 2, 
where the abscissa indicates percentage of the 
statement that needs to be searched for the total 
statement; the ordinate indicates the proportion 
of faults we found in all faults. Each point (x, y) 
indicates that the fault localization method lo-
cates y % of all faults and needs to check x % of 
all statements. The smaller the x corresponding 
to the same y, the better the fault localization 
method. It can be clearly seen from the figure 
that the effect of HGSA is superior to the oth-
er three methods, although the amplitude is not 
large.

Figure 2. Fault localization effect under the EXAM 
standard.

In summary, the following conclusions can 
be drawn: the fault localization method based 
on hybrid genetic simulated annealing algo-
rithm proposed in this paper has high accuracy. 
Whether for a single fault or multiple faults, the 
algorithm shows high accuracy and stability.

5. Conclusion

Research on software fault localization is a hot 
issue in the domain of software testing. This pa-
per applies the heuristic search technology to 
the software testing, proposes a fault localiza-
tion method based on hybrid genetic simulated 
annealing algorithm. On the one hand, the cor-
relation matrix is constructed using the degree 
of correlation of functions between function 
calls and is applied to the fitness function of the 
hybrid genetic simulated annealing algorithm, 
which greatly improves the effectiveness of the 
hybrid genetic simulated annealing algorithm. 
On the other hand, granularity of the statement 

is raised to the function level, which reduces 
manual labour and material resources required 
for the whole testing process and improves the 
fault localization efficiency of the algorithm. In 
this paper, by designing an appropriate initial 
population, fitness function, genetic operator 
and simulated annealing process, the final sus-
piciousness ranking list of functions is obtained 
to assist developers in locating the faults. Final-
ly, the experimental design of single fault and 
multiple faults is used to demonstrate the ac-
curacy and effectiveness of the proposed fault 
localization method.
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Figure 2 is a line chart of the data in Table 2, 
where the abscissa indicates percentage of the 
statement that needs to be searched for the total 
statement; the ordinate indicates the proportion 
of faults we found in all faults. Each point (x, y) 
indicates that the fault localization method lo-
cates y % of all faults and needs to check x % of 
all statements. The smaller the x corresponding 
to the same y, the better the fault localization 
method. It can be clearly seen from the figure 
that the effect of HGSA is superior to the oth-
er three methods, although the amplitude is not 
large.

Figure 2. Fault localization effect under the EXAM 
standard.

In summary, the following conclusions can 
be drawn: the fault localization method based 
on hybrid genetic simulated annealing algo-
rithm proposed in this paper has high accuracy. 
Whether for a single fault or multiple faults, the 
algorithm shows high accuracy and stability.

5. Conclusion

Research on software fault localization is a hot 
issue in the domain of software testing. This pa-
per applies the heuristic search technology to 
the software testing, proposes a fault localiza-
tion method based on hybrid genetic simulated 
annealing algorithm. On the one hand, the cor-
relation matrix is constructed using the degree 
of correlation of functions between function 
calls and is applied to the fitness function of the 
hybrid genetic simulated annealing algorithm, 
which greatly improves the effectiveness of the 
hybrid genetic simulated annealing algorithm. 
On the other hand, granularity of the statement 

is raised to the function level, which reduces 
manual labour and material resources required 
for the whole testing process and improves the 
fault localization efficiency of the algorithm. In 
this paper, by designing an appropriate initial 
population, fitness function, genetic operator 
and simulated annealing process, the final sus-
piciousness ranking list of functions is obtained 
to assist developers in locating the faults. Final-
ly, the experimental design of single fault and 
multiple faults is used to demonstrate the ac-
curacy and effectiveness of the proposed fault 
localization method.
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