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People increasingly rely on their mobile devices and 
use them to store a lot of data. Some of the data are 
personal and private, whose leakage leads to users' 
privacy harm. Meanwhile, mobile apps and services 
over-collect users' data due to the coarse-grained ac-
cess control approach utilized by the mobile operating 
system. We propose a cloud-based approach to pro-
vide fine-grained access control toward data requests. 
We add privacy level, as a new metadata, to data and 
manage the storage using different policies corre-
spondingly. However, the proposed approach leads to 
performance decreases because of the extra communi-
cation cost. We also introduce a novel cache mecha-
nism to eliminate the extra cost by storing non-private 
and popular data on the mobile device. As part of our 
cache mechanism, we design a user-preference-based 
ordering method along with the principle of locality to 
determine how popular some data are. We also design 
a configurable refresh policy to improve the overall 
performance. Finally, we evaluate our approach us-
ing a real phone in a simulated environment. The re-
sults show that our approach can keep the response 
time of all data requests within a reasonable range and 
the cache mechanism can further improve the perfor-
mance.
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1. Introduction

Smart devices, especially smartphones, are now-
adays increasingly popular. Some users consid-
er their smartphones as personal computers, that 
could provide equal services to using traditional 
computers. Various kinds of data are stored in 
the devices, and some of them are sensitive and 
private. For example, bank account numbers 
and passwords, images with commercial confi-
dentiality, physical addresses, and user profiles. 
Meanwhile, mobile apps must access these data 
to provide services, including some heavy-cus-
tomized functionalities. The truth is that mobile 
data are over-collected due to the coarse-grained 
permission authorization and file management 
in mobile operating systems [1]. The data 
over-collection behaviors are not easily com-
pletely solvable. Firstly, only the user knows 
which particular data should be accessed. Then, 
there is no formal standard or law restricting the 
usage of mobile data. A lot of IT companies pro-
vide itemized terms and conditions about their 
usage of mobile data, but users barely read and 
review them carefully before ''accepting all''. 
It is not fair to expect all users to have enough 
patience and abilities to read and understand all 
the terms. This issue should lean more on to the 
technical side.  It is our responsibility to provide 
users convenience not to add burdens.
The latest iOS, iOS 14, enhances privacy protec-
tion by introducing App Tracking Transparency 
function [2]. Users can check how their mo-
bile data are accessed and tracked by apps and 
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2.2.  Fine-Grained Access Control

T. Baseri et al. [16] proposed a multi-author-
ity attribute-based access control scheme to 
support the coexistence of authorities. The pro-
posed scheme used the dynamic location of mo-
bile users as contextual information about those 
users, employed location range constraints as 
a policy in attribute-based encryption, and au-
thorized users with dynamic locations satisfy-
ing access policies. Their work focused on lo-
cation data and access control. There are some 
other research works using attribute-based ac-
cess control [17, 18, 19, 20, 21]. Our approach 
works for all data and provides fine-grained ac-
cess control without encryption.
S. Saroiu et al. [22] proposed an approach letting 
users attach Terms of Service (ToS) to their data 
being uploaded to the cloud. They implemented 
their approach using policy-carrying data that 
guaranteed that the cloud providers claimed they 
were compliant with the ToS before accessing 
the data. This approach is heavily user-involved, 
which is good for professional users but not or-
dinary users. S. Lee et al. [23] proposed a plat-
form to protect confidentiality when employees 
used their own apps to create, edit, and share 
corporate documents. Their approach provided 
fine-grained data object sandboxes and access 
control in the form of documents. Every docu-
ment should be assigned with detailed authentic 
information for all the participants. The access 
control towards some data was managed by its 
owner. However, in their platform, one app in-
stance cannot read or write multiple documents, 
and they were focused on documents. In our re-
search, we deal with all kinds of data, and the 
data operation is separated from the data itself. 
We focus on the permission authorization that 
occurs before data operation.

2.3.  Cache Hit Ratio 

The most iconic cache replacement algorithm 
is the Least Recently Used (LRU) policy. There 
are some modified versions of LRU to further 
improve the cache hit ratio in mobile computing. 
Y. Ryu [24] proposed a PRAM-aware block-
based LRU scheme. His research focused on 
minimizing the amount of write operations on 
PRAM and the number of erase operations on 
the flash memory.  His approach worked in an 
offline hybrid memory environment, including 

sion. They applied two permission interfaces, 
the frequency nudge, and the social nudge, into 
app settings of smartphone. Their research can 
raise users' attention about privacy. The per-
mission granting is user-involved, which is not 
suitable for all ordinary users. The two inter-
faces they proposed can only work on installed 
apps. Our approach protects users' privacy with 
fewer users' involvements. C. Yin et al. [10] ap-
plied a logistic regression for local differential 
privacy protection. Their approach was based 
on human-centric computing and heavily relied 
on preprocessing and formatting. These two 
steps were time-consuming, let alone the ma-
chine learning method itself spent time to model 
and test. There are some other related research 
works using machine learning techniques, such 
as a reinforcement learning approach proposed 
by M. Zhang et al. [11]. We also apply one ma-
chine learning method, which is time-series re-
gression, to predict the usage pattern of large 
data types. We only need to track the periods 
without any preprocessing or formatting, so our 
approach is simple and fast.
More recently, there are some research works 
applying blockchain technology to protect 
mobile users' privacy. Z. Sun et al. [12] used 
a double disturbance localized differential pri-
vacy algorithm to disturb the location informa-
tion. Then they uploaded all the sensing data 
to the blockchain through edge nodes, which 
would be processed by the cloud and returned 
to the requester. Y. Chen et al. [13] used the 
K-anonymity and searchable encryption tech-
niques for medical data sharing among medical 
institutions and users. T. Feng et al. [14] com-
bined zero-knowledge proof and smart contract 
to verify the availability of data between data 
owners and the cloud service providers. They 
further used proxy re-encryption technology for 
secure sharing among authorized cloud service 
providers. H. Wang et al. [15] proposed a credit 
value solution using the multiple-attribute deci-
sion-making algorithm on the blockchain. The 
behaviors of requestors and participants could 
lead to rewards or punishment. Blockchain 
technologies, especially hashing encryption 
and distribution, help with privacy protection, 
but it also bring in extra communication and 
calculation costs. Our goal is to achieve nearly 
seamless performance mainly relying on the ac-
cess control policies but not encryption.

websites. Meanwhile, this approach asks users 
to prepare data into a new folder before sub-
mitting or uploading online. This improvement 
helps reduce the data over-collection behaviors 
but cannot completely solve the problem. It is 
heavily user-involved, tedious, and not detailed 
enough. It is too complicated to figure out  and 
detail intensive for ordinary users. 
We have proposed a cloud-based data access 
control system, in which data are stored in the 
cloud storage and their access are fine-grained 
controlled [3]. Data are organized into differ-
ent directories with different accessing policies 
based on their privacy levels [4]. All data re-
quests are received by the control system. If the 
request and the application have been registered 
and granted before and the application's privacy 
level is not less than the data's privacy level, the 
requested data are returned. If the app's privacy 
level cannot match the data's privacy level, the 
request is denied, and the user must be involved 
to confirm the permission authentication. This 
operation updates the app's privacy level and is 
recorded in the control system to avoid repeated 
user involvements.
There are a lot of widely used cloud storage 
services nowadays, including business-orient-
ed, such as Apple iCloud, Microsoft OneDrive, 
Google Drive, and Dropbox, and entertain-
ment-related, such as Google Stadia, Nvidia Ge-
Force Now, Microsoft xCloud, and Sony Play-
Station Now. These products are user-friendly, 
convenient, and inexpensive. Meanwhile, a lot 
of companies and organizations provide their 
employees with free-to-use business accounts 
to use in order to store their data in the cloud 
storage on various devices anywhere [5]. These 
cloud storage services release the burden of 
storing massive data on mobile devices, but 
bring in extra communication costs [6]. It is 
impossible to achieve seamless performance 
theoretically compared to accessing local data. 
There are so many users complaining about the 
bad and unstable performance of cloud storage 
services, especially streaming services.
In this paper, we aim to use cloud storage with 
fine-grained access control to protect users' pri-
vacy of mobile data. We assign data and apps 
with different privacy levels. Different access-
ing policies are applied based on the privacy lev-
el. Furthermore, we optimize the control system 
for high performance. Considering the dynamic 

locality and time efficiency, we design and im-
plement a cache mechanism to keep non-private 
and ''popular'' data within the mobile device. We 
further add a configurable refresh policy to im-
prove the cache hit ratio. The rest of this paper is 
organized as follows. We include all the related 
work in Section 2. Section 3 discusses the de-
sign and implementation of our approach. Then 
we evaluate our approach and explain the results 
of the experiments in Section 4. We address the 
limitations of our current work in Section 5. Fi-
nally, we conclude our research in Section 6.

2. Related Work

2.1. Mobile Data Privacy Protection

We defined the data over-collection behaviors 
of mobile apps in our previous research [6]. We 
analyzed its motivation, common behaviors, 
and risks. We proposed a general solution of 
using cloud storage and did some simulation 
experiments. In this paper, we implement our 
approach on a real device and improve it with 
other strategies, including privacy-based stor-
age policies and a cache mechanism. 
C. Rottermanner et al. [7] analyzed several pop-
ular messaging apps on Android. They analyzed 
the encrypted communication in the transmission 
layer and attacks targeting the metadata. They 
also checked the message storage on mobile de-
vices. They found that all observed apps request 
over 7 permissions that could leak private infor-
mation about users. They were only focused on 
messengering apps, such as WhatsApp, Line, 
WeChat, Telegram, and TextSecure, but similar 
privacy issues are also common in other apps. 
In our research, we directly deal with the mo-
bile data, that could be used by various apps. Z. 
Almusaylim and N. Jhanjhi [8] studied privacy 
protection in location-aware services of mobile 
cloud computing. They analyzed the challeng-
es and addressed some possible solutions with 
multi-location queries, multi-authority, location 
compression, and user revocation. The similar-
ity of our research is that we provide manage-
ment of multiple data types, while they focused 
on location data, and we deal with all mobile 
data that can be stored in the cloud storage.  
B. Zhang and H. Xu [9] aimed to help users 
make decision towards privacy-related permis-
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3.1. Access Policies with Privacy Levels

We assign data and requesters with several pri-
vacy levels, from 1 to 3. The privacy level of 
data indicates how private the data is. To release 
users' burden of setting up the privacy level for 
each piece of data, we assign the default priva-
cy level values to data based on their types. Mo-
bile data can be categorized into three groups, 
persistent, temporary, and intermediate. The 
persistent data should be stored in non-volatile 
storage and requested multiple times. Some 
typical persistent data are images, files, con-
tacts, and messages. The temporary data are not 
necessary to be stored permanently, and they 
are normally requested just once. For example, 
location data are temporary, since new loca-
tion data should be captured and returned every 
time a request is made. The intermediate data 
are managed within apps or system functions, 
such as memes in a chat app. These data are 
stored in some special directory within the mo-
bile device. Our research focuses on persistent 
data. We set the default privacy level of the per-
sistent data to 1. Meanwhile, we assign portions 
of data with the 2 and 3 privacy levels. We also 
apply different workloads with different priva-
cy level assignments in the experiments.
The privacy level of a requester records the 
highest privacy-level data it has successfully 
accessed. The default privacy level value is 
set to 1. The user must be involved to permit 
if some app requests some higher privacy level 
data than its own privacy level. If the user con-
firms the access permission, the app's privacy 
level will be updated to the privacy level of the 
data. For example, an app with privacy level 1 
requests a piece of data with privacy level 2. If 
the user authorizes the access, this app's privacy 
level will be 2. Otherwise, it is still 1. Any data 
access request from an equal or higher privacy 
level app is automatically granted without the 
user's involvement. 
Data are stored in the cloud storage under dif-
ferent folders based on their privacy levels. We 
apply different storage and access policies in 
the form of the folder. Firstly, the same type of 
data with the lowest privacy level, 1, are stored 
in one folder. Once a request from some app 
has been authorized, this app can access all data 
under this folder. In other words, we return the 
access permission to the whole folder back to 

the requesting app. This is the same way the 
current mobile operating systems do. Second-
ly, the same type of data with the privacy level 
2 are further separated into subfolders based 
on their contents. For example, images can be 
separated into people, scenery, document, and 
others. Once a request from some app has been 
authorized, this app can only access all data un-
der the content subfolder. Lastly, the same type 
of data with the privacy level 3 are stored in a 
special folder, in which each piece of data is 
returned to one particular request.
We apply a RESTful interface to encapsulate 
the apps' requests which consist of request in-
formation, app information, and data informa-
tion. The Access Control module, shown in 
Figure 1, checks the registration status of the 
app and data. If the app has not been registered 
before, the user must be involved. The user can 
select whether to grant this particular access re-
quest. If the app has been registered but is on 
the blacklist, its request gets rejected automat-
ically. Otherwise, the Access Control module 
compares the app's privacy level with the re-
quested data's privacy level, as discussed in the 
above paragraphs and the Algorithm 1.

Algorithm PrivacyCheck(a, d ):
Input: The requesting app a and the requested data d;
            Registered app list, aList;
            Blacklist, bList.
Output: Boolean result of whether to grant app a's
               request towards data d.

if a is in aList
      if a is in bList
            return false
      else if a.pLevel ≥ d.pLevel
            return true
else
            involve the user to decide
            isAllowed ← user's selection
if isAllowed = true
      a.pLevel ← b.pLevel
return isAllowed

Algorithm 1. Granting app's data accessing requests and 
updating related information.

3.2. Cache Mechanism

We design our own ''cache'' mechanism to im-
prove the system performance by reducing the 

the traditional main memory and the flash mem-
ory. We consider the mobile device as the cache 
and the cloud storage as the memory. We also 
consider the network communication cost. G. 
Hasslinger et al. [25] combined the simple up-
date effort of the LRU policy with the flexibility 
to keep the most important contents in the cache. 
They used a predefined score function to rate the 
importance of web content. In our research, we 
use users' preferences with data types along with 
pure LRU to determine the importance of data. 
Meanwhile, their work focused on the web con-
tents, while we worked on the mobile data. 
There are some other research works about 
the improvement of the cache hit rate for mo-
bile data streaming. C. Li et al. [26] proposed 
a QoE-driven mobile edge caching place-
ment optimization for dynamic adaptive video 
streaming. They maximized the aggregate aver-
age video distortion reduction of all users while 
minimizing the additional cost of representa-
tion downloading from the base station, subject 
not only to the storage capacity constraints of 
the edge servers but also to the transmission 
and initial startup delay constraints of the us-
ers. E. Zeydan et al. [27] introduced a proactive 
caching architecture for the 5G network. They 
processed massive data on a big data platform 
and used machine learning tools for content 
popularity predictions. A. Rocha et al. [28] de-
signed a data stream caching algorithm, DSCA, 
to maximize the cache hit rate of Content-Cen-
tric Networks (CCN) by incorporating content 
popularity in caching decisions. DSCA coped 
with dynamics in content popularity while op-
erating under the memory and high processing 
rate constraints of CCN network routers. They 
used a data streaming algorithm to identify the 
most popular contents in a windowed manner. 
X. Li et al. [29] characterized the problem of 
power consumption and video streaming in 
mobile systems. They proposed GreenTube 
to reduce power consumption with a dynamic 
cache management algorithm to adjust the high 
threshold value of network speed and expected 
accessing time. Our research work is focused 
on all mobile data, not only streaming types. 
Furthermore, we not only consider the popular-
ity but also the privacy levels.
There are also some researchers focusing on 
cache management in the Internet of Things 
(IoT) and Named Data Network (NDN). M. 

Naeem et al. [30] proposed a hybrid strategy 
for efficient data delivery. They aimed for aver-
age latency, cache hit ratio, and average stretch 
ratio. T. Peng et al. [31] considered the charac-
teristics of cache files to avoid cache pollution 
problems. They introduced the file cache val-
ue and a file cache value-aware cache replace-
ment algorithm correspondingly. J. Hou et al. 
[32] proposed a Graph Neural Network (GNN) 
based cache strategy to improve caching per-
formance in NDN. They first extracted time-se-
ries features and then applied GNN to make 
cache probability predictions. In our research, 
we have not considered NDN, since we mainly 
focus on the personal data stored in cloud stor-
ages and local devices. We use cloud storage as 
the remote storage without caring about its own 
infrastructure. However, NDN is a topic worth 
considering that we might study in the future.

3.  Design and Implementation

Our access control system consists of two main 
functionalities along with several supporting 
services. The first main functionality is to ap-
ply different access policies towards data and 
requests with different privacy levels. The sec-
ond one is to respond to data requests with the 
optimized cache mechanism. The entire system 
framework is shown in Figure 1. The Privacy 
Control module manages data referring to their 
privacy levels and configures the storage pol-
icies. The Access Control module determines 
whether a data access request from an app 
should be authorized. Then the Mapping mod-
ule checks the storage location of the request-
ed data. If it is stored locally on the device, the 
app can directly access the data without further 
communication with the cloud storage. If the 
data is stored remotely, the Mapping module 
generates the real directory for data with the 
help of metadata and privacy control.

Figure 1. System Framework.
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data. For example, an app with privacy level 1 
requests a piece of data with privacy level 2. If 
the user authorizes the access, this app's privacy 
level will be 2. Otherwise, it is still 1. Any data 
access request from an equal or higher privacy 
level app is automatically granted without the 
user's involvement. 
Data are stored in the cloud storage under dif-
ferent folders based on their privacy levels. We 
apply different storage and access policies in 
the form of the folder. Firstly, the same type of 
data with the lowest privacy level, 1, are stored 
in one folder. Once a request from some app 
has been authorized, this app can access all data 
under this folder. In other words, we return the 
access permission to the whole folder back to 

the requesting app. This is the same way the 
current mobile operating systems do. Second-
ly, the same type of data with the privacy level 
2 are further separated into subfolders based 
on their contents. For example, images can be 
separated into people, scenery, document, and 
others. Once a request from some app has been 
authorized, this app can only access all data un-
der the content subfolder. Lastly, the same type 
of data with the privacy level 3 are stored in a 
special folder, in which each piece of data is 
returned to one particular request.
We apply a RESTful interface to encapsulate 
the apps' requests which consist of request in-
formation, app information, and data informa-
tion. The Access Control module, shown in 
Figure 1, checks the registration status of the 
app and data. If the app has not been registered 
before, the user must be involved. The user can 
select whether to grant this particular access re-
quest. If the app has been registered but is on 
the blacklist, its request gets rejected automat-
ically. Otherwise, the Access Control module 
compares the app's privacy level with the re-
quested data's privacy level, as discussed in the 
above paragraphs and the Algorithm 1.

Algorithm PrivacyCheck(a, d ):
Input: The requesting app a and the requested data d;
            Registered app list, aList;
            Blacklist, bList.
Output: Boolean result of whether to grant app a's
               request towards data d.

if a is in aList
      if a is in bList
            return false
      else if a.pLevel ≥ d.pLevel
            return true
else
            involve the user to decide
            isAllowed ← user's selection
if isAllowed = true
      a.pLevel ← b.pLevel
return isAllowed

Algorithm 1. Granting app's data accessing requests and 
updating related information.

3.2. Cache Mechanism

We design our own ''cache'' mechanism to im-
prove the system performance by reducing the 

the traditional main memory and the flash mem-
ory. We consider the mobile device as the cache 
and the cloud storage as the memory. We also 
consider the network communication cost. G. 
Hasslinger et al. [25] combined the simple up-
date effort of the LRU policy with the flexibility 
to keep the most important contents in the cache. 
They used a predefined score function to rate the 
importance of web content. In our research, we 
use users' preferences with data types along with 
pure LRU to determine the importance of data. 
Meanwhile, their work focused on the web con-
tents, while we worked on the mobile data. 
There are some other research works about 
the improvement of the cache hit rate for mo-
bile data streaming. C. Li et al. [26] proposed 
a QoE-driven mobile edge caching place-
ment optimization for dynamic adaptive video 
streaming. They maximized the aggregate aver-
age video distortion reduction of all users while 
minimizing the additional cost of representa-
tion downloading from the base station, subject 
not only to the storage capacity constraints of 
the edge servers but also to the transmission 
and initial startup delay constraints of the us-
ers. E. Zeydan et al. [27] introduced a proactive 
caching architecture for the 5G network. They 
processed massive data on a big data platform 
and used machine learning tools for content 
popularity predictions. A. Rocha et al. [28] de-
signed a data stream caching algorithm, DSCA, 
to maximize the cache hit rate of Content-Cen-
tric Networks (CCN) by incorporating content 
popularity in caching decisions. DSCA coped 
with dynamics in content popularity while op-
erating under the memory and high processing 
rate constraints of CCN network routers. They 
used a data streaming algorithm to identify the 
most popular contents in a windowed manner. 
X. Li et al. [29] characterized the problem of 
power consumption and video streaming in 
mobile systems. They proposed GreenTube 
to reduce power consumption with a dynamic 
cache management algorithm to adjust the high 
threshold value of network speed and expected 
accessing time. Our research work is focused 
on all mobile data, not only streaming types. 
Furthermore, we not only consider the popular-
ity but also the privacy levels.
There are also some researchers focusing on 
cache management in the Internet of Things 
(IoT) and Named Data Network (NDN). M. 

Naeem et al. [30] proposed a hybrid strategy 
for efficient data delivery. They aimed for aver-
age latency, cache hit ratio, and average stretch 
ratio. T. Peng et al. [31] considered the charac-
teristics of cache files to avoid cache pollution 
problems. They introduced the file cache val-
ue and a file cache value-aware cache replace-
ment algorithm correspondingly. J. Hou et al. 
[32] proposed a Graph Neural Network (GNN) 
based cache strategy to improve caching per-
formance in NDN. They first extracted time-se-
ries features and then applied GNN to make 
cache probability predictions. In our research, 
we have not considered NDN, since we mainly 
focus on the personal data stored in cloud stor-
ages and local devices. We use cloud storage as 
the remote storage without caring about its own 
infrastructure. However, NDN is a topic worth 
considering that we might study in the future.

3.  Design and Implementation

Our access control system consists of two main 
functionalities along with several supporting 
services. The first main functionality is to ap-
ply different access policies towards data and 
requests with different privacy levels. The sec-
ond one is to respond to data requests with the 
optimized cache mechanism. The entire system 
framework is shown in Figure 1. The Privacy 
Control module manages data referring to their 
privacy levels and configures the storage pol-
icies. The Access Control module determines 
whether a data access request from an app 
should be authorized. Then the Mapping mod-
ule checks the storage location of the request-
ed data. If it is stored locally on the device, the 
app can directly access the data without further 
communication with the cloud storage. If the 
data is stored remotely, the Mapping module 
generates the real directory for data with the 
help of metadata and privacy control.

Figure 1. System Framework.



224 225W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

3.2.2. Cache Refresh Strategy
There are several important differences between 
our cache mechanism with the traditional mem-
ory-cache strategy. The most important one is 
that the mobile device storage does not refresh 
as the memory does. Once we turn off the com-
puter, all contents in the memory are erased. 
However, the data stored in mobile device are 
permanent even when the device is turned off. 
In other words, the contents stored in the mo-
bile device won't be erased or refreshed. In our 
design, we refresh the mobile storage with con-
figured variables that are calculated based on 
the user's behavior. Three factors are discussed 
as following:
1. Percentage of refreshed data. After ob-

taining the user's preference towards data 
types, we use the variable, α, to be the per-
centage of the most frequently used data 
type being refreshed. For example, some 
user uses pictures the most, and, thus, we 
set the α to value 0.75. Once a refresh oc-
curs, we will remove 75% of pictures from 
the cache. For the data type that is not the 
most frequently used, we erase of it from 
the cache.

2. Refresh frequency. We use the variable, β, 
to determine how often to refresh the cache 
periodically. This value is flexible and it is 
mainly determined by the user's behav-
ior pattern. For example, β is one week if 
the user's behavior pattern changes during 
a week. Meanwhile, we set up the lower 
and upper bound of β to be is 1 day and 1 
month respectively.  

3. Timeliness of special data is marked with 
δ. In our previous research, we found that 
there were some data that were not so fre-
quently used within one refresh cycle, but 
rather they were used in almost all refresh 
cycles. For example, someone always lis-
tens to a music list stored on the mobile 
phone on the way to work. However, that 
person does not listen to music during 
working hours. If the refresh frequen-
cy is one day, all the music is loaded ev-
ery morning and gets erased every night. 
It is obvious that it does not make much 
sense to keep the data in the device until 
the cache is full. To make the cache space 
more efficient, we use a simple time-se-

ries regression method to predict the time-
liness. We do not use other sophisticated 
machine learning methods that can provide 
more accurate predictions, since the run-
ning time is very important in our system. 
Meanwhile, we just consider the timeli-
ness factor for large data, such as music 
and videos. These types of data are more 
likely to follow the special pattern as we 
mentioned above.

In summary, the refresh workflow is shown 
in Figure 2. Basically, we keep handling data 
requests until the refresh rate β occurs. Mean-
while, we check large data to see whether they 
follow the special usage pattern mentioned 
above. We mark the data with δ if they do and 
will erase them once they are not used without 
starting a new refresh phase. The refresh occurs 
every at a β time interval, and it erases α of the 
most frequently used type of data and all other 
types of data.

Figure 2. The workflow of the refresh process.

3.3. Mapping Mechanism

The Mapping module in our system has several 
functionalities. The first one is to keep local and 
remote references towards data consistent. In 
our system, data could be stored in cloud stor-
age or mobile device. We design a set of stan-
dardized interfaces to request data and receive 
data. The local references provide the directory 
of local data stored in the mobile device. They 
are synchronized with the Mapping module in 

communication cost between mobile devices 
and cloud storage. We keep some data stored in 
the mobile device locally. Any legit app request-
ing some local data can access the data directly. 
The data storage is implemented based on lo-
cality and user's behavior, along with consid-
eration of privacy, to make judicious decisions. 
Meanwhile, we introduce a refresh mechanism 
to improve the cache hit ratio.

3.2.1. Cache Replacement Strategy

The cache in our system is the mobile device 
itself. We leave some non-private data in the 
mobile device, which is reasonable considering 
the trade-off between extra communication cost 
and privacy protection. Fortunately, more pri-
vate data are less likely to be used frequently. 
For example, we do not need our SSNs every 
day. As a result, the first requirement of the lo-
cal data is that its privacy levels are 1. The sec-
ond aspect is about the cache replacement strat-
egy, which data should be kept in the mobile 
device and which data can be removed when 
the cache is full. The most commonly used rule 
is the principle of locality [33]. The perfor-
mance is better if more ''popular'' (most recently 
or frequently accessed) data are stored locally. 
We try to keep the most recently and frequently 
used data in the mobile device. However, the 
frequency is counted for each data type, not sin-
gle data, considering the specialty of our sys-
tem and users' behaviors.
Different users have different behaviors using 
mobile devices. For example, a user may use 
music data most frequently on weekdays and 
may use pictures and videos most frequently on 
weekends. Compared to the traditional memo-
ry-cache systems, that apply paging to divide 
cache, memory, and data into the same fixed-
size blocks, our system does not divide data to 
keep the integrity of data. If we divide data into 
smaller pieces, it is easy to apply replacement, 
but it is too complicated to store it in the mobile 
device and the cloud storage. It is also very te-
dious to maintain the integrity and to keep ev-
erything reliable when it comes to dealing with 
cloud storage. As a result, we keep the data at 
its original size and design a new method to 
solve the replacement problem based on the us-
er's behavior.

 To analyze the user's behavior, we record data 
access requests at the beginning of each refresh 
cycle and equally assign cache space for all data 
types. First, we obtain the user's preference for 
different data types. Based on the user's pref-
erence, we give higher priority to the data type 
that the user prefers. The higher priority data 
type can preempt some space from the lower 
priority data type. If the assigned cache space 
for the highest priority data type is full, we will 
migrate some space from the space of the lowest 
priority data type. We try to keep all the highest 
preferred data until the whole cache is full.

Algorithm UpdateCache(d ):
Input: The new requested data d; data type frequency
            list dtfList; Deque for each data type dtDq; 
            Cache size for each data type csList.
Output: store data d to cache

if csList(d.type) < d.size
    t ← the minimum in dtfList
      while csList(t) < d.size
            pop from dtDq(t)
            csList(t) ← csList(t) - d.size
            csList(d.type) ← csList(d.type) + d.size
push d to dtDq(d.type)
dtfList(d.type) ← dtfList(d.type) + 1

Algorithm 2. Push the newly requested data to cache and 
update related information.

Algorithm 2 shows the detailed steps of pushing 
the newly requested data to cache and updating 
the related information. First, we check wheth-
er the corresponding cache can host the new 
data. If it is large enough, we will push the new 
data to the corresponding deque and update the 
frequency list for the type of the new data. If the 
corresponding cache is not large enough, we 
will borrow some space from the lower priority 
cache space. We find the minimum frequency 
data type has the lowest priority. Then we start 
the iteration to pop data from the lowest pri-
ority cache space until it has enough space for 
the new data. Then we move the newly emp-
ty space from the lowest priority cache to the 
cache for the requested data's type. Eventually, 
we push the new data to the corresponding de-
que and update the frequency list for the type of 
the new data.
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3.2.2. Cache Refresh Strategy
There are several important differences between 
our cache mechanism with the traditional mem-
ory-cache strategy. The most important one is 
that the mobile device storage does not refresh 
as the memory does. Once we turn off the com-
puter, all contents in the memory are erased. 
However, the data stored in mobile device are 
permanent even when the device is turned off. 
In other words, the contents stored in the mo-
bile device won't be erased or refreshed. In our 
design, we refresh the mobile storage with con-
figured variables that are calculated based on 
the user's behavior. Three factors are discussed 
as following:
1. Percentage of refreshed data. After ob-

taining the user's preference towards data 
types, we use the variable, α, to be the per-
centage of the most frequently used data 
type being refreshed. For example, some 
user uses pictures the most, and, thus, we 
set the α to value 0.75. Once a refresh oc-
curs, we will remove 75% of pictures from 
the cache. For the data type that is not the 
most frequently used, we erase of it from 
the cache.

2. Refresh frequency. We use the variable, β, 
to determine how often to refresh the cache 
periodically. This value is flexible and it is 
mainly determined by the user's behav-
ior pattern. For example, β is one week if 
the user's behavior pattern changes during 
a week. Meanwhile, we set up the lower 
and upper bound of β to be is 1 day and 1 
month respectively.  

3. Timeliness of special data is marked with 
δ. In our previous research, we found that 
there were some data that were not so fre-
quently used within one refresh cycle, but 
rather they were used in almost all refresh 
cycles. For example, someone always lis-
tens to a music list stored on the mobile 
phone on the way to work. However, that 
person does not listen to music during 
working hours. If the refresh frequen-
cy is one day, all the music is loaded ev-
ery morning and gets erased every night. 
It is obvious that it does not make much 
sense to keep the data in the device until 
the cache is full. To make the cache space 
more efficient, we use a simple time-se-

ries regression method to predict the time-
liness. We do not use other sophisticated 
machine learning methods that can provide 
more accurate predictions, since the run-
ning time is very important in our system. 
Meanwhile, we just consider the timeli-
ness factor for large data, such as music 
and videos. These types of data are more 
likely to follow the special pattern as we 
mentioned above.

In summary, the refresh workflow is shown 
in Figure 2. Basically, we keep handling data 
requests until the refresh rate β occurs. Mean-
while, we check large data to see whether they 
follow the special usage pattern mentioned 
above. We mark the data with δ if they do and 
will erase them once they are not used without 
starting a new refresh phase. The refresh occurs 
every at a β time interval, and it erases α of the 
most frequently used type of data and all other 
types of data.

Figure 2. The workflow of the refresh process.

3.3. Mapping Mechanism

The Mapping module in our system has several 
functionalities. The first one is to keep local and 
remote references towards data consistent. In 
our system, data could be stored in cloud stor-
age or mobile device. We design a set of stan-
dardized interfaces to request data and receive 
data. The local references provide the directory 
of local data stored in the mobile device. They 
are synchronized with the Mapping module in 

communication cost between mobile devices 
and cloud storage. We keep some data stored in 
the mobile device locally. Any legit app request-
ing some local data can access the data directly. 
The data storage is implemented based on lo-
cality and user's behavior, along with consid-
eration of privacy, to make judicious decisions. 
Meanwhile, we introduce a refresh mechanism 
to improve the cache hit ratio.

3.2.1. Cache Replacement Strategy

The cache in our system is the mobile device 
itself. We leave some non-private data in the 
mobile device, which is reasonable considering 
the trade-off between extra communication cost 
and privacy protection. Fortunately, more pri-
vate data are less likely to be used frequently. 
For example, we do not need our SSNs every 
day. As a result, the first requirement of the lo-
cal data is that its privacy levels are 1. The sec-
ond aspect is about the cache replacement strat-
egy, which data should be kept in the mobile 
device and which data can be removed when 
the cache is full. The most commonly used rule 
is the principle of locality [33]. The perfor-
mance is better if more ''popular'' (most recently 
or frequently accessed) data are stored locally. 
We try to keep the most recently and frequently 
used data in the mobile device. However, the 
frequency is counted for each data type, not sin-
gle data, considering the specialty of our sys-
tem and users' behaviors.
Different users have different behaviors using 
mobile devices. For example, a user may use 
music data most frequently on weekdays and 
may use pictures and videos most frequently on 
weekends. Compared to the traditional memo-
ry-cache systems, that apply paging to divide 
cache, memory, and data into the same fixed-
size blocks, our system does not divide data to 
keep the integrity of data. If we divide data into 
smaller pieces, it is easy to apply replacement, 
but it is too complicated to store it in the mobile 
device and the cloud storage. It is also very te-
dious to maintain the integrity and to keep ev-
erything reliable when it comes to dealing with 
cloud storage. As a result, we keep the data at 
its original size and design a new method to 
solve the replacement problem based on the us-
er's behavior.

 To analyze the user's behavior, we record data 
access requests at the beginning of each refresh 
cycle and equally assign cache space for all data 
types. First, we obtain the user's preference for 
different data types. Based on the user's pref-
erence, we give higher priority to the data type 
that the user prefers. The higher priority data 
type can preempt some space from the lower 
priority data type. If the assigned cache space 
for the highest priority data type is full, we will 
migrate some space from the space of the lowest 
priority data type. We try to keep all the highest 
preferred data until the whole cache is full.

Algorithm UpdateCache(d ):
Input: The new requested data d; data type frequency
            list dtfList; Deque for each data type dtDq; 
            Cache size for each data type csList.
Output: store data d to cache

if csList(d.type) < d.size
    t ← the minimum in dtfList
      while csList(t) < d.size
            pop from dtDq(t)
            csList(t) ← csList(t) - d.size
            csList(d.type) ← csList(d.type) + d.size
push d to dtDq(d.type)
dtfList(d.type) ← dtfList(d.type) + 1

Algorithm 2. Push the newly requested data to cache and 
update related information.

Algorithm 2 shows the detailed steps of pushing 
the newly requested data to cache and updating 
the related information. First, we check wheth-
er the corresponding cache can host the new 
data. If it is large enough, we will push the new 
data to the corresponding deque and update the 
frequency list for the type of the new data. If the 
corresponding cache is not large enough, we 
will borrow some space from the lower priority 
cache space. We find the minimum frequency 
data type has the lowest priority. Then we start 
the iteration to pop data from the lowest pri-
ority cache space until it has enough space for 
the new data. Then we move the newly emp-
ty space from the lowest priority cache to the 
cache for the requested data's type. Eventually, 
we push the new data to the corresponding de-
que and update the frequency list for the type of 
the new data.
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We record three users' real usage regarding the 
five types of data, mentioned in Table 1, and 
then delete the duplicate information and gen-
erate the workload to simulate different be-
haviors. We prepare three sets of workloads of 
accessing mobile data based on real users' be-
haviors. The first workload is image intensive, 
in which there are 70% of requests for images. 
The second workload is emails and contacts 
intensive, in which there are 80% requests for 
contacts and emails. In the third workload, data 
requests are equally distributed to the five data 
types. 

4.2. Privacy Protection Experiments

To evaluate the strength of privacy protection 
of our approach, we use a value, risk grade, by 
multiplying the possibility of leakage and the 
range. We assume that a single piece of data has 
a 50% chance of being leaked if it is stored on a 
mobile device. Meanwhile, it has a 20% chance 
of being leaked if it is stored in the private fold-
er and 10% for the special extremely private 
folder in the cloud storage. A high-risk grade 
indicates that the user's privacy is highly likely 
to be harmed. In other words, the lower the risk 
grade is, the better the user's privacy is protect-
ed. For the original approach, once some app 
gets permission to access some type of data, 
it can access all data with the same type. The 
range is the total amount of stored data in the 
same folder.
Table 3 shows our experimental results regard-
ing the risk grade. For the original approach, 
there is no separation of privacy levels, thus we 
set their privacy levels to be 0. The possibility 
of each type of data being leaked is the same as 
that of a single piece of data, but the range is 
large. Due to the coarse-grained access control, 
the leakage of one piece of data can lead to the 
leakage of all data of the same type. As a result, 
the risk grades are very high, as the first five 
cells of the last column in Table 3. From the 
remaining cells of the last column, we can see 
that our approach decreases the risk grades sig-
nificantly for all types of data. The first benefit 
of our approach is the data separation based on 
the privacy level. This method reduces the pos-
sible leakage range greatly. Even if we leave 
all non-private data in the mobile device, the 
risk grades are lower than that of the original 

approach. For example, non-private images in 
our approach have 300 risk grade that is less 
than the 500 risk grade in the original approach. 
For the private and extremely private data, our 
approach can decrease the risk grades tremen-
dously. That is the second benefit, which is the 
fine-grained access control provided by cloud 
storage. Extremely private images, audio, vid-
eos, contacts, and emails have risk grades of 
10, 1.5, 1, 50, and 40 respectively. Compared 
to the original risk grades 500, 150, 25, 500, 
and 500, our approach improves the privacy 
protection 10 to 100 times.

4.3. Response Time Experiments

Our approach can improve mobile data priva-
cy protection, as shown in Table 3, but there 
is always a tradeoff between performance and 
complexity of access control. Our approach uti-
lizes cloud storage to provide fine-grained ac-
cess control. There must be extra communica-
tion costs that degrade the performance. We use 
the response time to evaluate the performance. 
We divide the whole workload into 100 inter-
vals and record the average response time of all 
requests within one interval in Android Studio. 
We set the refresh rate α to be every 10 intervals 
and the most frequently used data type being 
erased, β, to be 0.5. The mark δ is only used for 
audio and video data.
Figure 3 shows the results of response time run-
ning the first workload using the original ap-
proach, shown by the dashed line, our approach 
without cache, shown by the dashed line with 
triangle, and our approach with cache, shown 
by the solid line with squares. Basically, the 
original approach has the smallest and the most 
stable response time. The average response time 
of the original approach is 6.3 ms. The average 
response time of our approach without cache 
is 15.5 ms and that with cache is 11.4 ms. The 
cache mechanism achieves about 26.5% perfor-
mance improvement. At the beginning, there is 
no huge difference between our approach with 
and without cache. However, the performance 
increases once some data have been stored in 
the cache. For example, from workload 70 to 
101, the gap between without cache and with 
cache is huge, and our approach with cache 
has a closer response time than the original ap-
proach. Even though our approach spends more 

the form of RESTful resources. Meanwhile, 
the data stored in the cloud storage are also ac-
cessed by the same format of RESTful protocol.
The second functionality of the Mapping mod-
ule is to extract the metadata from data to im-
prove privacy protection. The metadata of data 
along with the privacy level, added into our 
system, is managed by the Mapping module but 
also stored in the cloud storage. We use XML 
files to describe the metadata in order to match 
the RESTful requests from mobile apps. The 
metadata are used by the Privacy Control mod-
ule to determine the granting of permissions. 
After that, the Mapping module will send the 
real directory to the requesting app.
The third functionality is to work with the Ac-
cess Control module to determine which folder 
directory a piece of data should be stored in and 
be returned to the requesting app. As we men-
tioned in Section 2.1, data are stored in different 
folders based on their content types and privacy 
levels. If some data are with privacy level 1, the 
Mapping module stores them in the common 
folder and will return the whole folder directory 
to the requested app. If some data are with pri-
vacy level 2, the Mapping module stores them 
in the corresponding content subfolder and will 
return the content subfolder directory to the re-
quested app. For the data with privacy level 3, 
the Mapping module stores them individually 
in the special folder and will only return the re-
quested data.

4. Experiments and Results

4.1. Experimental Environments

We use one Google Pixel 4a (5G) as the exper-
imental mobile device. It is running Android 11 
and with 128 GB storage. We define the cache to 
be 2 GB in size. We prepare a server to simulate 
the cloud storage. We can fully customize stor-
age policies and communication interfaces with 
our own RESTful protocol. The server and the 
mobile device are connected to the same router. 
We implement a set of testing mobile apps with 
our own APIs in Android Studio 4.1.1. These 
apps request different data using the same for-
mat of the RESTful protocol. Meanwhile, we 
prepare several different kinds of data, includ-

ing images, audio, videos, contacts, and emails. 
We generate testing pseudo data with the same 
size for each type. Table 1 shows the unit size 
and amount for each data type.

Table 1. Experimental data size and amount.

Data Type Unit Size Amount Total Size

Image 4 Mb 1000 4000 Mb

Audio 8 Mb 300 2400 Mb

Video 500 Mb 50 25 Gb

Contact 1 Mb 1000 1000 Mb

Email 2 Mb 1000 2000 Mb

Meanwhile, we assign the experimental data 
with different privacy levels. The percentage 
of five types of data with different privacy lev-
els are shown in Table 2. We consider that 60% 
of images are not private, such as portraits and 
scenery. Furthermore, 30% and 10% of images 
are private and extremely private respectively. 
For example, images with personal addresses 
are private and copies of personal information 
are extremely private. Most audio records are 
not private, while there are some of them that 
can be considered private or extremely private, 
such as private call recording. Half videos are 
not private. They could be movies or download-
ed videos. We consider that 30% of videos are 
private, such as homemade videos that should 
not be shared with others, and 20% of videos 
are extremely private, such as confidential 
meeting recordings. Most contacts are private 
or extremely private because they include a lot 
of personal information. Over half of emails are 
private or extremely private, such as business 
or confidential emails.

Table 2. Experimental data privacy levels.

Data Type Privacy 
Level 1

Privacy 
Level 2

Privacy 
Level 3

Image 60% 30% 10%

Audio 80% 15% 5%

Video 50% 30% 20%

Contact 10% 40% 50%

Email 30% 30% 40%
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We record three users' real usage regarding the 
five types of data, mentioned in Table 1, and 
then delete the duplicate information and gen-
erate the workload to simulate different be-
haviors. We prepare three sets of workloads of 
accessing mobile data based on real users' be-
haviors. The first workload is image intensive, 
in which there are 70% of requests for images. 
The second workload is emails and contacts 
intensive, in which there are 80% requests for 
contacts and emails. In the third workload, data 
requests are equally distributed to the five data 
types. 

4.2. Privacy Protection Experiments

To evaluate the strength of privacy protection 
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multiplying the possibility of leakage and the 
range. We assume that a single piece of data has 
a 50% chance of being leaked if it is stored on a 
mobile device. Meanwhile, it has a 20% chance 
of being leaked if it is stored in the private fold-
er and 10% for the special extremely private 
folder in the cloud storage. A high-risk grade 
indicates that the user's privacy is highly likely 
to be harmed. In other words, the lower the risk 
grade is, the better the user's privacy is protect-
ed. For the original approach, once some app 
gets permission to access some type of data, 
it can access all data with the same type. The 
range is the total amount of stored data in the 
same folder.
Table 3 shows our experimental results regard-
ing the risk grade. For the original approach, 
there is no separation of privacy levels, thus we 
set their privacy levels to be 0. The possibility 
of each type of data being leaked is the same as 
that of a single piece of data, but the range is 
large. Due to the coarse-grained access control, 
the leakage of one piece of data can lead to the 
leakage of all data of the same type. As a result, 
the risk grades are very high, as the first five 
cells of the last column in Table 3. From the 
remaining cells of the last column, we can see 
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the privacy level. This method reduces the pos-
sible leakage range greatly. Even if we leave 
all non-private data in the mobile device, the 
risk grades are lower than that of the original 

approach. For example, non-private images in 
our approach have 300 risk grade that is less 
than the 500 risk grade in the original approach. 
For the private and extremely private data, our 
approach can decrease the risk grades tremen-
dously. That is the second benefit, which is the 
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4.3. Response Time Experiments
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complexity of access control. Our approach uti-
lizes cloud storage to provide fine-grained ac-
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the form of RESTful resources. Meanwhile, 
the data stored in the cloud storage are also ac-
cessed by the same format of RESTful protocol.
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along with the privacy level, added into our 
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files to describe the metadata in order to match 
the RESTful requests from mobile apps. The 
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ule to determine the granting of permissions. 
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ing images, audio, videos, contacts, and emails. 
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ed videos. We consider that 30% of videos are 
private, such as homemade videos that should 
not be shared with others, and 20% of videos 
are extremely private, such as confidential 
meeting recordings. Most contacts are private 
or extremely private because they include a lot 
of personal information. Over half of emails are 
private or extremely private, such as business 
or confidential emails.

Table 2. Experimental data privacy levels.

Data Type Privacy 
Level 1

Privacy 
Level 2

Privacy 
Level 3

Image 60% 30% 10%

Audio 80% 15% 5%

Video 50% 30% 20%

Contact 10% 40% 50%

Email 30% 30% 40%
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The last workload is the one with equal data re-
quests among five types. Figure 5 shows the re-
sults of this experiment. The average response 
time of our approach with cache is 7.8 ms and 
10.6 ms without cache. The average response 
time of the original approach is 3 ms. Our ap-
proach works the worst compared to the original 
approach among the three workloads. In fact, 
this workload cannot reflect reality, and it is 
generated by us just for experimental purposes. 
It is nearly impossible that some user accesses 
the data in an equally distributed manner. There 
are always behavioral patterns, that may not be 
consistent forever. We keep this workload as a 
part of theoretical analysis.

4.4. Cache Hit Ratio Experiments

In the previous experiments, we set α to the val-
ue of every 10 intervals and β to 0.5. Howev-

er, these variables should positively impact the 
cache hit ratio performance. In this set of exper-
iments, we aim to see the relationship between 
the cache hit ratio and variables α and β.

4.4.1. Variable α Experiments

We first fix β to be 1, indicating each refresh 
cycle will erase all data in the cache, to test 
the different α values. We set α to 0, 0.25, 0.5, 
and 0.75 in our experiments. We only run the 
first and second workloads for this part of the 
experiments, because the cache hit ratio is re-
lated to the workload. Meanwhile, the work-
load should reflect the user's behavior pattern, 
but the third workload does not follow some 
pattern.

behavior, are shown in Figure 4. Even the orig-
inal approach has better performance, but our 
approach works better than during the exper-
iment on the first workload. The average re-
sponse time of our approach with cache is 2.7 
ms, the average response time without cache is 
4.3 ms, and the average response time of the 
original approach is 1.1 ms. The cache mech-
anism achieves about 60% performance im-
provement over the without cache approach. 
The majority of the second workload requests 
contacts or emails, that are relatively small. As 
a result, downloading them from cloud storage 
is not time-consuming. That makes our ap-
proach faster.

time obtaining data, it is still reasonable. A re-
sponse time under 100 ms can offer users an in-
stant response. Furthermore, our approach can 
achieve nearly the same performance if the data 
are stored in the mobile device. The slight delay 
is because our approach uses RESTful protocol 
to request and fetch data, which is slightly slow-
er than the original API calls in Android. There 
are four recorded response times greater than 20 
ms since there are audio or video data requested 
within those intervals. Downloading these large 
data is time-consuming, but it runs much faster 
if these data have been stored in a cache.
Then the experiment results of running the sec-
ond workload, which is typical business-like 

Figure 3. Experiment results of response time running the first workload.

Figure 4. Experiment results of response time running the second workload.Table 3. Risk grade experiment results.

Approach Data Type Privacy Level Possibility Range Risk Grade

Original

Image 0 50% 1000 500

Audio 0 50% 300 150

Video 0 50% 50 25

Contact 0 50% 1000 500

Email 0 50% 1000 500

Our Approach

Image

1 50% 600 300

2 20% 300 60

3 10% 100 10

Audio

1 50% 240 120

2 20% 45 9

3 10% 15 1.5

Video

1 50% 25 12.5

2 20% 15 3

3 10% 10 1

Contact

1 50% 100 50

2 20% 400 20

3 10% 500 50

Email

1 50% 300 150

2 20% 300 60

10% 400 40
Figure 5. Experiment results of response time running the third workload.
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a result, downloading them from cloud storage 
is not time-consuming. That makes our ap-
proach faster.
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workload interval 87. We can conclude that it 
is not always good to refresh the cache without 
considering the usage pattern.

4.4.2. Variable β Experiments

For the first workload, we fix α to be 0.2 and 
test the cache hit ratios with different values 
of β including 0, 0.25, 0.5, and 0.75. Value β 
= 0 means all the data with the most frequently 
used type are kept in each refresh cycle. 
To compare the performance of different β val-
ues, we also include β = 1 in the experiment, 
which has been discussed in Section 3.4.1. The 
results are shown in Figure 9. The configuration 
with β = 0.25 has a very similar performance 
with β = 0.5. If β is 0.75 or 1, the cache hit ratio 
declines at the beginning of each refresh cycle. 
That is because new data requests cannot find 
local references in the cache. The cache hit ratio 
of β = 0.75 is still much better than β = 1, since 
there are some popular data left over in the cache 
that can satisfy some data requests. Comparing 
β = 0.5, 0.25, and 0, we can find that their per-
formances also decline at the beginning phase 
of each refresh cycle, but the decline happens 
at different times. The first performance decline 
of β = 0.5 happens at workload interval 23. The 
first performance decline of β = 0.25 happens 
at workload interval 25. The first performance 

decline of β = 0 happens at workload interval 24. 
Meanwhile, if the performance decline happens 
later, the following performance incline is better. 
Considering this point, there is best performing 
configuration for all test cases. At the first re-
fresh cycle, β = 0, β = 0.25, and β = 0.5 are sim-
ilarly good. At the second refresh cycle, β = 0.5 
is the best. At the third refresh cycle, β = 0.25 
and β = 0.5 are almost the same good. At the last 
refresh cycle, β = 0.25 has the best performance.

5. Limitations and Future Work

There are several limitations of our current re-
search work. First, we have not applied any en-
cryption strategy in the system considering the 
extra cost brought by the encryption and decryp-
tion methods. We aim for all mobile devices, and 
we do not expect that all of them have powerful 
computation abilities. We follow the design idea 
to keep mobile devices only with their original 
and most fundamental functions.  However, en-
cryption has great importance to data protection. 
Meanwhile, mobile devices are increasingly 
powerful  and widely proliferated with the help 
of rapidly growing manufacturing. In section 2, 
we mention some related work using encryption 
methods. In the future, we plan to apply some 
lightweight encryption and decryption policy to 
further improve privacy protection.

Figure 6 shows the results of running the first 
workload with α = 0, 0.25, 0.5, 0.75, and β = 1. 
It is straightforward that the cache hit ratios for 
each configuration are the same if no refresh 
has occurred. For example, from workload in-
tervals 0 to 25, all four configurations share the 
same performance. At workload intervals 25, 
50, and 75, we can see a cache hit ratio to de-
cline. That is caused by the refresh, which eras-
es all data in the cache. After these declines, 
the cache hit ratio starts to incline very soon. 
Furthermore, there are some other interesting 
findings. If we refresh the cache more frequent-
ly, the following cache hit ratio increases fast-
er. For example, from workload interval 25 to 
50, the configuration with α = 0.25 increases 
faster than others. We believe that the reason is 
that the cache has been emptied and made more 
room for recent data. Similarly, from workload 
interval 80 to 100, the configuration with α = 
0.75 catches up with the configuration with α 
= 0 and performs better after workload interval 
88.
From the results of the configuration α = 0, we 
can see that the cache hit ratio starts to decline 
around workload intervals 20 and 40. After 
workload interval 60, the cache hit ratio be-
comes stable. As a result, we set the α to 0.2 
and compare the results with α = 0.25, which 
has the best results in the previous experiment. 
The results are shown in Figure 7. Value of α 

= 0.25 indicates more refresh, so there is more 
pronounced cache hit ratio decline than in case 
when α = 0.2. However, it always catches up 
quickly and surpasses α = 0.25. On average, α 
= 0.2 can achieve a higher cache hit ratio than 
α = 0.25. If we can accurately know the user's 
behavior pattern, which directly affects the re-
fresh rate, we can obtain the best cache hit ratio. 
However, it is nearly impossible to know this 
information in advance. One alternative way is 
to predict users' behaviors based on their his-
torical data usage records, but this method does 
not work well in streaming-related services.
Furthermore, we use the same configuration, 
in which β = 1 and α = 0, 0.25, 0.5, and 0.75, 
to run the second workload. To show their dif-
ferences clearer, we filter the results by only 
showing workload intervals from 20 to 100. 
All configurations share the same performance 
before refresh occurs, which happens at 20 at 
the earliest. First, the average cache hit ratio of 
the second workload is higher than that of the 
first workload. It is because the cache can store 
much more contacts and email data than imag-
es, audio, and videos. Then, there is no obvious 
pattern found in the second workload. The user 
may frequently access a pool of contacts and 
emails, and that person also uses other contacts 
and emails with less frequency. The configu-
ration with α = 0 has the best cache hit ratio 
most of the time, but α = 0.75 surpasses it at the 

Figure 9. Experiment results of cache hit ratio.

Figure 6. Experiment results of cache hit ratio running the first workload with β = 1.

Figure 7. Experiment results of comparison between α = 0.25 and α = 0.2.

Figure 8. Experiment results of cache hit ratio running the second workload with β = 1.
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workload interval 87. We can conclude that it 
is not always good to refresh the cache without 
considering the usage pattern.

4.4.2. Variable β Experiments

For the first workload, we fix α to be 0.2 and 
test the cache hit ratios with different values 
of β including 0, 0.25, 0.5, and 0.75. Value β 
= 0 means all the data with the most frequently 
used type are kept in each refresh cycle. 
To compare the performance of different β val-
ues, we also include β = 1 in the experiment, 
which has been discussed in Section 3.4.1. The 
results are shown in Figure 9. The configuration 
with β = 0.25 has a very similar performance 
with β = 0.5. If β is 0.75 or 1, the cache hit ratio 
declines at the beginning of each refresh cycle. 
That is because new data requests cannot find 
local references in the cache. The cache hit ratio 
of β = 0.75 is still much better than β = 1, since 
there are some popular data left over in the cache 
that can satisfy some data requests. Comparing 
β = 0.5, 0.25, and 0, we can find that their per-
formances also decline at the beginning phase 
of each refresh cycle, but the decline happens 
at different times. The first performance decline 
of β = 0.5 happens at workload interval 23. The 
first performance decline of β = 0.25 happens 
at workload interval 25. The first performance 

decline of β = 0 happens at workload interval 24. 
Meanwhile, if the performance decline happens 
later, the following performance incline is better. 
Considering this point, there is best performing 
configuration for all test cases. At the first re-
fresh cycle, β = 0, β = 0.25, and β = 0.5 are sim-
ilarly good. At the second refresh cycle, β = 0.5 
is the best. At the third refresh cycle, β = 0.25 
and β = 0.5 are almost the same good. At the last 
refresh cycle, β = 0.25 has the best performance.

5. Limitations and Future Work

There are several limitations of our current re-
search work. First, we have not applied any en-
cryption strategy in the system considering the 
extra cost brought by the encryption and decryp-
tion methods. We aim for all mobile devices, and 
we do not expect that all of them have powerful 
computation abilities. We follow the design idea 
to keep mobile devices only with their original 
and most fundamental functions.  However, en-
cryption has great importance to data protection. 
Meanwhile, mobile devices are increasingly 
powerful  and widely proliferated with the help 
of rapidly growing manufacturing. In section 2, 
we mention some related work using encryption 
methods. In the future, we plan to apply some 
lightweight encryption and decryption policy to 
further improve privacy protection.

Figure 6 shows the results of running the first 
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It is straightforward that the cache hit ratios for 
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50, and 75, we can see a cache hit ratio to de-
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es all data in the cache. After these declines, 
the cache hit ratio starts to incline very soon. 
Furthermore, there are some other interesting 
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Secondly, we use two variables, α and β, in the 
cache refresh strategy. The variable α is about 
users' preference towards data types, while the 
variable β heavily depends on the accuracy of 
users' behavior pattern prediction. Theoretical-
ly, it is impossible to guarantee 100% accuracy 
and may bring massive extra computation costs. 
Thus, we only test some pre-defined values.  In 
the future, we also plan to find the best trade-off 
between accuracy and cost for these two vari-
ables, especially β. 
Lastly, the cloud storage and mobile data are 
simulated in our experiments. We use a server 
that we can fully control to execute our system, 
but we never have equivalent rights to using a 
public cloud storage service practically. In other 
words, our system does not work without efforts 
from the cloud storage service providers if users 
choose to use any public cloud storage service. 
We generated the testing mobile data with one 
size for one type. For example, all images are 
4Mb. The mobile data usage is real but from a 
small group of users. This also cannot reflect 
reality. In the future, we will acquire additional 
mobile data and more real behavior from a larg-
er group of users to evaluate our system.

6. Conclusion

In this paper, we proposed a novel cloud-based 
storage and fine-grained access control system. 
Mobile data are separated based on new meta-
data and privacy level, and they are stored in 
different folders with different access granular-
ities. To eliminate extra communication costs, 
we introduced a cache mechanism to store pop-
ular and non-private data on mobile devices. 
We apply users' preferences towards data types, 
along with a configurable refresh policy, to im-
prove the cache hit ratio. Results of experiments 
showed that our approach with the cache mecha-
nism could maintain efficient performance while 
greatly improving users' privacy protection. 
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Secondly, we use two variables, α and β, in the 
cache refresh strategy. The variable α is about 
users' preference towards data types, while the 
variable β heavily depends on the accuracy of 
users' behavior pattern prediction. Theoretical-
ly, it is impossible to guarantee 100% accuracy 
and may bring massive extra computation costs. 
Thus, we only test some pre-defined values.  In 
the future, we also plan to find the best trade-off 
between accuracy and cost for these two vari-
ables, especially β. 
Lastly, the cloud storage and mobile data are 
simulated in our experiments. We use a server 
that we can fully control to execute our system, 
but we never have equivalent rights to using a 
public cloud storage service practically. In other 
words, our system does not work without efforts 
from the cloud storage service providers if users 
choose to use any public cloud storage service. 
We generated the testing mobile data with one 
size for one type. For example, all images are 
4Mb. The mobile data usage is real but from a 
small group of users. This also cannot reflect 
reality. In the future, we will acquire additional 
mobile data and more real behavior from a larg-
er group of users to evaluate our system.

6. Conclusion

In this paper, we proposed a novel cloud-based 
storage and fine-grained access control system. 
Mobile data are separated based on new meta-
data and privacy level, and they are stored in 
different folders with different access granular-
ities. To eliminate extra communication costs, 
we introduced a cache mechanism to store pop-
ular and non-private data on mobile devices. 
We apply users' preferences towards data types, 
along with a configurable refresh policy, to im-
prove the cache hit ratio. Results of experiments 
showed that our approach with the cache mecha-
nism could maintain efficient performance while 
greatly improving users' privacy protection. 
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