
A Cloud-based Mobile Privacy
Protection System with Efficient Cache
Mechanism

219CIT. Journal of Computing and Information Technology, Vol. 29, No. 4, December 2021, 219–234
doi: 10.20532/cit.2021.1005295

Wenyun Dai1 and Longbin Chen2

1Fairleigh Dickinson University, Teaneck, New Jersey, USA
2Alation Inc, Redwood City, California, USA

People increasingly rely on their mobile devices and
use them to store a lot of data. Some of the data are
personal and private, whose leakage leads to users'
privacy harm. Meanwhile, mobile apps and services
over-collect users' data due to the coarse-grained ac-
cess control approach utilized by the mobile operating
system. We propose a cloud-based approach to pro-
vide fine-grained access control toward data requests.
We add privacy level, as a new metadata, to data and
manage the storage using different policies corre-
spondingly. However, the proposed approach leads to
performance decreases because of the extra communi-
cation cost. We also introduce a novel cache mecha-
nism to eliminate the extra cost by storing non-private
and popular data on the mobile device. As part of our
cache mechanism, we design a user-preference-based
ordering method along with the principle of locality to
determine how popular some data are. We also design
a configurable refresh policy to improve the overall
performance. Finally, we evaluate our approach us-
ing a real phone in a simulated environment. The re-
sults show that our approach can keep the response
time of all data requests within a reasonable range and
the cache mechanism can further improve the perfor-
mance.

ACM CCS (2012) Classification: Security and privacy
→ Human and societal aspects of security and privacy
→ Privacy protections
Information systems → Information storage systems
→ Storage management → Hierarchical storage man-
agement
Computer systems organization → Architectures →
Distributed architectures → Cloud computing

Keywords: security and privacy, access control, cloud
based storage, hierarchical storage management

1. Introduction

Smart devices, especially smartphones, are now-
adays increasingly popular. Some users consid-
er their smartphones as personal computers, that
could provide equal services to using traditional
computers. Various kinds of data are stored in
the devices, and some of them are sensitive and
private. For example, bank account numbers
and passwords, images with commercial confi-
dentiality, physical addresses, and user profiles.
Meanwhile, mobile apps must access these data
to provide services, including some heavy-cus-
tomized functionalities. The truth is that mobile
data are over-collected due to the coarse-grained
permission authorization and file management
in mobile operating systems [1]. The data
over-collection behaviors are not easily com-
pletely solvable. Firstly, only the user knows
which particular data should be accessed. Then,
there is no formal standard or law restricting the
usage of mobile data. A lot of IT companies pro-
vide itemized terms and conditions about their
usage of mobile data, but users barely read and
review them carefully before ''accepting all''.
It is not fair to expect all users to have enough
patience and abilities to read and understand all
the terms. This issue should lean more on to the
technical side. It is our responsibility to provide
users convenience not to add burdens.
The latest iOS, iOS 14, enhances privacy protec-
tion by introducing App Tracking Transparency
function [2]. Users can check how their mo-
bile data are accessed and tracked by apps and

220 221W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

2.2. Fine-Grained Access Control

T. Baseri et al. [16] proposed a multi-author-
ity attribute-based access control scheme to
support the coexistence of authorities. The pro-
posed scheme used the dynamic location of mo-
bile users as contextual information about those
users, employed location range constraints as
a policy in attribute-based encryption, and au-
thorized users with dynamic locations satisfy-
ing access policies. Their work focused on lo-
cation data and access control. There are some
other research works using attribute-based ac-
cess control [17, 18, 19, 20, 21]. Our approach
works for all data and provides fine-grained ac-
cess control without encryption.
S. Saroiu et al. [22] proposed an approach letting
users attach Terms of Service (ToS) to their data
being uploaded to the cloud. They implemented
their approach using policy-carrying data that
guaranteed that the cloud providers claimed they
were compliant with the ToS before accessing
the data. This approach is heavily user-involved,
which is good for professional users but not or-
dinary users. S. Lee et al. [23] proposed a plat-
form to protect confidentiality when employees
used their own apps to create, edit, and share
corporate documents. Their approach provided
fine-grained data object sandboxes and access
control in the form of documents. Every docu-
ment should be assigned with detailed authentic
information for all the participants. The access
control towards some data was managed by its
owner. However, in their platform, one app in-
stance cannot read or write multiple documents,
and they were focused on documents. In our re-
search, we deal with all kinds of data, and the
data operation is separated from the data itself.
We focus on the permission authorization that
occurs before data operation.

2.3. Cache Hit Ratio

The most iconic cache replacement algorithm
is the Least Recently Used (LRU) policy. There
are some modified versions of LRU to further
improve the cache hit ratio in mobile computing.
Y. Ryu [24] proposed a PRAM-aware block-
based LRU scheme. His research focused on
minimizing the amount of write operations on
PRAM and the number of erase operations on
the flash memory. His approach worked in an
offline hybrid memory environment, including

sion. They applied two permission interfaces,
the frequency nudge, and the social nudge, into
app settings of smartphone. Their research can
raise users' attention about privacy. The per-
mission granting is user-involved, which is not
suitable for all ordinary users. The two inter-
faces they proposed can only work on installed
apps. Our approach protects users' privacy with
fewer users' involvements. C. Yin et al. [10] ap-
plied a logistic regression for local differential
privacy protection. Their approach was based
on human-centric computing and heavily relied
on preprocessing and formatting. These two
steps were time-consuming, let alone the ma-
chine learning method itself spent time to model
and test. There are some other related research
works using machine learning techniques, such
as a reinforcement learning approach proposed
by M. Zhang et al. [11]. We also apply one ma-
chine learning method, which is time-series re-
gression, to predict the usage pattern of large
data types. We only need to track the periods
without any preprocessing or formatting, so our
approach is simple and fast.
More recently, there are some research works
applying blockchain technology to protect
mobile users' privacy. Z. Sun et al. [12] used
a double disturbance localized differential pri-
vacy algorithm to disturb the location informa-
tion. Then they uploaded all the sensing data
to the blockchain through edge nodes, which
would be processed by the cloud and returned
to the requester. Y. Chen et al. [13] used the
K-anonymity and searchable encryption tech-
niques for medical data sharing among medical
institutions and users. T. Feng et al. [14] com-
bined zero-knowledge proof and smart contract
to verify the availability of data between data
owners and the cloud service providers. They
further used proxy re-encryption technology for
secure sharing among authorized cloud service
providers. H. Wang et al. [15] proposed a credit
value solution using the multiple-attribute deci-
sion-making algorithm on the blockchain. The
behaviors of requestors and participants could
lead to rewards or punishment. Blockchain
technologies, especially hashing encryption
and distribution, help with privacy protection,
but it also bring in extra communication and
calculation costs. Our goal is to achieve nearly
seamless performance mainly relying on the ac-
cess control policies but not encryption.

websites. Meanwhile, this approach asks users
to prepare data into a new folder before sub-
mitting or uploading online. This improvement
helps reduce the data over-collection behaviors
but cannot completely solve the problem. It is
heavily user-involved, tedious, and not detailed
enough. It is too complicated to figure out and
detail intensive for ordinary users.
We have proposed a cloud-based data access
control system, in which data are stored in the
cloud storage and their access are fine-grained
controlled [3]. Data are organized into differ-
ent directories with different accessing policies
based on their privacy levels [4]. All data re-
quests are received by the control system. If the
request and the application have been registered
and granted before and the application's privacy
level is not less than the data's privacy level, the
requested data are returned. If the app's privacy
level cannot match the data's privacy level, the
request is denied, and the user must be involved
to confirm the permission authentication. This
operation updates the app's privacy level and is
recorded in the control system to avoid repeated
user involvements.
There are a lot of widely used cloud storage
services nowadays, including business-orient-
ed, such as Apple iCloud, Microsoft OneDrive,
Google Drive, and Dropbox, and entertain-
ment-related, such as Google Stadia, Nvidia Ge-
Force Now, Microsoft xCloud, and Sony Play-
Station Now. These products are user-friendly,
convenient, and inexpensive. Meanwhile, a lot
of companies and organizations provide their
employees with free-to-use business accounts
to use in order to store their data in the cloud
storage on various devices anywhere [5]. These
cloud storage services release the burden of
storing massive data on mobile devices, but
bring in extra communication costs [6]. It is
impossible to achieve seamless performance
theoretically compared to accessing local data.
There are so many users complaining about the
bad and unstable performance of cloud storage
services, especially streaming services.
In this paper, we aim to use cloud storage with
fine-grained access control to protect users' pri-
vacy of mobile data. We assign data and apps
with different privacy levels. Different access-
ing policies are applied based on the privacy lev-
el. Furthermore, we optimize the control system
for high performance. Considering the dynamic

locality and time efficiency, we design and im-
plement a cache mechanism to keep non-private
and ''popular'' data within the mobile device. We
further add a configurable refresh policy to im-
prove the cache hit ratio. The rest of this paper is
organized as follows. We include all the related
work in Section 2. Section 3 discusses the de-
sign and implementation of our approach. Then
we evaluate our approach and explain the results
of the experiments in Section 4. We address the
limitations of our current work in Section 5. Fi-
nally, we conclude our research in Section 6.

2. Related Work

2.1. Mobile Data Privacy Protection

We defined the data over-collection behaviors
of mobile apps in our previous research [6]. We
analyzed its motivation, common behaviors,
and risks. We proposed a general solution of
using cloud storage and did some simulation
experiments. In this paper, we implement our
approach on a real device and improve it with
other strategies, including privacy-based stor-
age policies and a cache mechanism.
C. Rottermanner et al. [7] analyzed several pop-
ular messaging apps on Android. They analyzed
the encrypted communication in the transmission
layer and attacks targeting the metadata. They
also checked the message storage on mobile de-
vices. They found that all observed apps request
over 7 permissions that could leak private infor-
mation about users. They were only focused on
messengering apps, such as WhatsApp, Line,
WeChat, Telegram, and TextSecure, but similar
privacy issues are also common in other apps.
In our research, we directly deal with the mo-
bile data, that could be used by various apps. Z.
Almusaylim and N. Jhanjhi [8] studied privacy
protection in location-aware services of mobile
cloud computing. They analyzed the challeng-
es and addressed some possible solutions with
multi-location queries, multi-authority, location
compression, and user revocation. The similar-
ity of our research is that we provide manage-
ment of multiple data types, while they focused
on location data, and we deal with all mobile
data that can be stored in the cloud storage.
B. Zhang and H. Xu [9] aimed to help users
make decision towards privacy-related permis-

220 221W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

2.2. Fine-Grained Access Control

T. Baseri et al. [16] proposed a multi-author-
ity attribute-based access control scheme to
support the coexistence of authorities. The pro-
posed scheme used the dynamic location of mo-
bile users as contextual information about those
users, employed location range constraints as
a policy in attribute-based encryption, and au-
thorized users with dynamic locations satisfy-
ing access policies. Their work focused on lo-
cation data and access control. There are some
other research works using attribute-based ac-
cess control [17, 18, 19, 20, 21]. Our approach
works for all data and provides fine-grained ac-
cess control without encryption.
S. Saroiu et al. [22] proposed an approach letting
users attach Terms of Service (ToS) to their data
being uploaded to the cloud. They implemented
their approach using policy-carrying data that
guaranteed that the cloud providers claimed they
were compliant with the ToS before accessing
the data. This approach is heavily user-involved,
which is good for professional users but not or-
dinary users. S. Lee et al. [23] proposed a plat-
form to protect confidentiality when employees
used their own apps to create, edit, and share
corporate documents. Their approach provided
fine-grained data object sandboxes and access
control in the form of documents. Every docu-
ment should be assigned with detailed authentic
information for all the participants. The access
control towards some data was managed by its
owner. However, in their platform, one app in-
stance cannot read or write multiple documents,
and they were focused on documents. In our re-
search, we deal with all kinds of data, and the
data operation is separated from the data itself.
We focus on the permission authorization that
occurs before data operation.

2.3. Cache Hit Ratio

The most iconic cache replacement algorithm
is the Least Recently Used (LRU) policy. There
are some modified versions of LRU to further
improve the cache hit ratio in mobile computing.
Y. Ryu [24] proposed a PRAM-aware block-
based LRU scheme. His research focused on
minimizing the amount of write operations on
PRAM and the number of erase operations on
the flash memory. His approach worked in an
offline hybrid memory environment, including

sion. They applied two permission interfaces,
the frequency nudge, and the social nudge, into
app settings of smartphone. Their research can
raise users' attention about privacy. The per-
mission granting is user-involved, which is not
suitable for all ordinary users. The two inter-
faces they proposed can only work on installed
apps. Our approach protects users' privacy with
fewer users' involvements. C. Yin et al. [10] ap-
plied a logistic regression for local differential
privacy protection. Their approach was based
on human-centric computing and heavily relied
on preprocessing and formatting. These two
steps were time-consuming, let alone the ma-
chine learning method itself spent time to model
and test. There are some other related research
works using machine learning techniques, such
as a reinforcement learning approach proposed
by M. Zhang et al. [11]. We also apply one ma-
chine learning method, which is time-series re-
gression, to predict the usage pattern of large
data types. We only need to track the periods
without any preprocessing or formatting, so our
approach is simple and fast.
More recently, there are some research works
applying blockchain technology to protect
mobile users' privacy. Z. Sun et al. [12] used
a double disturbance localized differential pri-
vacy algorithm to disturb the location informa-
tion. Then they uploaded all the sensing data
to the blockchain through edge nodes, which
would be processed by the cloud and returned
to the requester. Y. Chen et al. [13] used the
K-anonymity and searchable encryption tech-
niques for medical data sharing among medical
institutions and users. T. Feng et al. [14] com-
bined zero-knowledge proof and smart contract
to verify the availability of data between data
owners and the cloud service providers. They
further used proxy re-encryption technology for
secure sharing among authorized cloud service
providers. H. Wang et al. [15] proposed a credit
value solution using the multiple-attribute deci-
sion-making algorithm on the blockchain. The
behaviors of requestors and participants could
lead to rewards or punishment. Blockchain
technologies, especially hashing encryption
and distribution, help with privacy protection,
but it also bring in extra communication and
calculation costs. Our goal is to achieve nearly
seamless performance mainly relying on the ac-
cess control policies but not encryption.

websites. Meanwhile, this approach asks users
to prepare data into a new folder before sub-
mitting or uploading online. This improvement
helps reduce the data over-collection behaviors
but cannot completely solve the problem. It is
heavily user-involved, tedious, and not detailed
enough. It is too complicated to figure out and
detail intensive for ordinary users.
We have proposed a cloud-based data access
control system, in which data are stored in the
cloud storage and their access are fine-grained
controlled [3]. Data are organized into differ-
ent directories with different accessing policies
based on their privacy levels [4]. All data re-
quests are received by the control system. If the
request and the application have been registered
and granted before and the application's privacy
level is not less than the data's privacy level, the
requested data are returned. If the app's privacy
level cannot match the data's privacy level, the
request is denied, and the user must be involved
to confirm the permission authentication. This
operation updates the app's privacy level and is
recorded in the control system to avoid repeated
user involvements.
There are a lot of widely used cloud storage
services nowadays, including business-orient-
ed, such as Apple iCloud, Microsoft OneDrive,
Google Drive, and Dropbox, and entertain-
ment-related, such as Google Stadia, Nvidia Ge-
Force Now, Microsoft xCloud, and Sony Play-
Station Now. These products are user-friendly,
convenient, and inexpensive. Meanwhile, a lot
of companies and organizations provide their
employees with free-to-use business accounts
to use in order to store their data in the cloud
storage on various devices anywhere [5]. These
cloud storage services release the burden of
storing massive data on mobile devices, but
bring in extra communication costs [6]. It is
impossible to achieve seamless performance
theoretically compared to accessing local data.
There are so many users complaining about the
bad and unstable performance of cloud storage
services, especially streaming services.
In this paper, we aim to use cloud storage with
fine-grained access control to protect users' pri-
vacy of mobile data. We assign data and apps
with different privacy levels. Different access-
ing policies are applied based on the privacy lev-
el. Furthermore, we optimize the control system
for high performance. Considering the dynamic

locality and time efficiency, we design and im-
plement a cache mechanism to keep non-private
and ''popular'' data within the mobile device. We
further add a configurable refresh policy to im-
prove the cache hit ratio. The rest of this paper is
organized as follows. We include all the related
work in Section 2. Section 3 discusses the de-
sign and implementation of our approach. Then
we evaluate our approach and explain the results
of the experiments in Section 4. We address the
limitations of our current work in Section 5. Fi-
nally, we conclude our research in Section 6.

2. Related Work

2.1. Mobile Data Privacy Protection

We defined the data over-collection behaviors
of mobile apps in our previous research [6]. We
analyzed its motivation, common behaviors,
and risks. We proposed a general solution of
using cloud storage and did some simulation
experiments. In this paper, we implement our
approach on a real device and improve it with
other strategies, including privacy-based stor-
age policies and a cache mechanism.
C. Rottermanner et al. [7] analyzed several pop-
ular messaging apps on Android. They analyzed
the encrypted communication in the transmission
layer and attacks targeting the metadata. They
also checked the message storage on mobile de-
vices. They found that all observed apps request
over 7 permissions that could leak private infor-
mation about users. They were only focused on
messengering apps, such as WhatsApp, Line,
WeChat, Telegram, and TextSecure, but similar
privacy issues are also common in other apps.
In our research, we directly deal with the mo-
bile data, that could be used by various apps. Z.
Almusaylim and N. Jhanjhi [8] studied privacy
protection in location-aware services of mobile
cloud computing. They analyzed the challeng-
es and addressed some possible solutions with
multi-location queries, multi-authority, location
compression, and user revocation. The similar-
ity of our research is that we provide manage-
ment of multiple data types, while they focused
on location data, and we deal with all mobile
data that can be stored in the cloud storage.
B. Zhang and H. Xu [9] aimed to help users
make decision towards privacy-related permis-

222 223W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

3.1. Access Policies with Privacy Levels

We assign data and requesters with several pri-
vacy levels, from 1 to 3. The privacy level of
data indicates how private the data is. To release
users' burden of setting up the privacy level for
each piece of data, we assign the default priva-
cy level values to data based on their types. Mo-
bile data can be categorized into three groups,
persistent, temporary, and intermediate. The
persistent data should be stored in non-volatile
storage and requested multiple times. Some
typical persistent data are images, files, con-
tacts, and messages. The temporary data are not
necessary to be stored permanently, and they
are normally requested just once. For example,
location data are temporary, since new loca-
tion data should be captured and returned every
time a request is made. The intermediate data
are managed within apps or system functions,
such as memes in a chat app. These data are
stored in some special directory within the mo-
bile device. Our research focuses on persistent
data. We set the default privacy level of the per-
sistent data to 1. Meanwhile, we assign portions
of data with the 2 and 3 privacy levels. We also
apply different workloads with different priva-
cy level assignments in the experiments.
The privacy level of a requester records the
highest privacy-level data it has successfully
accessed. The default privacy level value is
set to 1. The user must be involved to permit
if some app requests some higher privacy level
data than its own privacy level. If the user con-
firms the access permission, the app's privacy
level will be updated to the privacy level of the
data. For example, an app with privacy level 1
requests a piece of data with privacy level 2. If
the user authorizes the access, this app's privacy
level will be 2. Otherwise, it is still 1. Any data
access request from an equal or higher privacy
level app is automatically granted without the
user's involvement.
Data are stored in the cloud storage under dif-
ferent folders based on their privacy levels. We
apply different storage and access policies in
the form of the folder. Firstly, the same type of
data with the lowest privacy level, 1, are stored
in one folder. Once a request from some app
has been authorized, this app can access all data
under this folder. In other words, we return the
access permission to the whole folder back to

the requesting app. This is the same way the
current mobile operating systems do. Second-
ly, the same type of data with the privacy level
2 are further separated into subfolders based
on their contents. For example, images can be
separated into people, scenery, document, and
others. Once a request from some app has been
authorized, this app can only access all data un-
der the content subfolder. Lastly, the same type
of data with the privacy level 3 are stored in a
special folder, in which each piece of data is
returned to one particular request.
We apply a RESTful interface to encapsulate
the apps' requests which consist of request in-
formation, app information, and data informa-
tion. The Access Control module, shown in
Figure 1, checks the registration status of the
app and data. If the app has not been registered
before, the user must be involved. The user can
select whether to grant this particular access re-
quest. If the app has been registered but is on
the blacklist, its request gets rejected automat-
ically. Otherwise, the Access Control module
compares the app's privacy level with the re-
quested data's privacy level, as discussed in the
above paragraphs and the Algorithm 1.

Algorithm PrivacyCheck(a, d):
Input: The requesting app a and the requested data d;
 Registered app list, aList;
 Blacklist, bList.
Output: Boolean result of whether to grant app a's
 request towards data d.

if a is in aList
 if a is in bList
 return false
 else if a.pLevel ≥ d.pLevel
 return true
else
 involve the user to decide
 isAllowed ← user's selection
if isAllowed = true
 a.pLevel ← b.pLevel
return isAllowed

Algorithm 1. Granting app's data accessing requests and
updating related information.

3.2. Cache Mechanism

We design our own ''cache'' mechanism to im-
prove the system performance by reducing the

the traditional main memory and the flash mem-
ory. We consider the mobile device as the cache
and the cloud storage as the memory. We also
consider the network communication cost. G.
Hasslinger et al. [25] combined the simple up-
date effort of the LRU policy with the flexibility
to keep the most important contents in the cache.
They used a predefined score function to rate the
importance of web content. In our research, we
use users' preferences with data types along with
pure LRU to determine the importance of data.
Meanwhile, their work focused on the web con-
tents, while we worked on the mobile data.
There are some other research works about
the improvement of the cache hit rate for mo-
bile data streaming. C. Li et al. [26] proposed
a QoE-driven mobile edge caching place-
ment optimization for dynamic adaptive video
streaming. They maximized the aggregate aver-
age video distortion reduction of all users while
minimizing the additional cost of representa-
tion downloading from the base station, subject
not only to the storage capacity constraints of
the edge servers but also to the transmission
and initial startup delay constraints of the us-
ers. E. Zeydan et al. [27] introduced a proactive
caching architecture for the 5G network. They
processed massive data on a big data platform
and used machine learning tools for content
popularity predictions. A. Rocha et al. [28] de-
signed a data stream caching algorithm, DSCA,
to maximize the cache hit rate of Content-Cen-
tric Networks (CCN) by incorporating content
popularity in caching decisions. DSCA coped
with dynamics in content popularity while op-
erating under the memory and high processing
rate constraints of CCN network routers. They
used a data streaming algorithm to identify the
most popular contents in a windowed manner.
X. Li et al. [29] characterized the problem of
power consumption and video streaming in
mobile systems. They proposed GreenTube
to reduce power consumption with a dynamic
cache management algorithm to adjust the high
threshold value of network speed and expected
accessing time. Our research work is focused
on all mobile data, not only streaming types.
Furthermore, we not only consider the popular-
ity but also the privacy levels.
There are also some researchers focusing on
cache management in the Internet of Things
(IoT) and Named Data Network (NDN). M.

Naeem et al. [30] proposed a hybrid strategy
for efficient data delivery. They aimed for aver-
age latency, cache hit ratio, and average stretch
ratio. T. Peng et al. [31] considered the charac-
teristics of cache files to avoid cache pollution
problems. They introduced the file cache val-
ue and a file cache value-aware cache replace-
ment algorithm correspondingly. J. Hou et al.
[32] proposed a Graph Neural Network (GNN)
based cache strategy to improve caching per-
formance in NDN. They first extracted time-se-
ries features and then applied GNN to make
cache probability predictions. In our research,
we have not considered NDN, since we mainly
focus on the personal data stored in cloud stor-
ages and local devices. We use cloud storage as
the remote storage without caring about its own
infrastructure. However, NDN is a topic worth
considering that we might study in the future.

3. Design and Implementation

Our access control system consists of two main
functionalities along with several supporting
services. The first main functionality is to ap-
ply different access policies towards data and
requests with different privacy levels. The sec-
ond one is to respond to data requests with the
optimized cache mechanism. The entire system
framework is shown in Figure 1. The Privacy
Control module manages data referring to their
privacy levels and configures the storage pol-
icies. The Access Control module determines
whether a data access request from an app
should be authorized. Then the Mapping mod-
ule checks the storage location of the request-
ed data. If it is stored locally on the device, the
app can directly access the data without further
communication with the cloud storage. If the
data is stored remotely, the Mapping module
generates the real directory for data with the
help of metadata and privacy control.

Figure 1. System Framework.

222 223W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

3.1. Access Policies with Privacy Levels

We assign data and requesters with several pri-
vacy levels, from 1 to 3. The privacy level of
data indicates how private the data is. To release
users' burden of setting up the privacy level for
each piece of data, we assign the default priva-
cy level values to data based on their types. Mo-
bile data can be categorized into three groups,
persistent, temporary, and intermediate. The
persistent data should be stored in non-volatile
storage and requested multiple times. Some
typical persistent data are images, files, con-
tacts, and messages. The temporary data are not
necessary to be stored permanently, and they
are normally requested just once. For example,
location data are temporary, since new loca-
tion data should be captured and returned every
time a request is made. The intermediate data
are managed within apps or system functions,
such as memes in a chat app. These data are
stored in some special directory within the mo-
bile device. Our research focuses on persistent
data. We set the default privacy level of the per-
sistent data to 1. Meanwhile, we assign portions
of data with the 2 and 3 privacy levels. We also
apply different workloads with different priva-
cy level assignments in the experiments.
The privacy level of a requester records the
highest privacy-level data it has successfully
accessed. The default privacy level value is
set to 1. The user must be involved to permit
if some app requests some higher privacy level
data than its own privacy level. If the user con-
firms the access permission, the app's privacy
level will be updated to the privacy level of the
data. For example, an app with privacy level 1
requests a piece of data with privacy level 2. If
the user authorizes the access, this app's privacy
level will be 2. Otherwise, it is still 1. Any data
access request from an equal or higher privacy
level app is automatically granted without the
user's involvement.
Data are stored in the cloud storage under dif-
ferent folders based on their privacy levels. We
apply different storage and access policies in
the form of the folder. Firstly, the same type of
data with the lowest privacy level, 1, are stored
in one folder. Once a request from some app
has been authorized, this app can access all data
under this folder. In other words, we return the
access permission to the whole folder back to

the requesting app. This is the same way the
current mobile operating systems do. Second-
ly, the same type of data with the privacy level
2 are further separated into subfolders based
on their contents. For example, images can be
separated into people, scenery, document, and
others. Once a request from some app has been
authorized, this app can only access all data un-
der the content subfolder. Lastly, the same type
of data with the privacy level 3 are stored in a
special folder, in which each piece of data is
returned to one particular request.
We apply a RESTful interface to encapsulate
the apps' requests which consist of request in-
formation, app information, and data informa-
tion. The Access Control module, shown in
Figure 1, checks the registration status of the
app and data. If the app has not been registered
before, the user must be involved. The user can
select whether to grant this particular access re-
quest. If the app has been registered but is on
the blacklist, its request gets rejected automat-
ically. Otherwise, the Access Control module
compares the app's privacy level with the re-
quested data's privacy level, as discussed in the
above paragraphs and the Algorithm 1.

Algorithm PrivacyCheck(a, d):
Input: The requesting app a and the requested data d;
 Registered app list, aList;
 Blacklist, bList.
Output: Boolean result of whether to grant app a's
 request towards data d.

if a is in aList
 if a is in bList
 return false
 else if a.pLevel ≥ d.pLevel
 return true
else
 involve the user to decide
 isAllowed ← user's selection
if isAllowed = true
 a.pLevel ← b.pLevel
return isAllowed

Algorithm 1. Granting app's data accessing requests and
updating related information.

3.2. Cache Mechanism

We design our own ''cache'' mechanism to im-
prove the system performance by reducing the

the traditional main memory and the flash mem-
ory. We consider the mobile device as the cache
and the cloud storage as the memory. We also
consider the network communication cost. G.
Hasslinger et al. [25] combined the simple up-
date effort of the LRU policy with the flexibility
to keep the most important contents in the cache.
They used a predefined score function to rate the
importance of web content. In our research, we
use users' preferences with data types along with
pure LRU to determine the importance of data.
Meanwhile, their work focused on the web con-
tents, while we worked on the mobile data.
There are some other research works about
the improvement of the cache hit rate for mo-
bile data streaming. C. Li et al. [26] proposed
a QoE-driven mobile edge caching place-
ment optimization for dynamic adaptive video
streaming. They maximized the aggregate aver-
age video distortion reduction of all users while
minimizing the additional cost of representa-
tion downloading from the base station, subject
not only to the storage capacity constraints of
the edge servers but also to the transmission
and initial startup delay constraints of the us-
ers. E. Zeydan et al. [27] introduced a proactive
caching architecture for the 5G network. They
processed massive data on a big data platform
and used machine learning tools for content
popularity predictions. A. Rocha et al. [28] de-
signed a data stream caching algorithm, DSCA,
to maximize the cache hit rate of Content-Cen-
tric Networks (CCN) by incorporating content
popularity in caching decisions. DSCA coped
with dynamics in content popularity while op-
erating under the memory and high processing
rate constraints of CCN network routers. They
used a data streaming algorithm to identify the
most popular contents in a windowed manner.
X. Li et al. [29] characterized the problem of
power consumption and video streaming in
mobile systems. They proposed GreenTube
to reduce power consumption with a dynamic
cache management algorithm to adjust the high
threshold value of network speed and expected
accessing time. Our research work is focused
on all mobile data, not only streaming types.
Furthermore, we not only consider the popular-
ity but also the privacy levels.
There are also some researchers focusing on
cache management in the Internet of Things
(IoT) and Named Data Network (NDN). M.

Naeem et al. [30] proposed a hybrid strategy
for efficient data delivery. They aimed for aver-
age latency, cache hit ratio, and average stretch
ratio. T. Peng et al. [31] considered the charac-
teristics of cache files to avoid cache pollution
problems. They introduced the file cache val-
ue and a file cache value-aware cache replace-
ment algorithm correspondingly. J. Hou et al.
[32] proposed a Graph Neural Network (GNN)
based cache strategy to improve caching per-
formance in NDN. They first extracted time-se-
ries features and then applied GNN to make
cache probability predictions. In our research,
we have not considered NDN, since we mainly
focus on the personal data stored in cloud stor-
ages and local devices. We use cloud storage as
the remote storage without caring about its own
infrastructure. However, NDN is a topic worth
considering that we might study in the future.

3. Design and Implementation

Our access control system consists of two main
functionalities along with several supporting
services. The first main functionality is to ap-
ply different access policies towards data and
requests with different privacy levels. The sec-
ond one is to respond to data requests with the
optimized cache mechanism. The entire system
framework is shown in Figure 1. The Privacy
Control module manages data referring to their
privacy levels and configures the storage pol-
icies. The Access Control module determines
whether a data access request from an app
should be authorized. Then the Mapping mod-
ule checks the storage location of the request-
ed data. If it is stored locally on the device, the
app can directly access the data without further
communication with the cloud storage. If the
data is stored remotely, the Mapping module
generates the real directory for data with the
help of metadata and privacy control.

Figure 1. System Framework.

224 225W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

3.2.2. Cache Refresh Strategy
There are several important differences between
our cache mechanism with the traditional mem-
ory-cache strategy. The most important one is
that the mobile device storage does not refresh
as the memory does. Once we turn off the com-
puter, all contents in the memory are erased.
However, the data stored in mobile device are
permanent even when the device is turned off.
In other words, the contents stored in the mo-
bile device won't be erased or refreshed. In our
design, we refresh the mobile storage with con-
figured variables that are calculated based on
the user's behavior. Three factors are discussed
as following:
1. Percentage of refreshed data. After ob-

taining the user's preference towards data
types, we use the variable, α, to be the per-
centage of the most frequently used data
type being refreshed. For example, some
user uses pictures the most, and, thus, we
set the α to value 0.75. Once a refresh oc-
curs, we will remove 75% of pictures from
the cache. For the data type that is not the
most frequently used, we erase of it from
the cache.

2. Refresh frequency. We use the variable, β,
to determine how often to refresh the cache
periodically. This value is flexible and it is
mainly determined by the user's behav-
ior pattern. For example, β is one week if
the user's behavior pattern changes during
a week. Meanwhile, we set up the lower
and upper bound of β to be is 1 day and 1
month respectively.

3. Timeliness of special data is marked with
δ. In our previous research, we found that
there were some data that were not so fre-
quently used within one refresh cycle, but
rather they were used in almost all refresh
cycles. For example, someone always lis-
tens to a music list stored on the mobile
phone on the way to work. However, that
person does not listen to music during
working hours. If the refresh frequen-
cy is one day, all the music is loaded ev-
ery morning and gets erased every night.
It is obvious that it does not make much
sense to keep the data in the device until
the cache is full. To make the cache space
more efficient, we use a simple time-se-

ries regression method to predict the time-
liness. We do not use other sophisticated
machine learning methods that can provide
more accurate predictions, since the run-
ning time is very important in our system.
Meanwhile, we just consider the timeli-
ness factor for large data, such as music
and videos. These types of data are more
likely to follow the special pattern as we
mentioned above.

In summary, the refresh workflow is shown
in Figure 2. Basically, we keep handling data
requests until the refresh rate β occurs. Mean-
while, we check large data to see whether they
follow the special usage pattern mentioned
above. We mark the data with δ if they do and
will erase them once they are not used without
starting a new refresh phase. The refresh occurs
every at a β time interval, and it erases α of the
most frequently used type of data and all other
types of data.

Figure 2. The workflow of the refresh process.

3.3. Mapping Mechanism

The Mapping module in our system has several
functionalities. The first one is to keep local and
remote references towards data consistent. In
our system, data could be stored in cloud stor-
age or mobile device. We design a set of stan-
dardized interfaces to request data and receive
data. The local references provide the directory
of local data stored in the mobile device. They
are synchronized with the Mapping module in

communication cost between mobile devices
and cloud storage. We keep some data stored in
the mobile device locally. Any legit app request-
ing some local data can access the data directly.
The data storage is implemented based on lo-
cality and user's behavior, along with consid-
eration of privacy, to make judicious decisions.
Meanwhile, we introduce a refresh mechanism
to improve the cache hit ratio.

3.2.1. Cache Replacement Strategy

The cache in our system is the mobile device
itself. We leave some non-private data in the
mobile device, which is reasonable considering
the trade-off between extra communication cost
and privacy protection. Fortunately, more pri-
vate data are less likely to be used frequently.
For example, we do not need our SSNs every
day. As a result, the first requirement of the lo-
cal data is that its privacy levels are 1. The sec-
ond aspect is about the cache replacement strat-
egy, which data should be kept in the mobile
device and which data can be removed when
the cache is full. The most commonly used rule
is the principle of locality [33]. The perfor-
mance is better if more ''popular'' (most recently
or frequently accessed) data are stored locally.
We try to keep the most recently and frequently
used data in the mobile device. However, the
frequency is counted for each data type, not sin-
gle data, considering the specialty of our sys-
tem and users' behaviors.
Different users have different behaviors using
mobile devices. For example, a user may use
music data most frequently on weekdays and
may use pictures and videos most frequently on
weekends. Compared to the traditional memo-
ry-cache systems, that apply paging to divide
cache, memory, and data into the same fixed-
size blocks, our system does not divide data to
keep the integrity of data. If we divide data into
smaller pieces, it is easy to apply replacement,
but it is too complicated to store it in the mobile
device and the cloud storage. It is also very te-
dious to maintain the integrity and to keep ev-
erything reliable when it comes to dealing with
cloud storage. As a result, we keep the data at
its original size and design a new method to
solve the replacement problem based on the us-
er's behavior.

 To analyze the user's behavior, we record data
access requests at the beginning of each refresh
cycle and equally assign cache space for all data
types. First, we obtain the user's preference for
different data types. Based on the user's pref-
erence, we give higher priority to the data type
that the user prefers. The higher priority data
type can preempt some space from the lower
priority data type. If the assigned cache space
for the highest priority data type is full, we will
migrate some space from the space of the lowest
priority data type. We try to keep all the highest
preferred data until the whole cache is full.

Algorithm UpdateCache(d):
Input: The new requested data d; data type frequency
 list dtfList; Deque for each data type dtDq;
 Cache size for each data type csList.
Output: store data d to cache

if csList(d.type) < d.size
 t ← the minimum in dtfList
 while csList(t) < d.size
 pop from dtDq(t)
 csList(t) ← csList(t) - d.size
 csList(d.type) ← csList(d.type) + d.size
push d to dtDq(d.type)
dtfList(d.type) ← dtfList(d.type) + 1

Algorithm 2. Push the newly requested data to cache and
update related information.

Algorithm 2 shows the detailed steps of pushing
the newly requested data to cache and updating
the related information. First, we check wheth-
er the corresponding cache can host the new
data. If it is large enough, we will push the new
data to the corresponding deque and update the
frequency list for the type of the new data. If the
corresponding cache is not large enough, we
will borrow some space from the lower priority
cache space. We find the minimum frequency
data type has the lowest priority. Then we start
the iteration to pop data from the lowest pri-
ority cache space until it has enough space for
the new data. Then we move the newly emp-
ty space from the lowest priority cache to the
cache for the requested data's type. Eventually,
we push the new data to the corresponding de-
que and update the frequency list for the type of
the new data.

224 225W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

3.2.2. Cache Refresh Strategy
There are several important differences between
our cache mechanism with the traditional mem-
ory-cache strategy. The most important one is
that the mobile device storage does not refresh
as the memory does. Once we turn off the com-
puter, all contents in the memory are erased.
However, the data stored in mobile device are
permanent even when the device is turned off.
In other words, the contents stored in the mo-
bile device won't be erased or refreshed. In our
design, we refresh the mobile storage with con-
figured variables that are calculated based on
the user's behavior. Three factors are discussed
as following:
1. Percentage of refreshed data. After ob-

taining the user's preference towards data
types, we use the variable, α, to be the per-
centage of the most frequently used data
type being refreshed. For example, some
user uses pictures the most, and, thus, we
set the α to value 0.75. Once a refresh oc-
curs, we will remove 75% of pictures from
the cache. For the data type that is not the
most frequently used, we erase of it from
the cache.

2. Refresh frequency. We use the variable, β,
to determine how often to refresh the cache
periodically. This value is flexible and it is
mainly determined by the user's behav-
ior pattern. For example, β is one week if
the user's behavior pattern changes during
a week. Meanwhile, we set up the lower
and upper bound of β to be is 1 day and 1
month respectively.

3. Timeliness of special data is marked with
δ. In our previous research, we found that
there were some data that were not so fre-
quently used within one refresh cycle, but
rather they were used in almost all refresh
cycles. For example, someone always lis-
tens to a music list stored on the mobile
phone on the way to work. However, that
person does not listen to music during
working hours. If the refresh frequen-
cy is one day, all the music is loaded ev-
ery morning and gets erased every night.
It is obvious that it does not make much
sense to keep the data in the device until
the cache is full. To make the cache space
more efficient, we use a simple time-se-

ries regression method to predict the time-
liness. We do not use other sophisticated
machine learning methods that can provide
more accurate predictions, since the run-
ning time is very important in our system.
Meanwhile, we just consider the timeli-
ness factor for large data, such as music
and videos. These types of data are more
likely to follow the special pattern as we
mentioned above.

In summary, the refresh workflow is shown
in Figure 2. Basically, we keep handling data
requests until the refresh rate β occurs. Mean-
while, we check large data to see whether they
follow the special usage pattern mentioned
above. We mark the data with δ if they do and
will erase them once they are not used without
starting a new refresh phase. The refresh occurs
every at a β time interval, and it erases α of the
most frequently used type of data and all other
types of data.

Figure 2. The workflow of the refresh process.

3.3. Mapping Mechanism

The Mapping module in our system has several
functionalities. The first one is to keep local and
remote references towards data consistent. In
our system, data could be stored in cloud stor-
age or mobile device. We design a set of stan-
dardized interfaces to request data and receive
data. The local references provide the directory
of local data stored in the mobile device. They
are synchronized with the Mapping module in

communication cost between mobile devices
and cloud storage. We keep some data stored in
the mobile device locally. Any legit app request-
ing some local data can access the data directly.
The data storage is implemented based on lo-
cality and user's behavior, along with consid-
eration of privacy, to make judicious decisions.
Meanwhile, we introduce a refresh mechanism
to improve the cache hit ratio.

3.2.1. Cache Replacement Strategy

The cache in our system is the mobile device
itself. We leave some non-private data in the
mobile device, which is reasonable considering
the trade-off between extra communication cost
and privacy protection. Fortunately, more pri-
vate data are less likely to be used frequently.
For example, we do not need our SSNs every
day. As a result, the first requirement of the lo-
cal data is that its privacy levels are 1. The sec-
ond aspect is about the cache replacement strat-
egy, which data should be kept in the mobile
device and which data can be removed when
the cache is full. The most commonly used rule
is the principle of locality [33]. The perfor-
mance is better if more ''popular'' (most recently
or frequently accessed) data are stored locally.
We try to keep the most recently and frequently
used data in the mobile device. However, the
frequency is counted for each data type, not sin-
gle data, considering the specialty of our sys-
tem and users' behaviors.
Different users have different behaviors using
mobile devices. For example, a user may use
music data most frequently on weekdays and
may use pictures and videos most frequently on
weekends. Compared to the traditional memo-
ry-cache systems, that apply paging to divide
cache, memory, and data into the same fixed-
size blocks, our system does not divide data to
keep the integrity of data. If we divide data into
smaller pieces, it is easy to apply replacement,
but it is too complicated to store it in the mobile
device and the cloud storage. It is also very te-
dious to maintain the integrity and to keep ev-
erything reliable when it comes to dealing with
cloud storage. As a result, we keep the data at
its original size and design a new method to
solve the replacement problem based on the us-
er's behavior.

 To analyze the user's behavior, we record data
access requests at the beginning of each refresh
cycle and equally assign cache space for all data
types. First, we obtain the user's preference for
different data types. Based on the user's pref-
erence, we give higher priority to the data type
that the user prefers. The higher priority data
type can preempt some space from the lower
priority data type. If the assigned cache space
for the highest priority data type is full, we will
migrate some space from the space of the lowest
priority data type. We try to keep all the highest
preferred data until the whole cache is full.

Algorithm UpdateCache(d):
Input: The new requested data d; data type frequency
 list dtfList; Deque for each data type dtDq;
 Cache size for each data type csList.
Output: store data d to cache

if csList(d.type) < d.size
 t ← the minimum in dtfList
 while csList(t) < d.size
 pop from dtDq(t)
 csList(t) ← csList(t) - d.size
 csList(d.type) ← csList(d.type) + d.size
push d to dtDq(d.type)
dtfList(d.type) ← dtfList(d.type) + 1

Algorithm 2. Push the newly requested data to cache and
update related information.

Algorithm 2 shows the detailed steps of pushing
the newly requested data to cache and updating
the related information. First, we check wheth-
er the corresponding cache can host the new
data. If it is large enough, we will push the new
data to the corresponding deque and update the
frequency list for the type of the new data. If the
corresponding cache is not large enough, we
will borrow some space from the lower priority
cache space. We find the minimum frequency
data type has the lowest priority. Then we start
the iteration to pop data from the lowest pri-
ority cache space until it has enough space for
the new data. Then we move the newly emp-
ty space from the lowest priority cache to the
cache for the requested data's type. Eventually,
we push the new data to the corresponding de-
que and update the frequency list for the type of
the new data.

226 227W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

We record three users' real usage regarding the
five types of data, mentioned in Table 1, and
then delete the duplicate information and gen-
erate the workload to simulate different be-
haviors. We prepare three sets of workloads of
accessing mobile data based on real users' be-
haviors. The first workload is image intensive,
in which there are 70% of requests for images.
The second workload is emails and contacts
intensive, in which there are 80% requests for
contacts and emails. In the third workload, data
requests are equally distributed to the five data
types.

4.2. Privacy Protection Experiments

To evaluate the strength of privacy protection
of our approach, we use a value, risk grade, by
multiplying the possibility of leakage and the
range. We assume that a single piece of data has
a 50% chance of being leaked if it is stored on a
mobile device. Meanwhile, it has a 20% chance
of being leaked if it is stored in the private fold-
er and 10% for the special extremely private
folder in the cloud storage. A high-risk grade
indicates that the user's privacy is highly likely
to be harmed. In other words, the lower the risk
grade is, the better the user's privacy is protect-
ed. For the original approach, once some app
gets permission to access some type of data,
it can access all data with the same type. The
range is the total amount of stored data in the
same folder.
Table 3 shows our experimental results regard-
ing the risk grade. For the original approach,
there is no separation of privacy levels, thus we
set their privacy levels to be 0. The possibility
of each type of data being leaked is the same as
that of a single piece of data, but the range is
large. Due to the coarse-grained access control,
the leakage of one piece of data can lead to the
leakage of all data of the same type. As a result,
the risk grades are very high, as the first five
cells of the last column in Table 3. From the
remaining cells of the last column, we can see
that our approach decreases the risk grades sig-
nificantly for all types of data. The first benefit
of our approach is the data separation based on
the privacy level. This method reduces the pos-
sible leakage range greatly. Even if we leave
all non-private data in the mobile device, the
risk grades are lower than that of the original

approach. For example, non-private images in
our approach have 300 risk grade that is less
than the 500 risk grade in the original approach.
For the private and extremely private data, our
approach can decrease the risk grades tremen-
dously. That is the second benefit, which is the
fine-grained access control provided by cloud
storage. Extremely private images, audio, vid-
eos, contacts, and emails have risk grades of
10, 1.5, 1, 50, and 40 respectively. Compared
to the original risk grades 500, 150, 25, 500,
and 500, our approach improves the privacy
protection 10 to 100 times.

4.3. Response Time Experiments

Our approach can improve mobile data priva-
cy protection, as shown in Table 3, but there
is always a tradeoff between performance and
complexity of access control. Our approach uti-
lizes cloud storage to provide fine-grained ac-
cess control. There must be extra communica-
tion costs that degrade the performance. We use
the response time to evaluate the performance.
We divide the whole workload into 100 inter-
vals and record the average response time of all
requests within one interval in Android Studio.
We set the refresh rate α to be every 10 intervals
and the most frequently used data type being
erased, β, to be 0.5. The mark δ is only used for
audio and video data.
Figure 3 shows the results of response time run-
ning the first workload using the original ap-
proach, shown by the dashed line, our approach
without cache, shown by the dashed line with
triangle, and our approach with cache, shown
by the solid line with squares. Basically, the
original approach has the smallest and the most
stable response time. The average response time
of the original approach is 6.3 ms. The average
response time of our approach without cache
is 15.5 ms and that with cache is 11.4 ms. The
cache mechanism achieves about 26.5% perfor-
mance improvement. At the beginning, there is
no huge difference between our approach with
and without cache. However, the performance
increases once some data have been stored in
the cache. For example, from workload 70 to
101, the gap between without cache and with
cache is huge, and our approach with cache
has a closer response time than the original ap-
proach. Even though our approach spends more

the form of RESTful resources. Meanwhile,
the data stored in the cloud storage are also ac-
cessed by the same format of RESTful protocol.
The second functionality of the Mapping mod-
ule is to extract the metadata from data to im-
prove privacy protection. The metadata of data
along with the privacy level, added into our
system, is managed by the Mapping module but
also stored in the cloud storage. We use XML
files to describe the metadata in order to match
the RESTful requests from mobile apps. The
metadata are used by the Privacy Control mod-
ule to determine the granting of permissions.
After that, the Mapping module will send the
real directory to the requesting app.
The third functionality is to work with the Ac-
cess Control module to determine which folder
directory a piece of data should be stored in and
be returned to the requesting app. As we men-
tioned in Section 2.1, data are stored in different
folders based on their content types and privacy
levels. If some data are with privacy level 1, the
Mapping module stores them in the common
folder and will return the whole folder directory
to the requested app. If some data are with pri-
vacy level 2, the Mapping module stores them
in the corresponding content subfolder and will
return the content subfolder directory to the re-
quested app. For the data with privacy level 3,
the Mapping module stores them individually
in the special folder and will only return the re-
quested data.

4. Experiments and Results

4.1. Experimental Environments

We use one Google Pixel 4a (5G) as the exper-
imental mobile device. It is running Android 11
and with 128 GB storage. We define the cache to
be 2 GB in size. We prepare a server to simulate
the cloud storage. We can fully customize stor-
age policies and communication interfaces with
our own RESTful protocol. The server and the
mobile device are connected to the same router.
We implement a set of testing mobile apps with
our own APIs in Android Studio 4.1.1. These
apps request different data using the same for-
mat of the RESTful protocol. Meanwhile, we
prepare several different kinds of data, includ-

ing images, audio, videos, contacts, and emails.
We generate testing pseudo data with the same
size for each type. Table 1 shows the unit size
and amount for each data type.

Table 1. Experimental data size and amount.

Data Type Unit Size Amount Total Size

Image 4 Mb 1000 4000 Mb

Audio 8 Mb 300 2400 Mb

Video 500 Mb 50 25 Gb

Contact 1 Mb 1000 1000 Mb

Email 2 Mb 1000 2000 Mb

Meanwhile, we assign the experimental data
with different privacy levels. The percentage
of five types of data with different privacy lev-
els are shown in Table 2. We consider that 60%
of images are not private, such as portraits and
scenery. Furthermore, 30% and 10% of images
are private and extremely private respectively.
For example, images with personal addresses
are private and copies of personal information
are extremely private. Most audio records are
not private, while there are some of them that
can be considered private or extremely private,
such as private call recording. Half videos are
not private. They could be movies or download-
ed videos. We consider that 30% of videos are
private, such as homemade videos that should
not be shared with others, and 20% of videos
are extremely private, such as confidential
meeting recordings. Most contacts are private
or extremely private because they include a lot
of personal information. Over half of emails are
private or extremely private, such as business
or confidential emails.

Table 2. Experimental data privacy levels.

Data Type Privacy
Level 1

Privacy
Level 2

Privacy
Level 3

Image 60% 30% 10%

Audio 80% 15% 5%

Video 50% 30% 20%

Contact 10% 40% 50%

Email 30% 30% 40%

226 227W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

We record three users' real usage regarding the
five types of data, mentioned in Table 1, and
then delete the duplicate information and gen-
erate the workload to simulate different be-
haviors. We prepare three sets of workloads of
accessing mobile data based on real users' be-
haviors. The first workload is image intensive,
in which there are 70% of requests for images.
The second workload is emails and contacts
intensive, in which there are 80% requests for
contacts and emails. In the third workload, data
requests are equally distributed to the five data
types.

4.2. Privacy Protection Experiments

To evaluate the strength of privacy protection
of our approach, we use a value, risk grade, by
multiplying the possibility of leakage and the
range. We assume that a single piece of data has
a 50% chance of being leaked if it is stored on a
mobile device. Meanwhile, it has a 20% chance
of being leaked if it is stored in the private fold-
er and 10% for the special extremely private
folder in the cloud storage. A high-risk grade
indicates that the user's privacy is highly likely
to be harmed. In other words, the lower the risk
grade is, the better the user's privacy is protect-
ed. For the original approach, once some app
gets permission to access some type of data,
it can access all data with the same type. The
range is the total amount of stored data in the
same folder.
Table 3 shows our experimental results regard-
ing the risk grade. For the original approach,
there is no separation of privacy levels, thus we
set their privacy levels to be 0. The possibility
of each type of data being leaked is the same as
that of a single piece of data, but the range is
large. Due to the coarse-grained access control,
the leakage of one piece of data can lead to the
leakage of all data of the same type. As a result,
the risk grades are very high, as the first five
cells of the last column in Table 3. From the
remaining cells of the last column, we can see
that our approach decreases the risk grades sig-
nificantly for all types of data. The first benefit
of our approach is the data separation based on
the privacy level. This method reduces the pos-
sible leakage range greatly. Even if we leave
all non-private data in the mobile device, the
risk grades are lower than that of the original

approach. For example, non-private images in
our approach have 300 risk grade that is less
than the 500 risk grade in the original approach.
For the private and extremely private data, our
approach can decrease the risk grades tremen-
dously. That is the second benefit, which is the
fine-grained access control provided by cloud
storage. Extremely private images, audio, vid-
eos, contacts, and emails have risk grades of
10, 1.5, 1, 50, and 40 respectively. Compared
to the original risk grades 500, 150, 25, 500,
and 500, our approach improves the privacy
protection 10 to 100 times.

4.3. Response Time Experiments

Our approach can improve mobile data priva-
cy protection, as shown in Table 3, but there
is always a tradeoff between performance and
complexity of access control. Our approach uti-
lizes cloud storage to provide fine-grained ac-
cess control. There must be extra communica-
tion costs that degrade the performance. We use
the response time to evaluate the performance.
We divide the whole workload into 100 inter-
vals and record the average response time of all
requests within one interval in Android Studio.
We set the refresh rate α to be every 10 intervals
and the most frequently used data type being
erased, β, to be 0.5. The mark δ is only used for
audio and video data.
Figure 3 shows the results of response time run-
ning the first workload using the original ap-
proach, shown by the dashed line, our approach
without cache, shown by the dashed line with
triangle, and our approach with cache, shown
by the solid line with squares. Basically, the
original approach has the smallest and the most
stable response time. The average response time
of the original approach is 6.3 ms. The average
response time of our approach without cache
is 15.5 ms and that with cache is 11.4 ms. The
cache mechanism achieves about 26.5% perfor-
mance improvement. At the beginning, there is
no huge difference between our approach with
and without cache. However, the performance
increases once some data have been stored in
the cache. For example, from workload 70 to
101, the gap between without cache and with
cache is huge, and our approach with cache
has a closer response time than the original ap-
proach. Even though our approach spends more

the form of RESTful resources. Meanwhile,
the data stored in the cloud storage are also ac-
cessed by the same format of RESTful protocol.
The second functionality of the Mapping mod-
ule is to extract the metadata from data to im-
prove privacy protection. The metadata of data
along with the privacy level, added into our
system, is managed by the Mapping module but
also stored in the cloud storage. We use XML
files to describe the metadata in order to match
the RESTful requests from mobile apps. The
metadata are used by the Privacy Control mod-
ule to determine the granting of permissions.
After that, the Mapping module will send the
real directory to the requesting app.
The third functionality is to work with the Ac-
cess Control module to determine which folder
directory a piece of data should be stored in and
be returned to the requesting app. As we men-
tioned in Section 2.1, data are stored in different
folders based on their content types and privacy
levels. If some data are with privacy level 1, the
Mapping module stores them in the common
folder and will return the whole folder directory
to the requested app. If some data are with pri-
vacy level 2, the Mapping module stores them
in the corresponding content subfolder and will
return the content subfolder directory to the re-
quested app. For the data with privacy level 3,
the Mapping module stores them individually
in the special folder and will only return the re-
quested data.

4. Experiments and Results

4.1. Experimental Environments

We use one Google Pixel 4a (5G) as the exper-
imental mobile device. It is running Android 11
and with 128 GB storage. We define the cache to
be 2 GB in size. We prepare a server to simulate
the cloud storage. We can fully customize stor-
age policies and communication interfaces with
our own RESTful protocol. The server and the
mobile device are connected to the same router.
We implement a set of testing mobile apps with
our own APIs in Android Studio 4.1.1. These
apps request different data using the same for-
mat of the RESTful protocol. Meanwhile, we
prepare several different kinds of data, includ-

ing images, audio, videos, contacts, and emails.
We generate testing pseudo data with the same
size for each type. Table 1 shows the unit size
and amount for each data type.

Table 1. Experimental data size and amount.

Data Type Unit Size Amount Total Size

Image 4 Mb 1000 4000 Mb

Audio 8 Mb 300 2400 Mb

Video 500 Mb 50 25 Gb

Contact 1 Mb 1000 1000 Mb

Email 2 Mb 1000 2000 Mb

Meanwhile, we assign the experimental data
with different privacy levels. The percentage
of five types of data with different privacy lev-
els are shown in Table 2. We consider that 60%
of images are not private, such as portraits and
scenery. Furthermore, 30% and 10% of images
are private and extremely private respectively.
For example, images with personal addresses
are private and copies of personal information
are extremely private. Most audio records are
not private, while there are some of them that
can be considered private or extremely private,
such as private call recording. Half videos are
not private. They could be movies or download-
ed videos. We consider that 30% of videos are
private, such as homemade videos that should
not be shared with others, and 20% of videos
are extremely private, such as confidential
meeting recordings. Most contacts are private
or extremely private because they include a lot
of personal information. Over half of emails are
private or extremely private, such as business
or confidential emails.

Table 2. Experimental data privacy levels.

Data Type Privacy
Level 1

Privacy
Level 2

Privacy
Level 3

Image 60% 30% 10%

Audio 80% 15% 5%

Video 50% 30% 20%

Contact 10% 40% 50%

Email 30% 30% 40%

228 229W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

The last workload is the one with equal data re-
quests among five types. Figure 5 shows the re-
sults of this experiment. The average response
time of our approach with cache is 7.8 ms and
10.6 ms without cache. The average response
time of the original approach is 3 ms. Our ap-
proach works the worst compared to the original
approach among the three workloads. In fact,
this workload cannot reflect reality, and it is
generated by us just for experimental purposes.
It is nearly impossible that some user accesses
the data in an equally distributed manner. There
are always behavioral patterns, that may not be
consistent forever. We keep this workload as a
part of theoretical analysis.

4.4. Cache Hit Ratio Experiments

In the previous experiments, we set α to the val-
ue of every 10 intervals and β to 0.5. Howev-

er, these variables should positively impact the
cache hit ratio performance. In this set of exper-
iments, we aim to see the relationship between
the cache hit ratio and variables α and β.

4.4.1. Variable α Experiments

We first fix β to be 1, indicating each refresh
cycle will erase all data in the cache, to test
the different α values. We set α to 0, 0.25, 0.5,
and 0.75 in our experiments. We only run the
first and second workloads for this part of the
experiments, because the cache hit ratio is re-
lated to the workload. Meanwhile, the work-
load should reflect the user's behavior pattern,
but the third workload does not follow some
pattern.

behavior, are shown in Figure 4. Even the orig-
inal approach has better performance, but our
approach works better than during the exper-
iment on the first workload. The average re-
sponse time of our approach with cache is 2.7
ms, the average response time without cache is
4.3 ms, and the average response time of the
original approach is 1.1 ms. The cache mech-
anism achieves about 60% performance im-
provement over the without cache approach.
The majority of the second workload requests
contacts or emails, that are relatively small. As
a result, downloading them from cloud storage
is not time-consuming. That makes our ap-
proach faster.

time obtaining data, it is still reasonable. A re-
sponse time under 100 ms can offer users an in-
stant response. Furthermore, our approach can
achieve nearly the same performance if the data
are stored in the mobile device. The slight delay
is because our approach uses RESTful protocol
to request and fetch data, which is slightly slow-
er than the original API calls in Android. There
are four recorded response times greater than 20
ms since there are audio or video data requested
within those intervals. Downloading these large
data is time-consuming, but it runs much faster
if these data have been stored in a cache.
Then the experiment results of running the sec-
ond workload, which is typical business-like

Figure 3. Experiment results of response time running the first workload.

Figure 4. Experiment results of response time running the second workload.Table 3. Risk grade experiment results.

Approach Data Type Privacy Level Possibility Range Risk Grade

Original

Image 0 50% 1000 500

Audio 0 50% 300 150

Video 0 50% 50 25

Contact 0 50% 1000 500

Email 0 50% 1000 500

Our Approach

Image

1 50% 600 300

2 20% 300 60

3 10% 100 10

Audio

1 50% 240 120

2 20% 45 9

3 10% 15 1.5

Video

1 50% 25 12.5

2 20% 15 3

3 10% 10 1

Contact

1 50% 100 50

2 20% 400 20

3 10% 500 50

Email

1 50% 300 150

2 20% 300 60

10% 400 40
Figure 5. Experiment results of response time running the third workload.

228 229W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

The last workload is the one with equal data re-
quests among five types. Figure 5 shows the re-
sults of this experiment. The average response
time of our approach with cache is 7.8 ms and
10.6 ms without cache. The average response
time of the original approach is 3 ms. Our ap-
proach works the worst compared to the original
approach among the three workloads. In fact,
this workload cannot reflect reality, and it is
generated by us just for experimental purposes.
It is nearly impossible that some user accesses
the data in an equally distributed manner. There
are always behavioral patterns, that may not be
consistent forever. We keep this workload as a
part of theoretical analysis.

4.4. Cache Hit Ratio Experiments

In the previous experiments, we set α to the val-
ue of every 10 intervals and β to 0.5. Howev-

er, these variables should positively impact the
cache hit ratio performance. In this set of exper-
iments, we aim to see the relationship between
the cache hit ratio and variables α and β.

4.4.1. Variable α Experiments

We first fix β to be 1, indicating each refresh
cycle will erase all data in the cache, to test
the different α values. We set α to 0, 0.25, 0.5,
and 0.75 in our experiments. We only run the
first and second workloads for this part of the
experiments, because the cache hit ratio is re-
lated to the workload. Meanwhile, the work-
load should reflect the user's behavior pattern,
but the third workload does not follow some
pattern.

behavior, are shown in Figure 4. Even the orig-
inal approach has better performance, but our
approach works better than during the exper-
iment on the first workload. The average re-
sponse time of our approach with cache is 2.7
ms, the average response time without cache is
4.3 ms, and the average response time of the
original approach is 1.1 ms. The cache mech-
anism achieves about 60% performance im-
provement over the without cache approach.
The majority of the second workload requests
contacts or emails, that are relatively small. As
a result, downloading them from cloud storage
is not time-consuming. That makes our ap-
proach faster.

time obtaining data, it is still reasonable. A re-
sponse time under 100 ms can offer users an in-
stant response. Furthermore, our approach can
achieve nearly the same performance if the data
are stored in the mobile device. The slight delay
is because our approach uses RESTful protocol
to request and fetch data, which is slightly slow-
er than the original API calls in Android. There
are four recorded response times greater than 20
ms since there are audio or video data requested
within those intervals. Downloading these large
data is time-consuming, but it runs much faster
if these data have been stored in a cache.
Then the experiment results of running the sec-
ond workload, which is typical business-like

Figure 3. Experiment results of response time running the first workload.

Figure 4. Experiment results of response time running the second workload.Table 3. Risk grade experiment results.

Approach Data Type Privacy Level Possibility Range Risk Grade

Original

Image 0 50% 1000 500

Audio 0 50% 300 150

Video 0 50% 50 25

Contact 0 50% 1000 500

Email 0 50% 1000 500

Our Approach

Image

1 50% 600 300

2 20% 300 60

3 10% 100 10

Audio

1 50% 240 120

2 20% 45 9

3 10% 15 1.5

Video

1 50% 25 12.5

2 20% 15 3

3 10% 10 1

Contact

1 50% 100 50

2 20% 400 20

3 10% 500 50

Email

1 50% 300 150

2 20% 300 60

10% 400 40
Figure 5. Experiment results of response time running the third workload.

230 231W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

workload interval 87. We can conclude that it
is not always good to refresh the cache without
considering the usage pattern.

4.4.2. Variable β Experiments

For the first workload, we fix α to be 0.2 and
test the cache hit ratios with different values
of β including 0, 0.25, 0.5, and 0.75. Value β
= 0 means all the data with the most frequently
used type are kept in each refresh cycle.
To compare the performance of different β val-
ues, we also include β = 1 in the experiment,
which has been discussed in Section 3.4.1. The
results are shown in Figure 9. The configuration
with β = 0.25 has a very similar performance
with β = 0.5. If β is 0.75 or 1, the cache hit ratio
declines at the beginning of each refresh cycle.
That is because new data requests cannot find
local references in the cache. The cache hit ratio
of β = 0.75 is still much better than β = 1, since
there are some popular data left over in the cache
that can satisfy some data requests. Comparing
β = 0.5, 0.25, and 0, we can find that their per-
formances also decline at the beginning phase
of each refresh cycle, but the decline happens
at different times. The first performance decline
of β = 0.5 happens at workload interval 23. The
first performance decline of β = 0.25 happens
at workload interval 25. The first performance

decline of β = 0 happens at workload interval 24.
Meanwhile, if the performance decline happens
later, the following performance incline is better.
Considering this point, there is best performing
configuration for all test cases. At the first re-
fresh cycle, β = 0, β = 0.25, and β = 0.5 are sim-
ilarly good. At the second refresh cycle, β = 0.5
is the best. At the third refresh cycle, β = 0.25
and β = 0.5 are almost the same good. At the last
refresh cycle, β = 0.25 has the best performance.

5. Limitations and Future Work

There are several limitations of our current re-
search work. First, we have not applied any en-
cryption strategy in the system considering the
extra cost brought by the encryption and decryp-
tion methods. We aim for all mobile devices, and
we do not expect that all of them have powerful
computation abilities. We follow the design idea
to keep mobile devices only with their original
and most fundamental functions. However, en-
cryption has great importance to data protection.
Meanwhile, mobile devices are increasingly
powerful and widely proliferated with the help
of rapidly growing manufacturing. In section 2,
we mention some related work using encryption
methods. In the future, we plan to apply some
lightweight encryption and decryption policy to
further improve privacy protection.

Figure 6 shows the results of running the first
workload with α = 0, 0.25, 0.5, 0.75, and β = 1.
It is straightforward that the cache hit ratios for
each configuration are the same if no refresh
has occurred. For example, from workload in-
tervals 0 to 25, all four configurations share the
same performance. At workload intervals 25,
50, and 75, we can see a cache hit ratio to de-
cline. That is caused by the refresh, which eras-
es all data in the cache. After these declines,
the cache hit ratio starts to incline very soon.
Furthermore, there are some other interesting
findings. If we refresh the cache more frequent-
ly, the following cache hit ratio increases fast-
er. For example, from workload interval 25 to
50, the configuration with α = 0.25 increases
faster than others. We believe that the reason is
that the cache has been emptied and made more
room for recent data. Similarly, from workload
interval 80 to 100, the configuration with α =
0.75 catches up with the configuration with α
= 0 and performs better after workload interval
88.
From the results of the configuration α = 0, we
can see that the cache hit ratio starts to decline
around workload intervals 20 and 40. After
workload interval 60, the cache hit ratio be-
comes stable. As a result, we set the α to 0.2
and compare the results with α = 0.25, which
has the best results in the previous experiment.
The results are shown in Figure 7. Value of α

= 0.25 indicates more refresh, so there is more
pronounced cache hit ratio decline than in case
when α = 0.2. However, it always catches up
quickly and surpasses α = 0.25. On average, α
= 0.2 can achieve a higher cache hit ratio than
α = 0.25. If we can accurately know the user's
behavior pattern, which directly affects the re-
fresh rate, we can obtain the best cache hit ratio.
However, it is nearly impossible to know this
information in advance. One alternative way is
to predict users' behaviors based on their his-
torical data usage records, but this method does
not work well in streaming-related services.
Furthermore, we use the same configuration,
in which β = 1 and α = 0, 0.25, 0.5, and 0.75,
to run the second workload. To show their dif-
ferences clearer, we filter the results by only
showing workload intervals from 20 to 100.
All configurations share the same performance
before refresh occurs, which happens at 20 at
the earliest. First, the average cache hit ratio of
the second workload is higher than that of the
first workload. It is because the cache can store
much more contacts and email data than imag-
es, audio, and videos. Then, there is no obvious
pattern found in the second workload. The user
may frequently access a pool of contacts and
emails, and that person also uses other contacts
and emails with less frequency. The configu-
ration with α = 0 has the best cache hit ratio
most of the time, but α = 0.75 surpasses it at the

Figure 9. Experiment results of cache hit ratio.

Figure 6. Experiment results of cache hit ratio running the first workload with β = 1.

Figure 7. Experiment results of comparison between α = 0.25 and α = 0.2.

Figure 8. Experiment results of cache hit ratio running the second workload with β = 1.

230 231W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

workload interval 87. We can conclude that it
is not always good to refresh the cache without
considering the usage pattern.

4.4.2. Variable β Experiments

For the first workload, we fix α to be 0.2 and
test the cache hit ratios with different values
of β including 0, 0.25, 0.5, and 0.75. Value β
= 0 means all the data with the most frequently
used type are kept in each refresh cycle.
To compare the performance of different β val-
ues, we also include β = 1 in the experiment,
which has been discussed in Section 3.4.1. The
results are shown in Figure 9. The configuration
with β = 0.25 has a very similar performance
with β = 0.5. If β is 0.75 or 1, the cache hit ratio
declines at the beginning of each refresh cycle.
That is because new data requests cannot find
local references in the cache. The cache hit ratio
of β = 0.75 is still much better than β = 1, since
there are some popular data left over in the cache
that can satisfy some data requests. Comparing
β = 0.5, 0.25, and 0, we can find that their per-
formances also decline at the beginning phase
of each refresh cycle, but the decline happens
at different times. The first performance decline
of β = 0.5 happens at workload interval 23. The
first performance decline of β = 0.25 happens
at workload interval 25. The first performance

decline of β = 0 happens at workload interval 24.
Meanwhile, if the performance decline happens
later, the following performance incline is better.
Considering this point, there is best performing
configuration for all test cases. At the first re-
fresh cycle, β = 0, β = 0.25, and β = 0.5 are sim-
ilarly good. At the second refresh cycle, β = 0.5
is the best. At the third refresh cycle, β = 0.25
and β = 0.5 are almost the same good. At the last
refresh cycle, β = 0.25 has the best performance.

5. Limitations and Future Work

There are several limitations of our current re-
search work. First, we have not applied any en-
cryption strategy in the system considering the
extra cost brought by the encryption and decryp-
tion methods. We aim for all mobile devices, and
we do not expect that all of them have powerful
computation abilities. We follow the design idea
to keep mobile devices only with their original
and most fundamental functions. However, en-
cryption has great importance to data protection.
Meanwhile, mobile devices are increasingly
powerful and widely proliferated with the help
of rapidly growing manufacturing. In section 2,
we mention some related work using encryption
methods. In the future, we plan to apply some
lightweight encryption and decryption policy to
further improve privacy protection.

Figure 6 shows the results of running the first
workload with α = 0, 0.25, 0.5, 0.75, and β = 1.
It is straightforward that the cache hit ratios for
each configuration are the same if no refresh
has occurred. For example, from workload in-
tervals 0 to 25, all four configurations share the
same performance. At workload intervals 25,
50, and 75, we can see a cache hit ratio to de-
cline. That is caused by the refresh, which eras-
es all data in the cache. After these declines,
the cache hit ratio starts to incline very soon.
Furthermore, there are some other interesting
findings. If we refresh the cache more frequent-
ly, the following cache hit ratio increases fast-
er. For example, from workload interval 25 to
50, the configuration with α = 0.25 increases
faster than others. We believe that the reason is
that the cache has been emptied and made more
room for recent data. Similarly, from workload
interval 80 to 100, the configuration with α =
0.75 catches up with the configuration with α
= 0 and performs better after workload interval
88.
From the results of the configuration α = 0, we
can see that the cache hit ratio starts to decline
around workload intervals 20 and 40. After
workload interval 60, the cache hit ratio be-
comes stable. As a result, we set the α to 0.2
and compare the results with α = 0.25, which
has the best results in the previous experiment.
The results are shown in Figure 7. Value of α

= 0.25 indicates more refresh, so there is more
pronounced cache hit ratio decline than in case
when α = 0.2. However, it always catches up
quickly and surpasses α = 0.25. On average, α
= 0.2 can achieve a higher cache hit ratio than
α = 0.25. If we can accurately know the user's
behavior pattern, which directly affects the re-
fresh rate, we can obtain the best cache hit ratio.
However, it is nearly impossible to know this
information in advance. One alternative way is
to predict users' behaviors based on their his-
torical data usage records, but this method does
not work well in streaming-related services.
Furthermore, we use the same configuration,
in which β = 1 and α = 0, 0.25, 0.5, and 0.75,
to run the second workload. To show their dif-
ferences clearer, we filter the results by only
showing workload intervals from 20 to 100.
All configurations share the same performance
before refresh occurs, which happens at 20 at
the earliest. First, the average cache hit ratio of
the second workload is higher than that of the
first workload. It is because the cache can store
much more contacts and email data than imag-
es, audio, and videos. Then, there is no obvious
pattern found in the second workload. The user
may frequently access a pool of contacts and
emails, and that person also uses other contacts
and emails with less frequency. The configu-
ration with α = 0 has the best cache hit ratio
most of the time, but α = 0.75 surpasses it at the

Figure 9. Experiment results of cache hit ratio.

Figure 6. Experiment results of cache hit ratio running the first workload with β = 1.

Figure 7. Experiment results of comparison between α = 0.25 and α = 0.2.

Figure 8. Experiment results of cache hit ratio running the second workload with β = 1.

232 233W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

Access Control and Privacy Protection", Wireless
Communicaitons and Mobile Computing, vol.
2021, pp. 1–12, 2021.
https://doi.org/10.1155/2021/6685762

[14] T. Feng et al., "Blockchain Data Privacy Protec-
tion and Sharing Scheme Based on Zero-Knowl-
edge Proof", Wireless Communicaitons and Mo-
bile Computing, vol. 2022, pp. 1–11, 2022.
https://doi.org/10.1155/2022/1040662

[15] H. Wang et al., "A MADM Location Privacy Pro-
tection Method Based on Blockchain", IEEE Ac-
cess, vol. 9, pp. 27802–27812, 2021.
https://doi.org/10.1109/ACCESS.2021.3058446

[16] Y. Baseri et al., "Privacy Preserving Fine-Grained
Location-Based Access Control for Mobile Cloud",
Computer & Security, vol. 73, pp. 249–265, 2018.
https://doi.org/10.1016/j.cose.2017.10.014

[17] S. J. De and S. Ruj, "Efficient Decentralized At-
tribute Based Access Control for Mobile Clouds,"
IEEE Transactions on Cloud Computing, vol. 8,
no. 1, pp. 124–137, 2020.
https://doi.org/10.1109/TCC.2017.2754255

[18] W. Li et al., "Flexible CP-ABE Based Access
Control on Encrypted Data for Mobile Users in
Hybrid Cloud System", Journal of Computer Sci-
ence and Technology, no. 32, pp. 974–990, 2017.
https://doi.org/10.1007/s11390-017-1776-1

[19] A. Koe et al., "Fine-Grained Access Control Sys-
tem Based on Fully Outsourced Attribute-Based
Encryption", Journal of Systems and Software,
vol. 125, pp. 344–353.
https://doi.org/10.1016/j.jss.2016.12.018

[20] R. Zhang et al., "Revocable Outsourcing
Multi-Authority ABE for Medical Data in Mobile
Cloud", in Proc. of the 2021 IEEE Internation-
al Conferences on Internet of Things (iThings)
and IEEE Green Computing & Communications
(GreenCom) and IEEE Cyber, Physical & Social
Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics
(Cybermatics), 2021, pp. 338–345.
https://doi.org/10.1109/iThings-GreenCom-CP
SCom-SmartData-Cybermatics53846.2021.00061

[21] Z. Ying et al., " Reliable Policy Updating under
Efficient Policy Hidden Fine-grained Access
Control Framework for Cloud Data Sharing",
IEEE Transactions on Services Computing, 2021.
https://doi.org/10.1109/TSC.2021.3096177

[22] S. Saroiu et al., "Policy-Carrying Data: A Priva-
cy Abstraction for Attaching Terms of Service to
Mobile Data", in Proc. of the 16th International
Workshop on Mobile Computing Systems and Ap-
plications (HotMobile'15), 2015, pp. 129–134.
https://doi.org/10.1145/2699343.2699357

[23] S. Lee et al., "Privacy Preserving Collaboration in
Bring-Your-Own-Apps", in Proc. of the 7th ACM
Symposium on Cloud Computing (SoCC'16),
2016, pp. 265–278.
https://doi.org/10.1145/2987550.2987587

[24] Y. Ryu, "A Buffer Management Scheme for Mo-
bile Computers with Hybrid Main Memory and
Flash Memory Storages", International Journal
of Multimedia and Ubiquitous Engineering, vol.
7, no. 2, pp. 235–240, 2012.

[25] G. Hasslinger et al., "Performance Evaluation for
New Web Caching Strategies Combining LRU
with Score Based Object Selection", Computer
Networks, vol. 125, pp. 172–186, 2017.
https://doi.org/10.1016/j.comnet.2017.04.044

[26] C. Li et al., "QoE-Driven Mobile Edge Caching
Placement for Adaptive Video Streaming", IEEE
Transactions on Multimedia, vol. 20, no. 4, pp.
965–984, 2018.
https://doi.org/10.1109/TMM.2017.2757761

[27] E. Zeydan et al., "Big Data Caching for Network-
ing: Moving from Cloud to Edge", IEEE Com-
munications Magazine, vol. 54, no. 9, pp. 36–42,
2016.
https://doi.org/10.1109/MCOM.2016.7565185

[28] A. Rocha et al., "DSCA: A Data Stream Caching
Algorithm", in Proc. of the 1st Workshop on Con-
tent Caching and Delivery in Wireless Networks
(CCDWN'16), 2016, pp. 1–6.
https://doi.org/10.1145/2836183.2836191

[29] X. Li et al., "GreenTube: Power Optimization
for Mobile Videostreaming via Dynamic Cache
Management", in Proc. of the 20th ACM Interna-
tional Conference on Multimedia (MM'12), 2012,
pp. 279–288.
https://doi.org/10.1145/2393347.2393390

[30] M. Naeem et al., "Hybrid Cache Management
in IoT-Based Named Data Networking", IEEE
Internet of Things Journal, vol. 9, no. 10, pp.
7140–7150, 2022.
https://doi.org/10.1109/JIOT.2021.3075317

[31] T. Peng et al., "Value-Aware Cache Replacement
in Edge Networks for Internet of Things", Trans-
actions of Emerging Telecommunications Tech-
nologies, vol. 32, no. 9, 2021.
https://doi.org/10.1002/ett.4261

[32] J. Hou et al., "A GNN-based Approach to Op-
timize Cache Hit Ratio in NDN Networks", in
Proc. of the IEEE Global Communications Con-
ference (GLOBECOM), 2021, pp. 1–6.
https://doi.org/10.1109/GLOBECOM46510.202
1.9685872

[33] P. Denning, "The Locality Principle", Communi-
cation Networks and Computer Systems, 2006,
pp. 43–67.
https://doi.org/10.1109/GLOBECOM46510.202
1.9685872

Received: August 2021
Revised: July 2022

Accepted: August 2022

Secondly, we use two variables, α and β, in the
cache refresh strategy. The variable α is about
users' preference towards data types, while the
variable β heavily depends on the accuracy of
users' behavior pattern prediction. Theoretical-
ly, it is impossible to guarantee 100% accuracy
and may bring massive extra computation costs.
Thus, we only test some pre-defined values. In
the future, we also plan to find the best trade-off
between accuracy and cost for these two vari-
ables, especially β.
Lastly, the cloud storage and mobile data are
simulated in our experiments. We use a server
that we can fully control to execute our system,
but we never have equivalent rights to using a
public cloud storage service practically. In other
words, our system does not work without efforts
from the cloud storage service providers if users
choose to use any public cloud storage service.
We generated the testing mobile data with one
size for one type. For example, all images are
4Mb. The mobile data usage is real but from a
small group of users. This also cannot reflect
reality. In the future, we will acquire additional
mobile data and more real behavior from a larg-
er group of users to evaluate our system.

6. Conclusion

In this paper, we proposed a novel cloud-based
storage and fine-grained access control system.
Mobile data are separated based on new meta-
data and privacy level, and they are stored in
different folders with different access granular-
ities. To eliminate extra communication costs,
we introduced a cache mechanism to store pop-
ular and non-private data on mobile devices.
We apply users' preferences towards data types,
along with a configurable refresh policy, to im-
prove the cache hit ratio. Results of experiments
showed that our approach with the cache mecha-
nism could maintain efficient performance while
greatly improving users' privacy protection.

References

[1] W. Dai et al., "DASC: A Privacy-Protected
Data Access System with Cache Mechanism for
Smartphones", in Proc. of the IEEE Wireless and
Optical Communications Conference (WOCC),
2020, pp. 1–6.
https://doi.org/10.1109/WOCC48579.2020.9114939

[2] Apple, "App Tracking Transparency", Apple, 2021.
https://developer.apple.com/documentation/
apptrackingtransparency

[3] W. Dai et al., "DASS: A Web-Based Fine-Grained
Data Access System for Smartphones", in Proc.
of the IEEE International Conference on Smart
Cloud (SmartCloud), 2017, pp. 238–243.
https://doi.org/10.1109/SmartCloud.2017.45

[4] W. Dai et al., "A Privacy-Protection Data Sepa-
ration Approach for Fine-Grained Data Access
Management", in Proc. of the IEEE International
Conference on Smart Cloud (SmartCloud), 2017,
pp. 84–89.
https://doi.org/10.1109/SmartCloud.2017.20

[5] W. Dai et al., "Cloud Infrastructure Resource Allo-
cation for Big Data Applications," IEEE Transac-
tions on Big Data, vol. 4, no. 3, pp. 313–324, 2018.
https://doi.org/10.1109/TBDATA.2016.2597149

[6] W. Dai et al., "Who Moved My Data? Privacy
Protection in Smartphones", IEEE Communica-
tions Magazine, vol. 55, no. 1, pp. 20–25, 2017.
https://doi.org/10.1109/MCOM.2017.1600349CM

[7] C. Rottermanner et al., "Privacy and data protec-
tion in smartphone messengers", in Proc. of the
Int. Conference on Information Integration and
Web-based Application & Services (iiWAS'15),
2015, pp. 1–10.
https://doi.org/10.1145/2837185.2837202

[8] Z. Almusaylim and N. Jhanjhi, "Comprehensive
Review: Privacy Protection of User in Loca-
tion-Aware Services of Mobile Cloud Comput-
ing", Wireless Personsal Communication, vol.
111, pp. 541–564, 2020.
https://doi.org/10.1007/s11277-019-06872-3

[9] B. Zhang and H. Xu, "Privacy Nudges for Mobile
Applications: Effects on the Creepiness Emo-
tion and Privacy Attitudes", in Proc. of the ACM
Conference on Computer-Supported Cooperative
Work & Social Computing (CSCW'16), 2016, pp.
1676–1690.
https://doi.org/10.1145/2818048.2820073

[10] C. Yin et al., "Local Privacy Protection Classi-
fication Based on Human-centric Computing",
Human-centric Computing and Information Sci-
ences, vol. 9, no. 1, p. 33, 2019.
https://doi.org/10.1186/s13673-019-0195-4

[11] M. Zhang et al., "Dynamic Pricing for Priva-
cy-Preserving Mobile Crowdsensing: A Rein-
forcement Learning Approach", IEEE Network,
vol. 33, no. 2, pp. 160–165, 2019.
https://doi.org/10.1109/MNET.2018.1700468

[12] Z. Sun et al., "A Two‐Stage Privacy Protection
Mechanism Based on Blockchain in Mobile
Crowdsourcing", International Journal of Intelli-
gent Systems, vol. 36, no. 5, pp. 2058–2080, 2021.
https://doi.org/10.1002/int.22371

[13] Y. Chen et al., "A Blockchain-Based Medical
Data Sharing Mechanism with Attribute-Based

https://doi.org/10.1155/2021/6685762
https://doi.org/10.1155/2022/1040662
https://doi.org/10.1109/ACCESS.2021.3058446
https://doi.org/10.1016/j.cose.2017.10.014
https://doi.org/10.1109/TCC.2017.2754255
http://Journal of Computer Science and Technology
http://Journal of Computer Science and Technology
https://doi.org/10.1007/s11390-017-1776-1
https://doi.org/10.1016/j.jss.2016.12.018
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00061
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00061
https://doi.org/10.1109/TSC.2021.3096177
https://doi.org/10.1145/2699343.2699357
https://doi.org/10.1145/2987550.2987587
https://doi.org/10.1016/j.comnet.2017.04.044
https://doi.org/10.1109/TMM.2017.2757761
https://doi.org/10.1109/MCOM.2016.7565185
https://doi.org/10.1145/2836183.2836191
https://doi.org/10.1145/2393347.2393390
https://doi.org/10.1109/JIOT.2021.3075317
https://doi.org/10.1002/ett.4261
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/WOCC48579.2020.9114939
https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency
https://doi.org/10.1109/SmartCloud.2017.45
https://doi.org/10.1109/SmartCloud.2017.20
https://doi.org/10.1109/TBDATA.2016.2597149
https://doi.org/10.1109/MCOM.2017.1600349CM
https://doi.org/10.1145/2837185.2837202
https://doi.org/10.1007/s11277-019-06872-3
https://doi.org/10.1145/2818048.2820073
https://doi.org/10.1186/s13673-019-0195-4
https://doi.org/10.1109/MNET.2018.1700468
https://doi.org/10.1002/int.22371

232 233W. Dai and L. Chen A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

Access Control and Privacy Protection", Wireless
Communicaitons and Mobile Computing, vol.
2021, pp. 1–12, 2021.
https://doi.org/10.1155/2021/6685762

[14] T. Feng et al., "Blockchain Data Privacy Protec-
tion and Sharing Scheme Based on Zero-Knowl-
edge Proof", Wireless Communicaitons and Mo-
bile Computing, vol. 2022, pp. 1–11, 2022.
https://doi.org/10.1155/2022/1040662

[15] H. Wang et al., "A MADM Location Privacy Pro-
tection Method Based on Blockchain", IEEE Ac-
cess, vol. 9, pp. 27802–27812, 2021.
https://doi.org/10.1109/ACCESS.2021.3058446

[16] Y. Baseri et al., "Privacy Preserving Fine-Grained
Location-Based Access Control for Mobile Cloud",
Computer & Security, vol. 73, pp. 249–265, 2018.
https://doi.org/10.1016/j.cose.2017.10.014

[17] S. J. De and S. Ruj, "Efficient Decentralized At-
tribute Based Access Control for Mobile Clouds,"
IEEE Transactions on Cloud Computing, vol. 8,
no. 1, pp. 124–137, 2020.
https://doi.org/10.1109/TCC.2017.2754255

[18] W. Li et al., "Flexible CP-ABE Based Access
Control on Encrypted Data for Mobile Users in
Hybrid Cloud System", Journal of Computer Sci-
ence and Technology, no. 32, pp. 974–990, 2017.
https://doi.org/10.1007/s11390-017-1776-1

[19] A. Koe et al., "Fine-Grained Access Control Sys-
tem Based on Fully Outsourced Attribute-Based
Encryption", Journal of Systems and Software,
vol. 125, pp. 344–353.
https://doi.org/10.1016/j.jss.2016.12.018

[20] R. Zhang et al., "Revocable Outsourcing
Multi-Authority ABE for Medical Data in Mobile
Cloud", in Proc. of the 2021 IEEE Internation-
al Conferences on Internet of Things (iThings)
and IEEE Green Computing & Communications
(GreenCom) and IEEE Cyber, Physical & Social
Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics
(Cybermatics), 2021, pp. 338–345.
https://doi.org/10.1109/iThings-GreenCom-CP
SCom-SmartData-Cybermatics53846.2021.00061

[21] Z. Ying et al., " Reliable Policy Updating under
Efficient Policy Hidden Fine-grained Access
Control Framework for Cloud Data Sharing",
IEEE Transactions on Services Computing, 2021.
https://doi.org/10.1109/TSC.2021.3096177

[22] S. Saroiu et al., "Policy-Carrying Data: A Priva-
cy Abstraction for Attaching Terms of Service to
Mobile Data", in Proc. of the 16th International
Workshop on Mobile Computing Systems and Ap-
plications (HotMobile'15), 2015, pp. 129–134.
https://doi.org/10.1145/2699343.2699357

[23] S. Lee et al., "Privacy Preserving Collaboration in
Bring-Your-Own-Apps", in Proc. of the 7th ACM
Symposium on Cloud Computing (SoCC'16),
2016, pp. 265–278.
https://doi.org/10.1145/2987550.2987587

[24] Y. Ryu, "A Buffer Management Scheme for Mo-
bile Computers with Hybrid Main Memory and
Flash Memory Storages", International Journal
of Multimedia and Ubiquitous Engineering, vol.
7, no. 2, pp. 235–240, 2012.

[25] G. Hasslinger et al., "Performance Evaluation for
New Web Caching Strategies Combining LRU
with Score Based Object Selection", Computer
Networks, vol. 125, pp. 172–186, 2017.
https://doi.org/10.1016/j.comnet.2017.04.044

[26] C. Li et al., "QoE-Driven Mobile Edge Caching
Placement for Adaptive Video Streaming", IEEE
Transactions on Multimedia, vol. 20, no. 4, pp.
965–984, 2018.
https://doi.org/10.1109/TMM.2017.2757761

[27] E. Zeydan et al., "Big Data Caching for Network-
ing: Moving from Cloud to Edge", IEEE Com-
munications Magazine, vol. 54, no. 9, pp. 36–42,
2016.
https://doi.org/10.1109/MCOM.2016.7565185

[28] A. Rocha et al., "DSCA: A Data Stream Caching
Algorithm", in Proc. of the 1st Workshop on Con-
tent Caching and Delivery in Wireless Networks
(CCDWN'16), 2016, pp. 1–6.
https://doi.org/10.1145/2836183.2836191

[29] X. Li et al., "GreenTube: Power Optimization
for Mobile Videostreaming via Dynamic Cache
Management", in Proc. of the 20th ACM Interna-
tional Conference on Multimedia (MM'12), 2012,
pp. 279–288.
https://doi.org/10.1145/2393347.2393390

[30] M. Naeem et al., "Hybrid Cache Management
in IoT-Based Named Data Networking", IEEE
Internet of Things Journal, vol. 9, no. 10, pp.
7140–7150, 2022.
https://doi.org/10.1109/JIOT.2021.3075317

[31] T. Peng et al., "Value-Aware Cache Replacement
in Edge Networks for Internet of Things", Trans-
actions of Emerging Telecommunications Tech-
nologies, vol. 32, no. 9, 2021.
https://doi.org/10.1002/ett.4261

[32] J. Hou et al., "A GNN-based Approach to Op-
timize Cache Hit Ratio in NDN Networks", in
Proc. of the IEEE Global Communications Con-
ference (GLOBECOM), 2021, pp. 1–6.
https://doi.org/10.1109/GLOBECOM46510.202
1.9685872

[33] P. Denning, "The Locality Principle", Communi-
cation Networks and Computer Systems, 2006,
pp. 43–67.
https://doi.org/10.1109/GLOBECOM46510.202
1.9685872

Received: August 2021
Revised: July 2022

Accepted: August 2022

Secondly, we use two variables, α and β, in the
cache refresh strategy. The variable α is about
users' preference towards data types, while the
variable β heavily depends on the accuracy of
users' behavior pattern prediction. Theoretical-
ly, it is impossible to guarantee 100% accuracy
and may bring massive extra computation costs.
Thus, we only test some pre-defined values. In
the future, we also plan to find the best trade-off
between accuracy and cost for these two vari-
ables, especially β.
Lastly, the cloud storage and mobile data are
simulated in our experiments. We use a server
that we can fully control to execute our system,
but we never have equivalent rights to using a
public cloud storage service practically. In other
words, our system does not work without efforts
from the cloud storage service providers if users
choose to use any public cloud storage service.
We generated the testing mobile data with one
size for one type. For example, all images are
4Mb. The mobile data usage is real but from a
small group of users. This also cannot reflect
reality. In the future, we will acquire additional
mobile data and more real behavior from a larg-
er group of users to evaluate our system.

6. Conclusion

In this paper, we proposed a novel cloud-based
storage and fine-grained access control system.
Mobile data are separated based on new meta-
data and privacy level, and they are stored in
different folders with different access granular-
ities. To eliminate extra communication costs,
we introduced a cache mechanism to store pop-
ular and non-private data on mobile devices.
We apply users' preferences towards data types,
along with a configurable refresh policy, to im-
prove the cache hit ratio. Results of experiments
showed that our approach with the cache mecha-
nism could maintain efficient performance while
greatly improving users' privacy protection.

References

[1] W. Dai et al., "DASC: A Privacy-Protected
Data Access System with Cache Mechanism for
Smartphones", in Proc. of the IEEE Wireless and
Optical Communications Conference (WOCC),
2020, pp. 1–6.
https://doi.org/10.1109/WOCC48579.2020.9114939

[2] Apple, "App Tracking Transparency", Apple, 2021.
https://developer.apple.com/documentation/
apptrackingtransparency

[3] W. Dai et al., "DASS: A Web-Based Fine-Grained
Data Access System for Smartphones", in Proc.
of the IEEE International Conference on Smart
Cloud (SmartCloud), 2017, pp. 238–243.
https://doi.org/10.1109/SmartCloud.2017.45

[4] W. Dai et al., "A Privacy-Protection Data Sepa-
ration Approach for Fine-Grained Data Access
Management", in Proc. of the IEEE International
Conference on Smart Cloud (SmartCloud), 2017,
pp. 84–89.
https://doi.org/10.1109/SmartCloud.2017.20

[5] W. Dai et al., "Cloud Infrastructure Resource Allo-
cation for Big Data Applications," IEEE Transac-
tions on Big Data, vol. 4, no. 3, pp. 313–324, 2018.
https://doi.org/10.1109/TBDATA.2016.2597149

[6] W. Dai et al., "Who Moved My Data? Privacy
Protection in Smartphones", IEEE Communica-
tions Magazine, vol. 55, no. 1, pp. 20–25, 2017.
https://doi.org/10.1109/MCOM.2017.1600349CM

[7] C. Rottermanner et al., "Privacy and data protec-
tion in smartphone messengers", in Proc. of the
Int. Conference on Information Integration and
Web-based Application & Services (iiWAS'15),
2015, pp. 1–10.
https://doi.org/10.1145/2837185.2837202

[8] Z. Almusaylim and N. Jhanjhi, "Comprehensive
Review: Privacy Protection of User in Loca-
tion-Aware Services of Mobile Cloud Comput-
ing", Wireless Personsal Communication, vol.
111, pp. 541–564, 2020.
https://doi.org/10.1007/s11277-019-06872-3

[9] B. Zhang and H. Xu, "Privacy Nudges for Mobile
Applications: Effects on the Creepiness Emo-
tion and Privacy Attitudes", in Proc. of the ACM
Conference on Computer-Supported Cooperative
Work & Social Computing (CSCW'16), 2016, pp.
1676–1690.
https://doi.org/10.1145/2818048.2820073

[10] C. Yin et al., "Local Privacy Protection Classi-
fication Based on Human-centric Computing",
Human-centric Computing and Information Sci-
ences, vol. 9, no. 1, p. 33, 2019.
https://doi.org/10.1186/s13673-019-0195-4

[11] M. Zhang et al., "Dynamic Pricing for Priva-
cy-Preserving Mobile Crowdsensing: A Rein-
forcement Learning Approach", IEEE Network,
vol. 33, no. 2, pp. 160–165, 2019.
https://doi.org/10.1109/MNET.2018.1700468

[12] Z. Sun et al., "A Two‐Stage Privacy Protection
Mechanism Based on Blockchain in Mobile
Crowdsourcing", International Journal of Intelli-
gent Systems, vol. 36, no. 5, pp. 2058–2080, 2021.
https://doi.org/10.1002/int.22371

[13] Y. Chen et al., "A Blockchain-Based Medical
Data Sharing Mechanism with Attribute-Based

https://doi.org/10.1155/2021/6685762
https://doi.org/10.1155/2022/1040662
https://doi.org/10.1109/ACCESS.2021.3058446
https://doi.org/10.1016/j.cose.2017.10.014
https://doi.org/10.1109/TCC.2017.2754255
http://Journal of Computer Science and Technology
http://Journal of Computer Science and Technology
https://doi.org/10.1007/s11390-017-1776-1
https://doi.org/10.1016/j.jss.2016.12.018
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00061
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00061
https://doi.org/10.1109/TSC.2021.3096177
https://doi.org/10.1145/2699343.2699357
https://doi.org/10.1145/2987550.2987587
https://doi.org/10.1016/j.comnet.2017.04.044
https://doi.org/10.1109/TMM.2017.2757761
https://doi.org/10.1109/MCOM.2016.7565185
https://doi.org/10.1145/2836183.2836191
https://doi.org/10.1145/2393347.2393390
https://doi.org/10.1109/JIOT.2021.3075317
https://doi.org/10.1002/ett.4261
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/GLOBECOM46510.2021.9685872
https://doi.org/10.1109/WOCC48579.2020.9114939
https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency
https://doi.org/10.1109/SmartCloud.2017.45
https://doi.org/10.1109/SmartCloud.2017.20
https://doi.org/10.1109/TBDATA.2016.2597149
https://doi.org/10.1109/MCOM.2017.1600349CM
https://doi.org/10.1145/2837185.2837202
https://doi.org/10.1007/s11277-019-06872-3
https://doi.org/10.1145/2818048.2820073
https://doi.org/10.1186/s13673-019-0195-4
https://doi.org/10.1109/MNET.2018.1700468
https://doi.org/10.1002/int.22371

234 W. Dai and L. Chen

Contact addresses:
Wenyun Dai

Fairleigh Dickinson University
Teaneck

New Jersey
USA

e-mail: scorpiodwy@fdu.edu

Longbin Chen
Alation Inc

Redwood City
California

USA
e-mail: longbin.chen@alation.com

Wenyun Dai is an assistant professor of computer science at Gildart
Haase School of Computer Sciences and Engineering, Fairleigh Dickin-
son University, Metropolitan Campus. He received his PhD in Computer
Science from the Pace University. He received the master's degree from
the Shanghai Jiao Tong University and the bachelor's degree from the
Xiamen University. His research interests include distributed systems,
cloud computing, mobile computing, privacy protection, and optimiza-
tion.

Longbin Chen is currently a software engineer with Alation, Inc., Red-
wood City, CA, USA. He was previously working at IBM Hybrid Cloud
Platform. He received his PhD degree from the Pace University, New
York, NY, USA, and the MSc degree from San Jose State University,
San Jose, CA, USA.

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20230206125920

 1
 1
 1
 1 1
 105
 194
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

