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Intelligent agriculture can renovate agricultural pro-
duction and management, making agricultural pro-
duction truly scientific and efficient. The existing 
data mining technology for agricultural information 
is powerful and professional. But the technology is 
not well adapted for intelligent agriculture. There-
fore, this paper introduces data visualization and big 
data analysis into the application scenarios of intel-
ligent agriculture. Firstly, an intelligent agriculture 
data visualization system was established, and the 
RadViz data visualization method was detailed for 
intelligent agriculture. Moreover, the intelligent agri-
culture data were processed using dimensionality re-
duction through principal component analysis (PCA) 
and further optimized through k-means clustering 
(KMC). Finally, the crop yield was predicted using 
the multiple regression algorithm and the residual 
principal component regression algorithm. The crop 
yield prediction model was proved effective through 
experiments.
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1. Introduction

As a large agricultural country, China far ex-
ceeds the other countries in the total popula-
tion involved in agricultural production and the 
coverage of agricultural production equipment. 
However, the country faces obvious defects in 
productivity, crop yield, and quality of agricul-
tural products [1–4].

Intelligent agriculture is a novel agricultural de-
velopment model, which effectively improves 
the backward production techniques and man-
agement methods, and truly realizes scientific 
and efficient agricultural production. With these 
advantages, intelligent agriculture has received 
extensive attention from scholars at home and 
abroad [5–9].
The development of information technology 
provides a strong support to the wide applica-
tion of intelligent agriculture [10–12]. Data vi-
sualization and big data analysis need to be ap-
plied scientifically to process, display, and mine 
the massive complex production data gathered 
by intelligent agriculture.
To solve the problems of current systems in in-
formation perception and communication secu-
rity [13–16], Suciu et al. [17] combined wired 
and wireless networks into a Modbus-based 
communication protocol for network data, and 
introduced the heartbeat detection mechanism 
into the network communication between the 
client and the server, which effectively reduces 
the misjudgment rate of the system. Putri et al. 
[18] improved the functions of the current intel-
ligent agriculture production system in soil fer-
tility analysis and crop yield prediction, and ef-
fectively improved the efficiency, classification 
speed, and accuracy of algorithm in handling 
continuous attributes, with the aid of K-means 
clustering and Pearson correlation coefficient.
Intelligent agriculture, which integrates in-
formation technology, sensing technology, 
and wireless communication technology, can 
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and the user layer for data uploading and man-
agement. The functions on the four layers are 
closely linked with each other, and operate col-
laboratively.

Figure 3. B/S-based visualization structure of intelligent 
agriculture data.

3. RadViz Data Visualization for  
Intelligent Agriculture

Figure 4 illustrates the principle of anchor point 
mapping on RadViz plane. The connection of 
each anchor point APi* is represented in the 
RadViz plane, such as to map the point set [b1, 
b2, ..., bm] in M-dimensional space to a point 
T*. The equilibrium formula of point T* can be 
given by:
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growth data, preprocessing data, clustering and 
optimizing data, visual mapping of data, system 
construction, and system realization.
The Hadoop distributed file system was adopt-
ed to store the big data collected and processed 
by intelligent agriculture. Through the effec-
tive formation and orderly distribution of data 
blocks, the processing functions of intelligent 
agriculture big data were optimized, including 
data connection, integration, and storage. The 
basic framework of the system (Figure 2) con-
sists of a single Master node to management the 
file system, data nodes to store files in the form 
of data blocks, and secondary naming nodes for 
data backup.

Figure 2. Hadoop distributed file system for intelligent 
agriculture.

Figure 3 shows the B/S-based visualization 
structure of intelligent agriculture data. There 
are four layers of the structure, namely, the 
storage layer that stores original files and test 
metadata, the calculation layer for mapping and 
reduction operations, the application layer for 
data calling and interaction with remote clients, 

achieve smart sensing, transmission, and analy-
sis of the information in each link of agricultur-
al planting. The numerous links, various plants, 
and diverse sensors involved in agricultural 
planting undermine the efficiency and reliabili-
ty of data collection and storage [19–23].
For reliable storage and efficient use of massive 
agricultural data, Saranya et al. [24] developed 
an intelligent agriculture monitoring system 
with a distributed framework, and realized the 
identification and web interface alarm of abnor-
mal points in agricultural dataset by appying 
k-means clustering, which is superior in data 
processing. Nagaraja et al. [25] constructed a 
web-based intelligent agriculture platform with 
functions such as expert guidance, growth factor 
state monitoring, and growth condition control. 
In addition, they provided the design flows of 
the browser/server (B/S)-based client and re-
mote-control module (including water pump 
control and sunshade control) and carried out big 
data analysis to analyze and integrate user data 
with agricultural data and to extract the values 
of deep data. Chen et al. [26] introduced cloud 
storage and cloud computing into the collection 
and analysis of intelligent agriculture data, com-
piled the cloud, host, and client-end programs 
for intelligent agriculture based on development 
tools like Android Studio and XAMPP.They 
also achieved real-time acquisition and storage 
of temperature, humidity, and illuminance of 
greenhouses. Fully considering the features of 
agricultural soil data, Khatri-Chhetri et al. [27] 
explored the WebGIS visualized analysis un-
der the big data of agricultural soil and differ-
entiated the visual features of agricultural soil 
under natural and geographic spatial attributes. 
They proposed an integrated preprocessing 
method for agricultural soil data, which cov-
ers data cleaning, compaction, regularization, 
and reduction, and provided an ideal solution to 
problems like unsatisfactory data display, slow 
rendering speed, and small visualization space. 
Mazzetto et al. [28] collected real-time planting 
data with web crawlers, built up a Django Web 
Framework according to the features of differ-
ent datasets and the needs of data visualization, 
displayed the resources of real-time planting 
data, and supported the visual display of plant-
ing data and dynamic interaction of data charts.
With information technology at the core, intel-
ligent agriculture has reshaped the traditional 

agricultural values. It combines modern intel-
ligent models, highlights detailed management, 
and controls agricultural production and agri-
cultural products, creating a truly smart produc-
tion model.
By summing up the existing literature, sever-
al problems of China's intelligent agriculture 
were exposed, such as small scale, and limited 
coverage of information technology. With the 
rapid development of information technology, 
the traditional agricultural information websites 
can no longer meet the changing user demand, 
with their basic functions like browsing and 
information retrieval. Besides, the current agri-
cultural data mining technology does not adapt 
to the massive amount of data generated by in-
telligent agriculture, because its powerful func-
tions only apply to specific professional fields. 
To solve the defects of data mining technolo-
gy for agricultural information, this paper ex-
plores the data visualization and big data analy-
sis technologies for intelligent agriculture.  The 
main contents of this paper cover the following 
aspects.
1. Building a visualization system for intel-

ligent agriculture data, and providing the 
workflow of the system; 

2. Detailing the RadViz data visualization 
method for intelligent agriculture, and 
explaining the procedure of dimensional-
ity reduction through principal component 
analysis (PCA) and optimization through 
k-means clustering (KMC) for intelligent 
agriculture data; 

3. Predicting crop yield with multiple regres-
sion algorithm and residual principal com-
ponent regression algorithm; 

4. Providing a visual display of clustered in-
telligent agriculture data, and verifying the 
effectiveness of the crop yield prediction 
model.

2. Construction of Intelligent  
Agriculture Data Visualization  
System

As shown in Figure 1, the data visualization 
system for intelligent agriculture is described 
by the following process: sensing of crop 

Figure 1. Flow chart of data visualization system for intelligent agriculture.
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The ND eigenvalues and eigenvectors can be 
computed by the characteristic equation of H 
and transformed into the corresponding princi-
pal components Vji = ei

T Zi, i = 1, 2, ..., NS. Fig-
ure 6 summarizes the workflow of PCA-based 
dimensionality reduction. 

Figure 6. Flow chart of PCA-based dimensionality 
reduction.

To preserve the original data features in dimen-
sionality reduction, the q(q < ND) eligible prin-
cipal component eigenvectors Ri, i = 1, 2, ..., q 
can be selected based on the results of formula 
(10), and the principal component scores can be 
calculated as follows:
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After the PCA-based dimensionality reduction 
step, KMC is used to optimize the intelligent 
agriculture data. The purpose is to improve the 
perception accuracy of visualization technolo-
gy for the characteristic patterns and associa-
tion rules between the collected intelligent agri-
culture data after dimensionality reduction.
During two-dimensional (2D) clustering, the 
difference between two points (a11, a12) and 
(a21, a22) can be characterized by Euclidean 
distance:
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In a multi-dimensional space, the Euclidean 
distance can be calculated by:                     
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Let (CC1, CC2, ..., CCk) be the classes obtained 
by KMC, and γi be the mean vector of class 
CCj. Then, the clustering objective function of 
the minimum squared error (MSE) σ can be ex-
pressed as:
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Figure 4. Principle of anchor point mapping on RadViz 
plane.

Let θi be the angle between anchor points on 
Radviz plane circle with T* as the vertex, bi be 
the dimension of APi*, and m be the total num-
ber of dimensions. Then, the final coordinates 
[aT, aT] of T* after conversion can be obtained 
as follows:
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From formulas (2) and (3), it can be inferred that 
the calculations of any point mapped in RadViz 
plane and its coordinates are linear. When the 
high-dimensional data have different degrees of 
data similarity, the visualization can be realized 
by analyzing the law of data classification. This 
paper improves the traditional RadViz radial 
coordinate visualization technology for unclas-
sified data: the PCA was adopted to reduce the 
dimensionality of the high-dimensional data on 
the growth and environment of crops in each 
growth stage, which were collected by intelli-
gent agriculture, before visually displaying the 

relevant data. Figure 5 explains the principle of 
dimensionality reduction through PCA.

Figure 5. Principle of dimensionality reduction through 
PCA.

Let ai' be the mean of NS intelligent agricul-
ture data samples in the i-th row, and Ai be the 
growth or environment dataset collected by ND 
samples. Then, a sample matrix Aji of NS rows 
and ND columns can be established, where the 
variance of the NS samples in the i-th row is 
P2

i. Then, the matrix can be transformed into a 
standard matrix E:
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The correlation coefficient matrix H of E can be 
expressed as:
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The variance explained by each principal com-
ponent can be calculated by:
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Based on the existing intelligent agriculture 
data, the parameters to be measured ω0 ~ ωNPOV 
were estimated by least squares (LS) method 
to obtain the desired regression model. The LS 
method aims to minimize the residual square 
between the actual and predicted values of sam-
ples, that is, solve the ω0 ~ ωNPOV when formula 
(18) is in the minimum state:
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More to the point, it is necessary to find the par-
tial derivative of W(ω0, ω1, ..., ωNPOV) relative 
to every parameter to be measured ω0 ~ ωNPOV, 
and set it to zero:                                           
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The crop growth parameters can be effective-
ly fitted by solving the formula (19). Multiple 
regression aims to clarify the functional rela-
tionship between dependent and independent 
variables. Then, the dependent variable can 
be predicted based on the known independent 
variables. Since the variables are often uncer-
tain, the functional model may not pass through 
every data point. To judge the model quality, it 
is important to statistically test the model.

4.1. Crop Yield Modeling Based on 
Multiple Regression Algorithm

It is impossible to obtain the future values of 
parameters like temperature, rainfall, and or-
ganic matters/elements in the soil, for these 
factors vary with time and environment. Before 
predicting crop yield, the future values of the 
said parameters must be forecasted. Here, the 
forecast is realized by exponential smoothing. 
The value of initial smoothing point VP2 was 
taken as the actual data value b1. Then, the val-

ue of smoothing point VPt at time t can be cal-
culated by:
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where, ξ is the smoothing coefficient. It can be 
seen from the above formula that the ξ value is 
negatively correlated with the stability of data 
changes. Then, formula (20) can be expanded 
into:
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The ξ value ranges in [0, 1]. When t approx-
imates + ∞, (1 - ξ )2 approaches zero. Hence, 
formula (21) can be rewritten as:
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Formula (22) shows that the value of VPt can be 
obtained by weighted average operation on bt, 
bt - 1, ..., bt - i, using the coefficients ξ, ξ(1 - ξ), 
ξ(1 - ξ)2, ... respectively. Since the weight coef-
ficient attenuates in geometric progressions, the 
data samples with large coefficients approach 
each other, while those with small coefficient 
move away from each other. The sum of weight 
coefficients must be equal to 1:
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The crop yield model can be described by:

( )1 1t t t tb VP b bξ ξ+ = = + −  .        (24)

4.2. Residual Principal Component 
Regression Algorithm and Model

Due to the sheer number of influencing factors, 
the regression model is not very accurate in 
predicting crop yield, and the prediction results 
are susceptible to abnormal values. To solve 
these two problems, this paper presents a resid-
ual principal component regression algorithm. 
Firstly, a multiple regression algorithm was ap-
plied to build a model for prediction, followed 
by solving and predicting the residual. Then, 
the PCA was performed to reduce the dimen-
sions of the original attributes, and replace the 
original influencing factors with a few principal 
components. In addition, the residual was taken 

Figure 7 provides the flow of KMC for visual-
ization of intelligent agriculture data. 

Figure 7. Flow of KMC-based data optimization.

The KMC involves the following steps:
Step 1. Read the intelligent agriculture data 

set, and randomly choose k samples 
as the initial cluster heads.

Step 2. Calculate the Euclidean distance from 
each data sample to each cluster head, 
and complete data classification.

Step 3. Calculate the mean of each class and 
determine new cluster heads.

Step 4. Judge whether the KMC algorithm 
converges. If yes, output the cluster-
ing results; otherwise, add 1 to the 
number of iterations and return to 
Step 2.

4. Crop Yield Prediction Based on  
Big Data Analysis

The visualized data of intelligent agriculture 
usually contain historical data and predict-
ed data. An important aspect of the predicted 
data is prediction of yield. The description of 
our crop yield prediction method is given in the 
continuation of this section. The intelligent ag-
riculture data are complex in form, reflecting 
the growth and environment states of crops in 
different growth stages. Crop yield is generally 
affected by controllable human factors like fer-
tilization and irrigation, environmental factors 
like temperature and rainfall, and soil factors 
like various organic matters and elements. Let 
B be the crop yield, and NIV be the number of 
crop growth parameters. Then, a multiple re-
gression equation can be constructed:
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Suppose there are NPOV groups of data samples. 
Let ω0, ω1, ..., ωNPOV be the NIV +1 parameters 
to be measured; τj be the degree of influence of 
factors on crop yield Bj in the j-th acquisition 
process. Then, the multiple regression equation 
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Based on the existing intelligent agriculture 
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More to the point, it is necessary to find the par-
tial derivative of W(ω0, ω1, ..., ωNPOV) relative 
to every parameter to be measured ω0 ~ ωNPOV, 
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The crop growth parameters can be effective-
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affecting the yield. Then, the data in 2014-2020 
were taken as the test set to verify the effective-
ness of our crop yield prediction model. The 
main factors were selected as follows: annual 
mean temperature, annual rainfall, irrigation 
volume, fertilizer application, organic matters, 

nitrogen, phosphorus, and potassium. Each of 
the above principal components can illustrate 
the original influencing factor, with no overlap-
ping contents. The influence of the other vari-
ables is negligible. Table 1 shows the estimated 
values of these factors.

as a principal component to build another re-
gression model for prediction. The first step is 
to compute the prediction residual error errorj, 
which characterizes the gap between actual val-
ue Bj and fitted value Ḃj:

j j jerror B B= −  .                (25)

Suppose the crop yield is described by NC vari-
ables A1, A2, ..., ANC. Then, the NC-dimensional 
random vector formed by these variables can be 
described as A = (A1, A2, ..., ANC)t. Let γ and CM 
be the mean and covariance matrix of A, respec-
tively; γl be the expectation of the l-th element 
in CM. Based on the covariance matrix, the lin-
ear combination can be transformed linearly on 
A, in view of the original variables:
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Next is to standardize the original data matrix 
of intelligent agriculture, and build up the cor-
responding covariance matrix G. The elements 
Gji( j, i = 1, 2, ..., NC) in G are composed of the 
correlation coefficients between original vari-
ables Aj and Ai:

( )( )

( ) ( )

1
2

2

1

C

C

N

li j li i
l

ji
N

li j li i
l

A A A A
G

A A A A

=

=

− −
=

− −

∑

∑

.       (27)

By solving the covariance matrix G, the ei-
genvalues can be sorted in descending order 
as μ1 > μ2 > ... > μj > 0 and the eigenvectors 
errorj( j = 1, 2, ..., NC) can be obtained. Then, 
the i-th component of prediction residual errorj 
must satisfy:
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The variance explained by principal component 
Ej can be calculated by:
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Then, the factor loading representing the mean-
ing of principal component can be defined as 
the correlation coefficient G(Ej, Aj) between 
principal component Ej and original variable Aj:

( ), 1, 2, ...,ji j ji Ck error j i Nµ= = .    (31)

Each principal component vector can be ob-
tained by dividing each column in the factor 
loading matrix with the square root of the corre-
sponding eigenvalue. Taking the residual as the 
last principal component, the desired residual 
principal component model can be obtained by 
modeling all principal components again.

5. Experiments and Results Analysis

Figure 8 visually displays the intelligent ag-
riculture inputs and outputs before and after 
dimensionality reduction. Figure 9 visually 
displays the crop growth data of intelligent ag-
riculture on RadViz plane before and after di-
mensionality reduction.
As shown in Figures 8 and 9, the intelligent 
agriculture inputs and outputs / crop growth 
data of intelligent agriculture were overlapped, 
when they were directly displayed on RadViz 
plane. The overlap problem could be effective-
ly solved by reducing the dimensionality of in-
telligent agriculture inputs and outputs from 8 
to 4, and that of crop growth data from 15 to 
7. After the dimensionality reduction, the data 
distribution became more dispersed.
Figure 10 visually displays the clustered in-
telligent agriculture data after dimensional-
ity reduction. It can be seen that the different 
clusters of intelligent agriculture data were dis-
tinguished clearly by signs in different colors 
and shapes. By adding digital labels to distin-
guish the planting areas or crop types on the 
visual interface, the users can utilize the client 
more conveniently, and obtain the information 
of the data samples more easily.
Here, a multiple regression model is construct-
ed based on the sweet potato yields in 2000-
2013 of a city in China, as well as the factors 

(a) Before dimensionality reduction. (b) After dimensionality reduction.

Figure 8. Visual display of intelligent agriculture inputs and outputs before and after dimensionality reduction.

(a) Before dimensionality reduction. (b) After dimensionality reduction.

Figure 9. Visual display of crop growth data of intelligent agriculture on RadViz plane before and after 
dimensionality reduction.
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affecting the yield. Then, the data in 2014-2020 
were taken as the test set to verify the effective-
ness of our crop yield prediction model. The 
main factors were selected as follows: annual 
mean temperature, annual rainfall, irrigation 
volume, fertilizer application, organic matters, 

nitrogen, phosphorus, and potassium. Each of 
the above principal components can illustrate 
the original influencing factor, with no overlap-
ping contents. The influence of the other vari-
ables is negligible. Table 1 shows the estimated 
values of these factors.
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and shapes. By adding digital labels to distin-
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visual interface, the users can utilize the client 
more conveniently, and obtain the information 
of the data samples more easily.
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(a) Before dimensionality reduction. (b) After dimensionality reduction.

Figure 8. Visual display of intelligent agriculture inputs and outputs before and after dimensionality reduction.

(a) Before dimensionality reduction. (b) After dimensionality reduction.

Figure 9. Visual display of crop growth data of intelligent agriculture on RadViz plane before and after 
dimensionality reduction.
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6. Conclusion

This paper heavily focuses on the application 
of data visualization and big data analysis in in-
telligent agriculture. Firstly, the authors estab-
lished the framework of intelligent agriculture 
data visualization and detailed the RadViz data 
visualization for intelligent agriculture. After-
wards, PCA-based dimensionality reduction 
and KMC optimization were introduced in or-
der to improve the visualization of intelligent 
agriculture data. Finally, the crop yield was 
predicted by multiple regression algorithm and 

residual principal component regression algo-
rithm. Through experiments, the visualizations 
of intelligent agriculture inputs and outputs, 
crop growth data, and clustered data were com-
pared before and after dimensionality reduc-
tion. The results show that the proposed model 
is effective in predicting crop yield, enabling 
the users to utilize the client conveniently, and 
obtain the information of the data samples intu-
itively. Finally, experiments were conducted to 
compare the two regression algorithms in crop 
yield prediction and verify their effectiveness.

error, the better the prediction of crop yield. It 
can be seen that the MAE and MRE of mul-
tiple regression algorithm 1 stood at 135.306 
and 4.16%, respectively. Residual principal 
component regression algorithm 2 lowered the 
MAE and MRE to 108.641 and 1.80%, respec-
tively. Therefore, residual principal component 
regression algorithm is much more accurate 
than multiple regression algorithm in crop yield 
forecast.

Next, contrastive experiments were carried out 
to evaluate the crop yield prediction effects 
of multiple regression algorithm 1 and resid-
ual principal component regression algorithm 
2. Figure 11 compares the predicted results of 
each algorithm against the actual values. It can 
be seen that algorithm 2 achieved the better 
prediction performance, for its predicted values 
were closer to the actual values.
Finally, the prediction errors of the two mod-
els are compared in Table 2. The smaller the 

Table 1. Estimated values of factors affecting crop yield.

Year Annual mean  
temperature

Annual 
rainfall

Irrigation 
volume

Fertilizer 
application

Organic 
matters Nitrogen Phosphorus Potassium

2014 14.36 1,102.75 432 27.32 36.22 137.53 37.55 218.24

2015 14.35 1,008.51 452 28.17 34.35 132.65 38.21 220.72

2016 14.56 1,023.80 447 26.41 35.63 133.29 39.36 219.41

2017 14.92 1,067.31 435 27.63 31.91 144.51 37.28 226.37

2018 14.74 1,113.94 451 30.28 32.57 139.19 36.47 216.92

2019 14.37 1,095.37 449 31.39 28.59 136.05 35.90 218.15

2020 14.19 1,058.19 436 32.09 29.86 137.83 33.64 231.39

Table 2. Comparison of prediction errors.

Year MAE of algorithm 1 MRE of algorithm 1 MAE of algorithm 2 MRE of algorithm 2

2014 132.153 4.35% 136.729 3.71%

2015 235.251 6.32% 75.362 2.15%

2016 95.235 2.36% 76.753 1.35%

2017 96.456 3.67% 89.315 0.59%

2018 125.342 2.14% 127.256 1.35%

2019 167.354 4.96% 119.751 2.76%

2020 95.349 5.35% 135.324 0.67%

Mean error 135.306 4.16% 108.641 1.80%

Note: MAE and MRE are short for mean absolute error and mean relative error, respectively.

(a) (b)

Figure 10. Visual display of clustered intelligent agriculture data after dimensionality reduction.

Figure 11. Comparison of crop yield predicted by different regression models.

(a) Multiple regression algorithm. (b) Residual principal component regression algorithm.
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Figure 11. Comparison of crop yield predicted by different regression models.

(a) Multiple regression algorithm. (b) Residual principal component regression algorithm.
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