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Agricultural Internet of things (AIoT) promotes the 
modernization of traditional agricultural production 
and marketing model. However, the existing time 
series prediction methods for agricultural produc-
tion and agricultural product (AP) marketing cannot 
adapt well to most real-world scenarios, failing to 
realize multistep forecast of production and AP mar-
keting data. To solve the problem, this paper explores 
the big data analysis of agricultural production, AP 
marketing, and influencing factors in intelligent agri-
culture. To realize long-, and short-term predictions, 
a small-sample time series model was set up for AIoT 
production, and a big-sample time series model was 
constructed for AP marketing. The data fusion algo-
rithm based on Kalman filter (KF) was adopted to 
fuse the massive multi-source AP marketing data. 
The proposed strategy was proved valid through ex-
periments.
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→ Computers in other domains → Agriculture
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1. Introduction

As a pillar of agricultural informatization, ag-
ricultural Internet of things (AIoT) has been 
extensively applied in planting, gardening, 
farming, logistics, and sales, and promotes the 
modernization of traditional agricultural pro-
duction and marketing model [1–5]. The appli-
cation of the Internet of things (IoT) to agricul-
tural production and agricultural product (AP) 

sales leads to intelligent agriculture, which is 
smarter than traditional agriculture, bringing 
lots of convenience to our work and life. In in-
telligent agriculture, the agricultural production 
and AP sales are controlled by sensors and data 
crawlers, via mobile or computer platforms [6–
8]. With the elapse of time, both the production 
data collected by sensors and online sales data 
gathered by crawlers will grow exponentially. 
The drastic increase of these time series data 
raises stricter requirements on the performance 
of intelligent agriculture management systems.
Researchers, engineers, and scholars around 
the world have been actively exploring the data 
collection, storage, and application of AIoT, and 
achieved quite a remarkable progress [9–11]. 
Ananthi et al. [12] provided an embedded sys-
tem for soil monitoring and irrigation to reduce 
manual monitoring of farmlands, and acquired 
information via mobile apps to help farmers ef-
fectively boost agricultural yield. Matsumoto et 
al. [13] carried out numerical simulation based 
on the farmland information collected from the 
IoT, and realized advanced commercial eval-
uation of the inventory shortage and crop loss 
induced by the uncertainty of harvested crops. 
Whereas most intelligent agriculture systems 
focus on monitoring, Wongpatikaseree et al. 
[14] introduced the IoT to detect environmental 
data in intelligent farms, using multiple sensors, 
and proposed a traceable system that summariz-
es and displays the observations from intelligent 
farms. Before purchasing APs, a client can scan 
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To improve the prediction accuracy of the time 
series on a small dataset of the short-term moni-
toring on agricultural production activities, this 
paper proposes an additive expression to mine 
the nonlinear relationship between influencing 
factors and time series data. To reflect the de-
gree of changes to the time series induced by 
external factors, the variable component of the 
time series in period h is denoted as WS(h). To 
characterize the intrinsic structure of the time 
series, the intrinsic stationary component of the 
time series in period h is denoted as TS(h). The 
proposed additive expression can decompose 
the time series {a(h)} into two parts, which 
respectively consist of stationary features, and 
non-stationary features:

( ) ( ) ( )a h WS h TS h= +              (5)

Different from the intrinsic stationary compo-
nent, the variable component has a complex, 
nonlinear relationship with influencing factors, 
and cannot be modeled through classic time se-
ries analysis. To solve the problem, this paper 
relies on boosted regression algorithm to learn 
variable component and influencing factors, 
separately. That is, multiple independent learn-
ers were combined into a strong learner to solve 
G(*). Firstly, M I external attributes were divid-
ed into N - 1 groups. Let D(hm)(n) be the vector 
of type n external attributes in period hm. Then, 
training sample {β(hm), a(hm)} satisfies:      
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where g(n), including ( )
Q
ng  and ( )

P
ng , is the inde-

pendent learner on layer n. The independent 
learners were selected according to the features 
of historical time series and influencing factors. 
The historical time series a(h - MB: MB) were 
treated as attributes of type N, and recorded as 

and make control decisions, while adjusting the 
parameters of agricultural production activities.
This paper only predicts short-term time se-
ries, aiming to reduce the number of parame-
ters in the prediction model, and improve the 
real-timeliness of prediction data. For a given 
time series {a(h)}φh = 1 of agricultural sensor 
monitored data at the current period h, the pre-
diction model G(*) can be established as:

( ) ( ) ( )( )1 : , 1B Ba h G a h M M d h∗ + = − +
  
(1)

Let β(h + 1) = [a(h - MB: MB) d(h + 1)] be the 
independent variable of the prediction model, 
which covers both the intrinsic attributes of ag-
ricultural production activities and the external 
attributes; a*(h + 1) be the dependent variable 
characterizing the estimate of the time series 
a(h+1) in the subsequent period; a(h - MB: MB) 
= ([a(h - MB + 1), a(h - MB), ..., a(h)] ∈ MB be 
the intrinsic attributes of agricultural production 
activities, which characterize the MB historical 
measurements of different agricultural sensors 
before period h; d(h + l) = [d(h + 1)1, d(h + 1)2, 
..., d(h + l)MI} ∈ MI be the attribute vector of 
the attributes of agricultural production activi-
ties, which are composed of influencing factors 
at period h + 1. Through functional fitting of the 
known data monitored by agricultural sensors, 
G(*) can be obtained by solving a least squares 
(LS) problem. Based on a set P = (β(hm), a(hm))
Mm = 1 of M training samples, the solving pro-
cess can be described as:
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where Loss(*) and loss(*) are loss functions. 
The loss functions based on mean squared error 
(MSE) and absolute value can be respectively 
constructed as:
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the quick response (QR) code with a mobile 
app, and access various information on planting 
process and quality. Based on IoT sensors, Lee 
et al. [15] developed an agricultural production 
prediction and decision support system, and 
supported the sowing process by selling APs 
to consumers. Wang and Yang [16] integrated 
AIoT with sensor technology and agricultural 
big data, and achieved both growth environ-
ment and full lifecycle management (including 
growth, production, processing, distribution, 
and sales). Considering the features of modern 
agriculture and AP logistics, Mo [17] improved 
the traditional AP logistics model, presented a 
reference model for IoT-based AP supply chain, 
and analyzed the merits of the model. Harshani 
et al. [18] introduced IoT to monitor soil param-
eters like pH, soil temperature, and humidity, 
thereby improving crop productivity.
Owing to nonlinear correlations between sam-
ples, the existing time series prediction methods 
for agricultural production and AP marketing 
cannot adapt well to most real-world scenarios, 
failing to realize multistep forecast of produc-
tion and AP marketing data. By virtue of the 
functional approximation ability of neural net-
works under big sample condition, this paper 
integrates deep neural network (DNN), which 
is known for its high prediction accuracy, to big 
data analysis on agricultural production and AP 
marketing. The main contents of this work is 
thus as follows: (1) the overall architecture of 
small-sample time series model for AIoT pro-
duction was established to realize short-term 
prediction; (2) the overall architecture of time 
series data processing model for AIoT sales 
was created, and the massive multi-source AP 
marketing data were merged by a data fusion 
algorithm based on Kalman filter (KF); (3) a 
big-sample time series model was constructed 
for AP marketing to realize long-term predic-
tion. The proposed strategy was proved valid 
through experiments.

2. Small-Sample Time Series Model 
for IoT Production and Short-Term 
Prediction

Thanks to the burgeoning of IoT and informa-
tion technology, farmers can query the moni-
toring data of agricultural sensors on software 

platforms at anytime, and anywhere. This great-
ly facilitates agricultural production activities, 
and helps to reasonably allocate agricultural 
production resources, reduce agricultural pro-
duction cost, and improve AP quality.
Focusing on agricultural production, this paper 
models the historical time series data, influenc-
ing factors, and their relationships with the time 
series data to be predicted. The influencing fac-
tors include soil, climate, and water source, to 
name but a few. Figure 1 shows the workflow 
of agricultural sensors during the monitoring of 
agricultural production. 

Figure 1. Workflow of agricultural sensors.

The signals collected by the sensors are am-
plified, and subjected to analog/digital (AD) 
conversion, before being transmitted to the 
controller of the AIoT management platform. 
The controller will process the received data, 
and judge if they meet the preset threshold. If 
the data are greater than the preset threshold, 
the data will be discarded, and new data will be 
received. If the data are smaller than the preset 
threshold, the platform will predict the yield, 
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The signals collected by the sensors are am-
plified, and subjected to analog/digital (AD) 
conversion, before being transmitted to the 
controller of the AIoT management platform. 
The controller will process the received data, 
and judge if they meet the preset threshold. If 
the data are greater than the preset threshold, 
the data will be discarded, and new data will be 
received. If the data are smaller than the preset 
threshold, the platform will predict the yield, 
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Internet Plus brings people more channels to 
purchase APs. The AP marketing modes and 
methods are diversified by various e-commerce 
platforms that support online shopping of con-
sumers, online transactions between merchants, 
and online electronic payment. On online trans-
action platforms, AP marketing data are up-
dated and extracted in real time. However, the 
massive data volume makes it difficult to ap-
ply mining and analysis algorithms. This paper 
adopts the KF-based data fusion algorithm to 
process massive multi-source AP marketing 

data, providing samples for big-sample time se-
ries modeling of AIoT product marketing data.

In the KF algorithm, the state A(h) of AP sales 
prediction system at time h can be given by:

( ) ( ) ( ) ( )1A h A h V h Q hλ δ= − + +     (13)

The monitored AP sales C(h) can be described 
by:

( ) ( ) ( )1C h FA h U h= − +           (14)

Figure 2. Overall architecture of time series data processing model for AIoT sales.

Figure 3. Architecture of time series acquisition module for AP sales.
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By formula (7), the LS problem was convert-
ed into the minimization of the objective of 
N independent learners. This paper iteratively 
solves each simple regression model g(n.) with 
gradient boosting algorithm. The estimation er-
ror on each layer was adjusted by a new inde-
pendent learner. The synthetic model of layer 
n - 1 can be expressed as:
The optimization objective on layer n can be 
then expressed as:                                         

 (9)
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The synthetic model G was taken as the inde-
pendent variable of the loss function Loss. To 
further reduce the loss on layer n, the synthetic 
model on layer n can be updated in the func-
tional space by gradient descent, according to 
the unconstrained optimization theory:
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As shown in formula (10), the independent 
learner on layer n needs to fit in the negative di-
rection of the loss function Loss on layer n - 1 
relative to G. If the loss function is MSE, the 
optimization objective (9) can be changed into:
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To simplify the formula after derivation, the 
MSE was multiplied with a coefficient of 0.5, 
without affecting the optimization objective 
and model solving. The gradient of Loss rela-
tive to G can be expressed as:
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where σ(n - 1) = ΣC (a(hm) - G(n - 1)) is the cur-
rent prediction error of layer n - 1. For the MSE 
loss function, the error prediction direction is 
the negative gradient direction of Loss relative 
to the synthetic model. The independent learner 
g(n) = σ(n - 1) on layer n and the corresponding 
synthetic model G(n) = G(n - 1) + g(n) can be 
obtained by fitting the prediction error σ(n - 1) on 
the previous layer.

3. Time Series Data Fusion Algorithm 
for AIoT Sales

Figure 2 shows the overall architecture of time 
series data processing model for AIoT sales, 
which covers five layers, namely, hardware lay-
er, transmission layer, data storage layer, logic 
layer, and application layer. To collect time se-
ries data on AP sales, the hardware layer com-
bines data crawlers with a data mining module. 
The latter module is responsible for data fusion 
and release, configuration management, mod-
eling and prediction, abnormality handling, and 
risk warning. The data crawlers are connected 
to the data mining module via fieldbus protocol. 
The data mining module aggregates the mined 
data, and releases them to the MQTT server, 
which reads the configuration. The application 
server then stores the collected data, predicted 
data, and risk warning records in the time se-
ries database. The processing of abnormal data 
includes padding missing data, removing nois-
es, and removing duplicate samples. Figure 3 
shows the architecture of the time series acqui-
sition module for AP sales.
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risk warning. The data crawlers are connected 
to the data mining module via fieldbus protocol. 
The data mining module aggregates the mined 
data, and releases them to the MQTT server, 
which reads the configuration. The application 
server then stores the collected data, predicted 
data, and risk warning records in the time se-
ries database. The processing of abnormal data 
includes padding missing data, removing nois-
es, and removing duplicate samples. Figure 3 
shows the architecture of the time series acqui-
sition module for AP sales.
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be sufficiently long. The length MH of the input 
must be multiples of φo: MH = N × φo. Let [a(1), 
a(2), ..., a(Nφo)] be the vector of the input his-
torical time series at time h. By φo, the vector 
can be arranged into an N × φo matrix HA:
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Suppose the k-th convolutional layer of the 
DNN has MCK

J(k) kernels ωJ(k). Let t(k) = [t1
(k), 

t2
(k)] be the vector for one translation of kernel 
ωJ(k) along the i-th dimension. Then, we have:

( )

( )
( )

( )

( )
( )

( ) ( )
( )

2

1 1 2

1,1 1,

,1 ,

J k

J k J k J k

J k J k

z
J k

J k J k

z z z

ω ω

ω

ω ω

 
 
 =
 
 
 



  



        

(23)

In the DNN, the kernel size z1
J(k) × z2

J(k) de-
termines the intensity of the long-term strong 
correlation of the time series on AP product 
marketing. To determine the kernel size of the 
first convolutional layer in our DNN, this paper 
calculates the autocorrelation coefficient be-
tween periods of AP marketing time series. Let 
LC be the linear correlation between monitor-
ing points with an interval of i. Then, the auto-

correlation coefficient ξi
LC between time series 

with an i-order time lag can be calculated by:
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Let ξ be the preset threshold and z1
J(k) × z2

J(k) 
be the kernel size. Then, the values of z1

J(k) and 
z2

J(k) depend on intra-period correlation and in-
ter-period correlation, respectively:
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To facilitate the extraction of long-term strong 
correlation of time series data, a small kernel 
size can be designed for the kernels ωJ(k)(k ≤ 1) 
in other layers. The number of kernels should 
double as we move to a higher level.
The output of the last convolutional layer is 
expanded from a two-dimensional (2D) matrix 
into a one-dimensional (1D) vector by a ful-
ly connected layer with a nonlinear activation 
function. There are M 

F output nodes on the ful-
ly connected layer.
The time step has a great influence on the par-
tial derivative of the activation function. If the 
time step is too long or too short, vanishing or 
exploding gradients will occur in the long run. 
In this case, the network will be unstable in 
training, and unable to learn early memories. 
This paper constructs the following periodic 
recursive network, such that the proposed net-

Figure 4. Structure of our DNN.

where V(h) is the controlled quantity of the AP 
sales prediction system at time h; λ and δ are 
system parameters; F is the monitoring param-
eter. All three parameters are matrices for the 
multielement AP marketing data. Let Q(h) and 
U(h) be the influence of the sales process and 
that of monitoring, respectively; W and T be the 
variances of the two influences, respectively. W 
and T do not change with the state of the sales 
prediction system.
The KF is a recursive process. Based on the op-
timal estimate A(h - 1 | h - 1) at time h - 1 
and the controlled quantity V(h) of the system 
at time h, the estimate A(h | h - 1) at time h can 
be predicted by:

( ) ( ) ( )| 1 1| 1A h h A h h V hλ δ− = − − +   (15)

Let λ* be the transposed matrix of λ. Based 
on the covariance cov(h - 1 | h - 1) of A(h - 1 | 
h - 1), the covariance cov(h | h - 1) of A(h | h - 1) 
can be derived:

( ) ( )| 1 1| 1cov h h cov h h Uλ λ∗− = − − +  (16)

The Kalman gain ER(h) can be calculated based 
on cov(h | h - 1) and the covariance T of the 
monitoring influence:
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Next, the estimate A(h | h - 1) at time h is cor-
rected according to monitored AP sales C(h), 
producing the optimal estimate A(h | h) at time 
h:
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Let E be the unit matrix. Then, the covariance 
cov(h | h) of A(h | h) at time h can be calculated 
by:

( ) ( ) ( )1cov h h E ER h F cov h h= − −     
(19)

Through the above prediction and correction of 
estimates, the optimal estimate of the current 
state of the AP sales prediction system can be 
derived from the optimal estimate of the system 

at the previous moment and the monitored AP 
sales at the current moment.

4. Big-Sample Time Series Modeling 
of AIoT Product Marketing Data 
and Long-Term Prediction

After the fusion of multi-source AP marketing 
data, it is the time to construct the problem of 
big-data time series modeling of AP marketing. 
Let φo be the quasi-period of an AIoT product 
marketing time series {a(h)}φh = 1; MH and MF 
be the number of inputted historical AP sales 
series and the number of outputted predicted 
future AP sales series, respectively; KH and KF 
be the input interval and output interval, re-
spectively; RH and RF be the input range and 
the prediction range, respectively. Then, the 
historical monitored AP sales and predicted fu-
ture AP sales can be described as a(h - MH: MH: 
KH) and a*(h: MF: KH), respectively. Since the 
long-term external factors of AP marketing are 
unpredictable, this paper builds up a factor-in-
dependent prediction model s(*) for AP market-
ing time series:

( ) ( )( ): : : :F F H F Fa h M K s a h R M K∗ = − (20)

To realize long-term prediction of AP sales, KH 
and KF are set to 1. Then, RF = MF and RH = MH. 
Formula (20) can be transformed into:

( ) ( )( ): :F H Ha h M s a h M M∗ = −
     

(21)

where a(h - MH: MH) = [a(h - MH + 1), a(h - 
MH + 2), ..., a(h)], a(h: MF) = [a(h + 1), a(h + 
2), ..., a(h + MF)]. Next, this paper establishes 
the structure of a DNN for long-term prediction 
of big-sample time series of AP marketing data. 
Figure 4 shows the structure of the proposed 
DNN. Based on the collected big dataset of AP 
marketing, the proposed DNN was trained to fit 
the functional relationship s(*) between long-
term historical monitored data and predicted 
future time series.
The accurate long-term prediction of time se-
ries needs a long history of monitored data. To 
introduce long-term memory to the proposed 
time-varying convolutional neural network 
(CNN), the input historical time series should 
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be sufficiently long. The length MH of the input 
must be multiples of φo: MH = N × φo. Let [a(1), 
a(2), ..., a(Nφo)] be the vector of the input his-
torical time series at time h. By φo, the vector 
can be arranged into an N × φo matrix HA:
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Suppose the k-th convolutional layer of the 
DNN has MCK

J(k) kernels ωJ(k). Let t(k) = [t1
(k), 

t2
(k)] be the vector for one translation of kernel 
ωJ(k) along the i-th dimension. Then, we have:
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In the DNN, the kernel size z1
J(k) × z2

J(k) de-
termines the intensity of the long-term strong 
correlation of the time series on AP product 
marketing. To determine the kernel size of the 
first convolutional layer in our DNN, this paper 
calculates the autocorrelation coefficient be-
tween periods of AP marketing time series. Let 
LC be the linear correlation between monitor-
ing points with an interval of i. Then, the auto-

correlation coefficient ξi
LC between time series 

with an i-order time lag can be calculated by:
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Let ξ be the preset threshold and z1
J(k) × z2

J(k) 
be the kernel size. Then, the values of z1

J(k) and 
z2

J(k) depend on intra-period correlation and in-
ter-period correlation, respectively:
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To facilitate the extraction of long-term strong 
correlation of time series data, a small kernel 
size can be designed for the kernels ωJ(k)(k ≤ 1) 
in other layers. The number of kernels should 
double as we move to a higher level.
The output of the last convolutional layer is 
expanded from a two-dimensional (2D) matrix 
into a one-dimensional (1D) vector by a ful-
ly connected layer with a nonlinear activation 
function. There are M 

F output nodes on the ful-
ly connected layer.
The time step has a great influence on the par-
tial derivative of the activation function. If the 
time step is too long or too short, vanishing or 
exploding gradients will occur in the long run. 
In this case, the network will be unstable in 
training, and unable to learn early memories. 
This paper constructs the following periodic 
recursive network, such that the proposed net-

Figure 4. Structure of our DNN.

where V(h) is the controlled quantity of the AP 
sales prediction system at time h; λ and δ are 
system parameters; F is the monitoring param-
eter. All three parameters are matrices for the 
multielement AP marketing data. Let Q(h) and 
U(h) be the influence of the sales process and 
that of monitoring, respectively; W and T be the 
variances of the two influences, respectively. W 
and T do not change with the state of the sales 
prediction system.
The KF is a recursive process. Based on the op-
timal estimate A(h - 1 | h - 1) at time h - 1 
and the controlled quantity V(h) of the system 
at time h, the estimate A(h | h - 1) at time h can 
be predicted by:

( ) ( ) ( )| 1 1| 1A h h A h h V hλ δ− = − − +   (15)

Let λ* be the transposed matrix of λ. Based 
on the covariance cov(h - 1 | h - 1) of A(h - 1 | 
h - 1), the covariance cov(h | h - 1) of A(h | h - 1) 
can be derived:

( ) ( )| 1 1| 1cov h h cov h h Uλ λ∗− = − − +  (16)

The Kalman gain ER(h) can be calculated based 
on cov(h | h - 1) and the covariance T of the 
monitoring influence:
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Next, the estimate A(h | h - 1) at time h is cor-
rected according to monitored AP sales C(h), 
producing the optimal estimate A(h | h) at time 
h:
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Let E be the unit matrix. Then, the covariance 
cov(h | h) of A(h | h) at time h can be calculated 
by:

( ) ( ) ( )1cov h h E ER h F cov h h= − −     
(19)

Through the above prediction and correction of 
estimates, the optimal estimate of the current 
state of the AP sales prediction system can be 
derived from the optimal estimate of the system 

at the previous moment and the monitored AP 
sales at the current moment.

4. Big-Sample Time Series Modeling 
of AIoT Product Marketing Data 
and Long-Term Prediction

After the fusion of multi-source AP marketing 
data, it is the time to construct the problem of 
big-data time series modeling of AP marketing. 
Let φo be the quasi-period of an AIoT product 
marketing time series {a(h)}φh = 1; MH and MF 
be the number of inputted historical AP sales 
series and the number of outputted predicted 
future AP sales series, respectively; KH and KF 
be the input interval and output interval, re-
spectively; RH and RF be the input range and 
the prediction range, respectively. Then, the 
historical monitored AP sales and predicted fu-
ture AP sales can be described as a(h - MH: MH: 
KH) and a*(h: MF: KH), respectively. Since the 
long-term external factors of AP marketing are 
unpredictable, this paper builds up a factor-in-
dependent prediction model s(*) for AP market-
ing time series:

( ) ( )( ): : : :F F H F Fa h M K s a h R M K∗ = − (20)

To realize long-term prediction of AP sales, KH 
and KF are set to 1. Then, RF = MF and RH = MH. 
Formula (20) can be transformed into:

( ) ( )( ): :F H Ha h M s a h M M∗ = −
     

(21)

where a(h - MH: MH) = [a(h - MH + 1), a(h - 
MH + 2), ..., a(h)], a(h: MF) = [a(h + 1), a(h + 
2), ..., a(h + MF)]. Next, this paper establishes 
the structure of a DNN for long-term prediction 
of big-sample time series of AP marketing data. 
Figure 4 shows the structure of the proposed 
DNN. Based on the collected big dataset of AP 
marketing, the proposed DNN was trained to fit 
the functional relationship s(*) between long-
term historical monitored data and predicted 
future time series.
The accurate long-term prediction of time se-
ries needs a long history of monitored data. To 
introduce long-term memory to the proposed 
time-varying convolutional neural network 
(CNN), the input historical time series should 
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on the monitoring dataset on CO2 concentra-
tion. The proposed models, namely time-vary-
ing CNN and periodic recursive network, per-
formed excellently on the dataset, achieving 
relatively high values on all metrics.

The soil humidity monitoring dataset for agri-
cultural production depends heavily on the time 
sequence. Compared with the previous two 
datasets, this dataset adds difficulty to feature 
extraction and time series prediction. Figure 7 

(a) Normal monitoring data.

(b) Abnormal monitoring data.

Figure 5. Actual and predicted values based on monitoring data of normal and abnormal soil temperatures.

Table 1. Prediction performance indices of different models on soil temperature monitoring dataset.

Model Accuracy Precision Recall F1

LSTM network 0.972 1 0.945 0.967
Periodic recursive network 0.907 0.853 0.936 0.889

Time-varying CNN 0.875 0.817 0.903 0.837

work can accurately extract the dependence of 
AIoT product marketing time series from the 
historical time series. 
According to the quasi-periodicity and simi-
lar change patterns of AIoT product marketing 
time series, the historical monitored data were 
firstly divided into N subseries, each of which 
contains φo monitored values. Then, the N sub-
series were sorted by formula (22), producing 
an N × φo-dimensional matrix. 
The N subseries were linearly mapped on the 
fully connected layer in a unified manner. The 
N × 1-dimensional matrix Z' outputted by the 
first hidden layer can be expressed as:       
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Subsequently, Z' was imported to the first re-
cursive layer. Each element in Z' corresponds to 
a time step: z'(h) = z'h, 1

(1). Hence, the time step 
of periodic recursive network is N. Let mRE(k) be 
the number of nodes outputted on the k-th layer 
of the network. The output of the i-th step of the 
second hidden layer can be then expressed as:

( ) ( ) ( )( )1 ,z i AF z i z i′′ ′′ ′= −           (28)

where Z'' = [z''(1), z''(2), ..., z''(N)]; AF(*) is the 
activation function.
Training time and mean squared error (MSE) 
are selected as the metrics of model prediction 
effect in the present research. The M training or 
test sample contains MF predicted values. Let 
a(h)(m) and a*(h)(m) be the actual and predicted 
AP sales of the m-th sample at time h, respec-
tively. Then, the MSE of the m-th training/test 

sample, and that of all M training/test samples 
can be respectively calculated by:
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5. Experiments and Results Analysis

Our experiments are all based on a high-per-
formance computer with an Intel-i7-
7700K@4.2GH CPU. The experimental pro-
gram was developed under Linux, specifically 
using the 64-bit Ubuntu 14.04, while the model 
was written in Python under PyCharm and An-
aconda2.
The monitoring dataset on soil temperature of 
agricultural production depends strongly on 
time. The current monitoring data in the data-
set are correlated with the historical monitoring 
data. Figure 5 compares the actual and predicted 
values based on monitoring data of normal and 
abnormal soil temperatures. It can be inferred 
that the prediction model, whose hidden layers 
contain long short-term memory (LSTM) units, 
did well in prediction. The monitoring dataset 
on soil temperature has a certain periodicity: the 
daytime data are generally higher than nighttime 
data. Note that F1= precision * recall * 2 / (pre-
cision + recall). The contrastive models include 
time-varying CNN, periodic recursive network, 
and LSTM. The results in Table 1 show that the 
proposed DNN performed well on time-series 
prediction of AP marketing in the long term, 
achieving a recall greater than 96%.
The monitoring dataset on CO2 concentration 
of agricultural production also depends strong-
ly on time. The features of this dataset are more 
unobvious than those of the monitoring dataset 
on soil temperature, making it more difficult 
to recognize the abnormal time series among 
this dataset. Figure 6 compares the actual and 
predicted values based on monitoring data 
of normal and abnormal CO2 concentrations, 
wherefrom it can be inferred that our prediction 
models performed well. Table 2 lists the pre-
diction performance indices of different models 
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on the monitoring dataset on CO2 concentra-
tion. The proposed models, namely time-vary-
ing CNN and periodic recursive network, per-
formed excellently on the dataset, achieving 
relatively high values on all metrics.

The soil humidity monitoring dataset for agri-
cultural production depends heavily on the time 
sequence. Compared with the previous two 
datasets, this dataset adds difficulty to feature 
extraction and time series prediction. Figure 7 

(a) Normal monitoring data.

(b) Abnormal monitoring data.

Figure 5. Actual and predicted values based on monitoring data of normal and abnormal soil temperatures.

Table 1. Prediction performance indices of different models on soil temperature monitoring dataset.

Model Accuracy Precision Recall F1

LSTM network 0.972 1 0.945 0.967
Periodic recursive network 0.907 0.853 0.936 0.889

Time-varying CNN 0.875 0.817 0.903 0.837

work can accurately extract the dependence of 
AIoT product marketing time series from the 
historical time series. 
According to the quasi-periodicity and simi-
lar change patterns of AIoT product marketing 
time series, the historical monitored data were 
firstly divided into N subseries, each of which 
contains φo monitored values. Then, the N sub-
series were sorted by formula (22), producing 
an N × φo-dimensional matrix. 
The N subseries were linearly mapped on the 
fully connected layer in a unified manner. The 
N × 1-dimensional matrix Z' outputted by the 
first hidden layer can be expressed as:       
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Subsequently, Z' was imported to the first re-
cursive layer. Each element in Z' corresponds to 
a time step: z'(h) = z'h, 1

(1). Hence, the time step 
of periodic recursive network is N. Let mRE(k) be 
the number of nodes outputted on the k-th layer 
of the network. The output of the i-th step of the 
second hidden layer can be then expressed as:

( ) ( ) ( )( )1 ,z i AF z i z i′′ ′′ ′= −           (28)

where Z'' = [z''(1), z''(2), ..., z''(N)]; AF(*) is the 
activation function.
Training time and mean squared error (MSE) 
are selected as the metrics of model prediction 
effect in the present research. The M training or 
test sample contains MF predicted values. Let 
a(h)(m) and a*(h)(m) be the actual and predicted 
AP sales of the m-th sample at time h, respec-
tively. Then, the MSE of the m-th training/test 

sample, and that of all M training/test samples 
can be respectively calculated by:
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5. Experiments and Results Analysis

Our experiments are all based on a high-per-
formance computer with an Intel-i7-
7700K@4.2GH CPU. The experimental pro-
gram was developed under Linux, specifically 
using the 64-bit Ubuntu 14.04, while the model 
was written in Python under PyCharm and An-
aconda2.
The monitoring dataset on soil temperature of 
agricultural production depends strongly on 
time. The current monitoring data in the data-
set are correlated with the historical monitoring 
data. Figure 5 compares the actual and predicted 
values based on monitoring data of normal and 
abnormal soil temperatures. It can be inferred 
that the prediction model, whose hidden layers 
contain long short-term memory (LSTM) units, 
did well in prediction. The monitoring dataset 
on soil temperature has a certain periodicity: the 
daytime data are generally higher than nighttime 
data. Note that F1= precision * recall * 2 / (pre-
cision + recall). The contrastive models include 
time-varying CNN, periodic recursive network, 
and LSTM. The results in Table 1 show that the 
proposed DNN performed well on time-series 
prediction of AP marketing in the long term, 
achieving a recall greater than 96%.
The monitoring dataset on CO2 concentration 
of agricultural production also depends strong-
ly on time. The features of this dataset are more 
unobvious than those of the monitoring dataset 
on soil temperature, making it more difficult 
to recognize the abnormal time series among 
this dataset. Figure 6 compares the actual and 
predicted values based on monitoring data 
of normal and abnormal CO2 concentrations, 
wherefrom it can be inferred that our prediction 
models performed well. Table 2 lists the pre-
diction performance indices of different models 
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This paper analyzes the features of the AP sales 
datasets on vegetables and CO, respectively, 
and configures the proposed DNN based on 
the analysis results. Considering the long-term 
memory and quasi-periodicity of AP sales time 

series, the input range RF of the sales prediction 
model was set to 1 year, and the quasi-period 
was set to 1 week, i.e., φo = 7, and RF = 60 × 7 = 
420. The historical monitored AP sales (length: 
420) were sorted by the algorithm proposed in 

(a) Normal monitoring data.

(b) Abnormal monitoring data.

Figure 7. Actual and predicted values based on monitoring data of normal and abnormal soil moistures.

Table 3. Prediction performance indices of different models on soil moisture monitoring dataset.

Model Accuracy Precision Recall F1

Time-varying CNN 0.975 0.931 0.968 0.846
Periodic recursive network 0.826 0.853 0.774 0.835

LSTM network 0.872 0.876 0.853 0.872

indices of different models on the monitoring 
dataset on soil moisture. The proposed models 
achieved ideal values on all indices, outshining 
the LSTM network, which cannot effectively 
extract the features of external factors.

compares the actual and predicted values based 
on monitoring data of normal and abnormal 
soil moistures, wherefrom it can be inferred 
that our prediction models had small prediction 
errors. Table 3 lists the prediction performance 

Table 2. Prediction performance indices of different models on CO2 concentration monitoring dataset.

Model Accuracy Precision Recall F1

Time-varying CNN 0.967 0.935 0.975 0.968
Periodic recursive network 0.872 0.863 0.872 0.894

LSTM network 0.836 0.792 0.816 0.816

(a) Normal monitoring data.

(b) Abnormal monitoring data.

Figure 6. Actual and predicted values based on monitoring data of normal and abnormal CO2 concentrations.
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under the two activation functions, suggesting 
the stationarity and correlation of AP sales data 
variation in the long term.
Table 5 compares the long-term prediction ef-
fects of our time-varying CNN, our periodic 
recursive network, and LSTM network. The 
training time of the LSTM network was 3-4 
times that of the time-varying CNN, and 1.5-
2.5 times that of the periodic recursive network. 
With the extension of prediction range, the 
training samples decreased gradually, the test 
error increased, and the training time shrank ac-
cordingly.

6. Conclusion

This paper explores the big data analysis of 
agricultural production, AP marketing, and 

influencing factors in intelligent agriculture. 
To realize long-, and short-term predictions, a 
small-sample time series model was set up for 
AIoT production, and a big-sample time series 
model was constructed for AP marketing. Be-
sides, a KF-based data fusion algorithm was 
developed to fuse the massive multi-source 
AP marketing data. Next, experiments were 
carried out to compare the actual and predict-
ed values under normal and abnormal levels of 
soil temperature, CO2 concentrations, and soil 
moistures. The comparison shows our models 
achieved ideal values on all metrics, a sign of 
excellent prediction performance. Furthermore, 
the authors compared the LC values of AP sales 
time series with a monitoring interval smaller 
than 2 weeks, network parameter setting, and 
test errors. The results confirm the effectiveness 
of the proposed long-term prediction algorithm 
for AP sales.

Table 4. Network parameter setting and test errors.

Network configuration Type Training error Test error Training time

Input length

5 × 8 4.4 5.7 18

30 × 8 3.6 4.1 15

60 × 8 3.3 3.8 12

Activation function
Tanh 4.5 4.6 2

Linear 4.2 4.5 19

Table 5. Performance of long-term prediction algorithm for AP sales.

Type Prediction range Algorithm Training 
error Test error Training 

time

Long-term 
prediction

Half a year

Time-varying CNN 2.7 3.6 13

Periodic recursive  
network 2.6 3.5 19

LSTM network 2.5 2.9 55

One year

Time-varying CNN 3.4 3.7 12

Periodic recursive  
network 3.2 3.7 16

LSTM network 4.3 4.5 45

Note: MRE is short for mean relative error.

the preceding section, and taken as the input of 
the prediction model. Figure 8 presents the LC 
values of the AP sales time series with a moni-
toring interval smaller than 2 weeks. Based on 
these LC values, the kernel size of the first con-
volutional layer was set to 3 × 8, and that of the 
other layer to 3 × 1.
To verify the performance of our prediction al-
gorithm, the proposed time-varying CNN was 
employed to determine the duration of memory, 
and the periodic recursive network was adopt-

ed to identify the relationship between adjacent 
AP sales data in the same period, using one of 
the two activation functions: hyperbolic tangent 
(tanh) and linear. Finally, long-term prediction 
of AP sales was carried out on the AP sales 
datasets of vegetables and CO, respectively. 
This paper tests the two activation functions on 
the first fully connected layer of the periodic 
recursive network. Table 4 lists the network pa-
rameter setting and test errors. Obviously, the 
model prediction performance differed slightly 

(a) Vegetables.

(b) Cereals and oils (CO).

Figure 8. LC values of AP sales time series with a monitoring interval smaller than 2 weeks.
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these LC values, the kernel size of the first con-
volutional layer was set to 3 × 8, and that of the 
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(tanh) and linear. Finally, long-term prediction 
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