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With the rapid development of blockchain technology, 
blockchain-based neural network short-term power 
demand forecasting has become a research hotspot in 
the power industry. This paper aims to combine neural 
network algorithms with blockchain technology to es-
tablish a trustworthy and efficient short-term demand 
forecasting model. By leveraging the distributed ledger 
and immutability features of blockchain, we ensure the 
security and reliability of power demand data. Mean-
while, short-term power demand forecasting research 
using neural networks has the potential to increase the 
stability of the power system and offer opportunities 
for improved operations. In this paper, the root mean-
square-error model evaluation indicator was used to 
compare the back propagation (BP) neural network 
algorithm and the traditional forecasting algorithm. 
The evaluation was performed on randomly selected 
five household power datasets. The results show that, 
by comparing the long short-term memory network 
(LSTM) model with the BP neural network model, it 
was determined that the average prediction impact in-
creases by about 25.7% under stable power demand. 
The short-term power prediction model of the BP neu-
ral network has the average error values more than two 
times lower than the traditional prediction model. It 
was shown that the use of the BP neural network al-
gorithm and blockchain could increase the accuracy 
of short-term power demand forecasting, allowing the 
neural network-based algorithm to be implemented 
and taken into account in the research on short-term 
power demand forecasting.
ACM CCS (2012) Classification: Computing meth-
odologies → Machine learning → Machine learning 
algorithms
Applied computing → Operations research → Fore-
casting
Keywords: short-term power demand, BP neural net-
work algorithm, back propagation, long and short-term 
memory network, blockchain, root-mean-square error

1. Introduction

Rapid growth in the demand for electricity is 
caused by increased energy demand and con-
sumption. Forecasting the power demand hence 
needs to be done accurately and efficiently [1]. 
Power demand refers to the related activities 
carried out to improve the utilization efficien-
cy of power resources, improve the way of 
electricity consumption, and realize the use of 
electricity in science. Energy sources that are 
difficult to store include the electricity itself. 
As a result, it would be challenging for a power 
system to create electricity in accordance with 
the amount of electricity demand and it usually 
results in the generation of either too much or 
too little power. Backpropagation (BP) neural 
network technology is a multi-layer feed-for-
ward neural network trained by the error in 
reverse propagation algorithm, which is the 
most widely used neural network. A region's 
electricity demand can be better understood by 
the electricity production department if short-
term electricity demand forecast research is 
conducted. The department can then make 
forecasts based on the learned scenario to carry 
out electricity production planning [2–3]. The 
operation and management of a power man-
agement department are further standardized 
with the assistance of the production depart-
ment, which helps to more accurately estimate 
the demand and supply of electricity. The pre-
vious power demand data can be summarized, 
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2. Short-Term Power Demand  
Forecasting Algorithm

2.1. Blockchain Network Architecture

Blockchain network is a decentralized distrib-
uted computing system, which is composed of 
multiple nodes. These nodes reach consensus 
through mutual communication and consensus 
mechanisms, validate and record transactions 
and data, and link them together in the form of 
blocks to form a growing block chain. Because 
there is no centralized control mechanism, the 
blockchain network has a high degree of securi-
ty and transparency, because any node can ver-
ify and monitor the transactions that take place 
on the network [17–18]. Figure 1 illustrates the 
key components of a blockchain architecture. 
These components collectively form the fun-
damental architecture of blockchain, enabling 
decentralized, transparent, secure, and trust-
worthy data exchange and storage.
The decentralized and immutable nature of 
blockchain makes it ideal for protecting the pri-
vacy of sensitive data and ensuring data securi-
ty. Storing neural network models and training 
data on blocks ensures secure transmission and 
storage of data and prevents unauthorized ac-
cess and tampering. At the same time, while the 
blockchain is operating, the distributed ledger in 
the blockchain records all transactions and oper-
ations of the neural network model and data, pro-
viding a fully transparent and verifiable record. 
In this way, the source of the model and the cred-
ibility of the data can be traced, which increases 
the credibility and reliability of the algorithm. 
Finally, each data holder can provide prediction 
models and data on the blockchain through a dis-
tributed network to facilitate the innovation and 
development of prediction algorithms [19].

owners operate almost independently, making 
it difficult for data to be shared among them. 
The prediction of electricity data is limited by 
the feature dimensions and quantity of sample 
data, and the decentralized and tamper-proof 
characteristics of blockchain make it an ideal 
choice for protecting sensitive data privacy and 
ensuring data security [14]. Ma [15] demon-
strated that by storing neural network models 
and training data on the blockchain, the secure 
transmission and storage of data can be guar-
anteed, while preventing unauthorized access 
and tampering. Furthermore, blockchain can 
record all transactions and operations related 
to neural network models and data, providing 
complete transparency and verifiability. This 
enables the traceability of model origins and 
the credibility of data, thereby increasing the 
trustworthiness and reliability of the algo-
rithm.
Generally speaking, departmental schedul-
ing frequently uses short-term electricity de-
mand forecasting, and it is beneficial for dai-
ly, weekly, and monthly scheduling. In order 
to establish a short-term forecasting model of 
power demand based on the neural network al-
gorithm, this article mostly relied on the BP ar-
tificial neural network algorithm. The BP neu-
ral network algorithm and real-time embedded 
systems perform better with more data when 
compared to other algorithms. The network's 
computational power is likewise constantly 
increasing along with the ongoing growth of 
data. As a result, the objective of intelligent 
and integrated power resources can be better 
attained, and a significant research foundation 
will be established for the future allocation of 
power demand [16].

and the uncertain data in the summary data can 
play its role in the future short-term power de-
mand prediction. The BP neural network algo-
rithm and blockchain are employed to estimate 
short-term power consumption. The research 
presented in this paper develops a reliable and 
efficient short-term load forecasting model. 
Here, the blockchain technology provides a se-
cure and immutable platform for storing power 
demand  data, ensuring its integrity and reli-
ability. The neural network algorithm enhances 
the accuracy and precision of the forecasting 
model.
The need for short-term electricity is continu-
ally growing. On the creation of a short-term 
electricity demand projection, numerous aca-
demics have done a number of related stud-
ies. According to Matsumoto and Yamada 
[4], power firms' ability to operate profit-
ably depends on their ability to predict both 
the demand for power and the forecasting of 
solar power [4]. To estimate the demand for 
potential future bioelectric power systems in 
the community, Rushma et al. [5] employed 
the inverse matrix approach in conjunction 
with the loads compiled from the survey and 
the equipment end use method. Su et al. [6] 
thought that demand response signals were 
additional loads connected to meteorological 
conditions based on the predictability of de-
mand response planning signals and the inde-
pendence of seasonal base loads. Yang et al. 
[7] believed that the level of economic power 
demand and the relationship model between 
economic power systems—which was pro-
duced by utilizing the XGBoost algorithm and 
also included a prediction of future load—were 
closely related. Few researchers have thought 
of employing the neural network algorithm 
to explore the forecasting of short-term pow-
er consumption among the studies conducted 
by these scholars. Most research scholars use 
the tensor product spline function, using the 
inverse matrix method, based on demand re-
sponse, and the XGBoost algorithm for pow-
er demand prediction. As a result, this publi-
cation conducted additional research on the 
neural network algorithm-based forecasting of 
short-term power demand. 
Research interest in neural network algo-
rithms has consistently been significant, and 
new publications of pertinent studies are con-

sistently being published. In his event-driven 
deployment algorithm for collaborative neural 
networks, Zhuang et al. [8] suggested a neu-
ral network approach as a foundation. Utiliz-
ing BP neural networks, Chen and Zhang [9] 
improved the system performance while ana-
lyzing the cognitive transmission performance 
under diverse environmental disturbances us-
ing LFM signals. Through the use of a Con-
volutional Neural Networks (CNN) model, 
Zhang et al. [10] trained a resulting model 
that was effective for complicated scenarios 
with multipath effects or many access points. 
After training the model to improve the local-
ization performance by considering a series 
of Received Signal Strength Indicator (RSSI) 
vectors and extracting local features, the GPR 
algorithm further improved the localization 
accuracy. Jin and Zheng [11] helped the new 
line to be adjacent to and close to the existing 
line, and overcame the existing line, as well as 
avoided the need to readjust the coverage of 
the original line network, thus increasing the 
construction difficulty and improving the in-
vestment cost. Zhang and Liang [12] reviewed 
the application of building demand prediction 
models, using machine learning performance 
and accuracy to build a new prediction mod-
el, including data engineering, preprocess-
ing from sensor level to data level, feature 
extraction and selection, thus summarizing a 
well-researched and relatively untapped field. 
Nelson et al. [13] think that machine learning 
has powerful data processing ability, and with-
out the exact physical model and expert prior 
knowledge, only according to the depth of the 
machine learning model structure, divided into 
shallow machine learning methods and meth-
ods based on deep learning. Machine learning 
leads to detailed analysis and expounds the 
residual life prediction of equipment. Differ-
ent neural network methods were employed 
for analysis in the research these researchers 
conducted on forecasting power demand. Nu-
merous neural network algorithms had a wide 
range of applications and research topics, 
demonstrating the importance of this subject 
for future study. 
At the same time, due to the massive amount 
of data required for electricity data predic-
tion and considering the privacy and securi-
ty concerns surrounding electricity data, data Figure 1. Illustration of the key components of a blockchain architecture.



176 177R. Wang, Y. Chen, E. Li, H. Xing, J. Zhang and J. Li Short-Term Power Demand Forecasting Using Blockchain-Based Neural Networks Models

2. Short-Term Power Demand  
Forecasting Algorithm

2.1. Blockchain Network Architecture

Blockchain network is a decentralized distrib-
uted computing system, which is composed of 
multiple nodes. These nodes reach consensus 
through mutual communication and consensus 
mechanisms, validate and record transactions 
and data, and link them together in the form of 
blocks to form a growing block chain. Because 
there is no centralized control mechanism, the 
blockchain network has a high degree of securi-
ty and transparency, because any node can ver-
ify and monitor the transactions that take place 
on the network [17–18]. Figure 1 illustrates the 
key components of a blockchain architecture. 
These components collectively form the fun-
damental architecture of blockchain, enabling 
decentralized, transparent, secure, and trust-
worthy data exchange and storage.
The decentralized and immutable nature of 
blockchain makes it ideal for protecting the pri-
vacy of sensitive data and ensuring data securi-
ty. Storing neural network models and training 
data on blocks ensures secure transmission and 
storage of data and prevents unauthorized ac-
cess and tampering. At the same time, while the 
blockchain is operating, the distributed ledger in 
the blockchain records all transactions and oper-
ations of the neural network model and data, pro-
viding a fully transparent and verifiable record. 
In this way, the source of the model and the cred-
ibility of the data can be traced, which increases 
the credibility and reliability of the algorithm. 
Finally, each data holder can provide prediction 
models and data on the blockchain through a dis-
tributed network to facilitate the innovation and 
development of prediction algorithms [19].

owners operate almost independently, making 
it difficult for data to be shared among them. 
The prediction of electricity data is limited by 
the feature dimensions and quantity of sample 
data, and the decentralized and tamper-proof 
characteristics of blockchain make it an ideal 
choice for protecting sensitive data privacy and 
ensuring data security [14]. Ma [15] demon-
strated that by storing neural network models 
and training data on the blockchain, the secure 
transmission and storage of data can be guar-
anteed, while preventing unauthorized access 
and tampering. Furthermore, blockchain can 
record all transactions and operations related 
to neural network models and data, providing 
complete transparency and verifiability. This 
enables the traceability of model origins and 
the credibility of data, thereby increasing the 
trustworthiness and reliability of the algo-
rithm.
Generally speaking, departmental schedul-
ing frequently uses short-term electricity de-
mand forecasting, and it is beneficial for dai-
ly, weekly, and monthly scheduling. In order 
to establish a short-term forecasting model of 
power demand based on the neural network al-
gorithm, this article mostly relied on the BP ar-
tificial neural network algorithm. The BP neu-
ral network algorithm and real-time embedded 
systems perform better with more data when 
compared to other algorithms. The network's 
computational power is likewise constantly 
increasing along with the ongoing growth of 
data. As a result, the objective of intelligent 
and integrated power resources can be better 
attained, and a significant research foundation 
will be established for the future allocation of 
power demand [16].

and the uncertain data in the summary data can 
play its role in the future short-term power de-
mand prediction. The BP neural network algo-
rithm and blockchain are employed to estimate 
short-term power consumption. The research 
presented in this paper develops a reliable and 
efficient short-term load forecasting model. 
Here, the blockchain technology provides a se-
cure and immutable platform for storing power 
demand  data, ensuring its integrity and reli-
ability. The neural network algorithm enhances 
the accuracy and precision of the forecasting 
model.
The need for short-term electricity is continu-
ally growing. On the creation of a short-term 
electricity demand projection, numerous aca-
demics have done a number of related stud-
ies. According to Matsumoto and Yamada 
[4], power firms' ability to operate profit-
ably depends on their ability to predict both 
the demand for power and the forecasting of 
solar power [4]. To estimate the demand for 
potential future bioelectric power systems in 
the community, Rushma et al. [5] employed 
the inverse matrix approach in conjunction 
with the loads compiled from the survey and 
the equipment end use method. Su et al. [6] 
thought that demand response signals were 
additional loads connected to meteorological 
conditions based on the predictability of de-
mand response planning signals and the inde-
pendence of seasonal base loads. Yang et al. 
[7] believed that the level of economic power 
demand and the relationship model between 
economic power systems—which was pro-
duced by utilizing the XGBoost algorithm and 
also included a prediction of future load—were 
closely related. Few researchers have thought 
of employing the neural network algorithm 
to explore the forecasting of short-term pow-
er consumption among the studies conducted 
by these scholars. Most research scholars use 
the tensor product spline function, using the 
inverse matrix method, based on demand re-
sponse, and the XGBoost algorithm for pow-
er demand prediction. As a result, this publi-
cation conducted additional research on the 
neural network algorithm-based forecasting of 
short-term power demand. 
Research interest in neural network algo-
rithms has consistently been significant, and 
new publications of pertinent studies are con-

sistently being published. In his event-driven 
deployment algorithm for collaborative neural 
networks, Zhuang et al. [8] suggested a neu-
ral network approach as a foundation. Utiliz-
ing BP neural networks, Chen and Zhang [9] 
improved the system performance while ana-
lyzing the cognitive transmission performance 
under diverse environmental disturbances us-
ing LFM signals. Through the use of a Con-
volutional Neural Networks (CNN) model, 
Zhang et al. [10] trained a resulting model 
that was effective for complicated scenarios 
with multipath effects or many access points. 
After training the model to improve the local-
ization performance by considering a series 
of Received Signal Strength Indicator (RSSI) 
vectors and extracting local features, the GPR 
algorithm further improved the localization 
accuracy. Jin and Zheng [11] helped the new 
line to be adjacent to and close to the existing 
line, and overcame the existing line, as well as 
avoided the need to readjust the coverage of 
the original line network, thus increasing the 
construction difficulty and improving the in-
vestment cost. Zhang and Liang [12] reviewed 
the application of building demand prediction 
models, using machine learning performance 
and accuracy to build a new prediction mod-
el, including data engineering, preprocess-
ing from sensor level to data level, feature 
extraction and selection, thus summarizing a 
well-researched and relatively untapped field. 
Nelson et al. [13] think that machine learning 
has powerful data processing ability, and with-
out the exact physical model and expert prior 
knowledge, only according to the depth of the 
machine learning model structure, divided into 
shallow machine learning methods and meth-
ods based on deep learning. Machine learning 
leads to detailed analysis and expounds the 
residual life prediction of equipment. Differ-
ent neural network methods were employed 
for analysis in the research these researchers 
conducted on forecasting power demand. Nu-
merous neural network algorithms had a wide 
range of applications and research topics, 
demonstrating the importance of this subject 
for future study. 
At the same time, due to the massive amount 
of data required for electricity data predic-
tion and considering the privacy and securi-
ty concerns surrounding electricity data, data Figure 1. Illustration of the key components of a blockchain architecture.



178 179R. Wang, Y. Chen, E. Li, H. Xing, J. Zhang and J. Li Short-Term Power Demand Forecasting Using Blockchain-Based Neural Networks Models

precision and electricity market economics are 
tightly intertwined. Forecasting has the poten-
tial to increase both the efficiency and security 
of the operating power system [22]. In order to 
guarantee the operating performance of a pow-
er system and assess the accuracy of electrici-
ty transactions, it is crucial to develop the best 
dispatching strategy, production plan, and short-
term resource allocation plan for the producing 
units [23].

2.3. BP Artificial Neural Network Algorithm

One of the neural network models that is fre-
quently used in many disciplines is the BP ar-
tificial neural network, which is a multi-lay-
er feed-forward network trained by the error 
back-propagation algorithm [24–25]. It is capa-
ble of memorizing and learning a sizable number 
of input-output pattern correspondences. The bi-
directional mapping relationship of data can be 
seen without an algorithmic model [26–27], and 
the algorithm's formula is as follows:
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Greater asset security, stronger KYC/AML pro-
cedures, and advanced analysis and monitoring 
will all result in more transparency and visibil-
ity. By putting these protections in place, busi-
nesses will become more confident in block-
chain technology and it will be widely adopted. 
Because of the blockchain's capabilities for 
real-time information sharing, security, unmod-
ification, and transparency, many stakeholders 
have high expectations for it. Blockchain tech-
nology, which uses proof-of-work and a dis-
tributed database structure, can increase supply 
chain transparency while utilizing real-time 
distributed data sharing to allow stakeholders to 
discover information about product quality, lo-
cation, transactions, and procedures. In order to 
increase trust between trading partners, block-
chain makes the supply chain more efficient 
and explicit by strengthening the connections 
between suppliers, customers, outsourcing, 
third-party logistics providers, and subcontrac-
tors. This is done by developing efficient strate-
gic planning tools.

2.2. Classification of Electricity Forecast 
Duration

Forecasts of the demand for electricity typically 
contain a certain forecast period. The goal of 
the power system's demand forecasting is also 
different for different forecast durations. Oth-
er elements that affect power demand, such as 
some natural phenomena and policy changes, 
should also be taken into account while doing 
research on power demand forecasting in addi-
tion to the features of the research object's own 
power demand [20–21]. Based on the foregoing 
analysis, it is possible to categorize and study 
the forecasted power demand to facilitate var-
ious research projects on various demands and 
to help the research be more in line with the ac-
tual needs. Figure 2 depicts the power demand 
prediction categorization.
A projection of electricity consumption for the 
upcoming month, week, day, or hour is referred 
to as a short-term forecast of electricity demand. 
It is crucial for the entire process of power dis-
patching. This is due to the fact that forecasting 

Figure 2. Classification of power demand forecast.
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to help the research be more in line with the ac-
tual needs. Figure 2 depicts the power demand 
prediction categorization.
A projection of electricity consumption for the 
upcoming month, week, day, or hour is referred 
to as a short-term forecast of electricity demand. 
It is crucial for the entire process of power dis-
patching. This is due to the fact that forecasting 

Figure 2. Classification of power demand forecast.
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per capita rises, so does society's general lev-
el of consumption. The demand for electricity 
would rise in line with an expanding popula-
tion. The amount of electricity throughout the 
period would be greatly reduced under marketi-
zation conditions when the price of electricity is 
so high that it surpasses the capacity of the firm 
to bear it [33]. This would also have an impact 
on the distribution of high energy-consuming 
industries. Due to the significant energy use 
during production and the associated expense, 
it is frequently transferred from regions with 
high electricity costs to regions with cheaper 
electricity prices, increasing regional electric-
ity demand. Furthermore, changing pricing at 
different times is advantageous to increase the 
effectiveness of power utilization [34–35]. 
Politics and effective communication is another 
set of influencing factors: Power policies vary as 
well, depending on the various developmental 
requirements of the nation at various times. To 
fulfill the needs of a country and effective com-
munication development, the power policy and 
other policies can be merged. This will allow 
the industrial structure to be further adjusted, 
as well as enable the upgrading of the industrial 

structure and better layout of the high-polluting, 
high-energy consumption businesses [36]. 
Finally, the meteorological factor is an influ-
encing factor. Varying weather conditions also 
result in different electricity demand. On sum-
mer days, when it is sunny, more electricity is 
needed. Air conditioners would be used if the 
weather was warm. Additionally, the demand 
for electricity would rise in the winter due to 
the rainy weather. Data is based on the potential 
summer weather in a certain province. Gener-
ally speaking, it is uncommon for most places 
to encounter really cold weather throughout the 
summer, such as snow, hail, and frost. The ex-
treme weather that is practically never experi-
enced is categorized into one category, which 
is called other, using the summer weather in 
a particular place as an example. The prima-
ry research objects are separated by weather 
conditions, including cloudy, light rain, sunny, 
thunderstorm-prone, and others. Figure 4 dis-
plays the power load outcome based on weather 
conditions.
Figure 4 illustrates some of the influencing 
elements, and it is anticipated that additional 
components exist in addition to those depicted 
there. It is evident that the maximum electrical 

2.4. Model Evaluation Indicators

In order to characterize the prediction accuracy 
of the model, this study chooses the following 
model assessment indicators of the prediction 
effect: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and Mean Absolute 
Percent Error (MAPE).
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3. Short-Term Power Demand  
Forecast Assessment Based on 
Blockchain

The data on China's entire electricity consump-
tion from 2017 to 2021 published by the China 
Electricity Council is utilized to analyze Chi-
na's recent electricity demand, as illustrated in 
Figure 3.
In Figure 3, the annual electricity consump-
tion for 2017 is shown as 645 million kWh, 
followed by annual electricity consumption 
for 2018 of 699 million kWh, annual electric-
ity consumption for 2019 of 733 million kWh, 
annual electricity consumption for 2020 of 762 
million kWh, and annual electricity consump-
tion for 2021 of 798 million kWh. The graph 
clearly shows that the amount of electricity 
consumed rises each year, making anticipated 
control of electricity demand crucial [28]. In or-
der to better propose demand supply measures 
and advance short-term power demand fore-
cast research, it is required to conduct specific 
short-term power demand forecast analysis and 
research. This will help to better understand 
how short-term power demand will evolve in 
the future [29–30].

3.1. Investigation on Short-Term Power 
Demand Forecasting Based on BP 
Neural Network Model

The BP neural network algorithm creates a 
self-induction mechanism that can successfully 
prevent issues when connecting weights. Arti-
ficial neural networks, which often employ the 
steepest descent approach as the default calcula-
tion method, have significantly advanced as a re-
sult of the discovery of this law. The idea behind 
this approach is that the error from the output 
layer to the derivation layer of the upper layer 
may be calculated by comparing the error of the 
output layer, and this cyclic method estimates the 
error of the upper layer. The error values of the 
remaining layers can be computed by back-prop-
agating iteratively [31]. Although it is important 
to note that this transfer is made step-by-step, 
this mode is the transfer direction of the error of 
the output layer opposite to the input signal.

3.1.1. Factors Affecting Electricity Demand

The economy is the primary influencing ele-
ment of effective communication, as follows. 
Typically, the growth of the economy has a 
direct impact on the demand for electricity. 
The demand for electricity and effective com-
munication will rise while the economy is do-
ing well, and vice versa. As a result, there is 
a proportionate relationship between the two. 
In addition, a family's or a region's intensity 
of electricity use can serve as a proxy for a re-
gion's economic health and its relationship to 
the overall volume of the consumption. In gen-
eral, there is a strong correlation between the 
distribution of economic industries in a location 
and the amount of electricity demand in that 
location. The distribution of the primary, sec-
ondary, and tertiary industries in this area can 
be understood from this. There is a direct cor-
relation between the demand for electricity and 
the amount of secondary industry that is based 
mostly on industry in the economy [32]. 
The next set of influencing elements is social. 
The demand for electricity consumption is in-
fluenced by the quality of life and residents' 
economic levels. The higher the level and effec-
tive communication, the greater the demand for 
electricity consumption. This is mostly due to 
the fact that when citizens' disposable income 

Figure 3. China's overall electricity consumption from 2017 to 2021.
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effectiveness of power utilization [34–35]. 
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well, depending on the various developmental 
requirements of the nation at various times. To 
fulfill the needs of a country and effective com-
munication development, the power policy and 
other policies can be merged. This will allow 
the industrial structure to be further adjusted, 
as well as enable the upgrading of the industrial 

structure and better layout of the high-polluting, 
high-energy consumption businesses [36]. 
Finally, the meteorological factor is an influ-
encing factor. Varying weather conditions also 
result in different electricity demand. On sum-
mer days, when it is sunny, more electricity is 
needed. Air conditioners would be used if the 
weather was warm. Additionally, the demand 
for electricity would rise in the winter due to 
the rainy weather. Data is based on the potential 
summer weather in a certain province. Gener-
ally speaking, it is uncommon for most places 
to encounter really cold weather throughout the 
summer, such as snow, hail, and frost. The ex-
treme weather that is practically never experi-
enced is categorized into one category, which 
is called other, using the summer weather in 
a particular place as an example. The prima-
ry research objects are separated by weather 
conditions, including cloudy, light rain, sunny, 
thunderstorm-prone, and others. Figure 4 dis-
plays the power load outcome based on weather 
conditions.
Figure 4 illustrates some of the influencing 
elements, and it is anticipated that additional 
components exist in addition to those depicted 
there. It is evident that the maximum electrical 

2.4. Model Evaluation Indicators

In order to characterize the prediction accuracy 
of the model, this study chooses the following 
model assessment indicators of the prediction 
effect: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and Mean Absolute 
Percent Error (MAPE).
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Forecast Assessment Based on 
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The data on China's entire electricity consump-
tion from 2017 to 2021 published by the China 
Electricity Council is utilized to analyze Chi-
na's recent electricity demand, as illustrated in 
Figure 3.
In Figure 3, the annual electricity consump-
tion for 2017 is shown as 645 million kWh, 
followed by annual electricity consumption 
for 2018 of 699 million kWh, annual electric-
ity consumption for 2019 of 733 million kWh, 
annual electricity consumption for 2020 of 762 
million kWh, and annual electricity consump-
tion for 2021 of 798 million kWh. The graph 
clearly shows that the amount of electricity 
consumed rises each year, making anticipated 
control of electricity demand crucial [28]. In or-
der to better propose demand supply measures 
and advance short-term power demand fore-
cast research, it is required to conduct specific 
short-term power demand forecast analysis and 
research. This will help to better understand 
how short-term power demand will evolve in 
the future [29–30].

3.1. Investigation on Short-Term Power 
Demand Forecasting Based on BP 
Neural Network Model

The BP neural network algorithm creates a 
self-induction mechanism that can successfully 
prevent issues when connecting weights. Arti-
ficial neural networks, which often employ the 
steepest descent approach as the default calcula-
tion method, have significantly advanced as a re-
sult of the discovery of this law. The idea behind 
this approach is that the error from the output 
layer to the derivation layer of the upper layer 
may be calculated by comparing the error of the 
output layer, and this cyclic method estimates the 
error of the upper layer. The error values of the 
remaining layers can be computed by back-prop-
agating iteratively [31]. Although it is important 
to note that this transfer is made step-by-step, 
this mode is the transfer direction of the error of 
the output layer opposite to the input signal.

3.1.1. Factors Affecting Electricity Demand

The economy is the primary influencing ele-
ment of effective communication, as follows. 
Typically, the growth of the economy has a 
direct impact on the demand for electricity. 
The demand for electricity and effective com-
munication will rise while the economy is do-
ing well, and vice versa. As a result, there is 
a proportionate relationship between the two. 
In addition, a family's or a region's intensity 
of electricity use can serve as a proxy for a re-
gion's economic health and its relationship to 
the overall volume of the consumption. In gen-
eral, there is a strong correlation between the 
distribution of economic industries in a location 
and the amount of electricity demand in that 
location. The distribution of the primary, sec-
ondary, and tertiary industries in this area can 
be understood from this. There is a direct cor-
relation between the demand for electricity and 
the amount of secondary industry that is based 
mostly on industry in the economy [32]. 
The next set of influencing elements is social. 
The demand for electricity consumption is in-
fluenced by the quality of life and residents' 
economic levels. The higher the level and effec-
tive communication, the greater the demand for 
electricity consumption. This is mostly due to 
the fact that when citizens' disposable income 

Figure 3. China's overall electricity consumption from 2017 to 2021.
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As shown in Table 1, there are 15,352 train-
ing sets from family No. 1 and 1,716 test sets, 
3,399 training sets from family No. 2 and 385 
test sets, 751 training sets from family No. 3 
and 82 test sets, 3,190 training sets from family 
No. 4 and 370 test sets, 2,630 training sets from 
family No. 5 and 295 test sets.

3.2. BP Neural Network Model and Long 
Short-Term Memory (LSTM) Model 
for Electricity Demand Prediction 

The five household electricity data sets from 
Table 1 are used for model performance tests 
in this paper to confirm the BP neural network 

model's prediction to forecast outcomes. As the 
assessment criteria, the mean absolute error and 
the root mean square error are utilized, and the 
results are contrasted with those of the current 
LSTM techniques. When the demand for resi-
dential electricity is stable, Mean Absolute Er-
ror (MAE) concentrates on the prediction error. 
LSTM is a temporal recurrent neural network, 
mainly designed to solve the problem of van-
ishing gradient and exploding gradient  during 
training on a long sequence. The effect of pre-
diction is improved by a smaller MAE value 
[37–38], and Table 2 displays the predicted val-
ues on the test sets.

load varies depending on the type of weather: 
the load of cloudy weather is 3500/kW; the load 
of light rain weather is 3200/kW; the load of 
sunny weather is 4000/kW; the load in showery 
weather is 2900/kW; the load in rainy weather 
is 2700/kW; the load in moderate rainy weath-
er is 2500/kW; the load in heavy rain weather 
is 2300/kW. It can be clearly analyzed that the 
clearer the weather in summer, the greater the 
load value of electricity.

3.1.2. Model Structure

The constructed grid framework must first 
demonstrate its ability to maintain a stable and 
long-lasting functioning state before the devel-
opment of the prediction model can proceed. 
Next, a significant amount of application data 
for short-term power demand is transmitted 
via the neural network, and finally, a physical 
connection to the prediction system is estab-
lished. The BP neural network typically com-
prises three layers. The previously communi-
cated power application data would be instantly 
transformed into the needed connection state 
once the neural network's layer count achieves 
the prediction standard. The goal of normaliz-

ing the demand data is achieved when all power 
demand variables in the big data environment 
stay stable, as this would also show a stable 
condition in the multivariable cycle.

3.1.3. Experimental Data

Family data forms a database that includes all 
aspects of power demand data. The informa-
tion is divided into five family datasets, each of 
which includes information on the number of 
family members, the year the house was built, 
its size, and the living patterns of the popula-
tion. The electricity consumption data sets for 
these five households are collected using smart 
meters. Each household is based on the original 
power demand data at the frequency of pow-
er collection every ten seconds. Therefore, the 
data units must first be converted. If the pow-
er units are not converted, the calculation re-
sults will be incorrect. The demand data will be 
converted to electricity consumption within 10 
seconds, and then the data will be merged. The 
combined data selects 85% of the data as the 
training set, of which 10% is used as the veri-
fication set; 5% is used as the test set, and the 
specific data values are shown in Table 1.

Figure 4. Classification of weather types with respect to influence on the power load.

Table 1. Number of experimental training sets and test sets.

Data set Raw data (10S) 1 minute 1 hour Training set Test set

Family 1 10580000 10580000 17160 15352 1716

Family 2 2350000 2350000 3856 3399 385

Family 3 511900 511900 821 751 82

Family 4 2285600 2285600 3700 3190 370

Family 5 1762500 1762500 2950 2630 295

Table 2. MAE comparison of BP and LSTM models on five family datasets.

Data set (KWh) LSTM BP

Family 1 dataset 0.0150 0.0135

Family 2 dataset 0.0040 0.0010

Family 3 dataset 0.0090 0.0058

Family 4 dataset 0.0060 0.0045

Family 5 dataset 0.0032 0.0025

Average 0.0074 0.0055
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0.0025; the model's RMSE for family 3 is pre-
dicted to be worth 0.0171; the model's RMSE 
for family 4 is predicted to be worth 0.006; and 
the model's RMSE for family 5 is predicted to be 
worth 0.012. The predicted value of the model's 
RMSE for family 1 created by BP is 0.0245; the 
predicted value of the model's RMSE for family 
2 is 0.0016; the predicted value of the model's 
RMSE for family 3 is 0.0118; the predicted val-
ue of the model's RMSE for family 4 is 0.0052; 
and the predicted value of the model's RMSE 
for family 5 is 0.0098. The BP neural network 
outperforms the LSTM method in terms of pre-
diction accuracy as evaluated by RMSE at each 
period of high power demand [41–42].

3.3. Traditional Forecasting Model Scheme 
and Establishment of Short-Term 
Power Forecasting Model Based on 
BP Neural Network

MAPE, which represents the total forecast-
ing impact of home electricity demand, is the 
average of the sum of absolute percentages. 

Concerning the validation of the prediction 
model established by the BP neural network 
algorithm, this study will compare the actual 
maximum demand data, electricity consump-
tion, and predicted values for eight days in 
January 2022 from the data set using the first 
family of the five selected families as the re-
search object. For comparison with the true 
value, the comparison objects include the 
short-term power forecasting model for the BP 
neural network and the conventional forecast-
ing model. MAPE is the measurement metric 
employed to assess the precision of maximum 
load and electricity consumption forecasting. 
Table 3 displays the results of the true value 
of the maximum demand and electricity con-
sumption in the eight-day sample extraction, 
as well as the predicted value obtained by ap-
plying the BP neural network shortterm power 
forecasting model and the conventional fore-
casting model. Further information are, as fol-
lows.

In addition to examining the forecast effect in 
a steady state, it is essential to further examine 
the forecast error at the peak period of short-
term power demand for the forecast research 
of short-term power demand. The Root Mean 
Square Error (RMSE) is used as the assessment 
standard for the BP neural network method 
developed in this paper, which focuses on the 
prediction error of the peak period of power de-
mand. Since the term ''RMSE'' stands for ''root 
mean square error,'' the peak's accuracy of pre-
diction would be highlighted. In light of this, 
the constructed model's predictive power im-
proves with decreasing RMSE values [39–40], 
and Figure 5 displays the predicted value.
The results of the BP and LSTM models based 
on RMSE on five family datasets are shown in 
Figure 5. Figure 4 demonstrates that the model 
of forecasting power demand using a BP neural 
network is significantly superior to the LSTM 
method when the power demand hits its peak. 
Using LSTM, the model's RMSE for family 1 
is predicted to be worth 0.0299; the model's 
RMSE for family 2 is predicted to be worth 

Table 2 displays the MAE performance for the 
BP and LSTM models on the five family data-
sets. The experimental results show unequivo-
cally that, in the stationary state, the BP neural 
network power demand prediction method sug-
gested in this research has a substantially great-
er prediction accuracy than the LSTM method: 
According to the BP model, the value of MAE 
for family 1 is predicted to be 0.0135, while the 
values for families 2, 3, 4, and 5 are predicted 
to be 0.0010, 0.0058, 0.0045, and 0.0025, re-
spectively. Using LSTM, the value of MAE for 
family 1 is predicted to be 0.0150; that of fam-
ily 2 is predicted to be 0.0040; that of family 
3 is predicted to be 0.0090; that of family 4 is 
predicted to be 0.0060; and that of family 5 is 
predicted to be 0.0032. The BP neural network 
performs significantly better than the LSTM 
method in terms of the prediction effect of 
each home stationary state. The BP neural net-
work outperforms the LSTM method in terms 
of the mean predicted MAE values for the two 
methods, and this results in an improvement of 
roughly 25.7% in the prediction effect's average 
accuracy in the stationary state. 

Table 3. Real and predicted values for eight days in the test set.
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Figure 5. RMSE comparison of BP and LSTM models on five family datasets.
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the model's RMSE for family 5 is predicted to be 
worth 0.012. The predicted value of the model's 
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predicted value of the model's RMSE for family 
2 is 0.0016; the predicted value of the model's 
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outperforms the LSTM method in terms of pre-
diction accuracy as evaluated by RMSE at each 
period of high power demand [41–42].

3.3. Traditional Forecasting Model Scheme 
and Establishment of Short-Term 
Power Forecasting Model Based on 
BP Neural Network

MAPE, which represents the total forecast-
ing impact of home electricity demand, is the 
average of the sum of absolute percentages. 

Concerning the validation of the prediction 
model established by the BP neural network 
algorithm, this study will compare the actual 
maximum demand data, electricity consump-
tion, and predicted values for eight days in 
January 2022 from the data set using the first 
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short-term power forecasting model for the BP 
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employed to assess the precision of maximum 
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Figure 5. RMSE comparison of BP and LSTM models on five family datasets.
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the advantage of greater accuracy. By accu-
rately forecasting electricity demand and load 
curves, this would not only lay the groundwork 
for the power plant to dispatch power produc-

ing capacity and arrange the start and stop of 
generators in a fair manner. It would also make 
it easier to implement targeted demand-side 
management.

The average value of the data collected by the 
conventional prediction model is 9.35% in 
MAPE, as can be seen in Table 3 for the predict-
ed value of the maximum demand. The predict-
ed MAPE value for family 1 on January 1, 2022 
is 6.00%; the predicted MAPE value on the 2nd 
day is 11.74%; the predicted MAPE value on 
the 3rd day is 11.58%; the predicted MAPE val-
ue on the 4th day is 9.52%; the predicted MAPE 
value on the 5th day is 11.20%; the predicted 
MAPE value on the 6th day is 10.05%; the pre-
dicted MAPE value on the 7th day is 6.98%; 
the forecasted MAPE value on the 8th day is 
7.71%. Even as much as 11.74% separates the 
maximum demand that actually occurred from 
the maximum load that was predicted. The BP 
neural network short-term power prediction 
model's average value of the data extracted as 
evaluated by MAPE is 4.04%. Among them, 
the forecast MAPE value on January 1, 2022 
is 3.90%; the forecast MAPE value on the 2nd 
day is 4.99%; the forecast MAPE value on the 
3rd day is 5.79%; the forecast MAPE value on 
the 4th day is 4.76%; the forecast MAPE val-
ue on the 5th day is 0.54%; the forecast MAPE 
value on the 6th day is 3.17%; the forecast 
MAPE value on the 7th day is 4.65%; the fore-
cast MAPE value on the 8th day is 4.54%. Only 
5.79% separates the maximum demand that ac-
tually occurred from the maximum demand that 
was predicted. The short-term power prediction 
model of the BP neural network has an average 
error value that is more than twice as low as 
the conventional prediction model. Further ev-
idence is provided to support the claim that the 
BP neural network short-term power prediction 
model has a higher prediction accuracy than the 
conventional prediction model. 
The average value of the data collected by the 
conventional prediction model using MAPE 
is 5.59%, as can be shown in Table 3 for the 
predicted value of electricity consumption. The 
forecast MAPE value on January 1, 2022 is 
6.74%; the forecast MAPE value on the 2nd day 
is 6.96%; the forecast MAPE value on the 3rd 
day is 3.52%; the forecast MAPE value on the 
4th day is 6.82%; the forecast MAPE value on 
the 5th day is 2.38%; the forecast MAPE value 
on the 6th day is 8.42%; the forecast MAPE val-
ue on the 7th day is 4.98%; the forecast MAPE 
value on the 8th day is 4.86%. Even as much 
as 6.96% of real power consumption deviates 

from the predicted power consumption. The 
short-term power prediction model for the BP 
neural network's average value of the data ex-
tracted and evaluated by MAPE is 2.80%. Only 
5.10% separates the actual power consumption 
from the predicted power consumption. The 
short-term power prediction model of the BP 
neural network has an average error value that 
is more than twice as low as the conventional 
prediction model. Further evidence is provid-
ed to support the claim that the BP neural net-
work's short-term power prediction model has a 
higher prediction accuracy than the convention-
al prediction model.
The association between the predicted value 
curve of the BP neural network short-term pow-
er prediction model and the true value curve is 
better than that between the traditional predic-
tion model and the actual curve, as shown in 
Figure 6, regarding the daily comparison be-
tween the predicted value of the maximum load 
and the true value curve of the maximum load 
of the BP prediction model and the traditional 
prediction model. The distance between the two 
curves is also smaller when comparing the two 
models. For the purpose of predicting the pow-
er demand, the prediction model based on the 
BP neural network is more accurate, which can 
contribute to the prediction of relevant informa-
tion for the establishment of the prediction of 
the power demand.
As seen in Figure 7, when the predicted value 
and true value curves of the short-term elec-
tric power prediction model of the BP neural 
network and the traditional prediction model 
are compared, the predicted value curve ratio 
and the true value curve of the short-term elec-
tric power prediction model of the BP neural 
network are better than those of the tradition-
al prediction model, and the distance between 
the two curves is better. The accuracy of short-
term forecasts of power demand is signifi-
cantly increased by the short-term power de-
mand forecasting method based on BP neural 
network. Figures 6 and 7 make it abundantly 
evident that the prediction method of the BP 
neural network can be used to analyze short-
term power demand and demand forecasting. 
It has been discovered that the short-term pow-
er demand prediction effect based on the BP 
neural network model is more efficient than 
the conventional prediction model and has 

Figure 6. BP forecasting model, traditional forecasting model and load forecasting compared to the true value.

Figure 7. BP neural network short-term power prediction model and traditional prediction model and power 
consumption prediction compared to the true value.
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5.79% separates the maximum demand that ac-
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model of the BP neural network has an average 
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idence is provided to support the claim that the 
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as 6.96% of real power consumption deviates 
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is more than twice as low as the conventional 
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higher prediction accuracy than the convention-
al prediction model.
The association between the predicted value 
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er prediction model and the true value curve is 
better than that between the traditional predic-
tion model and the actual curve, as shown in 
Figure 6, regarding the daily comparison be-
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of the BP prediction model and the traditional 
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tion for the establishment of the prediction of 
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and the true value curve of the short-term elec-
tric power prediction model of the BP neural 
network are better than those of the tradition-
al prediction model, and the distance between 
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network. Figures 6 and 7 make it abundantly 
evident that the prediction method of the BP 
neural network can be used to analyze short-
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er demand prediction effect based on the BP 
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when identifying features, which takes a great 
deal of time and effort. As clean energy sources 
like wind and water are integrated into the grid 
and the scale of grid data transmission increas-
es dramatically. LSTM and traditional methods 
are unable to handle this data scaling.
The power demand is influenced by a wide range 
of variables. Only the influence of date type, 
temperature, and rainfall is taken into account 
in this work due to the sparse original data; ad-
ditional elements like humidity and wind speed 
are not taken into account. The quantification of 
many influencing factors is dependent entirely 
on experience and lack of theoretical guidance, 
and there is no set procedure for doing so. Dif-
ferent quantitative approaches are used by vari-
ous researchers. It is yet unknown which quan-
titative model is more accurate in capturing the 
diversity of components.

5. Conclusion

The research on short-term electricity demand 
forecasting has a variety of development out-
comes and due to the application of different 
intelligent technologies and algorithms. The 
usage of the BP neural network algorithm for 
short-term power demand forecasting study 
was always superior during the steady time or 
at the peak, according to this paper's compar-
ison of the BP neural network algorithm and 
the LSTM method. When compared to the con-
ventional prediction model, it was shown that 
the predicted values of the maximum demand 
power consumption were less dissimilar from 
the true values, the forecasting effect was bet-
ter, and the forecasting accuracy was higher. 
A short-term power demand forecasting study 
was conducted using the BP neural network al-
gorithm. The construction of a better intelligent 
power grid, which was crucial for achieving 
energy conservation and environmental protec-
tion as well as balancing power demand, could 
be aided by the prediction accuracy and power 
utilization and effective communication, which 
could also assist to prevent resource waste. Of 
course, there are still many shortcomings in the 
research and investigation of this aspect, there-
fore, in the future research, it is necessary to 
further develop and improve, so that the neural 
network algorithm can be better applied to the 
short-term power demand prediction research.

Although the short-term power load prediction 
using blockchain technology and BP neural 
networks has now shown pleasing results, there 
are still many issues that need to be addressed. 
Research should continue, primarily focused 
on the following aspects: (1) the sample data 
has a significant impact on the neural network's 
ability to train, and choosing a sample of days 
that are similar to one another is helpful for in-
creasing the model's ability to predict outcomes 
accurately; (2) the data and information limita-
tions. There are numerous variables that deter-
mine demand size, such as typical large events, 
particular special events, etc. These variables 
are not recorded, therefore they are not stored in 
the original data, which may lead to a reduction 
in prediction accuracy.
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The previous article compares the use of BP 
neural network prediction model and tradition-
al prediction model and the true value. In order 
to better reflect the neural network, the research 
method in this paper has the advantages of BP 
neural network compared to other algorithms. 
Comparing it with the LSTM neural network al-
gorithm can further reflect the advantages of BP 
neural network, and compare with the support 
vector machine (SVR) algorithm, it can better 
reflect the comparison with other algorithms. 
Does BP neural network have advantages in the 
establishment of power prediction models? BP 
algorithm, LSTM algorithm, traditional mod-
el and SVR are compared with respect to their 
power prediction model, and the extracted sam-
ples are taken for eight days. Predictive analy-
sis of electricity is carried out, and the power 
values predicted by the models established by 
these four methods are compared with the true 
power values. The specific comparison results 
are shown in Figure 8.
As shown in Figure 8, regarding the daily com-
parison of the predicted value of the BP neu-
ral network short-term power prediction model 
and the predicted value of the electricity con-
sumption of the other three models with the true 
value curve, the BP model and the true value 
curve are more closely related. The compari-
son between the BP model and the traditional 

model in Figure 7 has been studied. In Figure 
8, the LSTM model and the SVR model are 
compared with the true value curve, but they 
are also very different. There is no other model 
that is more closer to the true value than the BP 
model. Therefore, compared with other models, 
the BP model's prediction is more accurate, and 
compared with other models, it is better to pre-
dict data close to the true value. In Figure 8, the 
comparison between the LSTM model and the 
SVR model and the true value curve also shows 
significant differences.  The results may help 
power plants to better make large-scale power 
forecasts, predict future electricity consump-
tion, and better adjust electricity consumption.

4. Discussion

Many crucial details can be found in power load 
history data that can be utilized as guidance for 
short-term power load forecasting. Traditional 
and LSTM short-term power demand forecast-
ing techniques must use manually created fore-
casting functions, such as peak power, standby 
power load, etc. The significant information 
loss caused by these human filtering process-
es will seriously impair the usefulness of his-
torical data. In addition, researchers must take 
into account more constraints and relationships 

Figure 8. Comparison of electricity consumption forecasts and true values of four different models.
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