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With the development of smart grids, electronic volt-
age transformer (EVT) has gradually entered the 
stage of large-scale applications. Accurately identify-
ing errors in electronic voltage transformers is crucial 
for the stability of power systems. Strengthening the 
measurement accuracy of EVT is of great signifi-
cance for the operation of power systems and mea-
surement and protection devices. However, due to the 
limitations of traditional verification methods, there 
are still challenges. To better improve the accuracy 
of transformer identification, a data-driven method 
for enhancing transformer error evaluation and pre-
diction was developed. Based on the low accuracy of 
traditional EVT error verification and the difficulty of 
monitoring, data mining technology is proposed for 
EVT error analysis and evaluation. Recursive prin-
cipal component analysis is used to separate errors 
from EVT measurement data, and feature statistics 
are used to monitor its operating status. Then, re-
gression analysis under support vector machines is 
added to predict errors for active error correction and 
better evaluation of its status. The evaluation of the 
transformer monitoring dataset shows that the clas-
sification accuracy of error detection of the proposed 
method exceeds 93%, and the deviation between the 
predicted error value and the actual error value is less 
than 0.05%. Compared with methods such as artifi-
cial neural networks and ARMA, the average error 
rate has been reduced by more than 18%. The accu-
racy and average accuracy of the algorithm proposed 
in the study exceeded 80%, with values of 96.23% 
and 85.12%, respectively. The average error of the 
ratio difference feature of the EVT is only 0.023, and 
the average error of the angle difference is less than 
0.01, which is much smaller than the algorithm used 
for comparison. The application response time is less 
than 0.1 s and the evaluation threshold can better 
identify data anomalies, with high application accu-
racy. This method can effectively provide real-time 
evaluation tools for the operational status of electron-

ic voltage transformers and more accurately and pro-
actively identify transformer errors from convention-
al data. This study provides an important data-driven 
solution for improving power grid reliability.
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1. Introduction

The continuous development of sensor com-
munication technology has gradually demon-
strated the characteristics of intensification 
and informatization in power grid construc-
tion. Electronic voltage transformer (EVT), as 
a key measurement device in intelligent sub-
stations, can convert high voltage signals on 
the primary side into low voltage signals on 
the secondary side. At the same time, the EVT 
voltage measurement device can better adapt 
to the requirements of digital development in 
intelligent substations, with advantages such as 
simple insulation structure and wide dynamic 
range.  The device is connected to high-voltage 
power grids, measurement and control devic-
es, protection devices, metering devices, and 
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2. Design of Transformer Error  
Identification and Classification 
Based on Data Mining Methods

2.1. Error Separation of Electronic Voltage 
Transformer Based on Improved 
Principal Component Analysis

As an important part of connecting physical net-
works and control systems, EVT's data infor-
mation status reflects the physical state of the 
power system and also reflects the correlation 
between measurement data and physical net-
works. The signal in an EVT flows through the 
primary sensor and converter, followed by the 
transmission system and secondary converter to 
achieve the digital information process. Factors 
such as temperature, humidity, and electromag-
netic fields can cause EVT to exhibit complex 
error variations during the actual operation that 
can be mainly divided into two categories: sys-
tematic error and random error [11]. Random 
errors are mainly related to system noise, while 
system errors are related to the structural per-
formance of mutual sensors. System errors are 
often caused by fixed and unchanging factors, 
including manufacturing errors, measurement 
errors, etc. Therefore, they can be further clas-
sified into two forms: abrupt and gradual errors. 
In EVT measurement, the deviation between 
the data measured on its side and the voltage 
cannot be avoided. But it only needs to meet 
the accuracy requirement of 0.2 level during 
the operation. The physical network model of 
an EVT that follows the normal distribution of 
variance can be expressed as:

us = k' Bs + vs + sx + N (0, σ 
2).          (1)

In equation (1), us represents the EVT data mea-
sured at a specific time point, Bs represents the 
true value of the voltage signal, k' is the induc-
tance coefficient, vs is free noise, sx is the error 
of the system itself, and σ represents variance. 
The generation of random errors may be caused 
by the influence of the magnetic field on the 
EVT sensing signal and conversion circuit. The 
system abnormal error of EVT is mostly reflect-
ed in the variation of transmission coefficient, 
and its mathematical model can be expressed as:

fs = ns Bs.                         (2)
In equation (2), ns represents the time function. 
According to the physical model on the EVT 

There are many related works in the applica-
tion of data mining in EVTs, mainly including 
data preprocessing, feature extraction, mod-
eling, and classification. Feature extraction is 
based on the measurement data of EVTs and 
is used to extract meaningful features that can 
represent their performance and error patterns. 
Statistical features, frequency domain features, 
time-frequency analysis, and other methods 
can be used to extract the features.  Addition-
ally, various machine learning algorithms and 
data mining techniques can be used to construct 
models and classify data. Common methods 
include support vector machines, neural net-
works, decision trees, etc. The current appli-
cation of data mining in EVTs still has certain 
shortcomings, such as the effectiveness of data 
mining being limited by the amount and quali-
ty of available data. If the measurement data of 
EVTs is limited or there are noise and outliers, 
it may affect the accuracy and stability of data 
mining. Moreover, the performance and error 
mode of EVTs are very complex, so feature 
selection and extraction may be a challenging 
task. Choosing appropriate features and ex-
traction methods is crucial for accurate mod-
eling and classification, but this may require 
the knowledge and experience of domain ex-
perts. The performance and error of EVTs may 
vary with time and environmental conditions. 
Therefore, the established model may need to 
be regularly updated and adjusted to adapt to 
new data and scenarios. Data mining can pro-
vide reference solutions for the optimization 
design of transformers and reduce the risk of 
power loss. Therefore, this study proposes to 
use data-driven methods to evaluate the mea-
surement error status of EVTs and predict and 
analyze their error classification to better im-
prove the error detection accuracy. At the same 
time, to avoid the impact of improper selec-
tion of data mining algorithms on the results, 
the research is based on transformer error ex-
traction and time-domain feature analysis, us-
ing recursive principal component analysis for 
feature extraction. Subsequently, support vec-
tor machines under regression methods were 
introduced for error prediction, and dynamic 
time analysis was performed on the error char-
acteristics to achieve better classification and 
prediction of results.

other equipment, which can effectively mon-
itor and measure the status of the power grid 
and electrical energy [1]. The accuracy and 
reliability of EVT measurement are closely re-
lated to the normal operation of measurement 
and control protection and metering devices 
and are important aspects that directly affect 
the stable operation of the power grid. Com-
pared to electromagnetic transformers, EVT is 
prone to exhibit unstable error due to its com-
plex structure and is prone to error exceeding 
anomalies in on-site operating environments 
[2]. Transformer error refers to the occurrence 
of data deviation when measuring or transmit-
ting current and voltage due to factors such as 
electromagnetic heating, coil winding method, 
core magnetic flux density, average magnetic 
circuit length, etc. Strengthening the detection 
and correction of these errors can effectively 
improve the reliability and application perfor-
mance of the power system [3]. However, the 
current measurement method for EVT error is 
through regular equipment testing or online 
verification, which is not conducive to the 
evaluation of EVT status and online monitor-
ing due to short detection time and difficulty 
in batch testing of calibration equipment [4]. 
A number of scholars have proposed research 
ideas for the error diagnosis of power equip-
ment. Among them, Rao et al. found through 
experimental evaluation that the integrated al-
gorithm has good fault prediction performance 
in assisting in dissolved gas analysis trans-
former diagnosis [5]. Singh et al. proposed a 
modified lion algorithm for error prediction 
analysis of power transformers, and the results 
show that this method has significantly better 
root mean square errors than other algorithms 
[6]. Huang et al. proposed a combination of 
grey wolf optimization algorithm, differen-
tial evolution mechanism, and support vector 
machine to achieve transformer fault diag-
nosis. The results show that this method has 
high generalization ability, and its diagnostic 
accuracy is superior to genetic algorithms and 
others [7]. Stability and safety of the power 
system play important roles in its operation. 
Martin et al. proposed using neural markers 
to achieve keyword recognition for transform-
ers and completed data labeling by designing 
model preprocessing [8]. Seyedshenava et al. 
analyzed voltage stability using finite element 
method and introduced evaluation metrics for 

data processing and comparison based on con-
sidering different short-circuit categories. The 
results show that the average error of this meth-
od is less than 5%, and it can effectively solve 
the nonlinear problem of voltage [9]. Liao et 
al. use graph convolutional neural networks 
for transformer fault diagnosis, and complete 
feature extraction training by designing ad-
jacency matrices and backpropagation. This 
method exhibits good diagnostic accuracy and 
application performance [10]. In the research 
of electronic mutual sensors, traditional meth-
ods usually rely on physical sensors to collect 
and measure target physical quantities, which 
inevitably affects the sensor by environmental 
noise, interference, and faults, thereby limit-
ing the reliability and stability of its network. 
At the same time, traditional measurement 
of EVT error requires nodes to be deployed 
in specific spatial positions, which limits the 
coverage and adaptability of sensor networks. 
Moreover, the use of equipment periodic test-
ing or online verification analysis methods 
results in short detection time, increases com-
munication and computing costs, and reduces 
the real-time performance of the system. The 
inspection equipment of different batches and 
manufacturers cannot guarantee the detection 
accuracy. Therefore, actively exploring the 
performance and reliability of electronic mutu-
al sensor systems is an important research top-
ic. Wireless communication, energy efficiency 
optimization algorithms, adaptive deployment 
strategies and others are used to improve the 
performance and reliability of electronic mu-
tual sensor systems. Undermaintained EVT 
status can cause interference and impact on 
the normal operation of intelligent substations. 
Additionally, previous studies have shown that 
intelligent data mining algorithms can effec-
tively analyze and predict the error situation 
of transformers. Data mining technology, as an 
important tool for data analysis, can achieve 
useful potential information extraction and 
automated classification on a large number 
of datasets. Utilizing data mining can lead to 
effective identification of hidden patterns and 
correlations of transformer errors, thereby im-
proving the accuracy and efficiency of error 
identification.



206 207D. Kou and Y. Su Design of Electronic Voltage Transformer Error Pattern Recognition and Classification Algorithm...

2. Design of Transformer Error  
Identification and Classification 
Based on Data Mining Methods

2.1. Error Separation of Electronic Voltage 
Transformer Based on Improved 
Principal Component Analysis

As an important part of connecting physical net-
works and control systems, EVT's data infor-
mation status reflects the physical state of the 
power system and also reflects the correlation 
between measurement data and physical net-
works. The signal in an EVT flows through the 
primary sensor and converter, followed by the 
transmission system and secondary converter to 
achieve the digital information process. Factors 
such as temperature, humidity, and electromag-
netic fields can cause EVT to exhibit complex 
error variations during the actual operation that 
can be mainly divided into two categories: sys-
tematic error and random error [11]. Random 
errors are mainly related to system noise, while 
system errors are related to the structural per-
formance of mutual sensors. System errors are 
often caused by fixed and unchanging factors, 
including manufacturing errors, measurement 
errors, etc. Therefore, they can be further clas-
sified into two forms: abrupt and gradual errors. 
In EVT measurement, the deviation between 
the data measured on its side and the voltage 
cannot be avoided. But it only needs to meet 
the accuracy requirement of 0.2 level during 
the operation. The physical network model of 
an EVT that follows the normal distribution of 
variance can be expressed as:

us = k' Bs + vs + sx + N (0, σ 
2).          (1)

In equation (1), us represents the EVT data mea-
sured at a specific time point, Bs represents the 
true value of the voltage signal, k' is the induc-
tance coefficient, vs is free noise, sx is the error 
of the system itself, and σ represents variance. 
The generation of random errors may be caused 
by the influence of the magnetic field on the 
EVT sensing signal and conversion circuit. The 
system abnormal error of EVT is mostly reflect-
ed in the variation of transmission coefficient, 
and its mathematical model can be expressed as:

fs = ns Bs.                         (2)
In equation (2), ns represents the time function. 
According to the physical model on the EVT 

There are many related works in the applica-
tion of data mining in EVTs, mainly including 
data preprocessing, feature extraction, mod-
eling, and classification. Feature extraction is 
based on the measurement data of EVTs and 
is used to extract meaningful features that can 
represent their performance and error patterns. 
Statistical features, frequency domain features, 
time-frequency analysis, and other methods 
can be used to extract the features.  Addition-
ally, various machine learning algorithms and 
data mining techniques can be used to construct 
models and classify data. Common methods 
include support vector machines, neural net-
works, decision trees, etc. The current appli-
cation of data mining in EVTs still has certain 
shortcomings, such as the effectiveness of data 
mining being limited by the amount and quali-
ty of available data. If the measurement data of 
EVTs is limited or there are noise and outliers, 
it may affect the accuracy and stability of data 
mining. Moreover, the performance and error 
mode of EVTs are very complex, so feature 
selection and extraction may be a challenging 
task. Choosing appropriate features and ex-
traction methods is crucial for accurate mod-
eling and classification, but this may require 
the knowledge and experience of domain ex-
perts. The performance and error of EVTs may 
vary with time and environmental conditions. 
Therefore, the established model may need to 
be regularly updated and adjusted to adapt to 
new data and scenarios. Data mining can pro-
vide reference solutions for the optimization 
design of transformers and reduce the risk of 
power loss. Therefore, this study proposes to 
use data-driven methods to evaluate the mea-
surement error status of EVTs and predict and 
analyze their error classification to better im-
prove the error detection accuracy. At the same 
time, to avoid the impact of improper selec-
tion of data mining algorithms on the results, 
the research is based on transformer error ex-
traction and time-domain feature analysis, us-
ing recursive principal component analysis for 
feature extraction. Subsequently, support vec-
tor machines under regression methods were 
introduced for error prediction, and dynamic 
time analysis was performed on the error char-
acteristics to achieve better classification and 
prediction of results.

other equipment, which can effectively mon-
itor and measure the status of the power grid 
and electrical energy [1]. The accuracy and 
reliability of EVT measurement are closely re-
lated to the normal operation of measurement 
and control protection and metering devices 
and are important aspects that directly affect 
the stable operation of the power grid. Com-
pared to electromagnetic transformers, EVT is 
prone to exhibit unstable error due to its com-
plex structure and is prone to error exceeding 
anomalies in on-site operating environments 
[2]. Transformer error refers to the occurrence 
of data deviation when measuring or transmit-
ting current and voltage due to factors such as 
electromagnetic heating, coil winding method, 
core magnetic flux density, average magnetic 
circuit length, etc. Strengthening the detection 
and correction of these errors can effectively 
improve the reliability and application perfor-
mance of the power system [3]. However, the 
current measurement method for EVT error is 
through regular equipment testing or online 
verification, which is not conducive to the 
evaluation of EVT status and online monitor-
ing due to short detection time and difficulty 
in batch testing of calibration equipment [4]. 
A number of scholars have proposed research 
ideas for the error diagnosis of power equip-
ment. Among them, Rao et al. found through 
experimental evaluation that the integrated al-
gorithm has good fault prediction performance 
in assisting in dissolved gas analysis trans-
former diagnosis [5]. Singh et al. proposed a 
modified lion algorithm for error prediction 
analysis of power transformers, and the results 
show that this method has significantly better 
root mean square errors than other algorithms 
[6]. Huang et al. proposed a combination of 
grey wolf optimization algorithm, differen-
tial evolution mechanism, and support vector 
machine to achieve transformer fault diag-
nosis. The results show that this method has 
high generalization ability, and its diagnostic 
accuracy is superior to genetic algorithms and 
others [7]. Stability and safety of the power 
system play important roles in its operation. 
Martin et al. proposed using neural markers 
to achieve keyword recognition for transform-
ers and completed data labeling by designing 
model preprocessing [8]. Seyedshenava et al. 
analyzed voltage stability using finite element 
method and introduced evaluation metrics for 

data processing and comparison based on con-
sidering different short-circuit categories. The 
results show that the average error of this meth-
od is less than 5%, and it can effectively solve 
the nonlinear problem of voltage [9]. Liao et 
al. use graph convolutional neural networks 
for transformer fault diagnosis, and complete 
feature extraction training by designing ad-
jacency matrices and backpropagation. This 
method exhibits good diagnostic accuracy and 
application performance [10]. In the research 
of electronic mutual sensors, traditional meth-
ods usually rely on physical sensors to collect 
and measure target physical quantities, which 
inevitably affects the sensor by environmental 
noise, interference, and faults, thereby limit-
ing the reliability and stability of its network. 
At the same time, traditional measurement 
of EVT error requires nodes to be deployed 
in specific spatial positions, which limits the 
coverage and adaptability of sensor networks. 
Moreover, the use of equipment periodic test-
ing or online verification analysis methods 
results in short detection time, increases com-
munication and computing costs, and reduces 
the real-time performance of the system. The 
inspection equipment of different batches and 
manufacturers cannot guarantee the detection 
accuracy. Therefore, actively exploring the 
performance and reliability of electronic mutu-
al sensor systems is an important research top-
ic. Wireless communication, energy efficiency 
optimization algorithms, adaptive deployment 
strategies and others are used to improve the 
performance and reliability of electronic mu-
tual sensor systems. Undermaintained EVT 
status can cause interference and impact on 
the normal operation of intelligent substations. 
Additionally, previous studies have shown that 
intelligent data mining algorithms can effec-
tively analyze and predict the error situation 
of transformers. Data mining technology, as an 
important tool for data analysis, can achieve 
useful potential information extraction and 
automated classification on a large number 
of datasets. Utilizing data mining can lead to 
effective identification of hidden patterns and 
correlations of transformer errors, thereby im-
proving the accuracy and efficiency of error 
identification.
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In equation (8), vg, mg represents the mean and 
the variance of Q values, respectively. The 
evaluation limit of Q-statistic can be represent-
ed using Figure 2.

Figure 2. Evaluation limits for the Q-statistic.

In Figure 2, each solid point represents a data 
point and each point is related to β. The dis-
tance from the axis represents the square pre-

diction error of the subspace. Data that is not 
within the range is abnormal data. The error in 
EVTs mainly consists of online and offline as-
pects, and the evaluation process is shown in 
Figure 3.
Offline learning mainly involves constructing 
an initial model for training samples, includ-
ing calculating the mean vector and covari-
ance matrix of the data, followed by recursive 
updates of the principal component model 
based on the relationship between the Q-sta-
tistic and the control thresholds. The update 
of the model and covariance matrix during the 
online process mainly involves replacing data 
at different sampling times [14]. The update 
of the principal component model is used to 
compare the data control limit and the squared 
prediction error (SPE) of the Q-statistic. If the 
statistic is greater than the limit, a fault prompt 
will be given, otherwise, the update will con-
tinue.

side, its measurement data is related to parame-
ters such as voltage information, measurement 
error, system impulse situation, and power grid 
equivalent coefficient. The physical network 
correlation can be represented as in Figure 1.

Figure 1. Schematic diagram of physical network 
correlation.

In Figure 1, the incomplete symmetry of the 
three-phase power system results in fluctu-
ations in the actual value of its node voltage. 
The voltage fluctuation satisfies Gaussian inde-
pendent distribution, and the variance result of 
three-phase voltage imbalance meets the accu-
racy requirements of the transformer. It can be 
explained with the help of equation (3).

max , ,A avg B avg C avg

avg

U U U U U U
M

U

 − − − =
(3)

In equation (3), UA, UB, UC represent the effec-
tive values of the three-phase voltage. Uavg is 
the average of the effective values, and M is the 
voltage imbalance. When analyzing measure-
ment data, distinguishing between the measure-
ment error and measurement deviation of the 
transformer can reduce the physical fluctuations 
of the system to a lesser extent. In order to better 
analyze the data of EVT error, a study proposes 
an error state evaluation based on principal com-
ponent analysis (PCA). PCA can represent two 
variables with discreteness in a linear combina-
tion, thereby achieving their coordinate trans-
formation, that is, feature dimensionality reduc-
tion while preserving the original information 
of the data [12]. At the same time, considering 
that the original PCA model is difficult to detect 
the varying signal amplitude and phase position 
when analyzing nodes in power transmission 
and transformation systems, it is not suitable for 
three-phase time-varying linear systems [13]. 
Therefore, this study proposes Recursive Prin-
cipal Component Analysis (RPCA) for analysis, 
which completes state assessment by continu-
ously updating data. If the original data matrix is 

represented as X1
0, the formula for standardizing 

the matrix is given in equation (4).

( ) 10
1 1 1 1 1

T
nX X I b −

= − ∑              
 (4)

In equation (4), n represents the normal oper-
ating state, I represents the identity matrix, b1 
represents the mean of the variable, and T is the 
matrix transpose symbol. In the RPCA process, 
the updating of sample points mainly relies on 
the rank correction method to update the scores 
of principal components and load vectors. The 
covariance of sample point updates can be ex-
pressed as:

1
1

1 1 1 1 11
1

1 1T T
k k k k k kk

k

kR R b b x x
k k

−
−

+ + + + ++
+

−
= + ∆ ∆ +∑ ∑ .

        
 (5)

In equation (5), k represents the number of data 
blocks, xk + 1 is the standardized matrix of k + 1 
data blocks, bk represents the mean of the data 
block, and Rk is the covariance matrix of the 
data block. Since the matrix in the equation is 
a matrix with rank 1, equation (5) needs to be 
modified twice to obtain the eigenvalues of the 
covariance matrix after the two modifications:

Rk + 1' = Pk + 1 Dk 2 PT
k + 1.            (6)

In equation (6), Dk 2 represents the diagonal ma-
trix after rank correction, and Pk + 1 is the updat-
ed feature vector. On the transformer model, it 
is necessary to establish statistics for hypothesis 
testing in the subspace to better detect abnor-
mal situations. The study constructs Hotelling 
T2 statistics and Q statistics for the principal 
component subspace and residual subspace, re-
spectively [14–15]. The T2 statistic represents 
the standard sum of squares of the score vec-
tor, which conforms to the degree of freedom 
distribution. Its statistical control limit can be 
expressed as:

( )2 ( 1) ,UCL
k nT F k n k

n k α
+

= ⋅ −
−

.
        

 (7)

In equation (7), k represents the degree of free-
dom, α is the confidence level, and n is the num-
ber of training data. F represents the percentile 
value of degrees of freedom in the central dis-
tribution. The mathematical expression of the 
control limit of the Q-statistic is:

2
2

2 / ,2 g g

g
UCL m v

g

v
Q X

m α
= .

             
(8)

Figure 3. Flow chart for error measurement evaluation of electronic transformer under ERCA.
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Figure 3. Flow chart for error measurement evaluation of electronic transformer under ERCA.
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the structural risk function. This study incorpo-
rates regression analysis ideas based on SVM. 
The regression under SVM needs to ensure that 
the error between the actual and predicted val-
ues obtained from the sample data during train-
ing is less than or equal to the initial error val-
ue, and to minimize the expected risk function 
solution in this case. If the number of samples 
in the training is set to L, the linear regression 
function in the high-dimensional feature space 
can be expressed as:

f (x)' = w ϕ(x) + b.                 (12)

In equation (12), ϕ(x) represents a nonlinear 
mapping function. The insensitive loss function 
is:
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In equation (13), f (x) represents the predicted 
value of the regression function, y is the true 
value, ε is the loss function parameter, and the 
value of ε is proportional to the error of the re-
gression function. At the same time, to better 
evaluate and predict the EVT error results, the 
study proposes to use sliding time windows to 
collect feature parameter data at different times. 
By setting the time window ti and step length ts, 
the output voltage data of EVT can be obtained:

Z(ti) = [z(ti - ts + 1), z(ti - ts + 2), ..., z(ti)]. (14)

By solving the characteristic parameter se-
quence related to in-phase voltage and output 
voltage at a certain moment, a stationary se-
quence can be obtained under different differ-
ential intervals. When conducting error eval-
uation, it is necessary to pay attention to the 
selection of step length. Neither too long nor 
too short can effectively describe the adaptive 
change process of the error state, and there is a 
possibility of misjudgment [20]. Therefore, the 
study utilizes the evaluation results of EVT to 
achieve real-time update of step length, and its 
mathematical expression is given as:
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In equation (15), min|ΔD| represents the mini-
mum change in the reference evaluation index, 
ts

max is the maximum step length for error state 
evaluation, and ts

min is the minimum step length. 
D(ti), Dlim it (ti) represent the evaluation indi-
cators and their thresholds at different times. 
Equation (15) can effectively achieve real-time 
tracking and evaluation of EVT errors. The 
evaluation of the error state of EVT is main-
ly based on the evaluation threshold obtained 
from its reference data. The data will change 
with the evaluation results and the real-time 
error status with EVT. It should also be noted 
that when the EVT error shows an increase in 
positive polarity, the corresponding evaluation 
index results should also increase.

Based on EVT error state analysis, this study 
designed an overall system framework to 
achieve the collection and application analysis 
of data information and collected data from the 
front-end through the data layer, application 
layer, and display layer. The data collection 
section mainly includes the collection subunit, 
input/output subunit, data cache subunit, etc., 
and is responsible for parsing messages, unit 
data processing, and data caching. The data lay-
er includes two aspects: static application data 
of the device and real-time data of the device, 
in which the three-phase voltage of the EVT 
is dynamically captured [21]. The application 
layer and display layer are used to achieve vi-
sual monitoring, analysis, and result display of 
data, thereby enabling the evaluation of error 
systems. Figure 5 shows the architecture of the 
EVT error online evaluation system.

In Figure 5, the measurement data processing 
structure includes service interfaces, manage-
ment configurations, data services, and other 
contents. The data integration module mainly 
extracts offline and real-time data, and then 
uploads the real-time data through the substa-
tion port. The data cleaning, storage center, and 
computing center are used for data identifica-
tion, storage, and analysis of EVTs.

2.2. Predictive Analysis of Support Vector 
Regression in EVT Error State

By predicting and analyzing the error status 
of EVTs, possible errors or anomalies in the 
transformers can be identified and corrected 
in a timely manner. Furthermore, the analysis 
of error status can ensure EVT's reliability and 
accuracy under various working conditions, re-
ducing potential measurement deviations and 
further errors [16]. The analysis of EVT error 
state prediction problems is common, and tra-
ditional prediction methods such as regression 
analysis and trend extrapolation are difficult to 
evaluate and to adjust the parameters of mod-
els. There is also a certain error in prediction 
accuracy [17]. With the development of net-
work data, artificial intelligence algorithms 
have gradually become a hot research topic and 
have been involved and applied in fields such 
as electronic technology, power systems, and 
medicine. Therefore, this study selects intelli-
gent prediction algorithms for EVT error state 
estimation. As a learning algorithm, the sup-
port vector machine has good generalization 
ability and fitting performance and can achieve 
the minimum effect of the system under a lim-
ited number of samples [18–19]. As a data 
mining algorithm, SVM can achieve nonlinear 
mapping of input vectors in high-dimensional 
space and construct the optimal classification 
plane. SVM completes the prediction general-
ization problem by utilizing a set of nonlinear 
functions during sample data processing. The 
mapping principle is to map the low dimen-
sional sample space to the high dimensional 
sample space, and finally perform the optimal 
solution to achieve classification. The distance 
of the sample data on the hyperplane can be 
expressed as:
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In equation (9), ω represents the generalized 
parameter, b represents deviation, and x is the 
sample point. In support vector machines, the 
mapping relationship between high-dimension-
al and low-dimensional data is achieved through 
the classical form of Lagrangian functions. Its 
kernel function can replace the inner product 
transformation in the case of linear separabil-

ity, achieving the classical Lagrange function 
change under optimal classification, as shown 
in equation (10).
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In equation (10), (xi, yi) is the inner product 
transformation, ai is the Lagrange multipli-
er, where xi is the column vector of the sam-
ple output and yi is the corresponding output 
value, and ai

* represents a support vector. The 
structural risk minimization faced in SVM the-
ory learning is to find suitable functions in the 
sample dataset to ensure that the algorithm has 
good fitting performance. Figure 4 is a sche-
matic diagram of minimizing the structural 
risk.

Figure 4. Schematic diagram of the minimal  
structural risk.

The structural risk function can be used to re-
place the distribution function, and then ob-
tained by solving the minimum value of the 
function:

( ) ( )ln 2 / 1 ln / 4
min Re

Sh

h n h
f

n
δ + − + 

     
 (11)

In equation (11), Sh represents the dimensional 
spatial structure of the hyperplane composed of 
data samples, h represents the dimension, δ is 
the reliability parameter, and Re( f ) represents 
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the structural risk function. This study incorpo-
rates regression analysis ideas based on SVM. 
The regression under SVM needs to ensure that 
the error between the actual and predicted val-
ues obtained from the sample data during train-
ing is less than or equal to the initial error val-
ue, and to minimize the expected risk function 
solution in this case. If the number of samples 
in the training is set to L, the linear regression 
function in the high-dimensional feature space 
can be expressed as:

f (x)' = w ϕ(x) + b.                 (12)

In equation (12), ϕ(x) represents a nonlinear 
mapping function. The insensitive loss function 
is:
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In equation (13), f (x) represents the predicted 
value of the regression function, y is the true 
value, ε is the loss function parameter, and the 
value of ε is proportional to the error of the re-
gression function. At the same time, to better 
evaluate and predict the EVT error results, the 
study proposes to use sliding time windows to 
collect feature parameter data at different times. 
By setting the time window ti and step length ts, 
the output voltage data of EVT can be obtained:
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By solving the characteristic parameter se-
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voltage at a certain moment, a stationary se-
quence can be obtained under different differ-
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In equation (15), min|ΔD| represents the mini-
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max is the maximum step length for error state 
evaluation, and ts
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D(ti), Dlim it (ti) represent the evaluation indi-
cators and their thresholds at different times. 
Equation (15) can effectively achieve real-time 
tracking and evaluation of EVT errors. The 
evaluation of the error state of EVT is main-
ly based on the evaluation threshold obtained 
from its reference data. The data will change 
with the evaluation results and the real-time 
error status with EVT. It should also be noted 
that when the EVT error shows an increase in 
positive polarity, the corresponding evaluation 
index results should also increase.

Based on EVT error state analysis, this study 
designed an overall system framework to 
achieve the collection and application analysis 
of data information and collected data from the 
front-end through the data layer, application 
layer, and display layer. The data collection 
section mainly includes the collection subunit, 
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and is responsible for parsing messages, unit 
data processing, and data caching. The data lay-
er includes two aspects: static application data 
of the device and real-time data of the device, 
in which the three-phase voltage of the EVT 
is dynamically captured [21]. The application 
layer and display layer are used to achieve vi-
sual monitoring, analysis, and result display of 
data, thereby enabling the evaluation of error 
systems. Figure 5 shows the architecture of the 
EVT error online evaluation system.

In Figure 5, the measurement data processing 
structure includes service interfaces, manage-
ment configurations, data services, and other 
contents. The data integration module mainly 
extracts offline and real-time data, and then 
uploads the real-time data through the substa-
tion port. The data cleaning, storage center, and 
computing center are used for data identifica-
tion, storage, and analysis of EVTs.

2.2. Predictive Analysis of Support Vector 
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By predicting and analyzing the error status 
of EVTs, possible errors or anomalies in the 
transformers can be identified and corrected 
in a timely manner. Furthermore, the analysis 
of error status can ensure EVT's reliability and 
accuracy under various working conditions, re-
ducing potential measurement deviations and 
further errors [16]. The analysis of EVT error 
state prediction problems is common, and tra-
ditional prediction methods such as regression 
analysis and trend extrapolation are difficult to 
evaluate and to adjust the parameters of mod-
els. There is also a certain error in prediction 
accuracy [17]. With the development of net-
work data, artificial intelligence algorithms 
have gradually become a hot research topic and 
have been involved and applied in fields such 
as electronic technology, power systems, and 
medicine. Therefore, this study selects intelli-
gent prediction algorithms for EVT error state 
estimation. As a learning algorithm, the sup-
port vector machine has good generalization 
ability and fitting performance and can achieve 
the minimum effect of the system under a lim-
ited number of samples [18–19]. As a data 
mining algorithm, SVM can achieve nonlinear 
mapping of input vectors in high-dimensional 
space and construct the optimal classification 
plane. SVM completes the prediction general-
ization problem by utilizing a set of nonlinear 
functions during sample data processing. The 
mapping principle is to map the low dimen-
sional sample space to the high dimensional 
sample space, and finally perform the optimal 
solution to achieve classification. The distance 
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er, where xi is the column vector of the sam-
ple output and yi is the corresponding output 
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ory learning is to find suitable functions in the 
sample dataset to ensure that the algorithm has 
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the number of samples per second is 4000, and 
the sampling period is 1 second. The amplitude, 
phase, and other data of EVTs is collected and 
compared in a real-time environment. Calibra-
tion analysis is performed with a standard trans-
former with an accuracy level of 0.05 to better 
validate the effectiveness of the research meth-
od. The voltage signal measurement data of 
three-phase EVT is around 64,000V~69,000V. 
The error situation of transformers is analyzed 
using different methods, and the results are 
shown in Figure 6.
Figure 6 shows that the error results of the data 
sampling value under the standard transform-
er vary significantly. Specifically, phase A and 
phase C exhibit data fluctuations when the 
number of sampling points ranges from 4,000 

to 6,100, resulting in a significant ''fault'' of de-
cline. The measurement error variation of both 
reached 0.25% and -0.07%. From the overall 
trend, the measurement errors of phases A, B, 
and C reached 0.09%, 0.06%, and 0.03% when 
the sample size was greater than 11,000. This in-
dicates that it is difficult to effectively identify 
and detect abnormal data. The error results of 
the three-phase transformer under the improved 
method are relatively small, and the over-
all curve change is relatively stable. The error 
curves of phase A and phase C have consistency 
in the sample size range of 4,000~6,200, indicat-
ing that they can effectively identify abnormal 
error situations. Subsequently, the square pre-
diction error results at the sampling points were 
analyzed, and the results are shown in Figure 7.

Recursive principal component analysis can 
adaptively decompose input signals into mul-
tiple intrinsic mode functions based on their 
characteristics, thereby obtaining better signal 
representation and adapting to different types of 
error analysis. It can also extract the character-
istics of signals at different time and frequency 
scales, thereby capturing the frequency varia-
tion characteristics of different types of errors 
in EVT measurement data, which helps to an-
alyze and classify errors more finely. Support 
vector machine regression can model nonlinear 
relationships by using kernel functions to map 
data from the original space to high-dimension-
al feature spaces, taking into account the re-
al-time dynamism of EVT measurement data. 
This can provide explanations for classification 
and recognition of different error types based 
on the relationship between input features and 
target errors. By integrating the two methods, 
a multi-stage error analysis and classification 
system can be constructed, improving the accu-
racy and stability of error analysis and classifi-
cation of EVT measurement data, and enabling 
better understanding of the error feature results 
caused by data information differences.

3. Analysis of Transformer Error  
Application Results

Electronic voltage transformers are actually 
systems that sense, transform, transmit, and 
process signals in high-voltage systems. During 
the simulation process, they will inevitably be 
affected by signal interference and their perfor-
mance will be affected. This study analyzes the 
error of the transformer based on the proposed 
recognition and prediction model algorithm, in 
order to provide better reference for the perfor-
mance improvement of the equipment. Taking 
three-phase EVT as an example, the study sim-
ulates the sensing part of the EVT signal using 
a voltage divider resistor and sets the propor-
tional parameter relationship between the resis-
tors to 178K/6.81K. The secondary output of 
the transformer collected from the substation is 
reproduced using a three-phase programmable 
power source, with a proportional relationship 
of 110kV/100V. Simultaneously, a data acquisi-
tion system is used to record the sensor signal 
output and simulate the secondary conversion 
unit. The IEC61850-9-2 protocol completes 
online verification of data sent to the error sta-
tus evaluation platform and the calibration sys-
tem. The sampling frequency is set to 4 kHz, Figure 7. Square prediction error results of the sampling points.

Figure 5. EVT error online evaluation system architecture.

Figure 6. Error situation of a standard transformer.
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vector machine regression can model nonlinear 
relationships by using kernel functions to map 
data from the original space to high-dimension-
al feature spaces, taking into account the re-
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on the relationship between input features and 
target errors. By integrating the two methods, 
a multi-stage error analysis and classification 
system can be constructed, improving the accu-
racy and stability of error analysis and classifi-
cation of EVT measurement data, and enabling 
better understanding of the error feature results 
caused by data information differences.
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systems that sense, transform, transmit, and 
process signals in high-voltage systems. During 
the simulation process, they will inevitably be 
affected by signal interference and their perfor-
mance will be affected. This study analyzes the 
error of the transformer based on the proposed 
recognition and prediction model algorithm, in 
order to provide better reference for the perfor-
mance improvement of the equipment. Taking 
three-phase EVT as an example, the study sim-
ulates the sensing part of the EVT signal using 
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tors to 178K/6.81K. The secondary output of 
the transformer collected from the substation is 
reproduced using a three-phase programmable 
power source, with a proportional relationship 
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output and simulate the secondary conversion 
unit. The IEC61850-9-2 protocol completes 
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Figure 5. EVT error online evaluation system architecture.

Figure 6. Error situation of a standard transformer.
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The fitting values of the research algorithm, 
RBFNN, ANN, and ARMA are 0.97, 0.89, 
0.82, and 0.77, respectively. From this, it can 
be seen that the proposed error prediction algo-
rithm has shown good accuracy in evaluating 
EVT. Subsequently, feature evaluation and test 
result analysis were conducted with the pro-
posed hybrid combination error algorithm, and 
the results are shown in Figure 10.
In Figure 10, the hybrid (mixed) model (RP-
CA+SVM regression) can better predict the er-
ror state of the transformer. The average error 
of the ratio difference characteristic results was 
significantly less than that of the single model 
(SVM regression) (0.023 < 0.046). Additionally, 
the difference of the phase information between 
the mixed model and the single model is also 
different. When the number of sampling points 
exceeds 5,000, the fluctuation of the single 
model is obvious, and the maximum character-
istic difference reaches 0.073 [25]. The mixed 
model exhibits a feature average error of less 
than 0.01. Li et al. proposed a method based 
on genetic algorithm and support vector ma-
chine (GA-SVM) to improve the classification 

of power transformer faults from two aspects: 
type and location [26]. They first extract unique 
features using the mathematical index of the in-
duced current at the head and end of the trans-
former winding, and then feed this feature into 
a support vector machine for training. They use 
genetic algorithms to optimize the parameters of 
the SVM model. The results show that the mod-
el can effectively identify different fault types 
and determine their positions in the transformer 
winding, with diagnostic rates of 100% and 90% 
for fault types and fault locations, respectively.
Wu et al. proposed a combination of a genet-
ic algorithm and an XGBoost for power trans-
former fault identification, which differs from 
traditional transformer fault diagnosis methods 
based on dissolved gas analysis and exhibits 
high fault identification accuracy [27]. The re-
search approach of the above results is mainly 
based on the classification of fault problems 
and the optimization of parameter results. The 
results are similar to the proposed method of 
combining recursive principal component anal-
ysis with support vector machine. 

parison of the ratio error results under different 
algorithms is shown in Figure 8.
Figure 8 shows that, overall, the error ranking 
algorithm between the predicted results and the 
actual results is: The research algorithm > RB-
FNN > ANN > ARMA. Specifically, the aver-
age deviation between the proposed prediction 
algorithm and the true value during sample pre-
diction is less than 0.05%, and the curve trend 
is basically consistent. The RBFNN, ANN, and 
ARMA models exhibit average equal error devi-
ations of 0.12%, 0.25%, and 0.73%, respective-
ly, and are more susceptible to the influence of 
the number of sampling points. Further testing 
was conducted on the methods' predictive effect 
with fitting accuracy, as shown in Figure 9.

In Figure 7, the RPCA method shows good appli-
cability in detecting abnormal data in electronic 
transformers. The changes in its statistical thresh-
old will exhibit fluctuations with the changes 
in statistics. However, the error situation of the 
transformer analyzed with the PCA method does 
not have good adaptability, and the statistical 
fluctuation value range of the sample points is 
from 0 to 0.02. To better test the effectiveness of 
the proposed prediction algorithm, the EVT error 
was analyzed with Artificial Neural Networks 
(ANN) [22], Auto-Regressive Moving Average 
Model (ARMA) [23], and Radial Basis Function 
Neural Network (RBFNN) [24]. The output data 
of an electromagnetic transformer was collected 
at a sampling frequency of 30 minutes, and the 
original data were predicted and analyzed. Com-

Figure 9. Prediction accuracy fitting results of the algorithms.

Figure 8. Error prediction results of different algorithms.
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The fitting values of the research algorithm, 
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former fault identification, which differs from 
traditional transformer fault diagnosis methods 
based on dissolved gas analysis and exhibits 
high fault identification accuracy [27]. The re-
search approach of the above results is mainly 
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and the optimization of parameter results. The 
results are similar to the proposed method of 
combining recursive principal component anal-
ysis with support vector machine. 
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FNN > ANN > ARMA. Specifically, the aver-
age deviation between the proposed prediction 
algorithm and the true value during sample pre-
diction is less than 0.05%, and the curve trend 
is basically consistent. The RBFNN, ANN, and 
ARMA models exhibit average equal error devi-
ations of 0.12%, 0.25%, and 0.73%, respective-
ly, and are more susceptible to the influence of 
the number of sampling points. Further testing 
was conducted on the methods' predictive effect 
with fitting accuracy, as shown in Figure 9.

In Figure 7, the RPCA method shows good appli-
cability in detecting abnormal data in electronic 
transformers. The changes in its statistical thresh-
old will exhibit fluctuations with the changes 
in statistics. However, the error situation of the 
transformer analyzed with the PCA method does 
not have good adaptability, and the statistical 
fluctuation value range of the sample points is 
from 0 to 0.02. To better test the effectiveness of 
the proposed prediction algorithm, the EVT error 
was analyzed with Artificial Neural Networks 
(ANN) [22], Auto-Regressive Moving Average 
Model (ARMA) [23], and Radial Basis Function 
Neural Network (RBFNN) [24]. The output data 
of an electromagnetic transformer was collected 
at a sampling frequency of 30 minutes, and the 
original data were predicted and analyzed. Com-

Figure 9. Prediction accuracy fitting results of the algorithms.

Figure 8. Error prediction results of different algorithms.
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al basis function neural networks and artificial 
neural networks, the combination of recursive 
principal component analysis and support vec-
tor machine regression is more explainable and 
understandable, as they provide clear feature 
separation and modeling processes. Compared 
with autoregressive moving average and prin-
cipal component analysis, RPCA and SVR 
methods are more suitable for modeling and 
analyzing complex and nonlinear data and can 
provide more accurate results. Subsequently, 
stability analysis was conducted on the pro-
posed transformer error detection algorithm. 
The stability analysis result is the average val-
ue after repeated experiments, and the selected 

time period is long and stable, with the results 
shown in Figure12.
In Figure 12, the variance results of the ratio 
difference and angle difference show that the 
amplitude changes of the two feature quantities 
are relatively stable in different test days, which 
can better reflect the changes in the time series. 
The ratio values are generally less than 1.8 and 
1.6, and the response time of both is basically 
less than 0.1 seconds, demonstrating good ap-
plication effects. Subsequently, an error evalu-
ation was conducted, and the evaluation results 
are shown in Figure 13.
The evaluation results under the mixed mod-
el in Figure 13 indicate that, in most cases, 

The proposed research method is also based on 
the combination of feature classification and 
predictive analysis to address the error problem 
of transformers, and it has been verified that it 
can effectively identify the error feature results 
of the model. Comparing the results of the re-
search method, it can be seen that the classifi-
cation algorithm can effectively classify feature 
or fault problems, which has significant value 
for problem solving. Subsequently, the recogni-
tion accuracy of the proposed hybrid model was 
analyzed, and the results are shown in Figure 
11.
The results in Figure 11 indicate that the ac-
curacy, recall, and F1 values of the algorithm 
proposed in the study are higher than those of 
other comparative algorithms. Specifically, the 
accuracy and average accuracy of the algorithm 
proposed in the study exceeded 80%, with 
values of 96.23% and 85.12%, respectively. 
The accuracy rates of RBFNN, ANN, ARMA, 
PCA, and SVM models were 87.12%, 78.56%, 
82.11%, 25.39%, and 24.87%, respectively. In 
terms of recall rate and F1 value, the algorithms 
under RPCA and support vector machine re-
gression exhibit a value of 95, with a difference 
of at least 20 compared to other algorithms. The 
worst performing PCA and SVM models have 
a recall rate and F1 value of no more than 40, 
which is the most significant difference com-
pared to the mixed model proposed in the study.

By analyzing the above results, it can be seen 
that the proposed method has good advantag-
es and performance in error identification and 
classification of EVTs. The reason is that the 
recursive principal component analysis is a 
data separation method that can decompose 
complex measurement data into independent 
components, thereby helping to identify and 
separate the error components of transform-
ers. RPCA analysis can effectively handle 
the aliasing and correlation between multiple 
signals and has advantages for complex data 
separation in transformer error analysis. Sec-
ondly, support vector machine regression is a 
machine learning algorithm that can establish 
a nonlinear relationship model between input 
features and output values. Moreover, incorpo-
rating regression analysis and real-time update 
of step length on support vector machines can 
ensure that the actual error results are small, 
and thus grasp the relationship between the 
characteristics of measurement data and the 
actual error, achieving real-time prediction 
and evaluation of transformer errors. RPCA 
and SVR are both flexible and scalable algo-
rithms. They can adapt to datasets of differ-
ent sizes and complexities, provide flexible 
modeling and analysis capabilities, take into 
account the distribution characteristics of the 
data, and improve the robustness and general-
ization ability of the model. Compared to radi-

Figure 11. Accuracy, recall, and F1 values of different algorithms.

Figure 10. Comparison and angle difference results of the prediction model.
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actual error, achieving real-time prediction 
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account the distribution characteristics of the 
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The advantages of the combination method 
reflected in this result for relays and the per-
formance of the proposed combination model 
for transformer error analysis demonstrate that 
only by accurately identifying problem features 
can the performance of the algorithm be effec-
tively improved, and the application effect can 
be improved [29].

4. Conclusion

The study proposes a data mining-based frame-
work to address key challenges in electron-
ic voltage transformer error diagnosis. The 
designed error analysis algorithm and model 
were tested, and the results showed that the 
error results of the data sampling value under 
the standard transformer showed significant 
transformation. The measurement error vari-
ation of phase A and phase C reached 0.25% 
and -0.07%. The measurement errors of phases 
A, B, and C basically reached 0.09%, 0.06%, 
and 0.03% when the sample size was greater 
than 11,000, making it difficult to effectively 
identify and detect abnormal data. The error re-
sults of the three-phase transformer under the 
improved method are relatively small, and the 
overall curve change is relatively stable. The er-
ror curves of phase A and phase C have consis-
tency in the sample size range of 4,000~6,200, 

indicating that they can effectively identify ab-
normal error situations. In the analysis of error 
results, the algorithms' ranking based on model 
predictive performance is: The research algo-
rithm > RBFNN > ANN > ARMA. The aver-
age deviation of the research algorithm is less 
than 0.05%, and the fitting value is 0.97. The 
predicted curve trend has high consistency with 
the actual curve trend. The RBFNN, ANN, and 
ARMA models showed average equal error 
deviations of 2.12%, 3.05%, and 4.23%, with 
fitting values of 0.89, 0.82, and 0.77, respec-
tively. At the same time, the hybrid model can 
better predict the error state of the transformer. 
The average error of the ratio difference char-
acteristic results is significantly less than that 
of the single model (0.023 < 0.046) and it has 
better stability and accuracy. The main achieve-
ment of the research is to use the design error 
analysis model to analyze EVTs. The average 
error of the ratio difference and angle differ-
ence characteristics displayed by the model is 
significantly smaller than that of other compar-
ison algorithms, and the amplitude change of 
the research model is relatively stable, which 
can better reflect the changes in the time series. 
The ratios are generally less than 1.8 and 1.6. 
Moreover, the overall response time is rela-
tively short, and the response time of the ratio 
difference and angle difference of the trans-
former is generally less than 0.1 seconds. The 
error evaluation range of transformer A, B, and 

the research method results in an evaluation 
threshold greater than the evaluation differ-
ence. Moreover, when the testing time range of 
three-phase EVT is greater than 1.5 days, the 
error results reflected by the ratio exceeding the 
tolerance are also within the accuracy range. A. 
The error evaluation range shown by phases B 
and C does not exceed 0.1%, indicating that this 
method has shown good accuracy in transform-
er analysis. This result has certain similarities 

with the research content proposed by Shahbazi 
et al. [28]. They used signal processing tech-
nology and artificial intelligence technology 
to identify and classify relay faults, as well as 
software simulation. Their results revealed that 
the signal features under time transformation 
exhibit good performance of the classifier, and 
the transformer under intelligent combination 
method can better identify disturbance and fault 
problems [28]. 

Figure 12. Stability analysis of the data.

Figure 13. Evaluation results under the mixed model.
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C phases does not exceed 0.1%, indicating that 
this method has good accuracy and high evalu-
ation results in transformer analysis. 
The ratio difference feature refers to the differ-
ence between the measurement results of the 
transformer and the true value, which can pro-
vide important information about the accuracy 
of the transformer measurement. A lower ratio 
difference characteristic value indicates that the 
measurement result is closer to the true value, 
while a higher ratio difference characteristic 
value indicates that there is a significant error 
in the measurement result. In error analysis, 
the ratio difference feature can help determine 
the size and distribution of errors and provide 
a basis for calibration and correction. The an-
gular difference feature refers to the phase dif-
ference in the measurement results of the trans-
former. The phase difference of the transformer 
is crucial for the accuracy and stability of the 
measurement results. A smaller angular differ-
ence feature value indicates that the phase of 
the measurement result is very close to the true 
value, while a larger angular difference feature 
value indicates a significant phase difference, 
which may lead to inaccuracy in the measure-
ment result. In the analysis of transformer error, 
the angular difference feature can provide in-
formation about phase error, helping to deter-
mine the operating status and error mode of the 
transformer. Analyzing the ratio difference and 
angle difference features can comprehensively 
evaluate the error mode and performance of the 
transformer, thereby optimizing the calibration 
and correction strategies of the transformer. 
The ratio difference feature and angle differ-
ence feature are key indicators for evaluating 
the accuracy and stability of transformers.
From a practical perspective, this study pro-
vides a new method for analyzing and evalu-
ating the error of transformers in smart grids. 
The proposed method can be used for the clas-
sification and identification of EVT errors in 
power systems, real-time monitoring of trans-
former accuracy and health status, and timely 
detection and identification of possible error 
patterns. This method exhibits high accuracy 
and stable performance in better identifying 
different types of error patterns. Additionally, 
its real-time monitoring and evaluation ability 
in classifying and identifying error problems 
helps to take corresponding measures for cor-

rection and calibration to ensure the stable op-
eration of the power system. The method is ap-
plied to power systems of different scales and 
properties to meet the needs of various practical 
application scenarios.
By improving the accuracy and monitoring 
effectiveness of transformer error assessment, 
the operational safety of the power system and 
measurement and control protection devices 
can be better guaranteed. This is of great signif-
icance for the power industry, as it can improve 
the stability and reliability of the power grid, re-
ducing potential faults and losses. In future re-
search, in order to further optimize and improve 
data mining-based transformer error analysis 
algorithms, it is necessary to explore more fea-
ture statistics and pattern recognition methods, 
expand the sample size range for transformer 
error data selection, and enhance the monitor-
ing ability of transformer operation status. At 
the same time, the evaluation of the relation-
ship between transformer error and power sys-
tem performance needs to be strengthened and 
strategies for the operation of the power system 
need to be provided. The methods for solving 
Q statistic feature quantities should be enriched 
or deep learning and neural networks methods 
should be introduced to further improve the 
prediction and recognition capabilities of trans-
former errors. With the increasing integration 
of electronic voltage transformers, the devel-
oped error analysis technology provides crucial 
benefits in preventing catastrophic faults and 
power outages through timely diagnosis and 
prediction.

Acknowledgement

Inner Mongolia Power (Group) Co., Ltd. Tech-
nology Project: Research on Error State Evalu-
ation Technology for 500 kV Transformer un-
der Operating Condition. (2023-5-26)

References

[1] M. Grbić et al., ''Analysis of Influence of Measuring 
Voltage Transformer Ratio Error on Single-circuit 
Overhead Power Line Electric Field Calculation 
Results'', Electric Power Systems Research, vol. 
166, pp. 232–240, 2019.
http://dx.doi.org/10.1016/j.epsr.2018.10.001

[2] S. G. Moshira et al., ''Image Retrieval Based on 
Deep Learning'', Journal of System and Manage-
ment Sciences, vol. 12, no. 2, pp. 477–496, 2022. 
http://dx.doi.org/10.33168/JSMS.2022.0226

[3] A. S. Dobakhshari et al., ''Online Non-Iterative Es-
timation of Transmission Line and Transformer Pa-
rameters by SCADA Data'', IEEE Transactions on 
Power Systems, vol. 36, no. 3, pp. 2632–2641, 2021.
http://dx.doi.org/10.1109/TPWRS.2020.3037997

[4] C. He et al., ''Evolutionary Large-Scale Multiob-
jective Optimization for Ratio Error Estimation 
of Voltage Transformers'', IEEE Transactions on 
Evolutionary Computation, vol. 24, no. 5, pp. 
868–881, 2020.
http://dx.doi.org/10.1109/TEVC.2020.2967501

[5] U. M. Rao et al., ''Identification and Application 
of Machine Learning Algorithms for Transformer 
Dissolved Gas Analysis'', IEEE Transactions on 
Dielectrics and Electrical Insulation, vol. 28, no. 
5, pp. 1828–1835, 2021.
http://dx.doi.org/10.1109/TDEI.2021.009770

[6] H. D. Singh and J. Singh, ''Enhanced Optimal 
Trained Hybrid Classifiers for Aging Assess-
ment of Power Transformer Insulation Oil'', 
World Journal of Engineering, vol.17 no. 3, pp. 
407–426, 2020. 
http://dx.doi.org/10.1108/WJE-11-2019-0339

[7] X. Huang et al., ''Fault Diagnosis of Transform-
er Based on Modified Grey Wolf Optimization 
Algorithm and Support Vector Machine'', IEEJ 
Transactions on Electrical and Electronic Engi-
neering, vol. 15, no. 3, pp. 409–417, 2020.
http://dx.doi.org/10.1002/tee.23069

[8] M. Martinc et al., ''TNT-KID: Transformer-based 
Neural Tagger for Keyword Identification'', Nat-
ural Language Engineering, vol. 28, no. 4, pp. 
409–448, 2022.
http://dx.doi.org/10.1017/S1351324921000127

[9] S. Seyedshenava and A. Ahmadpour, ''Finite El-
ement Method for Optimal Transformer Connec-
tion Based on Induction Motor Characteristics 
Analysis'', Shams Engineering Journal, vol. 12, 
no. 2, pp. 1943–1957, 2021.
http://dx.doi.org/10.1016/j.asej.2020.12.008

[10] W. Liao et al., ''Fault Diagnosis of Power Trans-
formers using Graph Convolutional Network'', 
CSEE Journal of Power and Energy Systems, vol. 
7, no. 2, pp. 241–249, 2021. 
http://dx.doi.org/10.17775/CSEEJPES.2020.04120

[11] A. I. Khalyasmaa et al., ''Analysis of the State 
of High-Voltage Current Transformers Based 
on Gradient Boosting on Decision Trees'', IEEE 
Transactions on Power Delivery, vol. 36, no. 4, 
pp. 2154–2163, 2021.
http://dx.doi.org/10.1109/TPWRD.2020.3021702

[12] X. Yang et al., ''A Hybrid Machine-Learning 
Method for Oil-Immersed Power Transformer 

Fault Diagnosis'', IEEJ Transactions on Electri-
cal and Electronic Engineering, vol. 15, no. 4, pp. 
501–507, 2020.
http://dx.doi.org/10.1002/tee.23081

[13] H. Kim and S. Madhavi, ''A Reinforcement Learn-
ing Model for Quantum Network Data Aggrega-
tion and Analysis'', Journal of System and Man-
agement Sciences, vol. 12, no. 1, pp. 283–293, 
2022.
http://dx.doi.org/10.33168/JSMS.2022.0120

[14] J. Jiang et al., ''Dynamic Fault Prediction of Pow-
er Transformers Based on Lasso Regression and 
Change Point Detection by Dissolved Gas Anal-
ysis'', IEEE Transactions on Dielectrics and Elec-
trical Insulation, vol. 27, no. 6, pp. 2130–2137, 
2020.
http://dx.doi.org/10.1109/TDEI.2020.008984

[15] A. G. C. Menezes et al., ''Induction of Decision 
Trees to Diagnose Incipient Faults in Power 
Transformers'', IEEE Transactions on Dielec-
trics and Electrical Insulation, vol. 29, no. 1, pp. 
279–286, 2022.
http://dx.doi.org/10.1109/TDEI.2022.3148453

[16] J. Meng et al., ''Online Monitoring Technology of 
Power Transformer based on Vibration Analysis'', 
Journal of Intelligent Systems, vol. 30, no. 1, pp. 
554–563, 2021.
http://dx.doi.org/10.1515/jisys-2020-0112

[17] J. Zhang et al., ''Applications of Artificial Neural 
Networks in Microorganism Image Analysis: A 
Comprehensive Review from Conventional Mul-
tilayer Perceptron to Popular Convolutional Neu-
ral Network and Potential Visual Transformer'', 
Artificial Intelligence Review, vol. 56, no. 2, pp. 
1013–1070, 2023.
http://dx.doi.org/10.1007/s10462-022-10192-7

[18] Y. Zhang et al., ''Power Transformer Fault Diag-
nosis Considering Data Imbalance and Data Set 
Fusion'', High Voltage, vol. 6, no. 3, pp. 543–554, 
2021.
http://dx.doi.org/10.1049/hve2.12059

[19] L. Wang et al., ''Gaussian Process Multi-Class 
Classification for Transformer Fault Diagnosis 
Using Dissolved Gas Analysis'', IEEE Transac-
tions on Dielectrics and Electrical Insulation, 
vol. 28, no. 5, pp. 1703–1712, 2021.
http://dx.doi.org/10.1109/TDEI.2021.009470

[20] A. Doolgindachbaporn et al., ''Data Driven Trans-
former Thermal Model for Condition Monitor-
ing'', IEEE Transactions on Power Delivery, vol. 
37, no. 4, pp. 3133–3141, 2022.
http://dx.doi.org/10.1109/TPWRD.2021.3123957

[21] Q. Zhou et al., ''Semantic Communication With 
Adaptive Universal Transformer'', IEEE Wire-
less Communications Letters, vol. 11, no. 3, pp. 
453–457, 2022.
http://dx.doi.org/10.1109/LWC.2021.3132067

http://dx.doi.org/10.1016/j.epsr.2018.10.001
http://dx.doi.org/10.33168/JSMS.2022.0226
http://dx.doi.org/10.1109/TPWRS.2020.3037997
http://dx.doi.org/10.1109/TEVC.2020.2967501
http://dx.doi.org/10.1109/TDEI.2021.009770
http://dx.doi.org/10.1108/WJE-11-2019-0339
http://dx.doi.org/10.1002/tee.23069
http://dx.doi.org/10.1017/S1351324921000127
http://dx.doi.org/10.1016/j.asej.2020.12.008
http://dx.doi.org/10.17775/CSEEJPES.2020.04120
http://dx.doi.org/10.1109/TPWRD.2020.3021702
http://dx.doi.org/10.1002/tee.23081
http://dx.doi.org/10.33168/JSMS.2022.0120
http://dx.doi.org/10.1109/TDEI.2020.008984
http://dx.doi.org/10.1109/TDEI.2022.3148453
http://dx.doi.org/10.1515/jisys-2020-0112
http://dx.doi.org/10.1007/s10462-022-10192-7
http://dx.doi.org/10.1049/hve2.12059
http://dx.doi.org/10.1109/TDEI.2021.009470
http://dx.doi.org/10.1109/TPWRD.2021.3123957
http://dx.doi.org/10.1109/LWC.2021.3132067


220 221D. Kou and Y. Su Design of Electronic Voltage Transformer Error Pattern Recognition and Classification Algorithm...

C phases does not exceed 0.1%, indicating that 
this method has good accuracy and high evalu-
ation results in transformer analysis. 
The ratio difference feature refers to the differ-
ence between the measurement results of the 
transformer and the true value, which can pro-
vide important information about the accuracy 
of the transformer measurement. A lower ratio 
difference characteristic value indicates that the 
measurement result is closer to the true value, 
while a higher ratio difference characteristic 
value indicates that there is a significant error 
in the measurement result. In error analysis, 
the ratio difference feature can help determine 
the size and distribution of errors and provide 
a basis for calibration and correction. The an-
gular difference feature refers to the phase dif-
ference in the measurement results of the trans-
former. The phase difference of the transformer 
is crucial for the accuracy and stability of the 
measurement results. A smaller angular differ-
ence feature value indicates that the phase of 
the measurement result is very close to the true 
value, while a larger angular difference feature 
value indicates a significant phase difference, 
which may lead to inaccuracy in the measure-
ment result. In the analysis of transformer error, 
the angular difference feature can provide in-
formation about phase error, helping to deter-
mine the operating status and error mode of the 
transformer. Analyzing the ratio difference and 
angle difference features can comprehensively 
evaluate the error mode and performance of the 
transformer, thereby optimizing the calibration 
and correction strategies of the transformer. 
The ratio difference feature and angle differ-
ence feature are key indicators for evaluating 
the accuracy and stability of transformers.
From a practical perspective, this study pro-
vides a new method for analyzing and evalu-
ating the error of transformers in smart grids. 
The proposed method can be used for the clas-
sification and identification of EVT errors in 
power systems, real-time monitoring of trans-
former accuracy and health status, and timely 
detection and identification of possible error 
patterns. This method exhibits high accuracy 
and stable performance in better identifying 
different types of error patterns. Additionally, 
its real-time monitoring and evaluation ability 
in classifying and identifying error problems 
helps to take corresponding measures for cor-

rection and calibration to ensure the stable op-
eration of the power system. The method is ap-
plied to power systems of different scales and 
properties to meet the needs of various practical 
application scenarios.
By improving the accuracy and monitoring 
effectiveness of transformer error assessment, 
the operational safety of the power system and 
measurement and control protection devices 
can be better guaranteed. This is of great signif-
icance for the power industry, as it can improve 
the stability and reliability of the power grid, re-
ducing potential faults and losses. In future re-
search, in order to further optimize and improve 
data mining-based transformer error analysis 
algorithms, it is necessary to explore more fea-
ture statistics and pattern recognition methods, 
expand the sample size range for transformer 
error data selection, and enhance the monitor-
ing ability of transformer operation status. At 
the same time, the evaluation of the relation-
ship between transformer error and power sys-
tem performance needs to be strengthened and 
strategies for the operation of the power system 
need to be provided. The methods for solving 
Q statistic feature quantities should be enriched 
or deep learning and neural networks methods 
should be introduced to further improve the 
prediction and recognition capabilities of trans-
former errors. With the increasing integration 
of electronic voltage transformers, the devel-
oped error analysis technology provides crucial 
benefits in preventing catastrophic faults and 
power outages through timely diagnosis and 
prediction.
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