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The accuracy of short-circuit fault diagnosis methods 
for power measuring instruments is still low, which 
can directly lead to abnormal power data statistics. 
To address this issue, a convolutional neural network 
is used to construct an automatic diagnosis model for 
short circuit faults in power measuring instruments. 
The model utilizes wavelet packet energy spectrum 
to extract crucial features from the signal. The mod-
el identifies and determines the fault type based on 
the obtained operation characteristic data and the set 
short-circuit fault diagnosis criteria. The Sparrow 
optimization algorithm is used to optimize the mod-
el's parameters and enhance its performance. Experi-
mental analysis revealed that after the signal features 
were extracted by using the wavelet energy spectrum 
distribution, the error value fluctuated in the range 
of 0.00 ~ 0.04 with regard to the measured value 
and was mainly around 0.02. The extracted features 
achieved high accuracy levels. The designed model 
exhibited an average diagnostic accuracy of 97.03%, 
surpassing the other three models by 9.24%, 7.10%, 
and 4.25%. The presented model can improve the pre-
cision and productivity of fault detection, support the 
safety and reliability of power system operations, and 
facilitate the collection and analysis of power usage 
data.
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1. Introduction

Power measurement instruments are front-end 
acquisition components of digital power grids, 
providing parameter data for power parameter 
measurement, power quality monitoring, elec-
trical equipment control, and other tasks. There-
fore, they are widely used in various power con-
trol systems. However, due to factors such as 
the surrounding magnetic field environment and 
equipment aging, short circuit faults often occur 
in power measurement instruments [1–2]. The 
faults in power measurement instruments direct-
ly lead to abnormal statistics of power data, and 
the accuracy of statistical data directly affects 
the decision-making of the power department re-
garding power grid allocation. Therefore, auto-
matic diagnosis of faults in power measurement 
instruments is of great importance. 
Short circuit faults are one of the most common 
types of faults in power measurement instru-
ments [3–4]. Existing fault diagnosis methods 
mainly focus on qualitative analysis, which is 
not highly accurate. The commonly used meth-
od for quantitative analysis is fault tree analysis, 
which is intuitive, easy to understand, and can 
achieve fault analysis and diagnosis. However, 
as time goes by, the fault location also changes 
continuously, and this method determines the 
probability value of the fault cause as a constant, 
which does not match the actual situation [5]. 
Traditional methods for fault diagnosis rely 
heavily on manual detection and qualitative 
analysis, which can be time-consuming, costly, 



74 X. Xu

and prone to human error. Automatic and ac-
curate diagnosis is not achieved through these 
methods. To address these issues, new methods 
for fault diagnosis are needed. This can result 
in misjudgments or missed detections. The 
measurement technology currently in use has 
limited scalability for diagnosing faults in mea-
suring instruments. As the power grid expands 
and power equipment increases, many fault di-
agnosis technologies struggle to achieve ideal 
diagnostic accuracy and efficiency, and face 
challenges in operational stability. 
To address the aforementioned issues, we have 
developed a new automated diagnostic model for 
detecting short circuit faults in power measuring 
instruments. This model incorporates both con-
volutional neural network (CNN) and long and 
short-term memory network (LSTM) approach-
es. The objective is to enable real-time monitor-
ing of power measuring instrument failures and 
ensure the delivery of high-quality power sup-
ply services. The research is innovative in two 
aspects. Firstly, artificial intelligence technolo-
gy is applied to short-circuit fault diagnosis of 
power measuring instruments, which improves 
the accuracy of statistical data of the power sec-
tor. Secondly, the Sparrow search algorithm is 
optimized by using Logistic chaotic mapping, 
and the parameters of the model are optimized 
by using the optimized algorithm, which further 
improves the diagnostic accuracy of the model. 
The research makes two technical contribu-
tions. Firstly, it successfully constructs an au-
tomatic diagnosis model for short circuit faults 
in power measuring instruments based on CNN 
and LSTM. This model enables automatic fault 
diagnosis of power measuring instruments. 
Secondly, it innovatively combines the Sparrow 
search algorithm with Logistic chaotic mapping 
to improve the diagnostic accuracy and gener-
alization ability of the model. The automatic 
diagnosis method proposed can reduce the time 
and cost of manual detection and qualitative 
analysis. Additionally, the proposed model can 
be extended to other fields of fault detection, 
providing a new reference for related areas. 
The paper is organized into 3 parts. The first part 
contains the literature review, which analyzes 
the current research status of the field at home 
and abroad and discusses the limitations and 
application of existing methods for diagnosing 
short circuit faults in power measurement in-

struments. The second part outlines the method 
statement, which provides a detailed descrip-
tion of the technologies used in the research 
and the methods for technical improvement in 
constructing the model. The third part presents 
the experimental analysis, which analyzes the 
performance of the constructed model.

2. Related Work

Scholars both domestically and internationally 
have conducted extensive academic research on 
the diagnosis and analysis of short circuit faults. 
Alloui et al. proposed an effective online diag-
nostic method to improve the reliability and 
safety of industrial facilities by detecting point-
to-point short circuit faults. This method was 
based on the computation and detection of the 
ratio between zero voltage and positive voltage 
symmetrical components. The results showed 
that this method still maintains high reliability, 
speed, and accuracy in diagnosing short circuit 
faults [6].
Khelif et al. discussed the short circuit faults of 
branch capacitors in variable frequency asyn-
chronous motors to improve the performance of 
electromechanical systems. They provided sim-
ulation results for this type of fault and analyzed 
and explained the impact on rectifiers, inverters, 
and asynchronous motor performance [7]. Wang 
et al. aimed to evaluate the fault characteristics of 
different battery packs accurately and reliably by 
calculating the correlation coefficient between 
adjacent battery voltages. Then, they trained a 
principal component analysis model using all 
the correlation coefficient signals. Based on this, 
they designed thresholds based on kernel density 
estimation and comprehensive statistics to mon-
itor all CC signals at each sampling moment and 
determine if a fault has occurred [8]. 
For stator windings, Zhang et al. proposed a 
new diagnostic method for inter-turn short cir-
cuit (SC) faults to achieve accurate and effi-
cient diagnosis. They also analyzed in detail the 
influence of inter-turn fault positions on motor 
magnetic flux and motor parameters through fi-
nite element analysis. The experiment outcomes 
showed that the accuracy of fault detection us-
ing this method is above 90% [9]. Zhang et al. 
invented a fault diagnosis strategy for ensuring 
the safety and reliable operation of electric ve-
hicles by detecting and evaluating internal soft 
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CNN architecture to accurately extract the sleeve 
framework. Then, they proposed a pulse-coupled 
neural network based on simple linear iterative 
clustering to improve the region segmentation 
performance. The experiment outcomes show 
that it achieves a 98% detection accuracy [15].
Numerous methods exist for diagnosing short-cir-
cuit faults in power measurement devices based 
on literature. Among the most utilized methods 
is fault tree analysis. However, fault location is 
continually changing over time, and this method 
ascertains the probability value of the fault cause 
as a constant quantity, which does not align with 
reality. The use of artificial intelligence technol-
ogy has rapidly increased, with Bayes network, 
Petri net, rough set, and artificial neural network 
being commonly used. Although Bayesian net-
works have advantages in fault diagnosis, they 
face difficulties in modeling complex power 
grids, resulting in complicated diagnostic mod-
els and poor scalability. Petri nets can be used for 
identifying faults in transmission lines. Howev-
er, their fault tolerance is limited when new fault 
information is uncertain. Rough set theory has 
a significant advantage in uncertain problems. 
However, this method requires a high level of 
redundancy in fault information, making it dif-
ficult to construct a large fault diagnosis mod-
el for power measuring instruments. Therefore, 
this article presents a new automated diagnostic 
model for detecting short-circuit faults in pow-
er measurement devices, which incorporates 
CNN and LSTM. The proposed model aims to 
improve the accuracy and effectiveness of fault 
diagnosis, indirectly enabling safe power system 
operation and power data analysis.

3. Research Method

The study proposes an automated diagnostic 
model for power meter measurement based on 
the sparrow optimization CNN-LSTM. Firstly, 
the fault sample data is input into the network 
model, and the data preprocessing is performed 
by extracting the wave head and normalizing 
the data. Then, the data are categorized into 
training and test sets. The parameters of the net-
work structure are set using logistic mapping 
and sparrow optimization algorithm. Finally, 
the model determines the fault type and loca-
tion. The following section describes the spe-
cific construction process of the model.

short circuit faults in lithium-ion battery packs. 
This method was based on incremental capacity 
analysis, which extracts fault features from the 
data to make them more easily distinguishable 
from small voltage differences. Then, the local 
outlier factor method was used to calculate the 
uniformly distributed outlier factor values of 
each individual cell in the battery pack to detect 
short circuit faults [10].
CNN is a deep neural network that trains a sam-
ple set using explicit labels. Under the current 
developing stage of deep learning technology, 
its application has become increasingly wide-
spread. Xu et al. used the CNN algorithm in 
deep learning to automatically extract activ-
ity features related to human life, aiming to 
achieve human activity recognition that differs 
from traditional feature extraction methods. 
They optimized the CNN parameters using the 
stochastic gradient descent algorithm to solve 
the problem of human activity recognition [11]. 
Wieczorek et al. proposed a face detection 
model in dangerous scenes for rescue teams' 
aid and, thus, speeding up the search for people 
in need of help. The model used a lightweight 
CNN framework for face detection in danger-
ous situations such as mines and avalanch-
es. The experiment outcomes showed that the 
model detection accuracy is above 99% and the 
precision is above 98% [12]. 
Paraskevopoulos et al. addressed the problem 
of gradual deterioration in three-phase induc-
tion motors in many use cases. They obtained 
signal data by simulating asynchronous motors. 
They invented a wavelet-CNN for detecting 
systematic faults. The experiment outcomes 
showed that this method can identify more dif-
ficult and complex obstacles compared to the 
use of the naked eye [13]. 
Pan and colleagues developed DeepOPF, a deep 
CNN approach, to efficiently and reliably solve 
the security-constrained direct current optimal 
power flow problem. The authors first trained a 
CNN to identify the mapping between loads and 
generations. They then reconstructed the phase 
angle directly using power flow equations from 
the generation and load data [14]. 
Jiang et al. proposed a fault diagnosis method 
for infrared sleeve images by combining image 
segmentation with deep learning. They first built 
a target detection system based on the region 
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3.1. Real Time Data Collection of Power 
Measurement Instruments Based on 
Clustering Fusion

Based on the location of the SC in power meter 
measurement, it can be divided into three types: 
single-phase, two-phase, and three-phase SC. 
The principle of three-phase SC and the equiv-
alent circuit of power meter measurement are 
shown in Figure 1.
In Figure 1 (a), Ra, Rb, Rc, R'a, R'b, R'c are the 
resistance in the line, La, Lb, Lc, L'a, L'b, L'c are 
the corresponding reactance lengths, ia, ib, ic 
represent the current on the three lines, and a, 
b, c represent the three circuits in the figure. In 
Figure 1 (b), P is the active power, Q is the re-
active power, Pref and Qref are the given active 
power reference value and reactive power ref-
erence value respectively, and L represents the 
power supply. Before a three-phase SC fault oc-
curs, the internal operating circuit of the power 
meter measurement is always in a steady state. 
When a three-phase SC appears at point P in 
Figure 1, the circuit will be divided into two 
independent circuits: The upper circuit directly 
connected to the three-phase power system, and 
the power from the system will still flow into 
this circuit and concentrate at point P, causing a 
rapid increase in current and a decrease in volt-
age in the upper circuit. For the lower circuit, 
the current and voltage will decrease from their 
initial values at the moment of the SC to zero.  

The expression of the total current at the mo-
ment of the SC is shown in Equation (1).
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In Equation (1), θ represents the power source 
voltage initial phase angle, UN represents the 
rated phase voltage of the power system, xs 
represents the transient reactance of the pow-
er system, σ represents the total leakage reac-
tance coefficient, Ts represents the transient 
time constant of the upper circuit, Tτ represents 
the transient time constant of the lower circuit, 
Ipm is the periodic component amplitude of the 
SC current, and φ means the SC current peri-
odic component amplitude and impedance an-
gle. The calculation methods for Ipm and φ are 
shown in Equation (2).
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In Equation (2), Q represents the total charge 
flow in the circuit, R represents the resistance 
value, and L represents the reactance length. 

Figure 1. Generation principle of three-phase SC and equivalent circuit of power 
measuring instrument.
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Based on this, the principle of the short circuit 
fault in power meter measurement and the cur-
rent and voltage characteristics are obtained. 
Combined with the measurement error of the 
meter, the criteria for fault diagnosis are set as 
shown in Figure 2.
According to this criteria, the data can be used 
for determining the existence of SC fault in the 
power meter measurement. Before conducting 
fault detection, real-time operating data of the 
power meter measurement needs to be collect-
ed automatically. The study selected a running 
signal acquisition card connected to the power 
meter measurement, initialized the driver pro-
gram, and set the parameters for the acquisition 
card and A/D conversion [16]. After complet-
ing the initialization process, the acquisition 
signal for the meter's operating data is exe-
cuted, and the results are output. In order to 
achieve automated data acquisition, the study 
designed an automatic acquisition interval of 
0.5s for the acquisition card, with a continuous 
acquisition time of 12 hours. To achieve auto-
matic acquisition of signal data, the acquisition 
card's automatic acquisition time must be set. 
In power systems, the data from power measur-
ing instruments changes rapidly. If the acquisi-
tion interval is too long, it may cause a delay 
in data acquisition. Therefore, the automatic 
collection interval is set to 0.5 seconds, taking 
into account the actual situation. It is important 
to note that data collection from power mea-
suring instruments requires system resources. 
To prevent excessive consumption of system 

resources, the study has set the continuous 
collection time to 12h. The above settings en-
able the rational use of system resources and 
improve the efficiency and accuracy of data 
acquisition while ensuring real-time data ac-
quisition. Additionally, this setting facilitates 
power measuring instrument fault detection 
and diagnosis, enhancing the stability and reli-
ability of the power system. The collected op-
erating data of the power meter measurement 
includes the operating current and voltage, 
which are sampled using digital signals. The 
sampling principle is shown in Equation (3).
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In Equation (3), N represents the number of 
samples per cycle, u(n) represents the voltage 
values of the various lines of the power meter 
measurement, and i(n) represents the current 
values of the various lines of the power meter 
measurement. The real-time output results of 
the power meter measurement collected by the 
acquisition device will be clustered and fused to 
obtain the final acquisition results. Based on the 
above content, the study has achieved automat-
ed data acquisition of real-time operating data 
for power meter measurement.

Figure 2. Setting fault diagnosis criteria.
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3.2. Training and Construction of Fault 
Diagnosis Model Based on CNN and 
Data Collection

Before conducting detection and recognition, it 
is necessary to extract the signal variation fea-
tures from the data using artificial intelligence 
techniques. The study used wavelet packet en-
ergy spectrum to obtain important features of 
the signal. The wavelet packet technique di-
vides the original signal into multiple mutually 
independent frequency bands. When a SC fault 
appears in the transmission line, the energy of 
the line will undergo significant changes due 
to the impact of the SC current, and the energy 
characteristics of each frequency band will also 
differ. The nature of the fault can be determined 
by analyzing the energy distribution of each 
frequency band. 
The fault diagnosis model of the deep neu-
ral network requires the input sample set to 
be in a two-dimensional matrix format, while 
the fault signals obtained from the system are 
one-dimensional [17]. Therefore, it is neces-
sary to convert the one-dimensional signal into 
a two-dimensional matrix. The representation 
of the two-dimensional sample set is shown in 
Equation (4).
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In Equation (4), h represents the number of 
fault features for each fault sample, and m rep-
resents the number of sampling points for each 

fault feature. If the original fault signal displays 
significant fluctuation before and after the fault, 
using it to train a deep neural network model 
can result in a biased model that underestimates 
smaller values. Therefore, the study normalized 
the collected data, and the calculation method is 
shown in Equation (5).
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In Equation (5), yi represents the normalized 
result, ymax and ymin represent the max and min-
imum interval values of the normalized result 
of the original signal, respectively. The fault 
diagnosis of the power meter measurement in 
the study first needs to identify the fault nature 
of the data, which mainly includes the fault 
location and fault type. The study used CNN 
for fault recognition, and the network structure 
for fault recognition using CNN is shown in 
Figure 3.
The convolutional layer achieves feature map-
ping by sliding a 2D convolutional kernel over 
the input matrix and performing inner product 
operations. Starting from the top-left corner 
of the input matrix, the shared convolutional 
kernel slides and performs inner product oper-
ations with the corresponding positions of the 
input matrix. After traversing the input matrix 
with a 2×2 convolutional kernel, a feature map 
is obtained. The extraction of fault features by 
the convolutional layer is influenced by various 
factors, so it is necessary to clarify the rela-
tionship between the size of the input matrix, 

Figure 3. Network structure of CNN used for fault identification.



79Automatic Diagnosis Method for Short Circuit Faults in Power Measurement Instruments Based on CNN

the convolutional kernel's size and number, the 
sliding stride, and the size of the output matrix 
[18]. The relationship is represented in Equa-
tion (6).
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In Equation (6), h1 × w1 × d1 represents the 
size of the input matrix, h2 × w2 × d2 represents 
the size of the output matrix, a × b is the con-
volutional kernel size, K is its number, and S 
represents the sliding stride. The convolution 
operation completes the linear activation re-
sponse of the input to obtain the output feature 
map, and further extracts fault features using 
non-linear activation [19]. To alleviate the 
problem of gradient vanishing and promote 
sparsity in network representation, the study 
utilizes the ReLU as the activation function. 
The calculation method of the activation func-
tion is Equation (7).

f (x) = max(0, x)                   (7)

Max pooling is used to denoise the data. The 
fault feature extraction network passes the ex-
tracted fault features from the input samples 
through multiple layers of convolution and 
pooling to the fault classification network, 
which then performs classification output. The 
study employs the softmax function to precisely 
classify the output of fault features in the fault 
classification network. This is accomplished 
by linearly connecting the output features and 
emphasizing the overall input layer information 
and correlation with output nodes. The specific 
calculation method is shown in Equation (8).
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In Equation (8), vi is the weighted sum of the  
i-th node, and M is the number of output nodes. 
After feature extraction and collection, input it 
into the CNN model for training and recogni-
tion. The overall structure of the line fault iden-
tification method combining wavelet packet en-
ergy spectrum and CNN is shown in Figure 4.

Figure 4. Overall structure of line fault identification method combining wavelet packet 
energy spectrum and convolutional neural network.
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3.3. Design of Optimization Strategy for 
Fault Diagnosis Model Integrating 
LSTM and Sparrow Optimization 
Algorithm

The parameters of a deep learning network can 
significantly impact the final diagnostic results. 
Therefore, the sparrow intelligent search algo-
rithm is utilized to optimize the model parame-
ters. More specificaly, the study adopts a spar-
row intelligence search algorithm for parameter 
optimization. For the individuals in the popula-
tion, initial positions significantly impact opti-
mization performance of the swarm intelligence 
algorithm itself. If the initial positions are too 
concentrated, they are prone to getting stuck in 
local optima and have slow convergence speed. 
Therefore, randomly generating initial posi-
tions cannot guarantee the stability of the opti-
mization performance of the algorithm [19–20]. 
To address this, the study introduces the Logis-
tic chaotic mapping to initialize the population 
distribution. The specific calculation method is 
shown in Equation (9).

xk + 1 = μ xk (1 - xk)                   (9)

In Equation (9), x ∈ [0, 1], μ ∈ [0, 4], k ∈ Z,  μ 
is the chaotic parameter, and k is the number 
of iterations for the chaotic mapping calcula-
tion. The distribution of the sparrow population 
corresponds to the acquired hyperparameters. 

Changes in the chaotic parameter, demonstrat-
ed in Figure 5, produce changes in the sparrow 
population distribution through the Logistic 
chaotic sequence.
When the chaotic parameter is 4, the variable 
values generated by the Logistic mapping are 
mapped to the positions of the sparrow individ-
uals, achieving population initialization. This is 
expressed in Equation (10).

x = xlb + (xlb - xub) xk+1           (10)

In Equation (10), xlb is the upper limit of the 
position of each individual in the sparrow pop-
ulation, xub is the lower limit of the position of 
each individual in the sparrow population, and x 
is the initialized position of the individual after 
the Logistic mapping. The real-time operation-
al feature data extracted from the power meter 
is matched and compared with the set criteria 
for SC fault diagnosis to determine whether the 
current device has a short circuit fault and de-
termine the SC fault type.
To ensure reliable functioning of the power 
measuring instrument, it is crucial to devel-
op a fault location network that can precisely 
and effectively determine the distance of the 
line fault. This is important because the pow-
er measuring instrument is influenced by both 
internal components and timing characteristics. 
The CNN-LSTM fusion network combines the 

Figure 5. Distribution of Logistic chaotic sequence with changes of chaotic parameters.
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distinctive features of the CNN and LSTM net-
works to achieve swift and precise positioning. 
The fault diagnosis CNN-LSTM model consists 
of an input layer, a CNN convolutional layer, 
an LSTM hidden layer, a Dropout layer, a fully 
connected layer, and an output layer. To prevent 
overfitting, random inactivation is used during 
dropout processing at the fully connected layer. 
The fault sample data is processed in the CNN 
convolutional layer before being passed to the 
LSTM hidden layer. The data passes through 
the Dropout and fully connected layers before 
reaching the output layer to determine the final 
fault location. The specific architecture of the 
model is shown in Figure 6.
The hidden layer applies the tansig transfer 
function, with an output value range of [-1, 1]. 
Equation (11) details the calculation method.

2( ) 1
1 xf x

e−= −
+                  

 (11)

The trainlm transfer function is used in the 
output layer. The positions of the discoverer, 
entrant, and alert sparrow in the sparrow algo-
rithm are updated through calculation. After the 
position update, the fitness value of individual 

sparrows is calculated. If the fitness value of an 
individual sparrow was smaller before the po-
sition update, it remains unchanged. However, 
if it was greater, then the sparrow population is 
updated and adjusted [20–21]. If the maximum 
number of iterations is reached, the optimal pa-
rameter is assigned to CNN-LSTM. 
The root mean square error (RMSE) accurately 
reflects the discrepancy between the fault loca-
tion result and actual fault distance and assesses 
the stability of the fault location effect. There-
fore, the study adopts it as the loss function for 
the training process, with the calculation meth-
od presented in Equation (12).
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In Equation (12), X is the set of fault samples, 
h is the network model referenced in fault loca-
tion, n is the number of fault samples, h(xi) rep-
resents the location result of the network model 
for the i fault sample, and yi is the actual loca-
tion result of the i fault sample. The optimized 
parameter settings are shown in Table 1.

Figure 6. Architecture of the model.
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tion. During the training process, the model is 
constantly modified and improved using the 
loss function [22]. The optimized parameters 
obtained through the above steps construct the 
automatic diagnostic model for short circuit 
faults in power meters based on the improved 
CNN-LSTM. The specific process of the model 
is shown in Figure 7.

To address the issue of model overfitting and 
simulation data errors, this paper collects re-
al-time data using collection cards to obtain 
rich datasets that enhance the model's gener-
alization ability. Additionally, dropout regular-
ization method is employed to prevent overfit-
ting, and the model's complexity is constrained 
by adding a penalty term to the objective func-

Table 1. Model parameter settings optimized by the sparrow search algorithm.

Argument Value

Sparrows 10

Number of iterations 100

Training rounds 200

Batch size 60

Sequence input layer data dimension 240,2

Network parameters of the first layer 2-D convolution layer 5×1, 47, [2]

Network parameters of the second layer 2-D convolution layer 6×1, 63, [2]

Number of neurons in the LSTM layer 36

Output dimension of the fully connected layer 1

Figure 7. Flow of power measuring instrument short-circuit fault automatic diagnosis model.



83Automatic Diagnosis Method for Short Circuit Faults in Power Measurement Instruments Based on CNN

4. Result and Discussion

4.1. Improvement Effect of Fault 
Diagnosis Model

DD238 and DB2 are single-phase and two-
phase meter equipment, respectively, while 
DS864 and DT862 correspond to three-phase 
three-wire meter and three-phase four-wire me-
ter. The experiment involved testing 600 sam-
ples of four types of power measuring instru-
ments from the test set, with each type having 
150 experimental samples. In the initial state, 
all meter samples were free of faults, and some 
samples were artificially set and damaged to 
introduce short circuit faults. The study used 
the sparrow search algorithm improved by the 
Logistic mapping for parameter optimization 
of the model. To verify the optimization effect, 
the training conditions of the model were com-
pared and analyzed, including LSTM, CNN, 
and the unimproved CNN-LSTM. The specific 
comparison is shown in Figure 8.

According to Figure 8, from the change in the 
loss function, it can be observed that in the ini-
tial training stage, the generated samples do 
not possess the characteristic information con-
tained in real samples [23]. The discriminator 
can easily distinguish between real and fake 
input samples, resulting in a large value of the 
loss function. After 834 iterations, the mod-
el has learned some features of the samples, 
and the loss function shows significant oscil-
lations, indicating that the discriminative per-
formance of the model is not yet stable [24]. 
After 1000 iterations, the loss function value 
of the improved CNN-LSTM approaches zero. 
Comparing the four models in the figure, the 
improved CNN-LSTM model has a signifi-
cantly faster convergence speed. Compared 
to LSTM, CNN, and the unimproved CNN-
LSTM, the iterations are reduced by 389, 408, 
and 218, respectively. This indicates that the 
sparrow search algorithm can effectively opti-
mize the model and improve its convergence. 
To further validate the training effect, the study 
compares the training time, loss function val-
ue, training accuracy, and testing accuracy of 
the four models. The comparison is presented 
in Table 2.

Figure 8. Loss function curves of different models.
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From Table 2, the improved CNN-LSTM mean 
training time is 253.91s. The average running 
time of CNN-LSTM, CNN, and LSTM is 
384.26s, 436.02s, and 420.77s, respectively. 
Thus, the improved CNN-LSTM has the short-
est training time. The average training accuracy 
of the improved CNN-LSTM reaches 96.36%, 
which is 7.00%, 6.59%, and 4.59% higher 
than that of LSTM, CNN, and the unimproved 
CNN-LSTM, respectively. The average testing 
accuracy of the improved CNN-LSTM reach-
es 96.66%, which is 7.38%, 7.22%, and 4.89% 
higher than that of LSTM, CNN, and the un-
improved CNN-LSTM. The improved model 
has achieved gain in both diagnostic accuracy 

and efficiency. This is because the sparrow op-
timization algorithm optimizes the initial pa-
rameters of the model, allowing the model to 
achieve higher accuracy. 

4.2. Model Feature Extraction Effect

The study uses wavelet packet energy spectrum 
and CNN for feature extraction of short circuit 
fault samples. To verify the effectiveness of fea-
ture signal extraction, the study uses the model 
to extract features from power meter signal data 
and compares them with the actual values [25]. 
The comparison results are shown in Figure 9.

Table 2. Training results comparing.

Project Training time (s) Loss function value Training  
accuracy (%) Test accuracy (%)

Improved  
CNN-LSTM 253.91 0.148 96.36 96.66

CNN-LSTM 384.26 0.281 92.14 91.77

CNN 436.02 0.346 89.77 89.44

LSTM 420.77 0.356 89.36 89.28

Figure 9. Comparison of model extraction features with measured values.
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Utilizing wavelet energy spectrum distribu-
tion to extract signal features resulted in error 
values remaining in the range of 0.00 to 0.04 
in comparison to the actual values, as shown 
in Figure 9. The majority of error values were 
concentrated around the value 0.02. This indi-
cates that the feature extraction method used 
in the study can ensure the accuracy and reli-
ability of the obtained power meter signal data, 
providing a more reliable basis for subsequent 
short circuit fault diagnosis [26]. The real-time 
operation data collection results of the research 
object 001, obtained through feature extraction, 
are shown in Figure 10.
From Figure 10, the operation data of all re-
search objects can be obtained, which serves as 
the initial data for fault diagnosis, and ultimate-
ly leads to the final fault diagnosis results.

4.3. Performance Analysis of Fault 
Automation Diagnosis Model

To verify the diagnostic performance of the 
designed short circuit fault diagnosis mod-
el (Model 1) in the study, it is compared with 
three commonly used short circuit fault diag-
nosis models. The compared models include a 
SC fault diagnosis model based on fast Fourier 
transform and LSTM (Model 2), a SC fault di-
agnosis model based on coefficient deep for-
est (Model 3), and a SC fault diagnosis model 
based on temporal convolutional residual net-
work (Model 4). Under different sample quanti-
ties, the four models are used to diagnose short 
circuit faults in the samples, and the diagnostic 
results for each type of short circuit fault are 
shown in Figure 11.

Figure 10. Collection result of real-time operation data of 001 sample.

Figure 11. Comparison of short-circuit diagnosis of samples by the model.
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Figure 11 shows that as the number of sam-
ples increases, the diagnostic accuracy of each 
model decreases to varying degrees. This is due 
to the gradual increase in sample size, the in-
crease in model running load, and fluctuations 
in diagnostic performance. Model 1 has an av-
erage diagnostic accuracy of 96.46%, which 
is higher than the average diagnostic accuracy 
of the other three models by 13.24%, 10.89%, 
and 8.15%. Furthermore, Model 1 exhibited the 
smallest decrease in accuracy when the sample 
size increased from 10 to 600, with a decrease of 
only 2.14%. In contrast, the other three models 
all showed a decrease of over 5%. The change 
curve of Model 1 is consistent with the output 
of the sample model, as shown in Figure 11 (a), 
where the diagnostic result curve of Model 1 
has a fitting degree of 0.92 with the output of 
the sample model, and the trend is consistent 
with the actual detection results. Based on the 
above content, Model 1 has the best diagnostic 
performance and good stability for power meter 
diagnosis. To further validate the performance 
of the model, the study applies the four mod-
els to diagnose different types of short circuit 
faults under the same number of samples. The 
obtained diagnostic results are shown in Table 3 
[27–28].
From Table 3, Model 1 running time is 115.67s, 
102.19s, and 88.64s less than that of Model 2, 
Model 3, and Model 4, respectively. The aver-
age diagnostic accuracy of Model 1 is 97.03%, 
which is 9.24%, 7.10%, and 4.25% higher than 
of the other models. The designed short circuit 
fault diagnosis model in the study can achieve 
real-time and high-precision fault diagnosis for 

power meters, ensuring quality provisioning of 
power supply services [29].
To assess the model performance comprehen-
sively, the study rigorously benchmarks pub-
lic datasets using an objective approach. The 
PEDL dataset is selected as the test data, and 
the same dataset is used to test each model to 
ensure consistency of test conditions. Objec-
tive metrics such as precision, recall rate, and 
F1 score are introduced before performing sta-
tistical significance tests. Multiple models are 
used concurrently for fault diagnosis and local-
ization, and their test results are compared. The 
model is then optimized and improved based on 
the benchmark test results. The specific results 
of the benchmark tests are presented in Table 4.
Table 4 of the publicly available data set PEDL 
shows that Model 1 outperforms other models 
in terms of precision, recall rate, and F1 score, 
with statistically significant differences. This 
indicates that the short-circuit fault diagnosis 
model proposed in this paper has a superior di-
agnostic effect on the PEDL data set. However, 
other models still perform relatively well, albeit 
with a certain gap compared to Model 1. The 
running time of the models is analyzed to eval-
uate their performance in practical applications. 
The tests show that Model 1's running time de-
creases significantly compared to other models. 
These results demonstrate that the short-circuit 
fault diagnosis model developed by our re-
search not only has high diagnostic accuracy 
but also has outstanding real-time performance 
and scalability, making it suitable for practical 
applications.

Table 3. Comparison of diagnostic results of the four models.

Model Detection 
time (s)

Diagnostic accuracy (%)

Barrier free
Single-phase 
earth short 

circuit

Two-phase 
ground short 

circuit
Two-phase 

short circuit
Three-phase 
short circuit Total

Model 1 226.78 96.88 97.08 98.99 96.44 95.78 97.03

Model 2 342.45 86.48 88.49 88.47 87.63 87.86 87.79

Model 3 328.97 90.45 89.46 89.77 89.88 90.10 89.93

Model 4 315.42 92.48 92.85 93.01 92.77 92.78 92.78
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5. Conclusion

Fault diagnosis is a crucial method in power sys-
tems that power enterprises have recently prior-
itized. To improve the accuracy of short-circuit 
fault diagnosis in power measuring instruments, 
a CNN-based short-circuit fault diagnosis mod-
el has been developed. By utilizing CNNs and 
wavelet packet energy spectrum, significant sig-
nal features were identified. The Sparrow search 
algorithm and LSTM were used to optimize the 
model, resulting in automatic determination of 
fault type based on operational characteristic 
data. 
The experimental results indicated that the itera-
tions of CNN-LSTM optimized by the Sparrow 
search algorithm were reduced by 389, 408, and 
218 times, respectively, compared to LSTM, 
CNN, and unimproved CNN-LSTM. This in-
dicated that the sparrow search algorithm can 
significantly improve the model and signifi-
cantly improve the convergence performance 
of the model. The CNN-LSTM model showed 
an average test accuracy of 96.66%, which was 
higher than the accuracy of LSTM, CNN, and 
unimproved CNN-LSTM by 7.38%, 7.22%, and 
4.89%, respectively. Therefore, the enhanced 
model's diagnostic accuracy is significantly 
higher. 
To conduct a comprehensive evaluation of the 
model, this study compared it with existing im-
proved models. The results showed that Model 
1 had a significantly shorter running time than 
Model 2, Model 3, and Model 4, with differ-
ences of 115.67s, 102.19s, and 88.64s, respec-
tively. Additionally, Model 1 had a higher di-
agnostic accuracy, averaging at 97.03%, which 
represents an improvement of 9.24%, 7.10%, 
and 4.25% compared to the other three models. 
Model 1 displayed greater accuracy, recall rate, 

and F1 score compared to its counterparts on the 
PEDL public dataset. The observed disparities 
were statistically significant. 
This study showed that the short-circuit fault di-
agnosis model designed in this paper performs 
better and has a better diagnostic effect on the 
public dataset. The model proposed in this paper 
efficiently and accurately diagnoses short circuit 
faults in power measuring instruments. This pro-
vides a basis for subsequent maintenance of the 
power system. Compared with traditional fault 
diagnosis methods, this model has higher accu-
racy and real-time performance, which can bet-
ter meet the needs of modern power systems for 
fault diagnosis. 
The study utilized the sparrow search algorithm 
to optimize short-circuit fault diagnosis models, 
resulting in improved convergence performance 
and diagnostic accuracy through continuous it-
eration and optimization. The study combines 
CNN with LSTM to extract fault features from 
power meters, and then further processes and an-
alyzes these features by LSTM, finally achieving 
high-precision diagnosis of short-circuit faults. 
The model designed in this study has certain ad-
vantages in accuracy and runtime compared to 
other advanced models.
Deep learning-based fault diagnosis networks are 
diagnostic models trained on existing samples. 
The model presented in this paper has only been 
focused on short-circuit faults. However, in prac-
tical applications, there are still various types of 
faults, such as open circuit, overload, and others. 
Therefore, future research can further expand 
the model to achieve accurate diagnosis of more 
types of faults. Although the presented model 
has achieved some results, it still requires con-
tinuous optimization and improvement in practi-
cal applications. Future research can enhance the 

Table 4. Benchmarking results for the four models.

Project Model 1 Model 2 Model 3 Model 4 P

Precision (%) 95.84 80.44 85.15 89.47 0.002

Recall (%) 94.88 80.87 85.67 90.17 0.001

F1 0.95 0.81 0.84 0.90 0.002

Detection time (s) 128.41 241.41 228.21 200.85 0.003
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model's performance by increasing the sample 
size, improving the network structure, and using 
other methods. Additionally, this model can be 
applied to other types of power equipment fault 
diagnosis to expand its application scope.
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