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With the popularization of the Internet, network secu-
rity issues have also emerged. In response to network 
security issues, there are certain shortcomings in cur-
rent network intrusion detection technologies. To im-
prove and optimize this technology, a network intru-
sion detection model based on genetic algorithm and 
improved negative selection algorithm is designed. 
The generation of detectors in the selection algorithm 
is replaced by genetic algorithm, and the non-self spa-
tial distribution of detectors is optimized. This paper 
proposes a network intrusion detection model using 
a genetic algorithm-improved negative selection al-
gorithm (GA-INSA) and an improved LeNet-5 CNN. 
The GA enhances detector generation and distribu-
tion in NSA while SMOTE handles class imbalance 
for CNN. Experiments show GA-INSA has over 9% 
higher accuracy than NSA, SVM and GA-BP across 
different data sizes. The improved LeNet-5 demon-
strates superior accuracy and recall rates by over 20% 
over the baseline LeNet-5. However, more compre-
hensive evaluation on public datasets, design details 
on architectures, and discussion around limitations are 
warranted. The data shows that the designed network 
intrusion detection model has better performance. The 
model can provide technical support for network in-
trusion detection in reality and can enrich the content 
of network intrusion detection technology. 
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1. Introduction

In modern society, the Internet is ubiquitous and 
exists in all aspects of people's lives. However, 
behind the convenience of the internet, there 
are many network security issues hidden, which 
also pose a significant threat to human lives and 

social stability [1–2]. To address the complete 
network problem, network intrusion detection 
(NID) technology has emerged and has been 
developed for over 40 years now. However, 
the traditional NID technology also has its own 
shortcomings. For example, if the system per-
formance is not strong enough, it is difficult 
to keep up with the update speed of network 
intrusions, and it is difficult to classify attack 
types with low data volume [3]. Many schol-
ars are also conducting research and attempting 
to solve these problems. Researchers such as 
N. Tran et al. analyzed different techniques for 
handling imbalanced data, aiming to find the 
best technique for it [4]. With the development 
of technology, deep learning and artificial im-
mune systems' algorithms have gradually been 
applied to NID and become hotspots in this field 
[5]. The main problem in finding solutions for 
network intrusion is improving the accuracy of 
detection models and minimizing false alarms. 
However, NID technology based on deep learn-
ing and artificial immune systems' algorithms 
also has certain shortcomings. For example, 
with poor flexibility, it is easy to miss alarms and 
detect when facing large amounts of data, and 
the detection rate is lower when the distribution 
of attack types is uneven and the data volume 
is small. In addition, different algorithms also 
have the disadvantages of low detection rate 
and high false alarm rate (FAR) when detect-
ing network intrusions. The artificial immune 
systems' negative selection algorithm is prone 
to defects such as detector coverage and high 
redundancy when detecting network intrusions. 
This study proposes a NID model based on a 
genetic algorithm (GA) to improve the negative 
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selection algorithm (NSA). The paper aims to 
replace detector generation with GA and opti-
mize the non-self generating spatial distribution 
of the detector. The study also designs a NID 
model based on improved LeNet-5 and uses it 
as an effective supplement to the GA-improved 
NSA model. The purpose is to improve the effi-
ciency of network intrusion detection, solve the 
detector problem of artificial immune systems' 
NSA, and avoid uneven distribution of attack 
types. There are two innovative points. The first 
is to use GA to improve NSA. The second is to 
improve LeNet-5 by using Synthetic Minority 
Oversampling Technique (SMOTE). This study 
aims to improve NID by introducing new tech-
nologies. The study consists of four parts. The 
first part is an overview of literature related to 
NID. The second part is the specific design pro-
cess of the proposed method. The third part is 
the result analysis and performance verification 
of the designed model. The fourth part is the 
conclusion.

2. Related Works

The development and popularization of the In-
ternet have brought many conveniences to peo-
ple's lives, but also brought many risks, such 
as information leakage and illegal intrusion. 
To avoid losses caused by illegal intrusion, 
numerous scholars have deeply studied NID. 
X. Kan et al. proposed an intrusion detection 
method based on adaptive particle swarm op-
timization (PSO) convolutional neural network 
(CNN) to improve the accuracy of NID. The 
structural parameters of CNN were optimized 
using the PSO algorithm. In addition, the study 
also introduced a new evaluation method that 
involves probability prediction and labeling. 
To verify the effectiveness of the method, mul-
tiple evaluation indicators and multiple exper-
iments were used in this study. The proposed 
NID method was effective and had certain ad-
vantages [6]. Experts such as H. Qiu et al. pro-
posed a new adversarial attack to protect deep 
learning intrusion detection models. This study 
replicated the black box model through data 
extraction and used saliency maps to illustrate 
the impact of packet attributes on detection re-
sults, quickly generating adversarial examples. 

It showed that when malicious data packets 
were modified by less than 0.049% bytes, this 
method could achieve a success rate of 94.27% 
[7]. To reduce the computational complexity of 
NID systems, scholars such as M. N. Injadat et 
al. proposed a multi-level optimization based 
maximum likelihood NID system framework. 
This study determined the size of training sam-
ples and validates the effectiveness of the pro-
posed framework through multiple datasets. 
The number of training samples and feature 
sets of this framework had been significant-
ly reduced, and the detection accuracy could 
reach 98% [8]. To better protect network secu-
rity, Y. He et al. designed an intrusion detection 
algorithm that combines deep neural networks 
with CNN, and they tested the activation func-
tion and parameters of the algorithm. When 
using the corrected linear unit activation func-
tion, the proposed algorithm had the best rec-
ognition performance [9].
To solve the problem of high computational 
complexity in NID models in wireless sensors, 
scholars such as R. H. Dong et al. had designed 
an intrusion detection model that integrated the 
information gain rate and bagging algorithm. 
This model selected the features of node traf-
fic data in sensors and designed an integrated 
classifier to train the optimized decision tree. 
Compared with existing baseline methods, the 
proposed method had a higher detection accu-
racy [10]. M. Wei et al. constructed a secure 
network framework to address the network at-
tacks faced by wireless sensors and detected 
network traffic data through normal profiles. 
Meanwhile, the study also constructed a test-
ing platform, which can be applied to most 
wireless sensor networks with low false posi-
tive rate and high accuracy [11]. X. Zhou et al. 
designed a hierarchical adversarial attack gen-
eration method to respond to unknown types 
of attacks. In addition, it also constructed an 
intelligent mechanism based on saliency graph 
technology and proposed a hierarchical node 
selection algorithm based on restart random 
walk. Finally, a comparison between the pro-
posed method and the existing four baseline 
methods showed that this method had better 
performance [12]. H. Jagruthi et al. designed 
a method that combines features and bidirec-
tional recursive CNN to improve the NID ef-
ficiency. This method involved CNN and bi-
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to the LeNet-5. It is also used as an effective 
supplement to the GA-INSA detection model. 
The NSA is one of the classic artificial immune 
systems' algorithms and has been extensively 
applied in NID [15]. The key role of NSA in 
intrusion detection is to generate detectors, 
while also ensuring that it does not mistaken-
ly recognize its own data [16]. The advantage 
of NSA is that it can generate infinite non-self 
detectors through a small amount of non-self 
data. Figure 1 outlines the flowchart of the tra-
ditional NSA.
In Figure 1, the process of the NSA is segment-
ed into two modules, i.e. the detector genera-
tion and the anomaly detection modules. The 
first step of the NSA is to define the self set, the 
second step is to randomly generate a detec-
tor, and the third step is to match the detector 
with the self set. If the matching result is yes, 
then the detector is deleted. Otherwise, the de-
tector in the mature detector set is displaced. 
The fourth step is to match the mature detector 
with the data to be tested. If the matching result 
is yes, it is determined that the detector is an 
abnormal sample, otherwise it is considered a 
normal sample [17]. However, NSA also has 
certain problems, such as the uneven distribu-
tion of detectors in non-self space, known as 
the ''black hole'' problem [18]. Based on this 
issue, this study uses GA to improve NSA. The 
specific improvement measure is to replace the 
generation of detectors with GA and optimize 
the non-self spatial distribution of detectors. 
Afterwards, NSA is used to perform self tol-
erance of the detector and reduce the dimen-
sionality of data features. When generating a 
detector, the total genetic algebra will be set 
first, and then the detector will be generated. 
The generation of detectors mainly consists of 
six steps, namely encoding, forming the initial 
population, determining the fitness function, 
selection, crossover, and mutation. The gen-
eration of the detector will not proceed to the 
sixth step until the initial set maximum genetic 
total number is reached. The mutation opera-
tions will be used to improve the local search 
performance of the algorithm. In addition, in 
the selection process, the study uses the rou-
lette wheel selection method to select individ-
uals. The process of a GA-INSA NID model is 
shown in Figure 2.

directional long-term and short-term memory, 
with average accuracy of 97.98% and 91.45% 
in binary and multi-class classification, re-
spectively, showing good superiority [13].
In summary, there are currently many stud-
ies on NID, involving a variety of algorithms. 
However, these studies also have certain short-
comings, such as insufficient flexibility in 
intrusion detection, insufficient system per-
formance, and uneven distribution of attack 
types. Based on these issues, this study inno-
vatively improves the current popular NSA 
and LeNet-5 structure. A NID model based 
on GA-improved NSA (GA-INSA) and an 
improved LeNet-5 NID model have been de-
signed to enhance and optimize NID technol-
ogy, i.e. GA-INSA NID model and iLeNet-5 
NID model.

3. Research Model

In response to the improvement of NID tech-
nology, this study designed a GA-INSA NID 
model. The GA was used to replace the gen-
eration of the detector and the non-self spatial 
distribution of the detector was optimized. In 
addition, in response to the shortcomings of the 
GA-INSA NID model when dealing with data-
sets with multiple feature attributes, the study 
also designed an iLeNet-5 NID model [14]. By 
using SMOTE to process imbalanced datasets, 
it was used as an effective supplement to the 
GA-INSA model.

3.1. Design of NID Model Based on 
Improved NSA

To improve the NID technology, this study has 
made improvements to the currently popular 
NSA and LeNet-5 structures. Firstly, the study 
aims to address the issues of existing NSAs on 
detectors by improving the NSA. There is an 
issue of uneven distribution of attack types, 
and the improved NSA has shortcomings in 
handling abundant feature attribute datasets. A 
NID model based on synthetic minority class 
oversampling technique is designed to ad-
dress these issues, and improvements are made 
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In Figure 2, the first step of the GA-INSA NID 
model is data preprocessing, the second step is 
population encoding, and the third step is fit-
ness calculation. The fourth step is to determine 
whether the number of iterations has reached 
its maximum [19]. If the result is yes, the algo-
rithm proceeds to the next step. Otherwise, it 
is required to perform the selection, crossover, 
and mutation operations in sequence, and then 
return to the third step. The fifth step is to op-
timize and balance the subsets. The sixth step 
is to match the self set with the optimized bal-
anced subset. If the matching result is yes, the 
detector is deleted, otherwise, the detector is 
placed into the mature detector set. The seventh 
step is to match the mature detector set with the 
non self set. If the matching result is yes, it is 

determined that the data is abnormal, i.e. it rep-
resents intrusion data, otherwise it represents 
normal data. Due to the use of the NSL-KDD 
dataset in the study, which has the characteris-
tics of multiple feature attributes and is relative-
ly complex overall [20], data processing is con-
ducted to facilitate the operation of the model. 
There are three main steps in data preprocess-
ing, with the first step being normalization. The 
specific normalization formula is equation (1).

min'
max min

c

c c

∂ −
∂ =

−                    
 (1)

In equation (1), ∂ represents the data being pro-
cessed. c is the serial number of the record at-
tribute. minc and maxc are the min and max val-
ues of each record attribute, respectively. Step 

Figure 1. The process of traditional NSA.

Figure 2. The flow of GA-INSA NID model.
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2 is to digitize the character data, and step 3 
is to use Principal Component Analysis (PCA) 
to reduce the dimensionality of the dataset. The 
main process of PCA is shown in Figure 3.
In Figure 3, the first step of PCA is to standard-
ize the dataset. The second step is to obtain the 
feature vectors and eigenvalues. The third step 
is to sort the feature values in descending order 
and select the feature vectors. The fourth step is 
to construct the projection matrix. The fifth step 
is to generate feature sub-spaces. Among them, 
the data in the second step is derived from the 
covariance matrix, and the calculation of this 
matrix is equation (2).

( ) ( )( )1 ' '
1

TCM x x x x
n

= − −
−           

 (2)

In equation (2), x' represents the mean vector.   
n represents the quantity of samples, and x is a 
random variable. The solution of the mean vec-
tor is equation (3).

1

1'
n

i
k

x x
n =

= ∑
                      

 (3)

In equation (3), k represents the dimension of 
the generated feature space. xi represents the  
i-th random variable. The covariance calcula-
tion between two features is equation (4).

( )( )
1

1 ' '
1

n

vjk ij j ik k
i

C x x x x
n =

= − −
− ∑

       
 (4)

In equation (4), xij and xik are the xj and xk vari-
able values of the i-th sample point. xj' rep-

resents the average value of the xj variable. xk' 
represents the average value of the xk variable. 
The generated feature subspace is equation (5).

Y = x * W                         (5)

In equation (5), W represents the projection ma-
trix. The advantages of GA are high coverage 
and low consumption, which can effectively 
solve the problem of NSA not being able to ful-
ly cover abnormal samples. The calculation of 
fitness is equation (6).

( )( )

( )1 0.5 , ( )

1 , ( )
( )1

f x bx f x b a
a

Fit f x
f x b a

f x b
a

α

β

  − 
− − <  

 
=  − ≥  − +      (6)

In equation (6), f(x) is the objective function. 
a and b are both parameters. α and β are both 
custom parameters. a and b can follow the GA 
for continuous correction. Matching a mature 
detector set with a non self set requires the use 
of Euclidean distance, and the distance between 
the sample and detector is calculated as shown 
in equation (7).

( )2

1

n

i
L Q ZΓ Γ

=

= −∑
                 

 (7)

In equation (7), ZΓ represents the Γ-th detector.   
QΓ is the Γ-th sample.

Figure 3. The main process of principal component analysis.
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3.2. Design of NID Model Based on 
Improved LeNet-5

In the previous chapter, an intrusion detection 
model based on GA-improved NSA was studied 
and designed. The GA was used to replace the 
generation of detectors, and the non-self spatial 
distribution of detectors was optimized. When 
there are many feature attributes recorded in the 
dataset and the overall dataset is complex, di-
rectly using a GA-INSA NID model may result 
in incorrect test results. To address this issue, in 
addition to using PCA to reduce the dimension-
ality of the dataset, CNN can also be used for 
processing [21]. The advantage of CNN is that 
it can reduce computational complexity, reduce 
the difficulty of preprocessing high-dimension-
al data, and quickly learn different data features 
based on unlabeled data [22]. When facing a 
large amount of intrusion detection data, CNN 
has obvious advantages. LeNet-5 belongs to 
a type of CNN. It has made some progress in 
NID, but there is also a shortage of low recall 
rate on small sample data. Therefore, to avoid 
the shortcomings of the GA-INSA model, LeN-
et-5 was improved and used as an effective sup-
plement to the GA-INSA model. The calcula-
tion of input features in CNN is equation (8).

1 *
j

i l l l
j i ij j

i
x f x k b

ρ

−

∈

 
= +  

 
∑

              
 (8)

In equation (8), ρj represents the local receptive 
field. 1l

ix −  represents the feature map output on 
layer l - 1. l

ijk  represents the convolutional ker-
nel on layer l. l

jb  is the offset amount on the j   
channel of the l layer. f represents the activation 
function. j represents the channel. The pooling 
of input features is equation (9).

( )1l l l l
j j j jx f D x bω − = +                 

 (9)

In equation (9), D represents down sampling. l
jω  

represents the weight on the j channel. 1l
jx −  is the 

output characteristics of the j-th channel on lay-
er l - 1 [23]. The common processing methods 
for the pooling layer include maximum pool-
ing sampling and evaluation pooling sampling. 
The output of the fully connected layer (FCL) is 
shown in  equation (10).

xl = f (ωlxl - 1 + bl )                 (10)

In equation (10), xl - 1 is the input. ωl represents 
weight. bl represents the offset amount. There 
are three common activation functions, namely 
sigmoid, hyperbolic tangent (Tanh), and cor-
rected linear unit (ReLU) [24]. The LeNet-5 
model includes an input layer, convolutional 
layer, pooling layer, FCL, and output layer. The 
convolutional and pooling layers are two. The 
specific structure of the NID model based on 
LeNet-5 is shown in Figure 4.
In Figure 4, the first step of the LeNet-5 based 
intrusion detection model is to normalize the 
data. The second step is to standardize the CNN 
input layer. The content of data normalization 
involves the digitization and standardization 
of symbol features. The third step is to alter-
nately perform convolution and pooling, where 
convolution needs to be performed 3 times and 
pooling needs to be performed 2 times. The 
fourth step is to transfer the data to the output 
layer. Step 5 is to transfer the data to the Soft-
max function. The sixth step is to output the 
intrusion detection results. When the number 
and distribution of samples exhibit an uneven 
pattern, the dataset is called an imbalanced 
dataset. This will also affect the accuracy of the 
experimental results. The calculation of dataset 
imbalance is given in equation (11).

UIR =
Π                          

 (11)

In equation (11), U is the majority class sample, 
and Π means the minority class sample. To pro-
cess imbalanced datasets, the study adopted the 
SMOTE algorithm to enhance minority class 
samples and optimized the network through 
CNN, forming a iLeNet-5 NID model. The spe-
cific model structure is shown in Figure 5.
In Figure 5, the model is mainly divided into 
three sections: data preprocessing section, 
model training section, and intrusion detection 
section. The first step of this model is to use the 
SMOTE algorithm to process the original data-
set. The second step is to digitize and normalize 
symbol features and form a test set. The third 
step is to use the training set to train the NID 
model, and then output the predicted values. 
The fourth step is to compare the predicted val-
ues with the true values of the training set. The 
fifth step is to determine the loss value. When 
the loss value is small, the mode proceeds to the 
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next step, otherwise ti proceeds to the third step. 
The sixth step is to use an intrusion detection 
model to predict the results and combine them 
with test set labels for calculation. The seventh 
step is to output the results. The specific presen-
tation of the SMOTE algorithm involved in the 
data preprocessing section is shown in Figure 6.

In Figure 6, the green circle represents minori-
ty class data. xδ represents a minority sample 
point. x̂δ  represents the nearest sample point. 
The nearest neighbor sample points are located 
around the minority sample points. The purple 
triangle xnew is the newly generated sample, and 
its calculation method is given in equation (12).

Figure 5. The iLeNet-5 NID model.

Figure 4. The specific structure of NID model based on LeNet-5.
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( ) ( )ˆ0, 1newx x rand x xδ δ δ= + × −          (12)

In equation (12), rand(0, 1) represents a ran-
domly selected number within the range of 0 to 
1. The iLeNet-5 NID model replaces the 1 * 1 
convolutional layer with a FCL. In addition, the 
third, fourth, and sixth convolutional layers are 
3 * 3 convolutional layers, and batch normal-
ization (BN) has been introduced in these layers 
to enhance the network's generalization ability. 
The BN algorithm has four steps. The average 
value of a small portion of the data in the data-
set is expressed as equation (13).

1

1 m

x
mβ δ

δ

µ
=

= ∑
                     

(13)

In equation (13), m represents the amount of 
small pieces of data. δ is the serial number of 
the data. The variance calculation of some data 
is equation (14).

( )22

1

1 m

x
mβ δ β

δ

σ µ
=

= −∑
             

 (14)

After preprocessing the batch of data and plac-
ing it between [0, 1], the nearest neighbor sam-
ple points can be obtained, as shown in equa-
tion (15).

2
ˆ

x
x δ β
δ

β

µ

σ ε

−
=

+                      
 (15)

In equation (15), ε represents a very small pos-
itive value. When accessing the pooling layer 
after the fourth layer, the maximum pooling 
structure needs to be used. Then, the data is 
mapped into one-dimensional data through full 
connectivity and classified through softmax 
classification. Finally, the network intrusion 
type is output.

4. Result and Discussion

For the performance verification of the im-
proved NSA network intrusion model, different 
evaluation indicators were selected, and differ-
ent comparative algorithms were examined. In 
addition, this study also set the data volume for 
the subset of data required for the experiment. 
For the verification of the performance of the 
LeNet-5 model, different evaluation indicators 
and comparison objects were selected, and the 
experimental environment and parameters were 
set.

4.1. Analysis of NID Model Results Based 
on GA Improved NSA

To verify the performance of the GA-INSA NID 
model, two evaluation indicators were selected, 
namely accuracy and FAR. Accuracy and FAR 
are important indicators for evaluating the per-
formance of network intrusion models. Three 

Figure 6. The specific expression of SMOTE algorithm.
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other algorithms were selected for compari-
son, namely the traditional NSA, support vec-
tor machine (SVM), and GA back propagation 
(GA-BP). The experiment used four subsets of 
data from NSL-KDD, with corresponding data 
volumes of 60000, 12000, 18000, and 24000, 
respectively. The operating system used in the 
verification experiment is Windows 10 (64 bit), 
with an Intel Core i7 9750H CPU, an Intel Su-
percore Graphics Card 630 integrated graphics 
card, and a maximum memory of 128 GB. The 
mature detector count is 1100, with 220 genet-
ic iterations and probabilities of crossover and 
mutation equal to 0.9 and 0.09, respectively. 
Due to the influence of the self radius on the 
performance of the detector, the accuracy and 
other indicators under different radii were com-
pared in the study. The comparison of changes 
in different evaluation indicators under differ-
ent self radii is shown in Figure 7. 

In Figure 7 (a), as the radius of the self grad-
ually increases, the trend of the accuracy in-
dex is to first increase and then decrease, with 
the corresponding radius of the self being 0.5 
when decreasing. In Figure 7 (b), FAR decreas-
es with the increase of self radius. When the 
self radius is less than 0.4, the decrease of FAR 
is faster. When the radius of the self is great-
er than 0.4, the decrease of FAR significantly 
slows down. In Figure 7 (c), as the self radius 
increases, the detection rate continuously de-
creases. When the self radius is less than 0.6, 
the decrease rate of detection rate is relatively 
slow. When the self radius is greater than 0.6, 
the decrease rate of detection rate begins to ac-
celerate. To validate the selected public data-
set, a comparison was made among commonly 
used NID datasets, and the comparison results 
are shown in Table 1.

Figure 7. Comparison of changes in different evaluation indicators under different self radii.

Table 1. Comparison of different network intrusion detection datasets.

Dataset name Types of cyber attacks

MIT LL DARPA Denial-of-service (Dos), Remote to Local (R2L), User to Root (U2R),  
surveillance or Probe (Probe) and date compromise (data)

CIC-IDS-2017 and CIC-IDS-2018
File Transfer Protocol (FTP) Brute Force, Secure SHell (SSH) Brute Force, 
Dos, Heartbleed, Web Attack, Infiltration, Botnet and Distributed Denial of 
service (DDos)

NSL-KDD and KDD99 Dos, R2L, U2R, Probe, Normal

UNSW-NB15 Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,  
Shellcode and Worms.
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FAR among different algorithm models under 
different data subsets.
In Figure 9 (a), FAR of the improved NSA 
and NSA are 8.21% and 9.98% respectively 
when the data volume is 6000, with 4.13% and 
5.93% at 12000, 2.82% and 4.33% at 18000, 
and 1.32% and 1.93% at 24000. In Figure 9 (b), 
FAR of SVM and GA-BP are 6.37% and 7.12% 
for 6000 data, 5.04% and 5.75% for 12000 data, 
3.98% and 4.11% for 18000 data, and 3.81% 
and 3.02% for 24000 data. Therefore, the mod-
el detection performance of GA-INSA model is 
better. To better validate the performance of the 
GA-INSA NID model, the response time of this 
model and the comparison model in the face of 
network attacks was analyzed. Response time 
is one of the important indicators reflecting the 
performance of the system itself. In addition, 
the study also selected additional NID models 
for comparative verification and selected the 
UNSW-NB15 dataset for testing. The new-
ly added NID models include BiGRU-SVM 
combining bidirectional gate recurrent unit 
(BiGRU) and SVM, RF-XGBoost combining 
random forest and eXtreme gradient boosting 
(XGBoost), PCA-RNN combining PCA and re-
current neural network (RNN). A total of 5 re-
sponse time tests were conducted. The operating 
system used for testing is Windows 10 (64 bit). 

From Table 1, the NSL-KDD dataset mainly in-
volves five types of attacks, namely Dos, R2L, 
U2R, Probe, and Normal. The UNSW-NB15 
dataset mainly contains nine types of attacks, 
namely Fuzzers, Analysis, Backdoors, DoS, 
Exploits, Generic, Reconnaissance, Shellcode, 
and Worms. The CIC-IDS-2017 and CIC-
IDS-2018 datasets mainly cover eight types of 
attacks, namely FTP Brute Force, SSH Brute 
Force, Dos, Heartbleed, Web Attack, Infiltra-
tion, and DDos. The MIT LL DARPA dataset 
mainly includes five types of attacks, namely 
Dos, R2L, U2R, Probe, and data. Therefore, 
the study mainly selected the NSL-KDD data-
set and the UNSW-NB15 dataset. The accuracy 
comparison of different algorithm models un-
der different data subsets is given in Figure 8.
In Figure 8 (a), when the data volume is 6000, 
12000, 18000, 24000, the accuracy of improved 
NSA is 76.8%, 93.4%, 96.8%, 97.3%, and NSA 
is 74.9%, 86.5%, 88.2%, and 90.1%. In Figure 
8 (b), when the data volume is 6000, 12000, 
18000, 24000, the accuracy of SVM and GA-
BP algorithms is 80.6% and 75.3%, 91.3% and 
90.1%, 94.6% and 90.8%, 94.1% and 89.4%. 
Therefore, the GA-INSA model performs bet-
ter, and the classification accuracy of the mod-
el is better. Figure 9 shows the comparison of 

Figure 8. Comparison of accuracy of different algorithm models under different data subsets.
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The central processor is Intel Core i7 9750H. 
The integrated graphics card is an Intel ultra 
core graphics card 630. The maximum memory 
is 128 GB. Table 2 compares the response times 
of different intrusion detection models when 
facing network attacks.
In Table 2, the maximum response times of the 
improved NSA model, NSA model, SVM algo-
rithm, and GA-BP algorithm are 60 ms, 125 ms, 
96 ms, and 102 ms, while the minimum values 

are 45 ms, 109 ms, 73 ms, and 82 ms. The maxi-
mum response times of BiGRU-SVM, RF-XG-
Boost, and PCA-RNN detection models are 
76 ms, 78 ms, and 79 ms, respectively, while 
the minimum values are 68 ms, 64 ms, and 
62 ms, respectively. Therefore, the response 
time of the improved NSA model has always 
been better than other comparative detection 
models, which also indicates that the perfor-
mance of this detection model is better.

Figure 9. Comparison of FAR between different algorithm models under different data subsets.

Table 2. Comparison of response time of different intrusion detection models in the face of network attacks.

Model
Number of experiment

1 2 3 4 5

Improved NSA 60 ms 58 ms 45 ms 51 ms 55 ms

NSA 120 ms 111 ms 125 ms 117 ms 109 ms

SVM 88 ms 96 ms 73 ms 82 ms 77 ms

GA-BP 102 ms 98 ms 82 ms 94 ms 89 ms

BiGRU-SVM 70 ms 76 ms 68 ms 73 ms 69 ms

RF-XGBoost 78 ms 65 ms 71 ms 67 ms 64 ms

PCA-RNN 73 ms 79 ms 66 ms 70 ms 62 ms



102 L. Li

4.2. Analysis of NID Model Results Based 
on Improved LeNet-5

To validate the performance of the iLeNet-5 
NID model, two evaluation indicators were se-
lected, namely accuracy and recall. The com-
parative model is an iLeNet-5 NID model. The 
experimental model is mainly installed on the 
Tensor Flow framework, and the training, test-
ing, and validation set is implemented on the 
NVIDIA GTX 2080T GPU. The optimizer used 
in the experiment is Adam, the environment is 
Python 3.8, and epochs is set to 300. The op-
erating system used in the experiment is also 
Windows 10 (64 bit). Table 3 shows the specific 
data.

In Table 3, the number of type data on the train-
ing set, Normal is 97278, Dos is 391458, Probe 
is 4107, Remote to Local attach (R2L) is 18016, 
and User to Root attach (U2R) is 10400. The 
total number of training set data is 521259. The 
proportions of the five types of data are 18.66%, 
75.04%, 0.81%, 3.47%, and 2.01%, respective-
ly. On the test set, the number of five types of 
data is 60593, 229853, 4166, 16189, and 228, 
respectively. The total number of test set data 
is 311584. The proportions of the five types of 
data are 19.48%, 73.80%, 1.37%, 5.23%, and 
0.11%, respectively. The accuracy comparison 
of the LeNet-5 NID model before and after im-
provement is shown in Figure 10.

Figure 10. Comparison of accuracy of LeNet-5 NID Models before and after improvement.

Table 3. Number of different data types in the dataset processed using SMOTE.

Data type Number of  
training sets

Account for  
percentage Number of test sets Account for  

percentage

Normal 97278 18.66% 60593 19.48%

Dos 391458 75.04% 229853 73.80%

Probe 4107 0.81% 4166 1.37%

R2L 18016 3.47% 16189 5.23%

U2R 10400 2.01% 228 0.11%

Total quantity 521259 / 311584 /



103A Network Intrusion Detection Model Based on GA-Improved NSA

In Figure 10 (a), the accuracy of the data type be-
fore improving LeNet-5 is 73.50% for Normal, 
99.81% for Dos, 89.76% for Probes, 96.29% for 
R2L, and 72.99% for U2R. In Figure 10 (b), af-
ter improving LeNet-5, the accuracy rates of the 
five types of data are 96.22%, 99.86%, 93.19%, 
92.18%, and 91.68%, respectively. The accura-
cy of the iLeNet-5 NID model on different types 
of data is significantly higher than before the 
improvement. Therefore, the improved LeNet-5 
has better performance and better classification 
performance. The comparison of recall rates of 
the LeNet-5 NID model before and after im-
provement is shown in Figure 11.
In Figure 11 (a), the recall rate of the data type 
before improving LeNet-5 is 99.59% for Nor-
mal, 98.41% for Dos, 76.48% for Probe, 4.04% 
for R2L, and 11.2% for U2R. In Figure 11 (b), 
after improving LeNet-5, the recall rates of the 
five types of data are 98.57%, 99.94%, 90.93%, 
84.91%, and 85.32%, respectively. The iLeN-
et-5 NID model has a higher recall rate on most 
data types than before, with the greatest im-
provement on R2L and U2R data types. There-
fore, the performance of the iLeNet-5 NID mod-
el is significantly better than before. To further 
validate the model performance, the defense 
success rate (DSR) and FAR of the NID system 
were selected for comparison. DSR and FAR 
are key indicators reflecting the detection per-
formance of intrusion detection systems. The 
DSR and FAR of the NID were tested a total 

of 5 times. The testing environment is consis-
tent with the response time of the system. The 
comparison of DSR and FAR of the NID model 
before and after the improvement of LeNet-5 is 
shown in Figure 12.
In Figure 12 (a), the max-DSR of the LeNet-5 
system before improvement is 82.5%, and the 
min value is 73.6%. The max-DSR of the im-
proved LeNet-5 system is 98.7%, and the min 
value is 91.2%. In Figure 12 (b), the max-FAR 
of the LeNet-5 system before improvement is 
5.87%, and the min value is 4.85%. The max-
FAR of the improved LeNet-5 is 2.37%, and 
the min value is 1.33%. Therefore, based on the 
iLeNet-5 NID system, its performance in DSR 
and FAR is greater than before, which also indi-
cates that the improved intrusion detection sys-
tem has better performance. To better validate 
the performance of the iLeNet-5 NID model, 
other comparative indicators were used in the 
study, and the UNSW-NB15 dataset was select-
ed for testing. Other comparative indicators in-
clude central processing unit (CPU) utilization 
and memory usage, both of which are important 
indicators for measuring system performance. 
The testing environment and response time test-
ing environment are consistent, and the testing 
frequency is also 5 times. The comparison of 
CPU utilization and memory utilization of the 
NID model before and after LeNet-5 improve-
ment is shown in Table 4.

Figure 11. Comparison of recall rate of LeNet-5 NID model before and after improvement.
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From Table 4, the maximum CPU utilization of 
the intrusion detection system before LeNet-5 
improvement is 23%, and the minimum is 17%. 
The maximum memory utilization is 56%, and 
the minimum is 42%. The maximum CPU uti-
lization of the improved intrusion detection 
system in LeNet-5 is 15%, and the minimum 
is 10%. The maximum memory utilization is 
40%, and the minimum is 33%. It can be in-
ferred that the improved intrusion detection 
system performs better.

5. Conclusion

To optimize NID technology, this study inno-
vatively designed a GA-INSA and an iLeNet-5 
NID model. The latter one was regarded as 
an effective supplement to the GA-based im-
proved NSA. The research results showed that 
when the data volume was 24000, the accura-
cy of the improved NSA was 97.3%, NSA was 
90.1%, SVM algorithm was 94.1%, and GA-BP 
algorithm was 89.4%. When the data volume 

Figure 12. Comparison of DSR and FAR of NID model before and after improvement of LeNet-5.

Table 4. Comparison of CPU utilization and memory utilization of NID models before and  
after LeNet-5 improvement.

Model

CPU utilization Memory usage rate

Number of experiments Number of experiments

1 2 3 4 5 1 2 3 4 5

Before LeNet-5 improvement 17% 19% 23% 21% 18% 42% 48% 52% 56% 55%

Improved LeNet-5 10% 12% 11% 13% 15% 35% 37% 40% 36% 33%
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was 24000, the FAR values of the four algo-
rithms were 2.82%, 4.33%, 3.81%, and 3.02%, 
respectively. Based on the improved NSA, the 
maximum response time of the detection model 
was 60 ms and the minimum value was 45 ms. 
Therefore, the improved NSA algorithm per-
formed better, and the GA-INSA intrusion de-
tection model performed better. Regarding the 
accuracy of data types before and after LeN-
et-5 improvement, Normal was 73.50% and 
96.22%, Dos was 99.81% and 99.86%, and 
U2R was 72.99% and 91.68%, respectively. 
The recall rates of data types before and af-
ter LeNet-5 improvement were 99.59% and 
98.57% for Normal, 98.41% and 99.94% for 
Dos, and 11.2% and 85.32% for U2R, respec-
tively. The maximum DSR and FAR values of 
the improved LeNet-5 system were 98.7% and 
2.37%, respectively, and the minimum values 
were 91.2% and 1.33%, respectively. There-
fore, the improved LeNet-5 performed better, 
and the performance based on the iLeNet-5 
NID model was also more advantageous. How-
ever, this study also has certain shortcomings. 
In response to the improvement of the NSA, 
the study adopted the GA to generate detec-
tors and optimized the non autogenous spatial 
distribution of detectors, which to some extent 
improved the detection efficiency of the NSA. 
However, there is room for improvement in the 
detection efficiency of NSA. Future research 
can optimize the NSA based on the findings 
to enhance its performance and detection effi-
ciency. Furthermore, deploying artificial intel-
ligence-based intrusion detection systems in 
the real world presents various challenges due 
to the ever-changing types of network attacks 
encountered. Currently, most network intru-
sion systems are built based on existing types 
of network attacks, and there is still room for 
improvement in identifying and detecting new 
types of network attacks.
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