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In this study, we propose a segmentation model based 
on convolutional neural networks (CNNs) to address 
image segmentation challenges in computer vision. 
Prior to designing the model, the activation function 
and other modules of the convolutional neural network 
were optimized to meet specific requirements. The 
segmentation task was transformed into binary classi-
fication problem to simplify network calculations and 
improve efficiency. Additionally, the model utilized a 
mask map obtained from the semantic segmentation 
model to aid in instance segmentation. Class activation 
technology was introduced to extract feature mapping 
maps. The corresponding thermal maps were obtained 
to achieve target instance segmentation. To further 
validate the effectiveness of the segmentation model, 
simulation experiments were conducted on semantic 
segmentation and instance segmentation respectively. 
The results show that the accuracy of the basic seman-
tic segmentation model reached 87.58%, while the av-
erage accuracy of the entire class of the optimized in-
stance segmentation model reached 97.9%. Therefore, 
the research and design of image segmentation models 
demonstrate high accuracy and good robustness.
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1. Introduction

Deep learning (DL has become essential in 
human-computer interaction, and has been ex-
tensively studied in the academic communi-
ty, particularly in fields like computer vision, 
including image segmentation (IS) and object 
detection. In recent years, DL has made great 

progress in the field of image processing. Im-
age processing technology is often applied in 
various aspects such as traffic management, ro-
botics, and intelligent driving, truly integrating 
into people's daily lives and work [1]. 
However, DL confronts challenges, notably 
the need to improve the accuracy of the mod-
el through a comprehensive large-scale data-
set. In the context of big data, it undoubtedly 
becomes an obstacle to DL networks. The sig-
nificant growth of data leads to the continuous 
extension of model training time, ultimately 
leading to an increase in network computing 
costs. Therefore, improving network training 
is a crucial point in current image processing 
technology, especially for tasks like semantic 
segmentation and IS, which are vital for intelli-
gent human-machine interaction [2]. 
Semantic segmentation involves classifying 
images at the pixel level. Compared with tra-
ditional feature extraction methods, it demon-
strates significant improvements in algorithm 
accuracy and timeliness, and  finds extensive 
applications in transportation, remote sensing, 
medicine, and other fields. On the other hand, 
instance segmentation entails predicting target 
pixel region, which requires more accurate re-
gion labels and class perception mask informa-
tion, thus presenting greater operational com-
plexity. 
Currently, most semantic segmentation relies 
heavily on labeled datasets, requiring large-
scale datasets for training support and high-per-
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formance hardware. Instance segmentation 
models are typically built upon this foundation 
[3]. However, traditional IS methods have some 
obvious limitations when dealing with the real 
image of complex scenes. They often rely on 
low-level image features such as color, texture, 
edges, and so on. These features are often not 
robust enough for dealing with complex or 
uneven scenes, resulting in unsatisfactory seg-
mentation results. Additionally, they may lack 
the ability to generalize, and their performance 
tends to drop dramatically when image condi-
tions, such as lighting, angle, and background, 
change. Furthermore, the performance of these 
methods is often negatively impacted by noise 
and artifacts due to the lack of effective noise 
suppression or feature extraction mechanisms. 
To address the training difficulty of fully super-
vised IS models, a Fully Convolutional Neural 
Network (FCN)-based IS model is proposed 
and optimized using class activation techniques. 
The optimizers used to train CNN are discussed 
in depth, which is helpful for the selection of 
different optimizers for the subsequent research 
and increases the discussion of practical prop-
erties. At the same time, a new Fully Convo-
lutional Neural Network (FCN) model is pro-
posed for semantic segmentation of vehicles. 
In addition, the paper tackles the inadequacy of 
vehicle semantic segmentation datasets by aug-
menting and expanding existing datasets. To 
improve the accuracy and efficiency of vehicle 
instance segmentation, researchers combine the 
mask information generated by a semantic seg-
mentation network with the heat map generated 
by a class activation graph algorithm. This ap-
proach offers a novel perspective and technical 
pathway for future research. It has important 
practical significance and theoretical value for 
the research and application of vehicle detec-
tion, autonomous driving vision systems, and 
other related fields. 
The rest of this study is organized as follows. 
Section 2 reports on the current research status 
of DL networks and IS techniques. In Section 
3, the design of semantic segmentation and in-
stance segmentation models is presented. The 
fourth section presents the results of the evalu-
ation of the IS network. The fifth section sum-
marizes the experimental results and concludes 
the paper.

2. Related Work

Image processing technology is currently fo-
cal point in computer vision research, with DL 
standing out as the most widely used and essen-
tial technology in this domain. P. Mukasa et al. 
[4] applied image processing technology to the 
field of agricultural planting. Due to the ploi-
dy of watermelon seeds, this technology can 
have a significant impact on their yield. There-
fore, seed categories can be classified through 
multivariate and DL models. Meanwhile, it in-
troduced deep labv 3+and Resnet 18 DL net-
works for further optimization. The experimen-
tal results showed a classification accuracy of 
95.5%, which was 26% and 11.2% higher than 
the Data Driven - Soft Independent Modeling 
of Class Analogy (DD-SIMCA) and Support 
Vector Machine (SVM) models, respectively. 
C. Bowd et al. [5] applied DL to medical image 
classification and trained it on the feature-based 
optical coherence tomography angiography 
optic nerve head dataset using Virtual Games 
Global (VGG) 16 CNN. The experimental re-
sults showed that the area accuracy under the 
recall curve reaches 0.97, indicating a signifi-
cant improvement effect. 
P. Munoz-Benavent et al. [6] addressed the 
challenge of automatic measurement of fish 
size, crucial for perceiving changes in the 
body and environment of fish. Since tradition-
al segmentation network models were compu-
tationally overly demanding, a CNN-based IS 
algorithm was proposed, which mitigated the 
complex process of parameter adjustment. The 
experimental results indicated that the number 
of measurements has increased by 2.45 times. 
G. Yuan et al. [7] applied DL to image recon-
struction and proposed a fast bilateral network 
that can be applied to grayscale and color image 
reconstruction. This study introduced bilinear 
interpolation and CNN to achieve image com-
pression, and the overall reconstruction process 
was divided into two parts: texture and contour. 
The experimental results showed that the image 
reconstruction technology has excellent timeli-
ness, accuracy, and robustness.
It is evident that there is a strong connection 
between DL technology and image processing, 
with IS emerging as a critical yet challenging 
aspect that urgently requires improvement. 
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tion. Through certain improvements, the key 
boundary segmentation mask map output by 
the model is further applied to image instance 
segmentation.

3.1. DL-Based Classic CNN Model 

The classical CNN is composed of convolution-
al layers, pooling layers, fully connected layers, 
and activation functions. The sliding window 
calculation value of the convolution layer needs 
to be biased to obtain the final corresponding 
pixel output value, as shown in equation (1) 
[11].

1
( , )

I

n i ni n
i

x f conv x K b
=

 
= + 

 
∑

            
(1)

In equation (1), xn /bn respectively represent the  
n-th output value and its corresponding bias 
size. I is the input feature level. xi is the i-th 
input value. Kni represents the component size 
of the convolutional kernel in the n-th value of   
i output. The study selects maximum pooling as 
the pooling layer method, as shown in equation 
(2).

{ }( ), ,max , 0,1, ...,i j i j k j s kx x k K× + × += =
      

(2)

In equation (2), xi, j is the downsampling output 
value of coordinate point (i, j), k represents the 
fixed edge length for downsampling, and s rep-
resents the sliding step size of a fixed area. The 
two-dimensional feature map obtained after 
convolutional pooling contains all spatial posi-
tion data of pixels, as shown in Figure 1 [12].
The fully connected layer is used to transform 
feature maps into one-dimensional feature vec-
tors, and neurons with pre and post-layer rela-
tionships are connected through weights [13]. 
The Softmax layer is responsible for classifying 
input features, and after the fully connected lay-
er, it is suitable for multi-segmented types of 
images, as shown in equation (3).
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J. Niedballa et al. [8] highlighted the preva-
lent use of CNNs in IS. However, the lack of 
a comprehensive toolbox is one of the main 
reasons why the research community has not 
made progress. Based on this, they introduced 
a R package ''images'', which implemented DL 
segmentation workflow by constructing U-Net 
and U-Net++, including data preprocessing, 
model training, and testing. The experimental 
results indicated that the Dice score of the mod-
el is 0.91. 
B. Ji [9] applied neutral C-means clustering to 
color IS, initially requiring an optimized linear 
clustering algorithm to obtain adaptive local 
spatial neighborhoods. Afterwards, an objec-
tive function based on neutral C-means cluster-
ing was introduced, incorporating local neigh-
bor data to classify membership levels based 
on certainty and uncertainty. The experimental 
results showed that the method has good noise 
resistance and performance. 
X. Yan et al. [10] constructed local pre-fitting 
image functions based on regional features and 
optimized edge indication functions based on 
edge features to achieve IS. Additionally, regu-
larization functions were introduced to improve 
the overall model's timeliness, while address-
ing the sensitive parameter impact of traditional 
penalty terms.
Numerous studies have shown that DL is wide-
ly used in IS techniques, but it usually requires 
a large number of labeled datasets to train the 
model, which increases the computational bur-
den of the model and weakens its segmentation 
speed. Hence, this study proposes a semantic 
segmentation and instance segmentation mod-
el based on an improved FCN. This model ap-
plies the mask graph obtained from semantic 
segmentation to instance segmentation, and 
optimizes it using class activation techniques, 
greatly improving the timeliness of the model.

3. Research Model

CNNs are a commonly used algorithm for im-
age semantic segmentation, utilizing end-to-
end training networks to achieve pixel-level 
prediction. The optimized FCN is studied to 
improve the accuracy of semantic segmenta-



170 C. Chen, G. Gao, L. Liu and Y. Qiao

In equation (3), p( yi = k | xi; ω) represents the 
probability that the i-th sample feature belongs 
to the k-th class. T represents the length of the 
sample vector. ω = [ω1, ω2, ..., ωk] represents 
the weight value. The activation function im-
proves the representation ability and universal 
applicability of the original model through its 
nonlinear transformation form. Common acti-
vation functions include the Sigmoid function, 
Tanh function, and ReLU function. The cor-
responding visualization diagram is shown in 
Figure 2.
The Tanh function is essentially an optimization 
function of the Sigmoid function, which ex-

pands the mapping range and feature represen-
tation ability of the initial convolution. How-
ever, both types of functions exhibit gradient 
vanishing phenomena, where the gradients ap-
proach zero during the backpropagation. There-
fore, some input features cannot be trained, and 
their corresponding expressions are shown in 
equation (4) [14].
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Figure 1. Schematic diagram of the convolution – pooling process.

Figure 2. Visual analysis of different activation functions.
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In equation (4), δ(x) / Tanh(x) represents the 
Sigmoid function and the Tanh function, re-
spectively. x represents the input value. Rela-
tively speaking, the ReLU function achieves 
higher training speed and also solves the defect 
of vanishing gradient. But its negative half-axis 
output is all zero, which will cause data sparsity 
and the problem of parameter values not being 
updated during the backpropagation, as shown 
in equation (5).

Re ( ) max(0, )LU x x=                 (5)

After careful consideration, the ReLU activa-
tion function was selected for this study. Addi-
tionally, the dropout layer was incorporated to 
enhance generalization through regularization. 
This layer, placed after the fully connected 
layer, temporarily deactivates certain neurons 
during the training process [15], mitigating 
overfitting of the model and enhancing feature 
sparsity. 
Due to the increasing complexity of network 
models, the choice of optimization function be-
comes an essential part. In this study, the Adam 
function was selected for network training. It is 
similar to momentum-based methods, with low 
gradient fluctuations and rapid convergence 
[16]. 
CNNs can divide pixels in an image into dif-
ferent categories or regions to achieve seman-
tic segmentation and instance segmentation. In 
semantic segmentation, the key role of CNN 
is to understand and label the content of each 
part of the image, for example, to distinguish 
between roads, pedestrians, vehicles, buildings, 
etc. However, instance segmentation is not only 
necessary to identify the object categories in the 
image but also to distinguish different object in-
stances. For example, in a picture of multiple 
cars, instance segmentation not only identifies 
the vehicle but also the corresponding model. 
FCN is an important CNN architecture used for 
IS. Unlike traditional CNN, FCN converts the 
fully connected layer into a convolutional layer, 
allowing the network to accept input images of 
any size and retain spatial information, making 
it very suitable for IS tasks. However, the cur-
rent classification and labeling methods require 
iterative optimization.

3.2. Improved FCNs for Image Semantic 
Segmentation

Image semantic segmentation is a form of tar-
get segmentation that divides pixels based on 
semantic classification. CNNs are common-
ly used in image semantic segmentation, are 
trained on manually annotated image data to 
predict pixel-level classification [17]. This 
study used an FCN based on the VGG16Net 
network to optimize the initial CNN. 
The VGG16Net network uses a unified 3x3 
convolution kernel. This small-sized kernel 
increases the network's depth, improves its 
learning ability, and maintains its non-linear 
characteristics while keeping a small receptive 
field. The overall network consists of 16 lay-
ers and is able to capture more complex and 
abstract features in the image. Because of its 
simple structure and effective training meth-
od, the VGG16Net network structure has good 
generalization ability and is relatively easy to 
understand and implement. Its basic structure 
is similar to CNN networks, where the convo-
lutional layer utilizes weight sharing to achieve 
parameter dimensionality reduction, and the 
fully connected layer is also replaced to ensure 
the preservation of two-dimensional spatial 
data in the model. The feature map obtained by 
deconvolution is as large as the original feature 
map [18]. The dimensionality reduction of the 
above convolution layer and pooling layer can 
solve the overfitting problem well. 
Traditional CNN models use fully connected 
layers to convert feature maps to feature vec-
tors and achieve final classification through the 
Softmax layer. However, the weight matrix in 
the fully connected layer remains unchanged, 
and its input feature map size is fixed. By re-
placing it with convolutional layers, the upsam-
pling requirements for semantic segmentation 
can be met, ensuring the maintenance of spatial 
features [19]. The size of the output feature map 
of the classification network will decrease when 
it passes through the pooling layer, so upsam-
pling is necessary to restore the original feature 
map size and ensure that the pixels between the 
feature map and the input map correspond one-
to-one. Bilinear interpolation is used to achieve 
upsampling, which involves inserting new pix-
els between pixels through an algorithm for im-
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age magnification. The downsampling process 
of feature images is shown in Figure 3.
The difference between FCN and CNN is 
that the output feature map of the former only 
changes in the number of features, while the 
size of the image remains unchanged. However, 
the accuracy of the feature map obtained using 
only upsampling technology does not meet the 
requirements. Therefore, it is still necessary to 
introduce a network fusion structure to restore 
the feature maps to the previous pooling con-
volutional layer, implement reverse upsampling 
operations, and loop until the size matches the 
original image. The fusion of network layers 
has greatly enriched detailed data and improved 
the accuracy of semantic segmentation [20]. 
The Softmax layer at the end of the network is 
the key to classification, and it is necessary to 
use hypothesis functions to calculate the proba-
bility of different categories, as shown in equa-
tion (6).
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In equation (6), {(x(i), y(i)), ..., (xm, ym)} rep-
resents the training set. yi ∈{1, 2, ..., k} rep-
resents output. θ1, θ2, ..., θk ∈ n+1 represents pa-
rameters. The sum of the probability values of 
all output vectors is 1. The cost function, also 
known as the loss function, is the description 
of the loss value of the hypothesis function for 
various parameter values. It is the learning cri-
terion and optimization problem for the model 
establishment, determining the prediction accu-
racy of the model, as shown in equation (7).
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In equation (7), 1 represents the performance 
function, and if the equation in parentheses is 
true, 1 is taken, while if it is opposite, 0 is taken.
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>∑∑  represents the weight attenua-

tion term. The function of the cost function is 
to reduce the gradient and ultimately converge 
to the global optimal value. The overall FCN 
semantic segmentation model is shown in Fig-
ure 4.
The foundation of the FCN model is VGG-
16Net, which consists of 13 convolutional lay-
ers, 5 pooling layers, and two fully connected 
layers. Among them, the fully connected lay-
er is replaced with a deep convolutional layer 
for deconvolution to achieve IS. However, its 
retention effect on detail features is poor, so a 

Figure 3. Downsampling process of feature image in FCN model.
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shallow network is introduced to combine and 
achieve high precision IS output. Semantic seg-
mentation is the categorization of each pixel, 
while instance segmentation is the subdivision 
of the category [21]. Therefore, the instance 
segmentation faces pixel-level classification 
and specific object classification of the same 
category, as shown in Figure 5.
There are two traditional methods for instance 
segmentation image detection. The first in-
volves embedding a Region Proposal Network 
(RPN) structure within the network. The sec-
ond employs border extraction algorithms such 
as Selective Search outside the network. Both 
of these methods are based on candidate region 
extraction, and an increase in the number of 
candidate boxes often slows down the train-
ing speed of the model, resulting in poor IS 
performance. The IS effect of the fully super-
vised network model is better than that of the 
unsupervised model [22]. Therefore, this study 
continues to use the fully supervised semantic 
segmentation model mentioned above, aiming 
to use the output key boundary segmentation 
mask map to achieve instance segmentation of 
the target. Its form is different from the ful-
ly supervised instance segmentation model, 
which first requires pixel-level semantic seg-
mentation through masked image labels. It is 

necessary to introduce a class activation func-
tion to generate a thermal map to achieve in-
stance perception of the target. Therefore, this 
network model does not require further train-
ing on the instance dataset [23]. 
Thermal maps, also known as Class Activation 
Mapping (CAM), are suitable for locating dis-
criminative regions. The fully connected layer 
in CNN networks hinders the implementation 
of object detection, and Global Average Pool-
ing (GAP) can not only replace the fully con-
nected layer but also maintain the network's 
target localization function, greatly reducing 
its number of parameters. CAM technology 
can visualize the extracted features to facilitate 
the target localization process, and this module 
is usually located behind the deepest convolu-
tional layer. The feature mapping map output 
from this directly enters the GAP module to 
calculate the weights of different categories. It 
corresponds to the feature mapping map one 
by one to calculate the product sum, as shown 
in Figure 6.
In Figure 6, the calculation of GAP is shown in 
equation (8).

, ( , )k x y kF f x y=∑                   (8)

Figure 4. Semantic segmentation model based on full CNN.
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Figure 6. Class activation diagram flow.

Figure 5. Differences between image semantic segmentation and instance segmentation.
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In equation (8), Fk represents the calculated 
GAP value for each unit. (x, y) represents the 
coordinates of a unit in the final convolutional 
layer. fk(x, y) represents the activation value of 
the k unit in the final convolutional layer at co-
ordinate (x, y). The input values for each cate-
gory in the softmax layer are shown in equation 
(9).

c
c k k kS Fω=∑                       (9)

In equation (9), ωk
c represents the weight of k 

units in the k category. The output values of dif-
ferent category attributes in the softmax layer 
are shown in equation (10).
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Due to the negligible impact of bias on classi-
fication visualization, it is set to 0. The spatial 
element values of the class activation function 
mapping Mc of the category are shown in equa-
tion (11).
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From equations (8) to (11), the final input val-
ues of various types in the softmax layer can be 
obtained, as shown in equation (12).
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The evaluation indicators for image instance 
segmentation include pixel accuracy, class av-
erage accuracy, and average region overlap. 
The pixel accuracy is shown in equation (13) 
[24].
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In equation (13), nii represents the number of 
pixels for the predicted class i and the actual 
class i. ti represents the total number of pixels 
in the class. The average accuracy of the class 
is shown in equation (14).

Class average
1 ii

i
cl i

nP
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In equation (14), ncl represents the total num-
ber of categories in the dataset. The average 
area overlap, also known as the average IU (In-
tersection over Union, Mean lU), is shown in 
equation (15).
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The average IU represents the accuracy and 
completeness of the segmented region and is 
the final criterion for evaluating image instance 
segmentation.

4. Result and Discussion

To assess the performance of the optimized 
FCN for instance segmentation, simulation 
experiments were conducted on both seman-
tic segmentation and instance segmentation of 
the model. Before conducting the experiments, 
the research improved the existing dataset by 
utilizing traffic monitoring in a certain city to 
increase the information content of the model 
data to ensure that the model training yielded 
optimal results.

4.1. Performance Verification of FCN IS 
Model

The experiment was conducted on the Ubuntu 
14.04 operating system platform, utilizing the 
DL framework TensorFlow built on an NVID-
IA GTX 970 GPU. A fully supervised DL mod-
el requires training through a large number of 
datasets. The PASCAL VOC2012 dataset is a 
classic dataset suitable for semantic segmenta-
tion validation and also a standard dataset for 
evaluating CNN performance. There are a total 
of 21 semantic categories in the dataset, with 
only 1 background category and the rest being 
foreground categories. Among them, the vehi-
cle dataset has 700 pieces, which is insufficient 
to support model training. 
To address this limitation,, this study utilizes 
the PASCAL VOC2012 dataset format for se-
mantic segmentation datasets and supplements 
it with data collected traffic monitoring videos 
from a specific city. This dataset includes 1000 
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From Figure 8 (a), it is evident that the mod-
el trained using only the VOC dataset exhibits 
significantly lower accuracy compared to the 
others, while the performance of the 2-class net-
work is better than that of the 21-class model. 
The pixel accuracy of the 2-class network in the 
self-made vehicle dataset and VOC dataset is 
0.93 ± 0.03, with a median of 93%. Compared 
with other semantic segmentation models, its 

vehicle images captured under various lighting 
conditions and angles, ensuring diverse repre-
sentation of vehicle operating scenarios, as il-
lustrated in Figure 7.
This study compared the image semantic seg-
mentation performance between the binary 
classification FCN model and the 21-class FCN 
model using different datasets. The experimen-
tal results are shown in Figure 8.

Figure 7. Vehicle traffic images under different conditions.
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pixel accuracy has improved by an average of 
8.33%. In Figure 8 (b), the average class accura-
cy of the 2-class network in the self-made vehi-
cle dataset and VOC dataset is 90.64%, while the 
other models are 80.77%, 86.80%, and 76.68%, 
respectively. The average class accuracy of the 
2-class classification network in the mixed data-
set has improved by 9.22% compared to the oth-
er models on average. Furthermore, its average 
IU increased by 14.38% on average. 

The third layer of research conducted further 
comparative analysis of the optimization func-
tions selected by the model. The study intro-
duced Stochastic Gradient Descent (SGD), Mo-
mentum Gradient Descent (MGD), Adaptive 
Dynamic Learning Algorithm (AdaGrad), and 
Root Mean Square Propagation (RMSProp) to 
compare the accuracy and training time of the 
above function models. The results are shown 
in Figure 9.

Figure 8. Semantic segmentation performance of the model under different classification numbers and data sets.

Figure 9. Comparison of semantic segmentation performance of models under different optimizers.
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Figure 9 shows that the semantic segmentation 
accuracy of the models under each optimization 
function does not differ significantly. The ac-
curacy rates from the SGD model clockwise to 
the Adam model are 86.72%, 86.94%, 86.62%, 
87.12%, and 87.58%, respectively. Therefore, 
the semantic segmentation accuracy of the 
Adam optimization function model is on aver-
age 0.73% higher than other models. 
Although the differences in accuracy among 
different models are small, they have wid-
ened the gap in training time performance. The 
training time of both the SGD model and the 
momentum gradient descent model is over 50 
minutes because the gradient descent function 
is trained by searching for the local minimum 
value of the loss function. This search is carried 
out in the opposite direction of the gradient, 
and the change length is fixed, resulting in a 
naturally longer training time. The training du-
ration for AdaGrad and RMSProp models has 
decreased to 43.8 minutes and 40.5 minutes, 
respectively. Both belong to the learning rate 
adaptive gradient descent method, which sets 
a corresponding learning rate for each param-
eter. Therefore, during training, the parameters 
need to be adaptively operated on the learning 
rate. The training duration of the Adam model 
is only 34.4 minutes, which is 12.7 minutes less 
than the average training duration of other func-
tions. Additionally, the Adam model has shown 

a 36.81% improvement in timeliness. This is 
because other optimization functions cannot 
cope with more complex network structures, 
and increasing the number of parameters will 
limit its convergence speed. However, the gra-
dient fluctuation of the Adam function is small, 
making it naturally more adaptable to complex 
network environments.

4.2. Performance Verification and 
Comparison of FCN Instance 
Segmentation

The model was implemented in Python using 
Tensor Flow framework, and executed on a 
Linux system. Both the instance segmentation 
and semantic segmentation models share con-
sistent deconvolution layer parameters. Figure 
10 depicts the class activation diagram gener-
ated by the model under conditions of sparse 
traffic volume, congested traffic volume, and 
insufficient lighting.
The model achieves visualization of class acti-
vation maps by backpropagating feature maps 
to the original image. In Figure 10, the red part 
represents the area with higher median values 
in the feature map. Therefore, when the target is 
relatively large and complete, its corresponding 
thermal map color is darker. Conversely, when 

Figure 10. Comparison of original images and thermal maps under different conditions.
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the target is obstructed or the light is weak, the 
thermal map will become lighter. This study 
further validated and analyzed the performance 
of the improved FCN instance segmentation 
model, as shown in Figure 11.
Figure 11 shows that the pixel accuracy of the 
instance segmentation model based on the im-
proved FCN reached 98.4%, which is 5.4% 
higher compared to the model before optimi-
zation. The average class accuracy reached 
97.32%, which is 6.68% higher compared to the 

model before optimization. The average region-
al overlap is 92.14%. The above data indicates 
that the optimized instance segmentation model 
has improved the accuracy and completeness of 
IS task. 
This study selected Mean Average Precision 
(MAP) as the evaluation index, and introduced 
the instance segmentation model proposed in 
[21][23], and W. Zhou et al. for comparative 
analysis [24]. The experimental results are 
shown in Figure 12.

Figure 11. Performance analysis of the improved FCN instance segmentation model.

Figure 12. MAP performance analysis of segmentation model for different instances.
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Figure 12 shows the changes in MAP indicators 
of different instance segmentation models in 
10 simulation experiments, and each IS model 
is relatively stable. The instance segmentation 
model based on an optimized FCN proposed in 
this study has an average accuracy of 97.9% for 
all classes, which is the best among the compar-
ison models. The average MAP of the instance 
segmentation model proposed by Li S et al. [21] 
is 95.7%. The average MAP of the instance seg-
mentation model proposed by Zheng Z et al. 
[23] is 97.2%. The average MAP of the instance 
segmentation model proposed by W. Zhou et al. 
is 96.6% [24]. Therefore, the IS model proposed 
in this study is 2.2%, 0.7%, and 1.3% higher 
than the other three models, respectively. 
To investigate the model's performance in com-
parison to recent research models on other data-
sets, the Coupled Deformation Model (CDM) 
proposed by A. Kumar et al. [25], and the U-Net 
optimization model proposed by J. Fan et al. 
[25–26] were introduced in this study. The ex-
periment was conducted using public data sets 
Cityscapes and iSAID, and the experimental re-
sults are shown in Table 1.

In Table 1, SSIM represents the Mean Structur-
al Similarity Index Measure, including the anal-
ysis of IS at three levels: brightness, contrast 
and structure. PSNR represents the Peak Sig-
nal-to-Noise Ratio of IS results. The models in 
the Cityscapes dataset exhibit minimal differ-
ences when the number of dimensions is 5, with 
an SSIM of approximately 0.745 and a PSNR 
of around 21.70. 
With the increase of dimension, the perfor-
mance of the model is significantly improved. 
For dimension 10, the SSIM value of the pro-
posed model is 7.19% higher than that of the 
CDM model and 5.23% higher than that of the 
U-Net optimization model. Similarly, the PSNR 
value of the proposed model is 9.80% higher 
than that of the CDM model and 8.21% higher 
than that of the U-Net optimization model. 
On the iSAID dataset with a dimension of 10, 
the SSIM and PSNR values of the proposed 
model are, on average, 5.83% and 8.25% higher 
than the other models, respectively. When the 
dimension reaches 15, the gap between the two 
data models is relatively larger. The SSIM val-

Table 1. Compares the performance of each model in different data sets.

Data sets Dimensionality
Model

CDM U-Net Ours

Cityscapes

5
SSIM: 0.747 SSIM: 0.742 SSIM: 0.748

PSNR: 21.83 PSNR: 21.66 PSNR: 21.95

10
SSIM: 0.852 SSIM: 0.867 SSIM: 0.918

PSNR: 25.49 SNR: 25.94 PSNR: 28.26

15
SSIM: 0.916 SSIM: 0.925 SSIM: 0.948

PSNR: 30.46 PSNR: 30.04 PSNR: 33.27

iSAID

5
SSIM: 0.773 SSIM: 0.785 SSIM: 0.816

PSNR: 22.38 PSNR: 23.05 PSNR: 23.74

10
SSIM: 0.901 SSIM: 0.893 SSIM: 0.948

PSNR: 27.49 PSNR: 28.06 PSNR: 30.05

15
SSIM: 0.952 SSIM: 0.923 SSIM: 0.970

PSNR: 31.01 PSNR: 30.76 PSNR: 34.58



181An Innovative Deep Learning Approach for Image Semantic and Instance Segmentation

ue of the proposed model is on average 12.05% 
higher than that of the other models, and the 
PSNR value is on average 13.57% higher than 
that of the other models. These differences were 
statistically significant (P<0.05). In conclusion, 
the proposed model has most effective instance 
segmentation performance.

5. Conclusion

This study employed a Fully Convolutional 
Network (FCN) to develop a semantic segmen-
tation model for images. First, the network's ba-
sic parameters were determined, and the origi-
nal fully connected layer was replaced with a 
convolutional layer. An instance segmentation 
model was constructed utilizing the output 
mask graph, while class activation technology 
was introduced to improve instance recognition 
of the target. 
Subsequently, simulation validation was con-
ducted on semantic segmentation and instance 
segmentation models respectively. In the for-
mer, different classification forms and dataset 
selections were analyzed. The data showed an 
average increase of 8.33% in pixel accuracy, 
9.22% in class average accuracy, and 14.38% in 
average Intersection over Union (IU). In com-
parison with SGD, AdaGrad, and RMSProp 
optimization functions, the model achieved an 
accuracy of 87.58%, surpassing other models 
by an average of 0.73%. 
The runtime of the experiment was 34.4 min-
utes, and the timeliness was improved by an 
average of 36.81%. The instance segmentation 
experiment yielded good results under various 
conditions, including different light intensities 
and sparsity. The pixel accuracy was 98.4%, 
which was 5.4% higher than the semantic 
segmentation model. The average class accu-
racy reached 97.32%, with an improvement 
of 6.68%. The average regional overlap was 
92.14%. 
In comparison with the segmentation models 
proposed in other relevant studies, the average 
accuracy of the entire class was 97.9%, which 
is higher than the other three models by 2.2%, 
0.7%, and 1.3%, respectively. This research pri-
marily focused on the network structure did not 
target specific segmentation objectives. There-

fore, designing a specialized loss function is 
imperative to address the issue of unbalanced 
label quantities among classes.
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