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With the Internet's rapid expansion, network securi-
ty challenges have become increasingly complex and 
prominent. Traditional protection methods, largely 
dependent on predefined rules and patterns, demon-
strate limited effectiveness against sophisticated and 
unknown network attacks, failing to harness the full 
potential of extensive network data. This study ad-
dresses the challenges faced by modern cybersecuri-
ty, particularly the limitations of traditional defense 
methods in countering unknown and complex attacks, 
by proposing a solution that integrates data analysis 
and machine learning technologies. The focus of this 
research is placed on network security anomaly detec-
tion as well as on intelligent network operations and 
maintenance exception management based on graph 
network algorithms, aiming to enhance security de-
fense capabilities and operational efficiency. Specif-
ically, the main contributions and innovations of this 
paper include: 

1. Innovations in sampling, aggregation, and loss 
functions within the Graph Sample and Aggrega-
tion (GraphSAGE) model to improve the accuracy 
and robustness of the model for network anomaly 
detection; 

2. The introduction of a novel network anomaly root 
cause analysis and localization model, which, 
combined with an optimized root cause likelihood 
assessment method and search scheme, signifi-
cantly enhances the speed and accuracy of anom-
aly localization; 

3. The design of an integrated decision support sys-
tem that can automatically adjust protection strat-
egies as network conditions change, achieving a 

high level of automation and intelligence in cy-
bersecurity management. This work not only pro-
vides effective technical support for network se-
curity protection but also opens new avenues for 
future cybersecurity research.
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→ Network security → Denial-of-service attacks
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1. Introduction

The advent and rapid proliferation of informa-
tion technology alongside the expansive reach 
of the internet have rendered network security 
a critical concern. This issue is closely linked 
not only to the security of information assets 
but also to the stable functioning of network 
systems [1, 2]. Concurrently, the development 
of big data and machine learning technologies 
has catalyzed a paradigm shift in strategies 
for network security, incorporating both pre-
ventive measures and offense-defense mecha-
nisms. Despite this progress, the application of 
such technologies in the realm of network se-
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curity encounters numerous challenges [3–5], 
underscoring the necessity for effective data 
analysis and machine learning applications in 
enhancing network security protocols [6, 7].
Research in this domain has predominantly 
employed traditional statistical methods and 
empirical rules to detect network attacks, a 
strategy largely confined by its dependency 
on recognized attack patterns. This approach 
often falls short in combatting intricate and 
novel network attacks [8–12]. As attack meth-
odologies evolve in tandem with technological 
advancements, the imperative for mastering 
sophisticated and potent techniques in network 
security becomes increasingly salient [13, 14]. 
In this context, the extraction and utilization of 
comprehensive network data for security pur-
poses have emerged as a vital research trajec-
tory [15].
Existing methodologies, however, display sev-
eral shortcomings in effectively addressing 
network security issues [16–19]. Primarily, the 
reliance on pre-established rules and patterns 
constrains their efficacy against unfamiliar and 
complex network attacks. Furthermore, these 
methods frequently fail to capitalize on the 
comprehensive nature of network data, which 
encompasses both structural and temporal el-
ements. The absence of effective mechanisms 
for pinpointing and managing network anoma-
lies further compounds these challenges.
With the rapid development of information 
technology, network security and stability 
have become the cornerstone of social opera-
tion. However, new types of network attacks 
are emerging constantly, making traditional 
rule-based security defense measures seem 
inadequate. To improve the accuracy of net-
work security anomaly detection, this paper 
makes innovative improvements to Graph-
SAGE. Specifically, adjustments were made 
to the sampling function of GraphSAGE, that 
is, when selecting local neighbor nodes for in-
formation aggregation from large-scale graphs, 
more efficient or more representative mecha-
nisms were adopted; the aggregation function 
was optimized, improving the way of merging 
node information to better capture the relation-
ships between nodes and the structural features 
of the graph; at the same time, the loss function 
was also refined to ensure that the model train-

ing process focuses more on the key features 
of the anomaly detection task. In terms of net-
work intelligent operations and maintenance 
exception control, a model capable of accu-
rately analyzing and locating the root causes of 
network anomalies was designed. This model, 
by optimizing the likelihood assessment meth-
od of root cause points, improves the accuracy 
of localization.The search scheme was also im-
proved, enhancing the efficiency and effective-
ness of the search process. Through the above 
improvements, not only the performance of 
graph network algorithms in the field of net-
work security is enhanced, but also a more in-
telligent and efficient anomaly handling tool is 
provided for network operations and mainte-
nance, promoting the development of network 
security and intelligent operations and mainte-
nance technology.
By innovatively improving the GraphSAGE 
model, this paper can more effectively discover 
and locate network security anomalies, there-
by enhancing the adaptive defense capability 
of network systems. Meanwhile, the network 
anomaly root cause analysis and localization 
model and optimized algorithms proposed in 
the research further improve the efficiency and 
accuracy of network intelligent operations and 
maintenance, which is of practical significance 
and application value for ensuring the stable 
operation and data security of network systems 
and maintaining the continuity and reliability 
of network services.
The forward-looking nature of this paper is re-
flected in applying graph network algorithms 
such as GraphSAGE to the fields of network 
security, as well as intelligent network opera-
tions and maintenance, pushing the graph net-
work algorithms from theory to a broader range 
of practical applications, especially in dealing 
with complex network security issues, demon-
strating the potential and value of the algorithm 
in real-world problems. In the field of network 
intelligent operations and maintenance, the op-
timization of the likelihood assessment meth-
od of root cause points and the search scheme 
directly improves the efficiency and accuracy 
of operations and maintenance, facilitating a 
rapid response and handling of network events.
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in the analysis. Traditional sampling functions 
might predominantly consider node degree, 
but in network security scenarios, nodes with 
extensive path associations warrant greater 
emphasis. The study has therefore augmented 
the sampling function, increasing the sampling 
likelihood for neighbors with significant path 
associations. This enhancement is ground-
ed in the principle of betweenness centrality. 
Figure 2 illustrates the betweenness centrality 
distribution within the sample set analyzed. 
Betweenness centrality, an index measuring 
a node's prominence in the network, accounts 
for the shortest paths between all node pairs, 
with the quantity of paths traversing a specific 
node denoting its betweenness centrality. Thus, 
nodes with elevated betweenness centrality 
are influential within the network, potentially 
serving as pivotal nodes or key pathways in 
network attacks. Incorporating this metric into 
the sampling function enables more effective 
capture of critical network information, there-
by augmenting the efficacy of network security 
anomaly detection. The weight value is denot-
ed by φSM. The number of paths through node 
n that also pass through node s is represented 
by Bs

PA(n). To regulate the sampling scale, the 
process is controlled by the parameter Bs

PA. The 
proposed sampling model in this paper is ex-
pressed as follows:
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In the methodology of this research, an en-
hanced sampling function was developed that 
preferentially samples nodes with numerous 
path associations within the network. These 
nodes are likely to be influential, serving either 
as critical nodes or as key conduits in the prop-
agation of network attacks. This refinement in 
the sampling function has led to improvements 
in the model's efficiency. The incorporation of 
the betweenness centrality metric has refined 
the sampling process, making it more focused 
and thereby reducing computational load and 
storage requirements.

2. Anomaly Detection in Network 
Security Utilizing Graph Network 
Algorithms

Network security data intrinsically compris-
es abundant structural information, such as IP 
addresses, port numbers, and protocol types. 
These elements form complex structural rela-
tionships within an extensive network connec-
tivity graph. Network security data also en-
compasses temporal information, evident from 
significant variations in network traffic over 
different periods. In addressing these aspects of 
network security data, the GraphSAGE mod-
el has been employed for anomaly detection. 
This model capitalizes on the structural data of 
network security, applying deep learning to the 
network connectivity graph through graph neu-
ral networks, thus unraveling potential patterns 
hidden within network data. Additionally, it 
adeptly captures temporal information by pro-
cessing time-series data, enhancing the preci-
sion of anomaly detection.
In the field of network security protection, the 
significance of path information for anomaly 
detection is paramount. Attackers often exploit 
specific paths for their attacks, such as infil-
trating a system via a particular port and sub-
sequently executing internal attacks. Therefore, 
path information is instrumental in better com-
prehending and identifying attack behaviors. 
Moreover, the analysis of path information aids 
in pinpointing the origin and target of attacks, 
fostering more effective protection strategies. 
While the traditional GraphSAGE model uti-
lizes node edge information, it overlooks path 
information. Consequently, this paper has inte-
grated path factors into the algorithm, refining 
the sampling function, aggregation function, 
and loss function. Figure 1 depicts the structure 
of the model developed in this research.
In scenarios of network security protection, 
nodes with extensive path associations are 
likely to exert substantial influence on net-
work security. They can be primary targets for 
attackers or pivotal nodes in the propagation 
of attacks. Hence, sampling these nodes more 
frequently can elevate the accuracy of network 
anomaly detection. The GraphSAGE model's 
sampling function, a crucial element, deter-
mines the neighboring nodes to be included 
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Figure 2. Distribution of betweenness centrality.

Figure 1. Model structure.
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Path information is crucial in network securi-
ty scenarios, as attackers often exploit specific 
paths, where nodes on these paths contain key 
attack information. Effective aggregation of 
adjacent node information, incorporating path 
characteristics, can heighten anomaly detection 
accuracy. The traditional GraphSAGE model, 
however, employs a mean aggregator, which 
averages the outputs of adjacent nodes and 
the node itself from the previous layer, inade-
quately utilizing path information. Hence, an 
enhancement in the aggregation function is ne-
cessitated. The implementation of this mean ag-
gregator scheme is elaborated upon as follows:

{ } ( ){ }( )( )1 1,j j j
c c ig Q mean g g i B cδ − −← ⋅ ∪ ∀ ∈
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Furthermore, an innovative aggregation func-
tion is introduced, integrating parameters per-
tinent to path information. This function ag-
gregates the features of neighboring nodes in 
accordance with path characteristics. Each path 
is assigned a specific weight, regulated by pa-
rameters related to the path. The features of 
neighboring nodes are then averaged based on 
these weights, culminating in an aggregated 
feature set. As a result, nodes situated on paths 
utilized in attacks receive higher weights, thus 
playing a more prominent role in the aggrega-
tion process. For instance, if all neighbors of a 

node Cu are represented by CNE, the aggrega-
tion function is defined as follows:
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The introduction of path-related parameters and 
the consequent aggregation of neighbor features 
based on these paths enable the model to more 
effectively capture information from nodes on 
attack paths, thus boosting the precision of net-
work security anomaly detection. Furthermore, 
the optimized aggregation function can resist 
path deception attacks by attackers, enhancing 
the model's robustness.
Nodes on the same network path often exhib-
it similar characteristics, aiding in more accu-
rate anomaly detection. The traditional Graph-
SAGE model, however, primarily optimizes its 
loss function based on node-to-neighbor simi-
larity, overlooking node-to-node path relation-
ships. An improved loss function is therefore 
proposed, designed to aggregate embeddings of 
nodes on the same path and compare these with 
original node embeddings. Substantial discrep-
ancies result in a higher loss function value, and 
vice versa. Figure 3 presents a comparative il-
lustration of neighbor aggregation methods.

Figure 3. Comparative illustration of neighbor aggregation methods.



238 Y. Lu

( ) ( )( )
( )

( )( )~

log

log
b b c

Y
H i i c

Y
c O i c

K X x x

W R x x

δ

δ

= −

− ⋅ −
      

(4)

A revision to the graph-based unsupervised loss 
function is proposed, enhancing its capability 
to reflect the similarity of node embeddings on 
the same path. This revision enables the mod-
el to more effectively comprehend and capture 
path information within the network during the 
learning process, thereby increasing the accu-
racy of anomaly detection. The optimized loss 
function, considering path relationships be-
tween nodes, allows the model to utilize not 
only the local information of nodes but also the 
structural information of the entire network, 
thus enhancing its generalizability.
In network security protection scenarios, the 
distinction in path characteristics between 
neighboring nodes often serves as a crucial dis-
criminator between attacks and normal behav-
iors. Overlooking these differences in the loss 
function calculation might impede accurate 
anomaly detection. Hence, the loss function 
optimization, as articulated in Equation 4, is 
premised on the similarity of node embeddings 
on the same path, yet it may overlook feature 
differences between neighbor nodes due to path 
variations. To address this, further optimization 
of the loss function is required, accommodat-
ing situations involving path characteristic dif-
ferences. The loss function design, centered on 
path-based aggregation, ensures adequate simi-
larity in embeddings of nodes on the same path. 
The function expression is provided as follows.
Nodes situated on the same path, represented 
by Rcb~OIN(c), and nodes not on the same path, 
denoted by Rcb~OIN(c), are considered in this 
approach. Loss due to neighborhood topology 
in the graph network, expressed as KH(Xi), and 
loss due to path topology, also represented as 
KH(Xi), are weighted and adjusted through the 
value of φLO.

( ) ( ) ( )i H i LO O iK X K X K Xϕ= +           (5)
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This optimized loss function considers both the 
similarity of node embeddings on the same path 
and the feature differences between neighbor-
ing nodes due to path variations. This dual con-
sideration allows the model to more effectively 
understand and capture both path information 
and path differences during the learning pro-
cess, thereby enhancing its accuracy in detect-
ing network security anomalies.
The specific steps for network security anoma-
ly detection utilizing graph network algorithms 
are detailed below. 
Node embedding in the network is achieved 
through graph network algorithms. Node em-
bedding is a technique that maps nodes to a 
low-dimensional vector space, allowing vectors 
in this space to reflect the nodes' positions and 
roles within the network. Once the correspond-
ing node embeddings are obtained, graph net-
work algorithms account for the network's to-
pology and the nodes' attributes. For each node 
Cu ∈Os ∈Es in the routes Es requiring detection, 
an embedding representation ru is generated. It 
is necessary to obtain the embeddings for each 
node on the path and calculate the sum of the 
embedding differences between adjacent nodes 
along the path. This process aims to capture the 
relationships and differences between nodes on 
the path, as attacks in network security often 
occur via specific routes. The following formu-
la is used to calculate the anomaly score based 
on the negative log similarity formula:

( )1s u uF r e −= −∑                    (7)

Upon the acquisition of path embeddings, a 
threshold-based approach is implemented for 
anomaly detection. It is posited that if the sum 
of embedding differences among nodes on a 
given path surpasses the predetermined thresh-
old, φTH, an anomaly is likely present on that 
path. This assumption stems from the norm 
that node embeddings on a path should exhibit 
similarity under typical conditions. Therefore, 
pronounced deviations may be indicative of 
malicious activities or attack maneuvers. The 
formula for calculating anomaly scores that ex-
ceed φTH is articulated as follows:

( ){ }1 ,AN u u u IN THO r r c O ϕ−= − ∈ ≥∑        
(8)
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Subsequent to the anomaly detection phase, 
paths registering anomaly scores above the es-
tablished threshold are selectively identified for 
further scrutiny and analysis. This methodology, 
harnessing graph network algorithms, proves 
effective in pinpointing anomalies within the 
network. Not only does this approach facilitate 
the efficient detection of network anomalies, 
but it also yields comprehensive insights into 
the nature of anomalous paths, thereby enhanc-
ing the understanding and defense mechanisms 
against network attacks.
This research significantly enhances the perfor-
mance of network security anomaly detection 
by making multidimensional improvements to 
the GraphSAGE model. Specifically, in terms 
of the sampling function, a more efficient or 
anomaly detection-oriented neighbor selection 
strategy is introduced, enabling the model to 
more accurately select information from a large 
dataset that aids in anomaly determination. 
The improvements in the aggregation func-
tion, through the introduction of new aggrega-
tion strategies or optimization of existing ones, 
better integrate neighborhood information, 
allowing the model to more precisely capture 
anomaly patterns. As for the adjustment of the 
loss function, it is designed to make the model 
more focused on the characteristics of anom-
alous data during the training process. This is 
achieved by introducing specific loss items for 
anomaly detection or adjusting the loss weights, 
thereby improving the accuracy of the model in 
detecting anomalous behavior in real network 
environments.

3. Methodological Approach to  
Anomaly Control in Network  
Intelligent Operational  
Maintenance

The development of a conceptual model for 
root cause analysis in network intelligent op-
erational maintenance is integral to enhanc-
ing network security protection and intelligent 
decision support. This model establishes a 
structured framework for analysis, enabling a 
systematic approach to understanding and ad-
dressing network anomalies for more effective 
security measures. Within this model, key in-

dicators of network anomalies are identified, 
which guide the protection strategies. This 
framework facilitates the precise determination 
of network anomaly root causes, thereby aug-
menting the efficacy of network security mea-
sures and aiding in the creation of an intelligent 
decision support system. This system is capable 
of autonomously adapting its security strategies 
in response to variations in network conditions, 
thereby enhancing the overall effectiveness of 
network protection.
Leaves in the conceptual model for root cause 
analysis are defined as a set of elements, each 
with uniquely determined attribute values con-
stituting a network anomaly's root cause point. 
Each leaf represents a distinct root cause, 
comprising a specific combination of attribute 
values not found concurrently in other leaves. 
Thus, leaves serve as the most detailed repre-
sentation of network anomaly root causes. For 
conducting root cause analysis in network intel-
ligent operational maintenance, a comprehen-
sive collection and analysis of leaves are under-
taken to pinpoint the actual causes of network 
anomalies. Leaves are represented as MRSD = 
{r|r = (s, n, v, f ), s ≠ *, n ≠ *, v ≠ *, f ≠ *}, 
and the descendant elements of r are denoted as 
DE® = {r′|r′ is DE of r}. The formula for cal-
culating the KPI values for elements of coarser 
granularity is presented as follows:

( ) ( )
( )r DE r

c r c r
′∈
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The model defines a data parallelepiped as a 
set formed by combinations of attributes s, n, 
and v, representing the root cause points of 
anomalies. Each combination pertains to one 
or more leaves or root causes. The data paral-
lelepiped is envisioned as a multidimensional 
space, with each dimension corresponding to an 
attribute and the spatial position of each point 
determined by its attribute values. Figure 4 
illustrates the schematic of the data cube. As-
suming the parallelepiped consists of attribute 
combinations from s, n, v dimensions and com-
prises several smaller cubes that form a larger 
cube, represented by VS, N, V, the definitions are 
as follows:

( ) ( ){ },*,*,* , *SR V r r s s= = ≠           (10)
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In the proposed model for root cause analysis 
within network intelligent operational mainte-
nance, the search within the data parallelepiped 
plays a pivotal role. It facilitates the identifi-
cation of leaves corresponding to anomalous 
events, thereby pinpointing the anomaly's root 
cause. Observation of the leaves' distribution 
within the data parallelepiped uncovers patterns 
and regularities in anomalies, contributing to 
the prediction and mitigation of future anoma-
lous events. When the parallelepiped comprises 
m distinct values across f unique attribute cat-
egories, it encapsulates m 

f attribute combina-
tions.
The response mechanism to anomalies in net-
work intelligent operational maintenance ad-
heres to a conceptual model encompassing a 
generalized ripple effect of anomaly propaga-
tion. Within a network environment, an anom-
aly typically initiates locally and swiftly pro-
liferates, impacting other network segments 
and creating a ripple-like diffusion effect. This 
phenomenon manifests through hierarchical, 
cross-domain, and dynamic propagation modes. 
Anomalies generally extend from an affected 
node to its connected nodes and subsequently 
to succeeding hierarchical layers, facilitating 
rapid expansion of the anomaly's influence over 
extensive network areas. The complexity inher-
ent in network systems implies that an anomaly 
can simultaneously affect multiple functional 
domains. For example, a hardware failure could 
impair both communication and data processing 
operations, illustrating the extensive and mul-

tifaceted nature of such anomalies. Moreover, 
as networks operate, the impact of an anomaly 
may fluctuate over time, indicative of dynamic 
propagation characteristics, where the severity 
of an anomaly could either escalate or diminish.
For an effective response to the generalized 
ripple effect in network intelligent operational 
maintenance, appropriate control measures are 
imperative to prevent further spread of anoma-
lies and minimize their network impact. These 
measures may involve isolating affected nodes, 
severing problematic paths, and accurately 
identifying the sources of anomalies. Continu-
ous network monitoring is essential for timely 
detection and management of new anomalies. 
A root cause is represented by A, direct network 
data by L1 and L2, derived data calculated from 
basic collected data by L3, the actual value by 
c(r), and the predicted value of the leaf element 
r by d(r). It is postulated that for each anoma-
lous root cause, there exists a constant j such 
that any attribute combination satisfies the fol-
lowing equation:
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The model defines a quantifiable index, termed 
the potential score, to represent the importance 
or impact level of a node or path in the network 
in the context of anomaly propagation. By cal-
culating the potential score of each node or 
path, priority areas for attention and processing 

Figure 4. Schematic diagram of the data cube.
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are identified, further assessing the risk distri-
bution within the network and aiding in formu-
lating more effective network security strate-
gies. The L2 norm is utilized as a measure of 
deviation, denoted by ||  ||2. Simultaneously, the 
expected value, a key component in the model's 
calculations, is represented by s(A1). The poten-
tial score is represented as follows:

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1 2 2

1 2 1 2 2

, ,
0,1

, ,

c A c A s A d A
PS MAX

c A c A d A d A

 −
 = −
 − 

(14)

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )
( )

a

d r
s r d r d A c A

d A

c A
d r

d A

= − −

=
       

(15)

The methodology for conducting root cause 
analysis in network intelligent operational 
maintenance comprises several key steps, out-
lined as follows.
Initially, an anomaly detection module is estab-
lished for monitoring the network's operational 
state. This module incorporates a range of pre-
defined rules, such as sudden shifts in network 
traffic or notable delays in response times of 
network nodes. Activation of these rules trig-
gers the module to ascertain the presence of 
network anomalies using binary determinations 
(anomalous or non-anomalous). Subsequent to 
anomaly detection, relevant data, encompassing 
network traffic, node status, and system logs, is 
gathered and stored. This data forms the foun-
dation for later stages of root cause analysis.
The collected data is then processed and an-
alyzed, utilizing a MySQL database for data 
exportation and segmentation based on time-
stamps, thus facilitating data preprocessing. 
Selection and documentation of all leaf combi-
nations occur from the Topostatics table. These 
leaf combinations represent potential root caus-
es of anomalies, defined by specific attribute 
combinations. For example, combinations of 
network traffic and response time attributes 
are noted if they are identified as potential root 
causes.

For each leaf combination, specific metrics are 
chosen to describe its state, such as link rate, la-
tency, jitter, and packet loss rate. These metrics 
provide the actual values for the leaf combina-
tions, crucial for subsequent anomaly detection 
and root cause analysis. The moving average 
(MA) algorithm is employed to generate predic-
tive values for each leaf combination, assisting 
in anticipating potential trends and preempting 
possible anomalies.

( ){ }, , , , ,uR RE PR SI SP DI SP=           (16)

The final step involves conducting root cause 
analysis. Inputs such as switch ID numbers and 
port numbers are fed into the root cause anal-
ysis algorithm, which then performs an anal-
ysis across the entire network's link informa-
tion. This process identifies the anomaly's root 
cause, laying the groundwork for developing 
effective network security strategies.
In the context of network security protection, 
disparities in the scale of monitoring metrics 
can potentially diminish the accuracy of the po-
tential score in reflecting the anomaly degree of 
leaf elements. For example, a particularly high 
value in one metric might mask variations in 
others, leading to an imprecise assessment of 
the network's anomaly state. To address this, 
a redefined custom distance for the potential 
score is proposed for more accurate network 
anomaly evaluations.
The adoption of a variable distance, replacing 
the traditional L2 norm distance, is a key in-
novation of this study. The variable distance's 
advantage lies in its ability to automatically ad-
just weighting in distance calculations based on 
data characteristics, thereby avoiding the sup-
pression effect of large-scale metrics on the po-
tential score. The process involves calculating 
the discrepancies between the predicted and ac-
tual values for each leaf element. Subsequently, 
weights are assigned to each leaf element based 
on the magnitude of these discrepancies, with 
larger discrepancies warranting greater weights. 
This approach ensures that metrics significantly 
impacting network anomalies receive appropri-
ate attention without being overshadowed by 
large-scale metrics. The distance calculation 
between vectors z and t



, denoted by m(z, t


), 
the anomalous and normal leaf combinations 
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efficiency in identifying root causes of network 
anomalies, as delineated below.
Candidate sets of root causes are initially eval-
uated based on the generalized ripple effect, 
prioritizing those sets likely to trigger such an 
effect. The candidate sets are then ranked ac-
cording to their influence scores, with higher 
scores warranting earlier consideration. The 
search for the root cause candidate set is con-
ducted sequentially, following the hierarchical 
structure of the data parallelepiped, thus cir-
cumventing inefficacious searches and aug-
menting efficiency. Upon identifying a plau-
sible root cause, the search can be concluded 
prematurely, conserving both time and compu-
tational resources, further elevating efficiency.
This redesign of the search scheme fundamen-
tally aims to expedite the discovery of root 
causes in network anomalies, thereby facilitat-
ing more efficacious network security protec-
tion.
In summary, in the proposed model, the deci-
sion-making process begins with the collection 
and processing of massive data in complex net-
work environments based on a structured analy-
sis framework, utilizing the capability of graph 
network algorithms to capture the multidimen-
sional characteristics and potential correlations 
of network anomalies. The model analyzes net-
work behavior through intelligent algorithms, 
identifies anomaly patterns, and matches these 
patterns with known security incidents or anom-

distinguished by the subscripts sn and b, and 
the custom adjustment for the variable distance 
represented by η, are defined as follows:
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In the methodology for network intelligent 
operational maintenance anomaly control, the 
complexity and dynamism of network states 
often lead to an exponentially growing search 
space for root cause analysis. To address this, 
a strategy is proposed whereby the candidate 
set of root causes is assessed in advance. The 
assessment and subsequent search are guided 
by the hierarchical structure of the data paral-
lelepiped, potentially terminating the search 
early to enhance efficiency. It is posited that the 
real and predicted KPI values of the candidate 
set A are denoted by c(A) and d(A), respective-
ly, as shown in the equation:

( ) ( ) ( )
( ) ( )r MRSD

c A d A
IM PS A

c r d r
∈

−
− =

−∑       
(19)

Figure 5 illustrates the proposed influence 
score-based search scheme for anomaly root 
causes in network intelligent operational main-
tenance. This scheme is restructured to augment 

Figure 5. Influence score-based network intelligent operational maintenance anomaly root cause search scheme.
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alous behaviors to determine key indicators of 
anomalies. Then, using these key indicators, the 
model conducts in-depth root cause analysis by 
calculating and comparing various potential 
root cause points and their likelihood scores to 
identify the most probable root cause. Finally, 
the results of the root cause analysis are input 
into the decision support system, which can au-
tomatically recommend or adjust security pro-
tection strategies based on the analysis results 
and the current network state, ensuring a rapid 
response and effective prevention or mitiga-
tion of network anomalies, thereby enhancing 
the overall efficacy of network security protec-
tion. This intelligent decision support process 
demonstrates a high degree of automation and 
intelligence, greatly improving the efficiency 
and accuracy of network security operations 
and maintenance.

4. Results and Analysis

In this research, to evaluate the network secu-
rity anomaly detection model based on graph 
network algorithms, we designed the follow-
ing experimental setup and parameter config-
uration. Specifically, the experiment uses two 
sets of data. The first set is the network traffic 
data from the day before an anomaly occurred, 
serving as the reference input for the normal 
state, used to train the model. The second set 
of data consists of streaming routing update 
data at the time of the anomaly, used as input 
for real-time anomaly detection. In the graph 
sampling process, to balance the importance of 
graph structure and path information, we assign 
equal weight to these two factors. The sampling 
scale is set to 6, meaning that in constructing 
the graph, we sample six neighbor nodes from 
each node to ensure the graph representation is 
rich enough while reducing computational bur-
den. The model is first trained using the data 
from the day before the anomaly is tagged. Af-
ter training, the model will be applied to data 
within the time frame of the anomaly tagging 
for real-time anomaly detection. Precision and 
F1-score are used as the main performance eval-
uation metrics. Precision measures the model's 
ability to correctly mark anomalies, while the 
F1-score is the harmonic mean of precision and 
recall, providing an assessment of overall per-
formance. The threshold for the anomaly score 

is set to 0.5, with network behavior exceeding 
this score considered anomalous. This thresh-
old is the boundary the model uses to differen-
tiate between normal and anomalous behavior.
In the domain of network security anomaly de-
tection, enhancements in the GraphSAGE mod-
el have been introduced, encompassing modi-
fications to its sampling, aggregation, and loss 
functions. Table 1 presents a detailed evaluation 
of this model's effectiveness. Enhanced accura-
cy and F1-score are consistently noted across 
networks 1, 2, and 3, when compared to the de-
cision tree and GraphGAGE models. Such re-
sults distinctly highlight the superior efficacy of 
the refined model in detecting anomalies within 
network security, outperforming the aforemen-
tioned models. Furthermore, an analysis of run-
time efficiency reveals that, while the enhanced 
GraphSAGE model requires a longer runtime 
than the GraphGAGE model, it remains sig-
nificantly more time-efficient than the decision 
tree model. This balance of high performance 
with efficient operation is a notable feature of 
the proposed model. The comprehensive exper-
imental data thus underscores the robustness of 
the improved GraphSAGE model in the context 
of network security anomaly detection, excel-
ling in both predictive accuracy and operation-
al efficiency. The advancements in the Graph-
SAGE model, evidenced by these comparative 
analyses, suggest its effectiveness as a method 
for anomaly detection in network security.
Data presented in Figure 6 illustrates the influ-
ence of various parameters on model accuracy, 
contingent upon changes in sampling parameter 
values. It is observed that an increase in sam-
pling parameters initially leads to a substantial 
rise in accuracy for loss calculation parameters, 
culminating in a peak, beyond which the accu-
racy declines as the parameter values continue 
to escalate. This peak signifies the presence of 
an optimal value for loss calculation parameters, 
where the model attains its highest level of accu-
racy. Correspondingly, the trend lines for sam-
pling parameters exhibit a similar pattern, where 
accuracy enhances with the rise in sampling 
values, reaches an apex, and then moderately 
decreases. This trend suggests that the model 
demonstrates improved performance within the 
range of optimal sampling parameter values. 
Furthermore, a direct relationship between sam-
pling scale and accuracy is noted, with accura-
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cy amplifying until reaching a maximum value, 
followed by a gradual decline. This trend im-
plies that while modulating the sampling scale 
can optimize model performance, an excessive-
ly extensive sampling scale may not necessarily 
lead to superior outcomes. The graphical data 
vividly portrays the substantial impact these pa-
rameters exert on model accuracy, emphasizing 
that each parameter has a specific optimal range 
conducive to achieving heightened accuracy. 
This observation underscores the importance of 
meticulous parameter tuning in substantially el-
evating the efficacy of network security anoma-
ly detection methodologies.
The ablation study detailed in Table 2 critically 
evaluates the performance of different network 
security anomaly detection models across three 
distinct network scenarios. In all three network 
scenarios, the proposed model consistently ex-
hibits superior accuracy and F1-score, affirming 
its optimized nature and robust generalizability 
across varied datasets. Models employing ran-
dom sampling showed a marked decrease in 
performance, suggesting that such an approach 
might result in the loss of vital structural infor-
mation crucial for effective model functioning. 
In contrast, models with path-based sampling 
demonstrated enhanced performance, indicat-
ing that the refinements in sampling methods 
incorporated in the proposed model more effi-
ciently capture critical network structural data, 
thus boosting anomaly detection accuracy.

Regarding aggregation functions, models re-
lying solely on mean aggregation underper-
formed when compared to the proposed mod-
el. This underscores the inadequacy of relying 
solely on mean values for aggregating neigh-
boring node information. An improvement is 
noted when path-based mean aggregation is 
employed, suggesting that the modifications in 
aggregation functions in the proposed model 
are more apt for handling information aggrega-
tion in complex network scenarios. Models that 
focused only on minimizing neighbor embed-
ding were found to be the least effective, likely 
due to their failure to sufficiently account for 
the path relationships between nodes. This was 
substantiated by the observed enhancement in 
performance with path-based embedding min-
imization, validating the importance of im-
provements made in the loss function in the 
proposed model for augmenting overall model 
performance. The findings of the ablation study 
are conclusive in demonstrating the effective-
ness of the enhancements made to the sampling 
functions, aggregation functions, and loss func-
tions in the proposed model. These modifica-
tions play a pivotal role in the heightened ac-
curacy and efficiency of the proposed model in 
network security anomaly detection. The model 
not only accurately identifies network anoma-
lies but also consistently displays high accuracy 
and F1-score across different network environ-
ments, emphasizing its practical applicability 
and effectiveness in network security domains.

Table 1. Comparative experimental results of different network security anomaly detection models.

Model Decision tree GraphGAGE The proposed model

Network 1

Accuracy 0.812 0.785 0.832

F1-score 0.824 0.758 0.827

Run time 715 s 123 s 158 s

Network 2

Accuracy 0.852 0.785 0.814

F1-score 0.814 0.789 0.821

Run time 758 s 117 s 163 s

Network 3

Accuracy 0.788 0.745 0.781

F1-score 0.768 0.712 0.787

Run time 24 s 13 s 18 s
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Table 2. Ablation experimental results of network security anomaly detection models.

Model
Network 1 Network 2 Network 3

Accuracy F1-score Accuracy F1-score Accuracy F1-score

The proposed model 0.839 0.827 0.835 0.819 0.814 0.785

Neighbor 
Sampling

Random  
sampling 0.756 0.745 0.784 0.761 0.745 0.741

Path-based 
sampling 0.784 0.776 0.784 0.782 0.782 0.753

Aggregation 
function

Mean  
aggregation 

function
0.738 0.725 0.748 0.748 0.721 0.725

Path-based 
mean  

aggregation 
function

0.739 0.736 0.739 0.739 0.725 0.736

Loss  
function

Neighbor 
embedding 

minimization
0.718 0.725 0.718 0.725 0.726 0.721

Path-based 
embedding 

minimization
0.789 0.784 0.779 0.771 0.774 0.756

Figure 6. Parameter analysis experimental results.
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In the field of network intelligent operation-
al maintenance for anomaly control, a novel 
model for network anomaly root cause analy-
sis and localization was developed. This mod-
el enhances the efficiency of operational pro-
cesses through the optimization of root cause 
likelihood assessment methods and search 
strategies. As delineated in Table 3, three dis-
tinct network security anomaly scenarios were 
examined, each exhibiting unique character-
istics. The variations in traffic patterns across 
these scenarios typify different forms of net-
work security anomalies: unauthorized access 
anomalies are marked by abrupt traffic surges, 
DDoS attack anomalies exhibit short-term traf-
fic fluctuations, and zero-day attack anomalies 
are characterized by persistent abnormal traffic 
changes. The selection of these varied scenari-
os facilitates the precise analysis and identifica-
tion of network anomalies' root causes within 
the framework of this study's model.
Figure 7 presents the anomaly degree scores as 
evaluated by three disparate network intelligent 
operational maintenance methods across net-
work anomaly scenarios. An elevated anomaly 
degree score signifies a more severe anomaly 
and a method's enhanced proficiency in anom-
aly detection. The figure reveals that with an 
increasing number of computations, the local 
outlier factor (LOF) method manifests compar-
atively lower scores with minimal fluctuations. 
Conversely, the isolation forest method scores 
moderately with more pronounced fluctuations. 
The method proposed in this study consistently 

yields higher scores with moderate fluctuations, 
underscoring its effectiveness in network secu-
rity anomaly detection. Relative to the LOF and 
isolation forest algorithms, the proposed meth-
od not only demonstrates superior accuracy in 
anomaly detection across various scenarios but 
also maintains stable and consistent scoring. 
This stability and consistency are paramount in 
operational environments aimed at the real-time 
detection and response to network anomalies, 
further accentuating the practical utility and ef-
ficacy of this study's model in network security 
protection.
Figure 8 depicts the accuracy of control re-
sponses by various algorithms in different 
anomaly scenarios. It has been observed that the 
algorithm proposed in this study exhibits supe-
rior control response accuracy when addressing 
network security anomalies, including unau-
thorized access, DDoS attacks, and zero-day 
attacks, relative to other algorithms. This su-
periority is consistently evident across various 
anomaly scenarios, indicating the algorithm's 
effectiveness. The consistently high accuracy in 
each scenario further highlights the comprehen-
sive nature of the proposed algorithm, suggest-
ing its widespread applicability to a range of 
network security challenges. The performance 
of the algorithm elucidated in this study accen-
tuates its efficacy in accurately identifying and 
managing diverse types of network attacks in 
real-world environments, thereby establishing 
its reliability and preeminence as an anomaly 
detection and response tool.

Table 3. Network security anomaly scenarios.

Anomaly type Source Destination Business path Normal traffic Anomalous 
traffic

Unauthorized 
access X11 X15

D5-D6-D7-D8 or 
D3-D1-D5-D6-
D7-D8

10~50 Mbps Spike to  
80~100 Mbps

DDoS attack X8 X14
D3-D5-D1-D6-
D7-D8 or D3-D5-
D1-D6-D7-D8

20~80 Mbps Fluctuate to 
50~60 Mbps

Zero-day attack X14 X7 D14-D6-D5-D3 50~90 Mbps
Long-term  

fluctuation to 
20~40 Mbps
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Figure 7. Anomaly degree scoring for different network intelligent operational maintenance methods.

Figure 8. Control response accuracy of different algorithms in various anomaly scenarios.
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Figure 9 shows the time taken for anomaly de-
tection by different algorithms across various 
scenarios. The response time of the algorithm 
introduced in this study is not the shortest for 
all anomaly types when compared to other al-
gorithms, yet it remains within an acceptable 
range. Importantly, considering its high accura-
cy in response, the algorithm's utility in network 
security is deemed invaluable. Furthermore, its 
precise detection and responsive capabilities are 
instrumental in significantly reducing potential 
losses, underscoring the algorithm's practical 
significance in the field of network security.

5. Conclusion

In this study, two primary areas were ad-
dressed: network security anomaly detection 
and the control of anomalies within intelligent 
operational maintenance. The study successful-
ly incorporated and enhanced the GraphSAGE 
model for network security anomaly detection. 
Emphasis was placed on refining the model's 
sampling function, aggregation function, and 

loss function. The revised sampling function 
accentuates the significance of network struc-
tural information and inter-node connections, 
aiding in the identification of potential anom-
alies. The aggregation function has been opti-
mized to effectively merge neighboring node 
data, capitalizing on graph structural character-
istics to increase anomaly detection precision. 
Additionally, the loss function now accounts for 
path similarities between nodes, enhancing the 
model's sensitivity to anomalous data points. 
Experimental results indicate that the model, in 
comparison to conventional decision trees and 
the GraphGAGE graph algorithm, consistently 
achieves superior accuracy and F1-score across 
various network datasets, exhibiting notably 
stable and enhanced performance during pa-
rameter analysis.
For the aspect of intelligent operational main-
tenance, a novel model for network anomaly 
root cause analysis and localization was devel-
oped. This model refines the method of assess-
ing the likelihood of root causes and introduces 
the concept of potential scores for quantitative 

Figure 9. Anomaly detection time consumption of different algorithms in various anomaly scenarios.
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evaluation of anomaly impact and severity. 
Furthermore, the search strategy has been me-
ticulously refined, considering the generalized 
ripple effect to efficiently and systematically 
identify anomaly root causes. Experimental 
findings demonstrate the model's exceptional 
performance, surpassing traditional models in 
ablation studies and exhibiting higher control 
response accuracy and quicker anomaly detec-
tion response times in diverse network security 
anomaly scenarios, such as unauthorized ac-
cess, DDoS attacks, and zero-day attacks.
In conclusion, the conducted research and ex-
periments underscore the effectiveness of the 
enhanced GraphSAGE model in network se-
curity anomaly detection. The study also con-
firms that the developed root cause analysis 
and localization model, along with the root 
cause point assessment method, significant-
ly boost the efficiency of network intelligent 
operational maintenance. This study provides 
network operations personnel with a powerful 
decision support tool, enabling more intelligent 
and automated network security protection. It 
allows for the rapid response and handling of 
security incidents, significantly improving the 
timeliness and effectiveness of network secu-
rity defense, reducing network security risks, 
and enhancing the stability and reliability of the 
network.
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