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Accurate detection and analysis of cracks is criti-
cal for ensuring the safety and reliability of concrete 
bridges. Point cloud data (PCD) obtained from 3D 
scanning provides a promising avenue for automated 
crack assessment. However, processing the massive 
and unstructured PCD poses significant challenges 
in feature extraction and crack modeling. This paper 
proposes a novel method for bridge crack analysis by 
combining PCD feature extraction with a hierarchical 
neural network and Rodriguez rotation. The method 
first extracts crack features from PCD using outlier 
removal, denoising, and 3D coordinate conversion. A 
crack analysis model is then constructed by integrating 
multi-scale feature extraction and Rodriguez rotation 
into a hierarchical neural network, enabling the capture 
of both local and global crack patterns. Experiments on 
a benchmark data set demonstrate the effectiveness of 
the proposed approach, achieving 92.83% feature ex-
traction accuracy, 95.73% parameter analysis accuracy, 
93.51% recognition accuracy, and 0.91 F1 score. The 
method also shows improved efficiency compared to 
existing techniques. These results highlight the poten-
tial of the proposed PCD-based approach for accurate 
and efficient crack analysis in concrete bridges.

ACM CCS (2012) Classification: Artificial intelli-
gence → Computer vision → Computer vision tasks
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1. Introduction
According to statistics, there are about 1 million 
existing bridges worldwide and about 600,000 
bridges in the U.S. Nearly 40% of these bridg-
es are more than 50 years old. Aging and wear 
and tear of these bridge structures have led to 

increasing cracking problems, which not only 
affect the aesthetics of the bridges but more 
importantly, may threaten the structural safety 
of the bridges and increase the potential risk of 
accidents [1][2]. Therefore, improving the ac-
curacy and reliability of bridge crack detection 
and analysis is of great significance to ensure 
the safe operation of bridges.
Ling et al. [3] monitored the moisture in con-
crete using sensors in order to effectively detect 
the generation of cracks in concrete. The results 
showed that climatic conditions had a signif-
icant relationship with the loss of moisture in 
concrete, and the loss of moisture mainly led 
to the generation of transverse cracks. Zhang et 
al. [4] utilized the visual image detection meth-
od to detect cracks in concrete bridge decks. 
The results showed that the accuracy of this 
method in the process of crack identification 
was 99.05%, 98.9%, and 99.25%, respectively. 
The detection accuracy and reliability of bridge 
deck cracks were greatly improved. 
It can be seen that traditional crack detection 
methods, such as visual inspection and acoustic 
wave detection, although can detect cracks to 
a certain extent, are limited by the experience 
and skills of the inspectors, as well as the pre-
cision and efficiency of the inspection equip-
ment, which often makes it difficult to carry 
out a comprehensive and accurate assessment 
of the cracks [5]. In contrast, point cloud data 
(PCD), as a new type of data source, has unique 
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advantages such as high density, high precision, 
and non-contact measurement. Point cloud data 
is a collection of spatial 3D coordinate points 
acquired by 3D scanning equipment, which 
can realize 3D reconstruction and quantitative 
analysis of cracks [6][7]. At the same time, the 
information in point cloud data can be further 
explored through feature extraction and param-
eter analysis techniques, which can provide a 
scientific basis for the repair and reinforcement 
of bridge cracks.
Existing crack detection methods based on point 
cloud data have made some progress but still 
have some limitations. First, the vast, unstruc-
tured, and wireless nature of point cloud data 
poses great challenges in data processing and 
analysis. Second, current crack detection meth-
ods have limited accuracy in feature extraction 
and parameter analysis, making it difficult to 
fully capture the detailed features of cracks, es-
pecially in complex bridge structures. Based on 
this, the study innovates feature extraction of 
point cloud data and constructs a crack analysis 
model for bridge concrete structures using quan-
tified parameters based on feature extraction.
The contribution of the study is to propose a 
new feature extraction method for point cloud 
data, which improves the quality and accuracy 
of point cloud data through step elimination 
and statistical filtering. An innovative crack 
analysis model is also designed to capture the 
characteristics of cracks in different directions 
more comprehensively. By solving the massive, 
unstructured nature of point cloud data, this pa-
per provides strong technical support for the 
comprehensive and accurate detection and as-
sessment of bridge cracks and provides an im-
portant reference for the safety assessment and 
maintenance management of bridge structures.

2. Related Work

In bridge engineering, concrete crack structures 
have always been an active and challenging re-
search topic. Many scholars have carried out 
research on the detection, measurement, and 
analysis methods of bridge cracks. The research 
methods can be categorized into four main 
groups: sensor monitoring methods, visual im-
age detection methods, laser scanning methods, 
and point cloud data based methods [8]. 

Regarding the sensor-based detection methods, 
Li et al. [9] concluded that noise interference 
and unclear bridge images make bridge safety 
maintenance still a challenging problem. The 
research team proposed a novel bridge crack 
detection model after combining short-term 
dense cascade networks and refinement net-
works, which achieved 97.54% detection ac-
curacy and 37.0 images per second during de-
tection, realizing real-time crack detection. The 
advantage of these methods is that the health 
status of bridge structures can be monitored in 
real time and continuously. 
Among the detection methods utilizing visu-
al images, Zhang et al. [10] proposed a light-
weight bridge crack detection method using the 
YOLOv4 algorithm in order to further improve 
the performance of bridge crack detection 
methods by incorporating deep learning. The 
accuracy, recall, and F1 score of this method 
are 93.96%, 90.12%, and 92%, respectively. 
The primary advantage of visual image-based 
detection methods is their ability to quickly 
identify and locate cracks using image process-
ing technology, making them ideal for large-
scale bridge inspections. However, these meth-
ods are greatly affected by external factors such 
as ambient light and weather, making image 
acquisition challenging, and limiting detection 
accuracy and robustness. 
Oytun et al. [11] used a terrestrial laser scanner 
to identify the bridge cracks by extracting point 
cloud data, solved the influence of different pa-
rameters on the quality of point cloud data, and 
obtained the range value of crack width under 
different scanning settings. The advantage of 
this method is that it can obtain the crack data 
on the bridge surface with high accuracy and 
without contact, but the laser scanning equip-
ment is expensive, the data processing is com-
plicated, and it requires skilled operators. 
Among point cloud-based methods, Huang 
et al. [12] proposed a crack detection meth-
od based on the fusion of three transient point 
cloud attributes, which solved the problem of 
low recognition efficiency due to insufficient 
limited feature extraction of bridge cracks. The 
results showed that the average network accu-
racy of this method was improved by 5.4% to 
87.78% over the initial network. The advan-
tage of this method is that the point cloud data 
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fusing the depth averages of the left and right 
side point cloud data to improve data quality 
and accuracy. To determine if step elimination is 
necessary, first, the depth means on both sides of 
the PCD are calculated. Then, the left and right 
values are subtracted to obtain an absolute dif-
ference, and the absolute value is compared with 
the set value. If the absolute value exceeds the 
set value, a step is present and needs to be ad-
dressed. The data on the side with a lower mean 
is improved, and the processed PCD is fused to 
effectively eliminate the data step. The left and 
right PCD can be calculated using formula (1).
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In formula (1), IL represents the mean of the left 
PCD. IR represents the mean of the right PCD.  
n represents the median of the PCD for bridge 
cracks. I(i, j) signifies the depth value of the 
bridge crack PCD. 
After completing the step elimination of PCD, 
data denoising operations can be carried out. 
The statistical filtering method is applied to de-
noise PCD. The goal of statistical filtering is to 
determine whether a point is an outlier by cal-
culating the distance of each point from other 
points in its neighborhood. If the distance be-
tween a point and other points in its neighbor-
hood exceeds a certain threshold, the point is 
considered to be an outlier and removed. Com-
pared with other methods, the statistical fil-
tering method can effectively remove isolated 
outliers and improve the quality and accuracy 
of point cloud data, especially for high-density 
and high-noise point cloud data. 
During denoising, outliers are removed based 
on the density of the crack PCD. Eliminating 
these outliers can improve the clustering effect 
of PCD. After removing outliers, the average 
distance between PCD and cracks can be calcu-
lated, marked, and then denoised based on the 
average distance between points and cracks in 
all PCD. The average distance between a point 
and a crack is defined as the average distance 
from each point cloud data point to all points 
on the crack surface. The effect of PCD before 
and after filtering and denoising is shown in 
Figure 1.

can realize the three-dimensional reconstruc-
tion and quantitative analysis of bridge cracks, 
which can more accurately assess the state and 
hazardous degree of cracks [13].
In summary, sensor monitoring methods, visual 
image detection methods, laser scanning meth-
ods, and methods based on point cloud data 
have achieved certain results but still have lim-
itations in detection accuracy and effectiveness. 
Especially, the massive, wireless, and unstruc-
tured nature of point cloud data presents signifi-
cant challenges in data processing and analysis. 
In particular, the robustness and efficiency of 
crack identification and localization in com-
plex bridge structures still need to be improved, 
and these limitations restrict the effectiveness 
of point cloud data in bridge crack detection. 
To address these issues, this study innovatively 
improves the quality and accuracy of the point 
cloud data model through step elimination and 
statistical filtering, and also introduces a multi-
range feature extraction method for optimiza-
tion. The study aims to provide strong techni-
cal support for the comprehensive and accurate 
detection and assessment of bridge cracks and 
provides an important reference for the safety 
assessment and maintenance management of 
bridge structures.

3. Construction of a Bridge Crack 
Analysis Model Combining Point 
Cloud Data and Parameter  
Analysis

3.1. Crack Data Feature Extraction Based 
on Point Cloud Analysis

In bridge structure crack data collection, factors 
such as equipment errors and lighting can im-
pact the accuracy and detail of point cloud data 
(PCD) [14][15]. To improve the analysis perfor-
mance of bridge crack PCD, feature extraction, 
and localization are performed on the crack 
data. Firstly, the crack PCD processing aims to 
improve the stability of feature extraction. The 
PCD processing includes data step elimination 
and data denoising. 
Point cloud data step elimination is the process 
of eliminating steps in the data by adjusting and 
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After completing the step elimination and noise 
elimination of PCD, the features of bridge crack 
data can be extracted. To extract the features of 
PCD, the study utilizes calibration matrices and 
the center position coordinates of crack light 
strips to obtain the contour data of cracks. Most 
crack images are two-dimensional images. 
Therefore, during feature extraction, they need 
to be converted into three-dimensional images, 
which can be represented by formula (2).
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In formula (2), S represents a conversion factor 
in the point cloud image. (u, v, 1, 0) represents 
the homogeneous coordinates of the center im-
age of the crack light strip. R represents the cal-
ibration matrix of PCD after planar calibration.  
(xw, yw, zw, 1) represents the three-dimensional 
homogeneous coordinates after PCD conver-
sion. 
The three-dimensional image conversion can 
improve the accuracy of crack PCD recogni-
tion and provide reliable data support for crack 
recognition. After completing the feature ex-
traction of the crack PCD, the crack can be 
located and processed [16]. To achieve crack 
recognition and localization based on PCD, the 
data relationship between the world coordinate 

system and the image coordinate system is set 
in three-dimensional images. Based on this, the 
corresponding coordinate values of the crack 
image in the coordinate system are calculated. 
The three-dimensional space of the crack PCD 
image can be defined using formula (3).

Pc = Q × P0 + T                    (3)

In formula (3), Pc signifies the coordinate value 
of the crack PCD in the coordinate system. Q 
signifies the rotation vector value between the 
world coordinate system and the image coordi-
nate system. P0 represents the coordinate value 
of the crack PCD in the world coordinate sys-
tem. T represents the corresponding movement 
vector between the two systems. It follows that 
the intuition for 3D coordinate conversion and 
localization lies in converting the crack infor-
mation in the 2D image to a position in 3D 
space. Specifically, the center position of the 
light bar in the 2D crack image is converted to 
3D point cloud data. The 2D image coordinates 
are converted to 3D chi-square coordinates us-
ing a calibration matrix, thus realizing 3D re-
construction of the cracks and thus more accu-
rately describing the geometry and location of 
the cracks. The image before and after feature 
extraction from the bridge crack PCD is shown 
in Figure 2.
After completing the 3D spatial construction 
of the crack PCD, preliminary positioning of 
the cracks can be carried out. To ensure reli-

Figure 1. Processing results of point operation data before and after filtering and denoising.

(a) Data noise before filtering and denoising. (b) Data noise after filtering and denoising.
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able positioning, the crack point can be used 
as the viewpoint for positioning, and the posi-
tioning algorithm is combined to analyze the 
bridge PCD. By extracting features from PCD, 
crack data is used as the corresponding spatial 
coordinates in the data, and then these data are 
adaptively adjusted to achieve crack location 
analysis.

3.2. Design of the Crack Analysis Model 
Combining Data Quantification and 
Parameter Analysis

After in-depth research on the characteristics 
of PCD for bridge cracks, simple feature ex-
traction cannot meet the needs of comprehen-
sive crack evaluation. To ensure the reliability 
of crack feature extraction and recognition, it is 

necessary to further reveal the deep information 
of cracks through parameter modeling analysis 
[17]. Due to the irregularity and disorder of 
PCD, this study integrates hierarchical neural 
networks and Rodriguez rotation to design an 
innovative crack analysis model. This model 
not only fully utilizes the advantages of neu-
ral networks in complex data processing, but 
also combines the Rodriguez rotation formula 
to perform precise rotation transformations on 
spatial data to better capture the characteris-
tics of cracks in different directions. When de-
signing the model, the properties of the bridge 
material itself are analyzed to ensure that the 
constructed analysis model is in accord with 
the characteristics of the bridge concrete. The 
stress variation curve of bridge concrete under 
compression is shown in Figure 3.

(a) Original image of cracks.

Figure 2. Images before and after feature extraction of bridge crack point cloud data.

(b) Image after crack preprocessing.
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After the concrete of the bridge is subjected to 
pressure and undergoes stress changes, the for-
mation and evolution of cracks become a key 
indicator for evaluating the safety of the bridge 
structure. Traditional hierarchical neural net-
works may be affected by local deformation 
and crack complexity caused by stress changes 
when extracting local features from crack PCD, 
resulting in incomplete and inaccurate feature 
extraction [18][19]. Therefore, a multi-range 
feature extraction method is introduced. 
The multi-range feature extraction method ex-
tracts features from crack PCD at multiple lev-
els and scales by setting different range thresh-
olds. This not only captures the local detailed 
features of cracks but also takes into account 
the overall performance of cracks at different 
scales. The hierarchical neural network con-
tains several convolutional, pooling, and fully 
connected layers. The de-training process starts 
with the input layer receiving the processed 
point cloud data, followed by the convolutional 
layer extracting the local features of the cracks. 
Then the pooling layer performs feature dimen-
sionality reduction to retain important informa-
tion; the fully connected layer integrates the ex-
tracted features for classification and regression 
analysis. Finally, the recognition results of the 
cracks and parameter estimates are output by 
the output layer. The process uses mean square 
error and cross-entropy loss functions for re-
gression and classification tasks, respectively, 
while minimizing the loss function with a dam 

optimization algorithm that continuously ad-
justs the network parameters through backprop-
agation [20][21]. By integrating and analyzing 
these multi-scale features, the morphology and 
characteristics of cracks can be described more 
comprehensively and accurately, providing 
strong data support for the construction of sub-
sequent crack analysis models.
The multi-scale feature extraction method per-
forms multi-level and multi-scale feature ex-
traction on crack point cloud data by setting 
different scale thresholds. For example, 5-10 
points are local scale for extracting the local 
detail features of the cracks; 10-20 points are 
medium scale for capturing the medium range 
features of the cracks; and 20-30 points are 
overall scale for extracting the overall morphol-
ogy of the cracks. By integrating and analyzing 
these features at different scales, the morpholo-
gy and characteristics of the cracks can be fully 
described [22][23]. 
After completing multi-scale bridge crack de-
tection analysis, some box girder bridges also 
need to consider the internal structure of their 
bridge body when conducting crack analy-
sis. To ensure the adaptability of the detection 
model, the study introduces Rodriguez rotation 
to reconstruct the internal structure of the box 
girder bridge, thereby constructing the analysis 
model. Compared to standard neural networks, 
Rodriguez rotation is able to accurately handle 
rotational transformations of point cloud data 

Figure 3. Stress variation curve of bridge concrete under compression.
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in different directions to avoid information 
loss. For example, it can align a diagonal crack 
with the model's orientation, making it easier 
for the neural network to extract its features 
and improve the recognition accuracy of the 
model [24][25]. When reconstructing the in-
ternal structure, the internal structure drawings 
are projected and registered to ensure adaptive 
adjustment between the drawings and the solid 
model space. Drawing registration first projects 
the vertical axis, which can be represented by 
formula (4).

V2 = sinθK × V1 + cosθV1 + (1 - cosθ)     (4)

In formula (4), V2 represents the unit vector of 
the entity's Z-axis. θ represents the Z-axis an-
gle value between the drawing and the entity. K 
represents the vector product between the Z-ax-
is of the drawing and the entity. V1 represents 
the unit vector of the Z-axis of the drawing. To 
improve the performance of the analysis model 
in drawing mapping and crack correspondence 
analysis, a rotation matrix for Rodriguez rota-
tion is constructed, which can be represented by 
formula (5).
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In formula (5), Rw represents the rotation ma-
trix. kx, ky and kz represent the components of 
the vector product on the x, y, and z axes. E 
represents the identity matrix of the rotational 
mean. Once the rotation matrix is constructed, 
automatic mapping is used to complete the cor-
responding analysis of cracks. The process of 
automatic mapping can be represented by for-
mula (6).

F2 = F1 ∙ Rw1 ∙ Rw2 + T              (6)

In formula (6), F2 signifies the set of coordinate 
points where the crack automatically maps to 
the projection plane. F1 signifies the set of co-
ordinate points for the internal structure in the 
drawing. Rw1 and Rw2 represent the values after 
the rotation of the x-axis and y-axis in the rota-
tion matrix. Through the above operations, ef-
fective detection and analysis of bridge cracks 
can be completed. Figure 4 shows the analysis 
process of concrete crack structure in bridge en-
gineering by combining PCD feature extraction 
and parameter analysis.

Figure 4. Flow chart of bridge engineering concrete crack structure analysis combining point cloud data feature 
extraction and parameter analysis.
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4. Performance Analysis of Crack 
Analysis Model for Bridge  
Structures

4.1. Performance Analysis of Data 
Processing in Crack Analysis Model

To evaluate the performance of the crack anal-
ysis model for bridge structures, the study uses 
the common crack data CFD as a dataset for sim-
ulation experiments. The dataset contains about 
5,000 crack images, each with a resolution of 
1024×768 pixels. They include various types of 
fine cracks, wide cracks, transverse cracks, and 
longitudinal cracks, with crack widths ranging 
from 0.1 mm to 5 mm. All images were stan-
dardized and processed, including grayscaling, 
noise filtering, contrast enhancement, and other 
operations to ensure data consistency and qual-
ity. 
The experiments are conducted on a system run-
ning Windows 10 operating system, equipped 
with an Intel Core i9 series CPU, an NVIDIA 
GeForce RTX 30 GPU, 64 GB DDR4 ECC 
RAM, and 1 TB of storage. 

For performance comparison, the crack infor-
mation fusion algorithm and the Point Cloud 
Context Network (PCCNet) model are used. 
The crack information fusion algorithm is a fu-
sion method based on multiple features, such as 
color, texture, shape, etc., which improves the 
accuracy and robustness of crack detection by 
integrating the advantages of different features. 
PCCNet is a contextual network designed for 
point cloud data, which improves the accuracy 
and efficiency of crack detection by capturing 
spatial relationship and contextual information 
of point cloud data. 
Compared with other methods, these two meth-
ods are representative in the field of crack de-
tection and show good results in different types 
of bridge crack detection. By comparing our 
model with these methods, the performance 
advantages of the proposed methods can be 
evaluated more comprehensively. To prove 
the performance of the crack analysis model 
in crack feature extraction, the study uses fea-
ture extraction accuracy and parameter analysis 
accuracy as validation indicators. The feature 
extraction accuracy and parameter analysis ac-
curacy are displayed in Figure 5.

Figure 5. Feature extraction accuracy and parameter analysis accuracy.

(a) Comparison results of feature extraction accuracy 
among three methods.

(b) Comparison results of parameter analysis accuracy 
of three methods.
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According to Figure 5 (a), the accuracy of fea-
ture extraction for the crack analysis model, 
PCCNet model, and crack information fusion 
method was 92.83%, 86.15%, and 84.29%, re-
spectively. According to Figure 5 (b), the ac-
curacy of the crack analysis model in the pa-
rameter analysis process was 95.73%, while 
the parameter analysis accuracy of the PCCNet 
model and crack information fusion method 
were 88.95% and 86.07%, respectively. This 
indicates that the crack analysis model con-
structed in the study has shown high accuracy 
and precision in feature extraction and param-
eter analysis. To demonstrate the performance 
of the crack analysis model in the data analysis 
process, the identification accuracy and data 
recall of crack data are studied as validation 
indicators for performance testing. The accura-
cy and recall comparison results of these three 
methods in crack image data recognition are 
shown in Figure 6.
In Figure 6 (a), the recognition accuracy of 
the crack analysis model, PCCNet model, and 
crack information fusion method in crack im-
age data recognition were 93.51%, 90.08%, 
and 88.25%, respectively. According to Figure 
6 (b), the data recall rates of the crack analysis 
model, PCCNet model, and crack information 

fusion method in the data processing process 
were 96.07%, 92.49%, and 89.81%, respective-
ly. This indicates that the crack analysis model 
has shown high performance in crack image 
data recognition and data processing, with bet-
ter recognition accuracy and data recall than the 
PCCNet model and crack information fusion 
method, demonstrating the effectiveness and 
superiority of the model in bridge crack detec-
tion. In Figure 7, the F1 values and Intersection 
over Union (IoU) of three methods during crack 
treatment are compared.
According to Figure 7 (a), during the process-
ing of crack image data, the F1 value of the 
crack analysis model was the highest, which 
was 0.91. The F1 values of the PCCNet mod-
el and crack information fusion method were 
0.85 and 0.82, respectively. As shown in Fig-
ure 7 (b), in the comparison of IoU, the IoU of 
the crack analysis model, PCCNet model, and 
crack information fusion method was 0.95, 
0.90, and 0.87, respectively. This further proves 
the effectiveness and superiority of the crack 
analysis model in bridge crack detection, which 
can provide more reliable data support for the 
safety assessment and repair reinforcement of 
bridge structures.

Figure 6. Comparison results of accuracy and recall of three methods in crack image data recognition.

(a) The accuracy of three methods in crack image 
recognition.

(b) The recall rate of three methods in crack data 
processing.
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of each model tends to stabilize. The calcula-
tion time of the crack analysis model is 2.13s, 
the calculation time of the PCCNet model is 
2.81s, and the calculation time of the crack in-
formation fusion method is 3.25s. 
As shown in Figure 8 (b), for the error rates 
in crack image recognition, the error rates of 
crack analysis model, PCCNet model, and 
crack information fusion method were 2.05%, 
2.73%, and 3.51%, respectively. This indicates 
the practicality and superiority of crack analy-

4.2. Simulation Experiment Effect of Crack 
Analysis Model

To present the application effect of the bridge 
crack analysis model, simulation experiments 
are carried out on the dataset. The comparison 
results of computational efficiency and error 
rate of three methods in crack identification 
process are shown in Figure 8.
As shown in Figure 8 (a), with the increase in 
the number of test samples, the calculation time 

Figure 7. Comparison results of F1 value and IoU of three methods in crack treatment process.

(a) Comparison results of F1 values for three methods. (b) Comparison results of Intersection over Union.

Figure 8. Comparison of computational efficiency and error rate of three methods in crack identification process.

(a) Comparison of computational efficiency among 
three methods in the test set.

(b) Comparison of error rates among three methods in 
experimental sets.
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sis models in bridge crack detection. It can not 
only complete crack identification tasks in the 
short run but also provide more stable and reli-
able identification results. 
In order to evaluate the runtime and perfor-
mance variation of the crack analysis model un-
der different data volumes, taking into account 
the effects of different lighting, camera angles, 
and crack appearance variations on the model 
performance, the study tested the runtime for 
a fixed number of images after incorporating 
these factors and analyzed the effect of increas-
ing data volumes on the runtime.
According to Table 1, the shortest detection 
time for the crack analysis model was 2.17 sec-
onds for 100 images, 21.31 seconds for 1,000 
images, and 106.53 seconds for 5,000 images. 
The detection time increases with the number 

of image samples to be detected, but the time 
of fixed image detection is lower than the other 
two types of methods. In addition, the detec-
tion accuracy of the crack analysis model was 
93.51%, 90.35%, and 91.47% in normal light, 
low light, and high light environments, respec-
tively. The accuracy is also significantly higher 
than the other two types of models. It can be 
seen that the proposed model of the study can 
show superior application performance under 
different test sample environments and has sig-
nificant value for use. 
To prove the performance of the crack analy-
sis model in the bridge crack treatment, exper-
iments are conducted using 10 crack images. 
The predicted values of the crack analysis mod-
el are compared with the actual values. Table 2 
displays the detection time, accuracy, and sta-
bility between the two methods.

Table 1. Comparison results of runtime and accuracy for different number of images and environments.

Number of  
images/conditions

Crack information fusion 
method PCCNet model Crack analysis model

Running 
time/s

Detection 
accuracy/%

Running 
time/s

Detection 
accuracy/%

Running 
time/s

Detection 
accuracy/%

100 3.25 / 2.81 / 2.17 /

500 16.25 / 14.05 / 10.65 /

1,000 32.5 / 28.12 / 21.31 /

2,000 65.07 / 56.28 / 42.68 /

5,000 162.57 / 140.55 / 106.53 /

Normal light / 88.25 / 90.08 / 93.51

Low light / 83.11 / 85.62 / 90.35

High light / 84.53 / 86.79 / 91.47

Camera angle 
change / 87.01 / 89.27 / 92.83

Changes in crack 
appearance / 85.34 / 87.55 / 91.95
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According to Table 2, in the comparison of de-
tection time, accuracy, and stability of 10 bridge 
cracks, the optimal values of the crack analy-
sis model were 2.78 s, 92.03%, and 92.07%, 
respectively. The actual optimal values were 
2.19 s, 93.18%, and 94.37%, respectively. The 
difference between the two was 0.59 s, 1.15%, 
and 2.30%, indicating that the designed model 
has shown good performance in bridge crack 
detection. To further verify the performance of 
the crack analysis model, the calculated mea-
surement values of the analysis model are com-
pared with the actual measurement values, as 
displayed in Table 3.

According to Table 3, the calculated measure-
ment results of the crack analysis model were 
all smaller than the actual measurement results, 
which may be related to image detail processing. 
Although there was a certain gap, the overall dif-
ference was very small, with a maximum error 
of only 4.045 mm. At the same time, the relative 
error difference was also very small. It indicates 
that the crack analysis model has high accuracy 
and precision in measuring the width of bridge 
cracks, which can meet the needs of practical ap-
plications. In the final study, horizontal cracks, 
vertical cracks, and mesh cracks were used as 
test objects to compare the three methods for real 
detection, and the results are shown in Figure 9.

Table 2. Comparison results of detection time, accuracy, and stability between two methods.

Crack image 
number Prediction value of crack analysis model True value

1 Detection 
time/s Accuracy/% Stability/% Detection 

time/s Accuracy/% Stability/%

2 2.89 90.86 91.28 2.38 93.18 94.37

3 2.91 91.02 92.04 2.36 92.95 94.26

4 2.85 90.88 91.67 2.41 93.02 94.11

5 2.96 91.57 91.53 2.31 93.07 94.25

6 2.78 92.03 92.07 2.25 92.88 94.37

7 2.88 91.37 91.66 2.19 92.73 94.22

8 2.79 90.48 91.16 2.27 92.48 93.89

9 2.91 90.05 91.34 2.31 92.69 93.47

10 2.86 89.95 91.29 2.23 92.77 93.88
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Table 3. Comparison results of measurement values between two methods.

Crack image  
number

Calculates  
measurement  
results/mm

Actual measurement 
result/mm Error/mm Relative error/%

1 186.375 190.025 3.65 1.92

2 56.381 60.278 3.897 6.47

3 127.286 130.695 3.409 2.61

4 100.287 103.556 3.269 3.16

5 91.269 93.871 2.602 2.77

6 75.663 78.962 3.299 4.18

7 85.371 88.954 3.583 4.03

8 115.693 118.375 2.682 2.27

9 118.631 121.059 2.428 2.01

10 69.582 73.627 4.045 5.49

Figure 9. Crack detection results under different methods.

(a) Original image. (b) Crack information 
fusion method.

(c) PCCNet model. (d) Crack analysis 
model.
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The original transverse, vertical, and mesh 
crack images are shown from top to bottom in 
Figure 9(a), while Figure 9(b) shows the detec-
tion results under the crack information fusion 
method, Figure 9(c) shows the crack detection 
results under the PCCNet method, and Fig-
ure 9(d) shows the crack detection results un-
der the crack analysis model. As can be seen 
from Figure 9, in transverse crack detection, all 
three methods have comparable detection re-
sults. However, in vertical crack detection, the 
crack information fusion method fails to detect 
the presence of fine cracks in time resulting in 
lower accuracy. For mesh cracks, the proposed 
crack analysis model demonstrates superior 
performance by effectively identifying and de-
tecting all visible cracks in the image, display-
ing high detection effectiveness and feasibility. 
This highlights the proposed model's value and 
advantages over the other methods.

5. Conclusion

This paper proposed a novel method for ana-
lyzing concrete cracks in bridges using point 
cloud data (PCD). The key innovations are a 
PCD feature extraction approach that combines 
outlier removal, denoising, and 3D coordinate 
transformation, and a crack analysis model that 
integrates multi-scale feature extraction and 
Rodriguez rotation into a hierarchical neural 
network. 
Experiments on a benchmark dataset showed 
that the proposed method achieves high accu-
racy in crack detection and localization, with 
92.83% feature extraction accuracy, 95.73% 
parameter analysis accuracy, and 0.91 F1 score. 
It also demonstrates improved efficiency com-
pared to existing methods. The main advantage 
of the proposed approach is its ability to auto-
matically extract relevant crack features from 
the unstructured and noisy PCD and accurately 
model both local and global crack patterns us-
ing a hierarchical neural network. The integra-
tion of Rodriguez rotation enables the capture 
of crack orientation information, which is im-
portant for assessing crack severity. 
However, there are several limitations that 
need to be addressed in future work. The cur-
rent method has only been tested on a single 
dataset and its performance on more diverse 

real-world data needs to be evaluated. The inte-
gration of mechanical models for crack growth 
prediction and severity assessment is also an 
important direction to explore. Finally, deploy-
ing the system on actual bridges for continuous 
monitoring and testing its long-term reliability 
and scalability are necessary steps for practical 
adoption. 
In summary, this paper demonstrates the poten-
tial of PCD-based methods for automated crack 
analysis in concrete bridges. The proposed ap-
proach advances the state of the art in terms 
of feature extraction and crack modeling and 
lays the foundation for further research on this 
important problem. With further development 
and real-world validation, this methodology 
could have a significant impact on improving 
the safety and reliability of transportation infra-
structure.
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