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This paper presents a novel network intrusion detection 
framework that combines convolutional recurrent neu-
ral networks (CRNN) and random forest (RF) models 
within a federated learning setting. The proposed ap-
proach aims to address the challenges of data privacy, 
computational efficiency, and model generalization in 
traditional network intrusion detection methods. By 
leveraging the spatial feature extraction capabilities of 
CRNN and the feature selection and noise reduction 
properties of RF, the framework enhances the accuracy 
and robustness of attack detection. The integration of 
federated learning enables collaborative model train-
ing without compromising data privacy. Extensive 
experiments on benchmark datasets demonstrate the 
superiority of the proposed method compared to state-
of-the-art techniques, achieving high performance 
metrics such as accuracy, precision, recall, F1 score, 
and AUC. The proposed framework offers a promis-
ing solution for secure and efficient network intrusion 
detection in real-world scenarios, contributing to the 
advancement of cybersecurity practices.
ACM CCS (2012) Classification: Security and privacy  
→ Intrusion/anomaly detection and malware mitiga-
tion → Intrusion detection systems
Keywords: federated learning framework, convolu-
tional recurrent neural networks, network security en-
hancement, temporal data processing, random forest 
integration, feature selection optimization

1. Introduction

Cybersecurity is the core of national strategy 
in the People's Republic of China. In the face 
of the complex challenges brought about by 
the development of Internet technology, China 
strengthens the protection of network resourc-

es, data security and user privacy through the 
formulation of laws and regulations on cyber-
security, ensures the lawful compliance of net-
work activities and services, and strengthens 
the supervision of cybersecurity management. 
The Cybersecurity Law of the People's Repub-
lic of China [1], as the basic law of cyberse-
curity, covers a wide range of aspects such as 
the basic system of cybersecurity, key technol-
ogies, data protection, personal information 
protection, cybersecurity review, cybersecuri-
ty level protection, and cybersecurity incident 
disposal. A network intrusion detection system 
(NIDS) is an important security tool [2] that im-
proves network security by monitoring network 
traffic and devices, analyzing communication 
characteristics, status, and anomalies to identify 
malicious activities, and issuing alerts or taking 
measures when a network attack is detected. 
NIDS is widely used in the government, enter-
prises, education and scientific research fields.
In the research of network intrusion detection, 
some of them adopt the idea of federated learn-
ing, which allows multiple nodes to collabora-
tively train network intrusion detection models 
without sharing data [3-10], e.g., FL-SEResNet 
[11] and DFC-NID [12]. Federated learning pro-
tects data privacy, improves the performance of 
the model, and adapts to distributed and hetero-
geneous data environments. However, during 
the training process of FL-SEResNet, the lack of 
a global data perspective may limit the model's 
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generalization ability. Additionally, this method 
consumes significant network resources, which 
affects efficiency in practical applications.
The DFC-NID approach, by introducing an 
attention mechanism, enhances the feature ex-
traction and classification capabilities of deep 
residual networks, thus improving the efficien-
cy and accuracy of intrusion detection. How-
ever, DFC-NID has high model complexity 
and computational overhead when handling 
high-dimensional, dynamically changing data, 
making it difficult to deploy in resource-con-
strained environments.
On the other hand, deep neural networks are 
used to extract effective features from network 
traffic to identify normal and abnormal behav-
iors [13-14]. For example, a network traffic 
anomaly detection model based on multiscale 
memory residual networks (MMRNs) [15] uti-
lizes the multiscale feature fusion and residual 
connectivity capabilities of MMRNs to improve 
the complexity and reliability of detection. 
However, the MMRN model has high compu-
tational and storage demands when processing 
large-scale data, which can easily increase the 
system's burden.
In addition, there are studies that utilize tradi-
tional machine learning methods such as KNN 
and genetic algorithms to achieve network in-
trusion detection [16-20]. For example, the net-
work anomaly detection technique combining 
TCM-KNN and genetic algorithm [21], im-
proves the accuracy, robustness and flexibility 
of network anomaly detection by optimizing 
the K-value and the feature subset. However, 
traditional machine learning methods typically 
rely on feature engineering, with the model's 
performance heavily dependent on manually 
designed features. This makes it difficult to au-
tomatically adapt to different data distributions 
and attack patterns.
Deep learning approaches have also been pro-
posed to address the core challenges in network 
intrusion detection such as DBN-ELM model 
[22], BiLSTM model [23], S-NDAE-RF model 
[24] and TL-NID model [25]. These methods 
effectively improve the detection performance 
by combining different models, showing the 
potential of deep learning in network intrusion 
detection. However, these methods generally 
face issues of high computational complexity 

and resource consumption during training. Ad-
ditionally, the process of tuning model parame-
ters is quite complex, which affects the conve-
nience of practical applications.
The three main core challenges faced in this paper 
are cyber security, data privacy and data utilization. 
To address these challenges, this paper proposes 
a scheme that combines convolutional recurrent 
neural networks and random forest classification 
models with federated learning to address the lim-
itations of traditional models for network intrusion 
detection, such as data dependency, computational 
overhead, and model generalization. The main con-
tributions of this paper include:

 ● A federated learning scheme combining 
convolutional recurrent neural networks 
(CRNN) and random forest (RF) classifi-
cation models: This approach fully lever-
ages the strengths of both models. CRNNs 
can effectively extract and process high-di-
mensional, nonlinear, and dynamically 
changing data features, while RF models 
reduce the risk of overfitting through the 
ensemble of multiple decision trees, there-
by enhancing the model's generalization 
ability. Moreover, this scheme can dynam-
ically adjust model parameters to accom-
modate the data characteristics and net-
work environments of different nodes.

 ● Training models through federated learning 
without sharing raw data: only encrypted 
gradient-related data is transmitted, effec-
tively protecting data privacy. This method 
not only ensures the privacy and security 
of data owners but also meets compliance 
requirements, which is especially valuable 
in the current context where data privacy 
protection is increasingly emphasized.

 ● Utilizing federated learning for collabora-
tive training of multi-source data: this ap-
proach addresses the issue of data silos and 
improves data utilization efficiency. By en-
abling collaborative model training across 
multiple nodes, it fully leverages dispersed 
data resources, enhancing the model's 
training effectiveness and detection perfor-
mance. This method is particularly signifi-
cant in distributed network environments, 
as it can effectively enhance overall net-
work security protection capabilities.
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2. Related Work

2.1. Convolutional Neural Network

A convolutional neural network (CNN) is spe-
cialized in processing multidimensional data 
and shows high effectiveness in network intru-
sion detection, where the convolutional layer 
captures the local features of the network traffic 
data by means of a convolutional kernel [26]. 
This step is performed automatically to enable 
efficient extraction of key features that may in-
dicate malicious attacks. With this hierarchical 
structure and operation, CNN is able to provide 
high accuracy and good reliability in network 
intrusion detection analysis [27], as shown in 
equation (1):

{ } ( ), ,, i m j n m ni j
m n

o I k+ += ∗∑∑
             

(1)

where o is the output feature map, I is the input 
feature map, k is the convolution kernel, and m 
and n are the width and height of the convolu-
tion kernel.
In this paper, we use mean pooling, as shown in 
equation (2):

{ } ( ): , :, i i k' j j k'i jo mean I + +=
                

(2)

Here, k' is the size of the pooling window. The 
main working mechanism of mean pooling is 
to generate the output by calculating the mean 
value of all elements within a given window. 
The fully connected layer is located at the end 
of the neural network, and its main task is to 
integrate the local features that have been ex-
tracted and optimized by the previous layers 
into a one-dimensional vector. In this way, the 
fully connected layer ensures that the network 
can effectively classify and regress based on 
the important features that have been learned, 
as shown in equation (3):

o' I' w b= ∗ +                       (3)

where o' is the output data, I' is the input data, 
w is the weight matrix, and b is the bias vector.

 ● Through comprehensive performance 
evaluation, including accuracy, recall, F1 
score, and ROC curve, the effectiveness 
and superiority of the model presented in 
this paper are demonstrated. Specifical-
ly, the model's generalization ability and 
adaptability are improved by collaborative 
training with data from multiple nodes. 
The experimental results show that the 
model performs excellently in various net-
work intrusion detection tasks, indicating 
strong practical applicability.

Potential impacts of this paper include:
 ● Enhancing network security: The proposed 

method significantly improves the accura-
cy and efficiency of network intrusion de-
tection, providing a more robust defense 
mechanism for network security. By com-
bining CRNNs, RFs, and federated learn-
ing techniques, it can accurately identify 
and prevent network attacks in complex 
network environments, thereby reducing 
network security risks.

 ● Protecting data privacy: Against the back-
drop of increasing importance of data pri-
vacy protection, the method proposed in 
this paper offers an effective solution for 
model training while safeguarding data 
privacy. This is particularly valuable for 
fields that handle sensitive data, such as fi-
nance, healthcare, and government sectors.

 ● Promoting the application of distributed 
computing: By implementing federated 
learning for collaborative training of distrib-
uted data, the proposed method facilitates 
the application of distributed computing in 
the field of network security. By fully utiliz-
ing dispersed data resources, it enhances the 
model's training effectiveness and detection 
performance, thereby improving network 
security protection on a larger scale.

 ● Cross-domain application potential: The 
method proposed in this paper is not only 
applicable to the field of network securi-
ty but can also be extended to other areas, 
requiring distributed data processing and 
privacy protection, such as IoT security, 
smart manufacturing, and intelligent trans-
portation. Applying this method in these 
fields can effectively improve data utiliza-
tion efficiency and system security.
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2.2. Recurrent Neural Network

Structurally, a recurrent neural network (RNN) 
is mainly composed of an input layer, a hid-
den layer and an output layer [28]. First of all, 
the input layer is tasked with transforming the 
original input data into a feature vector format 
that is more suitable for network processing, 
providing a basis for subsequent information 
processing and decision making, as shown in 
equation (4).

( )t tx E w=                        (4)

Here, xt is the input vector at the t-th time step, 
E is the word embedding matrix, and wt is the 
input vector at time step t.
RNN consists of multiple loop units, each unit 
processes time series data. The input includes 
the data of the current time step and the hidden 
state of the previous time step, which together 
determine the output and the new hidden state.  
The hidden layer synthesizes the current inputs 
and the historical information to effectively ex-
tract the sequence features [29], as shown in 
equation (5):

st = f (U * xt + W * st-1 + b1)           (5)

where st is the hidden state vector of the t-th 
time step of the hidden state vector, f is the acti-
vation function, U is the input-to-hidden weight 
matrix, W is the hidden-to-hidden weight ma-
trix, and b1 is the bias vector of the hidden layer.
In this paper, the output layer uses a softmax 
activation function to transform this state infor-
mation into the format required for a particular 
task. In classification problems, the softmax 
function is used to convert the output into prob-
ability distributions for each category as shown 
in equation (6):

ot = g(V * st + b2)                 (6)

where ot is the output vector of the t-th output 
vector at the t-th time step, g is the softmax 
function, V is the hidden-to-output weight ma-
trix, and b2 is the bias vector of the output layer.
In the field of network intrusion detection, net-
work traffic data is usually presented in the form 
of a time series. This format is ideally suited 
for detecting temporal patterns and anomalous 
behaviors of network intrusions. By analyzing 

these time series data, potential security threats 
can be identified more accurately, and preven-
tive measures can be taken accordingly.

2.3. Random Forest

Random forest is an ensemble learning mod-
el with multiple advantages. First, the model 
can effectively handle high-dimensional data 
and reduce the risk of overfitting by integrat-
ing multiple decision trees, thus enhancing the 
generalization ability of the model. Second, 
random forest allows parallelization, which is 
advantageous when dealing with large-scale 
high-dimensional datasets, such as NSL-KDD 
[30]. By utilizing parallel computing and the 
random generation property of the tree, random 
forest not only accelerates the training and pre-
diction process of the model, but also enhances 
the robustness and interpretability of the model. 
The output of random forest is composed of the 
outputs of multiple decision trees [31], and the 
output formula of random forest, as shown in 
equation (7).
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Here, y denotes the target variable, x1, x2, ..., 
xn denote the dependent variables, f denotes the 
output of the random forest, M denotes the to-
tal number of trees in the forest, fi denotes the 
output of the i-th tree, majority vote denotes the 
majority voting function, and mean denotes the 
averaging function.

2.4. Federal Learning

Federated learning (FL) aims to train a unified 
model together from multiple decentralized 
data sources [32]. In this architecture, individ-
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ual devices (or nodes) first train the model lo-
cally using their own data. Instead of sharing 
the raw data, these devices only send model up-
dates to a centralized server, which is responsi-
ble for collecting and integrating model updates 
from all devices to further optimize the model 
[33]. Upon completion of this step, the updated 
model is again distributed back to the individ-
ual devices for further local training. This ap-
proach allows multiple data owners to jointly 
participate in the training and optimization of 
the model while ensuring data privacy. Espe-
cially in virtual network environments, feder-
ated learning effectively addresses the issues 
of data privacy and model training through this 
distributed and collaborative approach.
Vertical federation learning is a form of federa-
tion learning for datasets with the same sample 
space but different feature spaces. It centers on 
federating features and is particularly suitable 
for scenarios where there is a lot of user overlap 
but little feature overlap [34].
Suppose there are K data owners, each owner k 
has nk samples {xik, yik}, where xik is the feature 
vector and yik is the label. Suppose the model 
is a linear regression model with parameters w. 
Then, the equations of federated learning are 
shown in equations (8), (9) and (10).
Objective function:

( )2 2

1 1
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2

knK
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ik ikw k i
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= =
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Optimization algorithm:
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Communication protocols:
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Here, η is the learning rate, λ is the regulariza-
tion factor, and t is the number of iterations. 
This equation indicates that each data owner 
calculates the gradient based on his/her data 
Δwk and then sends it to the central server, 

which averages all the gradients, updates the 
model parameters w and then distributes the 
updated ones to all data owners. This process is 
repeated until convergence.

3. Method

3.1. Modeling of Convolutional Recurrent 
Neural Networks

Convolutional recurrent neural network 
(CRNN) is a state-of-the-art deep learning ar-
chitecture that integrates the features of CNN 
and RNN. The model is designed to utilize both 
spatial and temporal information to improve the 
processing capability of high-dimensional, non-
linear and dynamically changing data. In terms 
of model structure, the CRNN first efficiently 
extracts features from the input data through its 
convolutional layer. Next, these features are fed 
into the recurrent layer for serialization, which 
utilizes the memory capability of the recurrent 
layer, enabling the model to perform more ac-
curate time-series data classification and re-
gression.
For network intrusion detection systems, the 
CRNN model has good application value. The 
model has the ability to analyze network traffic 
data in depth and can accurately distinguish be-
tween normal and abnormal traffic, thus show-
ing high effectiveness in network attack detec-
tion and prevention. Since the CRNN model is 
capable of handling high-dimensional, nonlin-
ear and dynamically changing network traffic 
data, it contributes to improving the accuracy 
and efficiency of network intrusion detection.
In order to fully utilize the respective advantag-
es of CNN and RNN, this paper designs a net-
work intrusion detection model that integrates 
the two, which is referred to as the CNN-RNN 
model, as shown in Figure 1. The construction 
and application of the model can be divided 
into three main steps: data preprocessing, fea-
ture extraction and time series analysis, and fi-
nal classification and regression.
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Figure 1. Framework diagram of convolutional recurrent neural network modeling.
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First, a series of preprocessing operations are 
performed on the dataset to be processed. These 
include:

 ● non-numerical attributes, such as protocol 
type, service type, and connection status, 
etc., are converted into numerical features 
by the label encoding method;

 ● numerical attributes, such as duration, 
source byte, and target byte, etc., are nor-
malized or standardized to eliminate dif-
ferences in magnitude;

 ● Categorical labels, such as ''Normal'', 
''DoS'' and ''U2R'', etc., are converted into 
numerical labels (e.g., 0, 1, 2, etc.) for sub-
sequent classification and regression anal-
ysis.

Then, we enter the feature extraction and time se-
ries analysis phase of the model. In this step, each 
network traffic record is considered as a timing 
signal and is divided into multiple equal-length 
sub-segments. These sub-segments are used as 
inputs to the CNN model for feature extraction. 
After CNN processing, each sub-segment gen-
erates a feature vector. All these feature vectors 
are stitched together into a sequence and used 
as inputs to the RNN model. The RNN model is 
responsible for the temporal analysis of this fea-
ture sequence and generates a hidden state.
Feature selection and preprocessing are critical 
for model performance. In this study, the feature 
selection process includes the following steps:
1. Feature screening: By conducting an ini-

tial analysis of network traffic data, fea-
tures strongly correlated with intrusion 
detection are selected. Examples include 
protocol type, service type, source IP and 
destination IP, and packet length.

2. Feature encoding: For non-numerical fea-
tures (such as protocol type, service type), 
label encoding is used to convert them into 
numerical features. This step enhances the 
model's ability to handle non-numerical 
data.

3. Feature normalization: Numerical features 
(such as packet length, duration) are nor-
malized to eliminate differences in dimen-
sions among features, thereby improving 
the model's training stability and conver-
gence speed.

Finally, this hidden state is sent to the output 
layer for final classification and regression. In 
this way, the whole CNN-RNN model can ef-
fectively handle high-dimensional, nonlinear 
and dynamically changing network traffic data 
with high detection accuracy and efficiency.
There are two key components involved in the 
working process of the CNN model: the convo-
lutional layer and the pooling layer. First, the 
convolutional layer is responsible for extracting 
local features from network traffic data, such 
as protocol types, source ports, and destination 
ports. By using multiple convolution kernels 
to perform convolution operations on the input 
vectors, the resulting multiple feature maps not 
only enhance the model's expressive capabili-
ty, but also improve its generalization perfor-
mance.
In a convolutional neural network, the output 
of the convolutional layer is obtained by matrix 
multiplying the input feature map with the con-
volutional kernel, summing and adding a bias 
term, this process is performed on each output 
feature map element.
Let the convolution kernel be h, with its length 
k, and the convolution step s, as shown in equa-
tion (11):

1

0
, 0,1,...,

k

t j j s j
j

n ky h x i
s

−

× +
=

− = =   
∑

          
(11)

where yt is the i-th convolutional output, and [ ] 
denotes the under-image rounding.
The pooling layer has two main purposes in 
CNN modeling. First, it preserves the core fea-
tures in the network traffic data through dimen-
sionality reduction process, which is achieved in 
this paper through the mean pooling algorithm. 
Second, during the dimensionality reduction 
process, the method helps to remove noise and 
redundant information from the data, which in 
turn reduces the computational complexity of 
the model and mitigates the risk of overfitting.
To compute the output of the average pooling 
layer, the output value of each pooled region is 
obtained by computing the arithmetic average 
of the values of all the elements in the region,
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plus a bias term. Let the pooling layer window 
size be p, as shown in equation (12):

1

'
0

1 , 0, 1, ...,
p

j i p j
j

n kz y i
p sp

−

× +
=

 −
= =  

 
∑

      
(12)

where zi is the i-th pooled output.
In the model flow, the CNN is responsible for 
extracting local features from the packets to 
generate feature vectors, which are subsequent-
ly used as input sequences to the recurrent layer 
to enable the RNN to learn and capture the tem-
poral relationships between packets. The recur-
rent layer mainly extracts global features such 
as connection duration, connection frequency 
and connection direction from the entire packet 
sequence. This not only enhances the model's 
ability to memorize the historical information 
of network traffic data, but also improves its 
prediction accuracy.
In recurrent neural networks, the output layer 
output for the current time step is obtained by 
processing the hidden state at that time step with 
a linear transformation and a nonlinear activa-
tion function. This process enables the output 
layer to predict the target value of the sequence 
data based on the hidden layer state, as shown 
in equations (13) and (14):

ht = f (wh ht-1 + wZZt + bh)           (13)

ot = g(w0ht + b0)                   (14)

where the hidden state of the loop cell is ht, the 
input is zt, the output is ot, the activation func-
tions are f and g, the weight matrices are wh, wz, 
w0, the bias vectors are bh, bz, b0, and t = 1, 2, ..., 
T denotes the time step.
In the final stage of the model, the fixed-length 
vectors output from the loop layer are fed into 
a softmax output layer for final network intru-
sion classification prediction. The function of 
the softmax layer is to transform the output vec-
tors into probability distributions, where each 
element represents the predicted probability of 
a specific class (e.g., normal class or four dif-
ferent attack classes: DoS, Probe, R2L, U2R). 
Therefore, this output layer essentially accom-
plishes the mapping from network traffic data 
to different intrusion classes, reaching the over-
all goal of network intrusion detection.

Let the weight matrix of the output layer be V, 
the bias vector c and the number of categories 
m, as shown in equations (15) and (16):

yt = V ot + c                        (15)
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=
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∑
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where yt is the prediction vector of the output 
layer, and p( yt = i) is the probability that the 
t-th sample belongs to the i-th category of the 
output layer.
For the CRNN, this study selected the follow-
ing key hyperparameters to optimize model 
performance:
1. Learning rate: 0.001. It controls the speed 

of model parameter updates, ensuring sta-
ble convergence during training.

2. Number of epochs: 70. This is the number 
of times the neural network works through 
the entire training dataset, balancing train-
ing time and model performance.

3. Batch size: 32. This is the number of sam-
ples used to update model parameters at 
each step.

4. Kernel size: 3×3. This is the size of the 
convolutional kernels in the convolution-
al layers, ensuring effective feature ex-
traction.

5. Number of filters: 64. This is the number of 
convolutional kernels in the convolutional 
layers, enhancing the representational ca-
pacity of feature maps.

6. Pooling size: 2×2. This is the window size 
of the pooling layers, used for dimension-
ality reduction and feature extraction.

7. Number of units in hidden layers: 128. 
This is the number of hidden units in the 
recurrent layers, enhancing the model's 
memory capability.

8. Activation function: ReLU for convolu-
tional layers and tanh for recurrent layers.

9. Loss function: Binary cross-entropy is 
used to measure the difference between 
predicted values and actual values.
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10. Regularization: L2 regularization is used 
with a parameter value of 0.001, used to 
prevent overfitting.

11. Optimizer: FedProx is suitable for model 
parameter optimization in federated learn-
ing scenarios.

3.2. Random Forest Modeling

In order to improve the accuracy, generaliza-
tion ability, and interpretability of the network 
intrusion detection system, and at the same 
time to reduce the risk of information leakage, 
this paper proposes a strategy that combines 
the random forest model with vertical feder-
ated learning. First, the random forest model 
has advantages in feature selection, which can 
automatically identify and select the most rel-
evant features, reduce the number of features 
and improve the training efficiency. Second, a 
double randomness strategy is introduced, i.e., 
randomly selecting samples and features when 
constructing each decision tree, which helps 
to reduce data noise and eliminate correlation 
between features and improves the accuracy 
and efficiency of attack detection. Again, the 
multi-classification strategy is used to achieve 
fine-grained identification and classification of 
different types of network attacks. Finally, the 
error rate and overfitting risk of a single model 
are reduced by integrating the prediction results 
of multiple decision trees.
The aim of this paper is to categorize the net-
work traffic through the random forest model, 
for which the specific steps and methods are 
shown in Figure 2:
1. Data preparation. In this paper, we use 

a five-category dataset (normal, deni-
al-of-service attack, probing attack, re-
mote access attack, and user privilege el-
evation attack) that includes both normal 
and abnormal network traffic, where these 
five network traffic categories are used as 
target variables, and service types, packet 
lengths, error fragments, and emergency 
packets are used as feature variables and 
numerically converted to the category-type 
features by LabelEncoder.
In the feature selection process, the impor-
tance of each feature is assessed using the 
random forest algorithm. By combining 

multiple decision trees, random forest can 
effectively reduce overfitting and provide 
an importance score for each feature in the 
decision-making process. Based on these 
scores, features that contribute the most to 
intrusion detection can be retained, there-
by enhancing the model's detection accura-
cy and efficiency.

2. Data division. The dataset is divided into 
training and test sets according to the ratio 
of 8:2. This division strategy aims to avoid 
data duplication and mitigate the overfit-
ting problem.

3. Model parameter setting. In this paper, we 
set the parameters of the random forest 
model, including the number of trees, the 
number of features and the splitting cri-
terion. Among them, the number of trees 
is set to 100 to balance the model perfor-
mance and computational cost; the number 
of features is set to 4 to reduce the model 
complexity while retaining the key infor-
mation; the splitting criterion is chosen to 
be the Gini coefficient, which is a measure 
of data impurity.

4. Model training and evaluation. In this pa-
per, we use the RandomForestClassifier of 
sklearn library to construct a random for-
est classification model and use the train-
ing set for model training. Its construction 
algorithm is shown in Algorithm 1.

For the RF model, this study selected the fol-
lowing key hyperparameters:
1. Number of trees: 100. The number of trees 

is set to 100 to balance model performance 
and computational cost.

2. Max depth: 10. Maximum depth of 10 is 
sets to prevent overfitting.

3. Min samples split: 2. The minimum num-
ber of samples required to split a node is 
set to 2.

4. Min samples leaf: 1. The minimum num-
ber of samples required to be at a leaf node 
is set to 1.

5. Max features: sqrt (square root of the num-
ber of features). The maximum number 
of features considered for splitting at each 
node is set to square root of the total number 
of features to increase model randomness.
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Figure 2. Random forest model framework diagram.
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3.3. Integration of Federal Learning 
Frameworks

Federated learning is a distributed machine 
learning technique that aims to facilitate com-
mon modeling by multiple organizations or 
individuals while ensuring data privacy and 
compliance. In the process, the global model 
is distributed back to each participant to up-
date their respective local models, while the 
data is always stored locally only and is not 
shared to other participants or uploaded to a 
central server. This mechanism significantly 
improves the privacy protection and security 
of data. Under this framework, this paper fur-
ther embeds the CRNN model and the random 
forest model. The advantage is that it not only 
retains the original data privacy protection 
properties of federated learning, but also may 
produce performance enhancement due to the 
integrated application of multiple models. The 
flowchart of the whole model is shown in Fig-
ure 3.
In the federated learning framework, the com-
munication protocol is responsible for coordi-
nating and managing the exchange of parame-

ters between different participating nodes. The 
steps are as follows:

1. Client update: Each client trains the mod-
el on local data and computes gradients or 
model parameter updates. These updates 
are securely transmitted to the central serv-
er through encryption to ensure data trans-
fer security.

2. Parameter aggregation: The central server 
receives updates from each client and ag-
gregates these updates using the federated 
averaging algorithm (FedAvg). This algo-
rithm generates a global model update by 
computing the weighted average of the cli-
ents' parameter updates.

3. Model broadcast: The aggregated global 
model update is distributed to all clients so 
that they can continue with the local train-
ing. This process continues until the model 
converges.

The core of the model update aggregation pro-
cess is the FedAvg algorithm, which is shown 
in Algorithm 2. 

Input: training set D = {(x1, y1 ), (x2, y2), ..., (xm, ym)}. 

The training set is an 80% random sampling of the dataset and contains the target and predictive variables. 

The number of trees is M = 100; 

the number of features per division is K = 4;

Output: random forest; F = { f1, f2, ..., fM}

Algorithm steps:

Firstly, for: i = 1, 2, ..., M; 

m samples are taken with replacement as subsets Di from the training set D; 

The CART algorithm was used to generate a decision tree fi from Di in which only the optimal feature is selected
from among the randomly chosen features at each division;

Finally, return F = {f1, f2, ..., fM}.

Algorithm 1. Random forest algorithm.
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Figure 3. Diagram of the fusion federated learning framework.
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3.3.1. CRNN Model Embedded in a Federated 
Learning Framework

The combination of federated learning and 
CRNN provides an efficient and secure ap-
proach to distributed machine learning. In this 
framework, CRNN combines the strengths of 
CNNs and RNNs, where CNNs are responsible 
for automatically extracting valid features of 
sequential data, while RNNs focus on process-
ing these features to capture their temporal de-
pendencies, Figure 4. As a distributed machine 
learning strategy, federated learning allows 
multiple participants to jointly train a global 
model while protecting the privacy of their re-
spective data. In the implementation, each par-
ticipant performs initial training locally using 
its own raw data and then averages the model 
parameters from different clients by weight-
ing them via a federated averaging algorithm 
to generate a more general and efficient global 
model.
In distributed machine learning, especially in the 
context of using CRNN models, data prepara-
tion has a crucial position as the first step. The 
process can be decomposed into the following 
core components: first, each participating client 
needs to complete local data collection. After 
data collection, two main preprocessing opera-
tions, normalization and encoding, follow. Nor-
malization is responsible for standardizing data 
of different scales and ranges to enhance the effi-

ciency of model training, which is especially im-
portant for input image data in CRNN models. 
Secondly, the encoding operation converts the 
non-numerical data into a numerical form and 
splits the data into training and test sets after pre-
processing to evaluate the model performance. 
Then, through data loading and batch processing 
techniques, the data is organized into a format 
suitable for model training. Finally, these pre-
processed and organized datasets are distributed 
to individual clients in preparation for the dis-
tributed model training that follows.
The initialization phase of the global model 
aims to provide a uniform starting point for 
training all participating clients. This process 
can be divided into the following steps: first, the 
basic architecture of the CRNN model needs to 
be specified, including its main constituent lay-
ers such as convolutional, cyclic, and fully con-
nected layers, as well as the parameters required 
for these layers, such as convolutional kernel 
size and number of hidden units. Subsequently, 
the initialization of weights is performed on a 
central server Wglobal, ensuring that all clients 
start training from the same initial state. Next, a 
global model instance is created on the central 
server using these initialized weights and the 
predefined model architecture. Eventually, this 
initialized global model is distributed to each 
participating client as a starting point for their 
respective local model training.

Assuming there are K clients participating, each client k has a local dataset Dk with size nk. The global model update 
process includes the following steps:

1. Local computation: Each client trains using its local dataset Dk, calculating the gradient ΔWk.

2. Weighted averaging: The central server performs a weighted average of the gradients uploaded by the clients, as 
shown in equation (17):

1

1 K

k k
k

W n W
N =

∆ = ∆∑                                                                       (17)

where 
1

K

k
k

N n
=

= ∑  is the total sample size across all clients.

3. Model update: The server updates the global model parameters using the aggregated gradient, as shown in equa-
tion (18):

Wt+1 = Wt - ηΔW                                                                         (18)

where η is the learning rate.

Algorithm 2. Federated averaging algorithm.
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Figure 4. CRNN model embedded in a federated learning framework.
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The purpose of local model training is to ac-
curately adapt the models of each participating 
client to their respective local data. The process 
can be divided into the following steps: first, 
each client needs to load its own local dataset, 
which lays the foundation for subsequent mod-
el training. Second, forward propagation is per-
formed to obtain the predicted output by utiliz-
ing the data and the current model parameters, 
and a loss function is used to compute the loss 
of the true labels. Then, backpropagation is per-
formed based on this loss to compute the gra-
dients of the model parameters. Finally, these 
gradients are used to update the client's local 
model parameters. As a result, each client trains 
an independent model that is highly compatible 
with its local dataset, i.e., it generates a model 
that can be accurately adapted to the local data.
At the same time, each client gets the weights 
updated: ΔWi, where i denotes the client. The 
loss is calculated as shown in equation (19):

( ) ( )
( )

( )

1
min min

kK
k

W W k

NF W f W
N=

= ⋅∑        
(19)

where W are the global model parameters, 
f (k)(W ) is the k-th client's loss function, N(k) is 
the sample size of the k-th client, and N is the 
total number of samples.
After each client has completed its local model 
training, the next step is the sharing of model 
parameters. At the core of this step, each client 
uploads the parameters of its local model, in-
cluding weights and biases, to a central server. 
The advantage is that it allows individual cli-
ents to share their learning with other partici-
pants while protecting their data privacy. This 
sharing process is designed to facilitate the op-
timization of the global model while preserving 
the privacy of each participant's data.
The aggregated weights are updated using the 
federated averaging algorithm, where the cen-
tral server collects the local model parameters 
(weights) sent by all clients and performs a 
weighted average of the model parameters from 
all clients, as shown in equation (20):

1

1 N
new

global global i
i

W W W
N =

= + ∆∑
             (20)

where N is the number of participants.

After the clients share the local model param-
eters, the central server is responsible for up-
dating the global model weights using the ag-
gregated weights to enhance performance and 
ensure learning from all participants' data, as 
shown in equation (21).

new
global globalW W=                      (21)

The central server updates the global model and 
distributes it to all clients, who receive it and 
update their local models to ensure consisten-
cy with the global model. Finally, the whole 
process is iterated several times to optimize the 
model performance. A convergence threshold 
is set as the criterion to stop training, and this 
threshold can be dynamically adjusted accord-
ing to the model performance. Subsequently, 
the entire model training and updating process 
is repeated until the model's loss function reach-
es or exceeds the set convergence threshold, at 
which point training can be stopped.

3.3.2. Random Forest Models Embedded in a 
Federated Learning Framework

Random forest can improve the generaliza-
tion ability and prediction performance of the 
model and can combine multiple decision tree 
models to complete the prediction. Secondly, 
by introducing the randomness, the degree of 
overfitting of the model to the training data can 
be reduced. In addition, data privacy is a key is-
sue in federated learning, and the random forest 
model can protect the private features of par-
ticipants to a certain extent by uploading only 
the local model parameters without sharing the 
original data, thus maintaining data privacy. 
Finally, the training process of random forests 
can be parallelized, which can fully utilize the 
computational resources of participants devices 
in federated learning and features distributed 
computing and scalability.
Therefore, when embedding the RF model into 
federated learning, it can achieve efficient and 
accurate learning of large-scale data dispersed 
across devices while protecting data privacy by 
utilizing the powerful classification and regres-
sion capabilities of random forest, Figure 5. This 
approach makes full use of the computational 
resources of each device and avoids the priva-
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cy risks associated with centralized data storage 
and transmission. At the same time, the random 
forest algorithm has a great advantage in dealing 
with complex and incomplete real-world data 
because of its ability to deal with high-dimen-
sional data and missing value problems.
In this paper, model training is performed 
through the following five steps:
1. Data preparation phase: The dataset is 

loaded using the read_csv method of the 
pandas library; the total dataset is divided 
into three subsets, each containing 10,000 
samples; these three subsets are assigned 
to the three participants A, B, and C, re-
spectively.

2. Data preprocessing: The category of net-
work traffic is selected as the target vari-
able, and the service type, packet length, 
error fragment, emergency packet, etc. 
are selected as the feature variables; the 
train_test_split method of sklearn is used 
to further divide each subset into a training 
set and a test set, and the ratio of the test 
set is set to 0.2.

3. Federated learning framework construc-
tion: The FATE platform is used to imple-
ment vertical federated learning, so that 
the three participants can jointly train a 
random forest model without sharing the 
original data; a fate object is initialized and 

Figure 5. Diagram of the vertical federated learning framework for the random forest model.
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set according to the roles (''guest'', ''host'', 
''arbiter'') and addresses of the participants 
A, B, and C.

4. Model parameter setting and training: 
A random forest model is created on the 
FATE platform with the relevant hyperpa-
rameters set, including the number of trees 
(100), depth (10) and feature selection 
ratio (0.8); the number of training rounds 
is set to 10, and the evaluation indexes in-
clude ''accuracy'', ''recall'' and ''F1 value''.

5. Model evaluation and visualization: Per-
formance evaluation is performed after 
completing the training of the model on the 
FATE platform; the visualization tools are 
used to show the learning curve and confu-
sion matrix of the model.

Through the above steps, this paper successfully 
trains an RF model based on vertical federated 
learning framework with superior performance, 
which can not only handle high dimension-
al data and improve accuracy, but also protect 
data privacy and improve overall efficiency.

4. Results and Discussions

4.1. Experimental Environment and 
Assessment Indicators

4.1.1. Experimental Environment

The experimental training and testing in this 
paper were conducted under the Windows 11 
operating system environment. The hardware 
configuration used includes two Intel Xeon 
Platinum 8380 processors, each with 40 cores 
and 80 threads, a main frequency of 2.3 GHz, a 
maximum RPM of 3.4 GHz, equipped with 60 
MB of L3 cache and LGA4189 slot type, and 
the power consumption of each processor was 
270 W. Python was chosen as the main devel-
opment language, and PyCharm and Jupyter 
Notebook were chosen as the integrated devel-
opment environment. For the deep learning li-
brary, PyTorch was chosen in this paper, as a 
widely used library, it is not only suitable for 
performing large-scale numerical computation, 
but also easy to build network models, which is 
very suitable for realizing the algorithmic mod-
els in this paper.

4.1.2. Assessment of Indicators

The experiment uses the following experimen-
tal evaluation metrics:
1. Accuracy is calculated as shown in equa-

tion (22):

TP TNAcc
TP TN FP FN

+
=

+ + +            
(22)

where TP (True Positives) denotes true 
positive cases, FP (False Positives) de-
notes false positive cases, FN (False Neg-
atives) denotes false negative cases, and 
TN (True Negatives) denotes true negative 
cases; this formula calculates the classifi-
cation accuracy of the model on the overall 
sample.

2. Precision is calculated as shown in equa-
tion (23):

TPPre
TP FP

=
+                   

(23)

This formula quantifies the accuracy of the 
model when it predicts a positive case.

3. Recall is calculated as shown in equation 
(24):

TPRecall
TP FN

=
+               

(24)

The formula measures the effectiveness 
of the model in identifying actual positive 
samples.

4. The F1 score (F1-score) is calculated as 
shown in equation (25):

1 2 Precision RecallF score
Precision Recall

⋅
=

+       
(25)

In this case, the relative contributions of 
Precision and Recall to the F1 score are 
equal. The F1 score takes values between 
0 and 1, where 1 indicates the best perfor-
mance and 0 the worst performance. This 
makes the formula an effective tool for 
evaluating the balance between model pre-
cision and recall ability.

5. Definition and calculation of AUC (Area 
Under Curve): the area under the ROC 
curve (Receiver Operating Characteris-
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tic Curve) is an important indicator of the 
model's classification ability. Its value rep-
resents the ability of the model to distin-
guish between positive and negative sam-
ples: the larger the AUC value, the better 
the classification effect of the model. Its 
calculation formula is shown in equation 
(26):

1

0

( )AUC TPR FPR dFPR= ∫
          

(26)

where TPR represents the true case rate at 
the point on the ROC curve and dFPR rep-
resents the differential of the false positive 
case rate at the point on the ROC curve.

4.2. Dataset

The experiments in this paper use five datasets, 
the details of which are shown in Table 1. Each 
of the five datasets includes a training and a test 
set, and the amount of data in the training and 
test sets correspond to each target feature class.

4.3. Algorithmic Implementation of This 
Study

4.3.1. Parameters Required for the 
Experiment

As shown in Table 2, in this experiment, in order 
to configure the CRNN model, the study selects 
five key hyperparameters: the learning rate, the 
number of iterations, the loss function, the reg-
ularization, and the optimizer. Among them, 
the learning rate, as an important parameter 
to control the update rate of the model param-
eters, needs to be precisely adjusted based on 
the size and characteristics of the dataset. In the 
experimental setup, the learning rate was set to 
0.001 to ensure that the model learns stably and 
effectively during the training process. Binary 
cross-entropy was chosen for the loss function, 
which helps to accurately calculate the error 
between the predicted and real values of the 
model. In order to suppress the overfitting risk 
of the model, L2 regularization was used, and 

Table 1. Information table for the experimental dataset.

hallmark
form

NSL-KDD KDDCup99 UNSW-NB15 CIC-IDS2017 CSE-CIC-
IDS2018

training 
set test set training 

set test set training 
set test set training 

set test set training 
set test set

DoS 45927 7458 391458 229853 37000 4089 37000 4089 37000 4089

Probe 11656 2424 4107 4166 11656 2421 11656 2421 11656 2421

R2L 995 2754 1126 16189 995 2754 995 2754 995 2754

U2R 52 200 52 228 52 200 52 200 52 200

normal 67343 9711 97278 60593 56000 37000 56000 37000 56000 37000

aggregate  
quantitatively 125973 22544 494021 311029 105953 82332 105953 82332 105953 82332



115Network Intrusion Detection Based on Convolutional Recurrent Neural Network, Random Forest...

its parameter value was set to 0.001, which can 
make the model parameters smoother. Finally, 
considering the complexity of the model struc-
ture in this paper, the non-uniform distribution 
characteristics of the dataset, and the training 
requirements of the model under the federated 
learning framework, the study chooses FedProx 
as the optimizer to optimize the model parame-
ters and improve its overall performance.

4.3.2. Ablation Experiments

The paper evaluates the model's performance 
through ablation experiments, which involve 
incrementally increasing the model's complex-
ity and observing changes in its output. The pri-
mary purpose of ablation experiments is to gain 
a deeper understanding of the model's working 
mechanisms while uncovering its strengths and 

potential weaknesses. As shown in Table 3, the 
results of the ablation experiments under differ-
ent model configurations provide crucial insights 
for the model's evaluation and optimization.
As shown in Table 3, the ablation experiment 
results indicate that CNN and RNN exhibit 
consistent performance in terms of accuracy 
(ACC), precision (P), recall (R), and F1-score 
(F1), but their performance is significantly 
lower than that of CRNN and RF models. Spe-
cifically, CRNN outperforms CNN and RNN 
across all performance metrics. This advantage 
mainly stems from CRNN's ability to combine 
the feature extraction capabilities of CNN with 
the sequential modeling capabilities of RNN, 
enabling it to more effectively capture spatio-
temporal information, thus excelling in network 
intrusion detection tasks.

Table 2. Information sheet on required parameters.

Hyperparameter name Hyperparameter Meaning set up

learning rate Controlling the speed of model pa-
rameter updates 0.001

Number of iterations Number of times the neural network 
worked on the entire training dataset 70

loss function Differences between model predic-
tions and true values binary crossentropy

regularization Preventing model overfitting L2

optimizer For optimizing model parameters FedProx

Table 3. Table of ablation experiments' results.

Architecture P R F1 ACC AUC

convolutional neural network 0.765 0.766 0.766 0.787 0.909

recurrent neural network 0.765 0.766 0.766 0.787 0.909

convolutional recurrent neural network 0.999 0.998 0.998 0.998 0.999

random forest 0.980 0.970 0.980 0.980 0.990

The federated learning framework 0.999 0.999 0.999 0.999 0.999
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By integrating CRNN and RF models into the 
federated learning (FL) framework, a compre-
hensive model proposed in this paper is formed. 
Experimental results show that the proposed 
algorithm achieves further improvement in all 
metrics. Specifically, the proposed algorithm 
approaches near-perfect performance in accu-
racy, precision, recall, F1-score, and AUC, sig-
nificantly outperforming the standalone use of 
CRNN or RF.
The superior performance of the proposed 
method can be attributed to the following fac-
tors:
CRNN model: By combining the feature ex-
traction capabilities of CNN with the sequen-
tial modeling capabilities of RNN, it effectively 
handles high-dimensional, nonlinear, and dy-
namically changing data features, significantly 
enhancing detection accuracy and robustness.
RF model: Offers strong feature selection and 
noise reduction capabilities, further enhancing 
the model's generalization ability and robust-
ness.
FL framework: Through distributed data pro-
cessing, it reduces the need for data central-
ization and transmission, effectively protecting 
data security and privacy. Additionally, the FL 
framework can leverage the computational re-
sources of multiple participants, accelerating 
the training process and improving model effi-
ciency and performance.
However, despite the significant performance 
advantages of the proposed method, it has high 
computational complexity, long training times, 
and substantial hardware resource require-
ments. These factors may present challenges in 
practical applications, necessitating trade-offs 
and optimizations during actual deployment.

4.3.3. Comparison of Experimental Results 
with Different Hyperparameters

In this paper, the performance of the algorithm 
is evaluated for different number of iterations 
(from 0 to 70). As shown in Figure 6, the loss 
value (Loss) of the model gradually decreases 
while the accuracy (Accuracy) gradually in-
creases as the number of iterations increases. 
This trend indicates that with more iterations, 

the model parameters are able to fit the training 
data more efficiently. The loss value is a key 
measure of the difference between the model's 
predicted results and the true labels, while the 
accuracy is an important metric for evaluating 
the correctness of the model's predictions. The 
reduction of the loss value and the improve-
ment of the accuracy rate together indicate a 
significant enhancement of the performance 
of the algorithm in this paper. The reason for 
this effect is that as the iterations proceed, the 
model continuously adjusts its internal param-
eters to reduce the prediction error by learning 
the features and patterns in the training data. 
During each iteration, the algorithm optimizes 
the model parameters based on the feedback 
from the loss function, resulting in a decrease 
in the loss value and an increase in the accu-
racy. This continuous parameter optimization 
process allows the model to predict new sam-
ples more accurately, demonstrating the effec-
tiveness of the algorithm in learning and gen-
eralization.

4.3.4. Analysis of Computational Complexity, 
Scalability, and Communication 
Overhead

The Convolutional Recurrent Neural Network 
(CRNN) proposed by the research institute 
combines the feature extraction capabilities of 
Convolutional Neural Networks (CNN) with 
the temporal modeling capabilities of Recur-
rent Neural Networks (RNN). This allows the 
CRNN to effectively handle high-dimensional, 
nonlinear, and dynamically changing data fea-
tures. The computational complexity of each 
convolutional layer is O(n ∙ k ∙ c), where n is the 
input data size, k is the kernel size, and c is the 
number of output channels. The computation-
al complexity of the recurrent layer is O(t ∙ h), 
where t is the number of time steps and h is the 
hidden layer size. Despite the high computa-
tional complexity of the model, optimization 
algorithms and hardware acceleration can ef-
fectively improve training speed and inference 
efficiency.
Through experiments, the research obtained 
data on the model's performance and commu-
nication overhead with different numbers of 
nodes, as shown in Table 4.
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Figure 6. Plot of the number of iterations on the loss value and accuracy of this paper's algorithm.

Table 4. Model Performance and Communication Overhead with Different Numbers of Nodes.

Number of 
Nodes Accuracy Recall F1 Score AUC Communication 

Overhead (GB)

1 0.85 0.82 0.83 0.87 1.00

2 0.88 0.85 0.86 0.89 1.50

5 0.90 0.87 0.88 0.91 2.56

10 0.91 0.89 0.90 0.92 3.85

20 0.94 0.93 0.94 0.95 5.77

50 0.97 0.96 0.97 0.98 9.65

100 0.999 0.999 0.999 0.999 15.00
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From Table 4, it is evident that, as the number 
of nodes increases, the model's performance 
gradually improves. When the number of nodes 
reaches 100, the performance metrics (accura-
cy, recall, F1 score, and AUC) all reach 0.999. 
This indicates that increasing the number of 
nodes can significantly enhance the overall per-
formance of the model. This improvement is at-
tributed to the additional training data and com-
putational resources provided by more nodes, 
which enhance the model's generalization abili-
ty and robustness. However, the increase in the 
number of nodes also leads to higher computa-
tional complexity, as each node needs to inde-
pendently train the model, and the global model 
update requires aggregating more local model 
parameters.
The communication overhead significantly ris-
es with the increase in the number of nodes. 
This increase in communication overhead can 
affect the efficiency of federated learning, par-
ticularly when the number of nodes is large. 
Nevertheless, by reasonably planning the com-
munication frequency and data volume, it is 
possible to improve model performance while 
controlling communication overhead, ensuring 
the efficiency and scalability of federated learn-
ing.
Although the increase in the number of clients 
results in higher communication overhead and 
computational complexity, the model perfor-

mance remains consistently high (with perfor-
mance metrics reaching 0.999 when the number 
of nodes is 100). This demonstrates that in-
creasing the number of clients can significantly 
enhance the overall performance of the model, 
mainly because more clients provide richer data 
samples, which help improve the model's train-
ing effectiveness.
Based on these results, it can be concluded that 
the proposed method is highly practical and 
effective in the context of federated learning. 
In practical applications, the number of nodes 
and communication frequency can be flexibly 
adjusted according to specific needs and avail-
able resources to achieve optimal model perfor-
mance and system efficiency.

4.4. Comparison of this Study's Algorithm 
with Other Intrusion Detection 
Methods

4.4.1. Model Detection Performance 
Comparison

The algorithm in this paper was applied to the 
NSL-KDD dataset and compared with oth-
er models in terms of detection performance. 
The results of this comparison show the per-
formance of the algorithm on this dataset, as 
shown in Table 5.

Table 5. Table of model performance comparison results.

mould P R F1 ACC AUC

FL-SEResNet 0.98 0.97 0.975 0.98 0.98

DBN 0.980 0.978 0.979 0.979 0.995

LSTM 0.984 0.982 0.983 0.983 0.996

NDAE 0.820 0.820 0.820 0.815 0.910

KNN 0.930 0.920 0.925 0.930 0.930

TL-NID 0.96 0.95 0.955 0.96 0.960

The algorithm in 
this study 0.999 0.999 0.999 0.999 0.999
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The performance of this study's algorithm is 
compared with other commonly used machine 
learning and deep learning methods on network 
intrusion detection tasks. These comparison 
models include deep belief networks (DBN), 
long short-term memory networks (LSTM), 
asymmetric deep self-encoder (NDAE), and 
k-nearest neighbor algorithm (KNN), as well 
as an image classification model based on 
deep residual networks, feature-level attention 
mechanisms (FL-SEResNet), and a network 
intrusion detection model based on migration 
learning (TL-NID). The latter consists of a 
cascade of two convolutional neural networks.

As it can be seen from the results shown in Ta-
ble 5, the algorithmic model proposed in this 
study outperforms the other models in all per-
formance metrics, especially in the accuracy 
rate of 99.9%, which is 1.9% higher than the 
best comparison model, FL-SEResNet. This 
excellent performance demonstrates the effec-
tiveness and superiority of this model for net-
work intrusion detection tasks. This is main-
ly due to the feature extraction capability of 
this model on network traffic data. In addition, 
the recurrent neural network is able to capture 
long-term dependencies in time-series data, an 
ability that plays a crucial role in the network 
intrusion detection task.

Experiments on the NSL-KDD dataset show 
that compared with the classical BP neural net-
work algorithm, the convolutional recurrent 
neural network model demonstrates advantag-
es in terms of training time, detection accura-
cy and false alarm rate. Overall, the convolu-
tional recurrent neural network model in this 
paper effectively integrates the advantages of 
deep learning techniques and classifiers, and 
can accurately classify network traffic data, 
thus demonstrating significant effectiveness 
and superiority in network intrusion detection 
tasks.

4.4.2. Comparison of the Results of this 
Study's Algorithm in Five Attack 
Categories and the Detection 
Performance of Other Models

The purpose of this experiment is to evaluate 
the performance of the proposed convolution-
al recurrent neural network intrusion detection 
model and compare it with a variety of com-
monly used machine learning models. Like 
in the previous experiment, these comparison 
models include DBN, LSTM, NDAE, KNN, 
FL-SEResNet, and TL-NID. To fully measure 
the detection performance of these models, five 
attack types are used and evaluated using five 
performance metrics described in 4.1.2.
Table 6 shows the detection results of this pa-
per's algorithm on five attack categories and the 
performance comparison with other models.
Figure 7 shows the confusion matrices of each 
model across the five attack types.
As shown in Table 6 and Figure 7, the algo-
rithm presented in this paper demonstrates ex-
cellent classification performance across five 
attack categories. These superior performances 
can be attributed to several key factors. First-
ly, the algorithm utilizes multimodal feature 
fusion, combining the advantages of CNN and 
RNN. This allows it to capture both temporal 
and spatial features of network traffic. CNNs 
excel at extracting local features, while RNNs 
are proficient in handling sequential data. The 
combination enables the model to comprehen-
sively understand and classify network attack 
behaviors. Secondly, the application of feder-
ated learning allows the model to be trained 
across multiple nodes without centralized data 
aggregation. This not only enhances data pri-
vacy and security but also improves the mod-
el's generalization capability by learning from 
distributed, heterogeneous data. Finally, the 
use of efficient optimization strategies, such 
as the Adam optimizer, ensures that the model 
converges more quickly to the global optimum, 
avoiding local minima. Additionally, adjusting 
the learning rate and employing regularization 
techniques further enhances the model's stabili-
ty and robustness.
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Table 6. Comparison of model results under five attack categories.

mould Type of attack P R F1 ACC AUC

FL-SEResNet

DoS 0.980 0.970 0.975 0.98 0.98

Probe 0.970 0.960 0.965 0.97 0.97

U2R 0.960 0.950 0.955 0.96 0.96

R2L 0.950 0.940 0.945 0.95 0.95

Normal 0.980 0.980 0.980 0.98 0.98

TL-NID

DoS 0.960 0.950 0.955 0.960 0.960

Probe 0.950 0.940 0.945 0.950 0.950

U2R 0.940 0.930 0.935 0.940 0.940

R2L 0.930 0.920 0.925 0.930 0.930

Normal 0.960 0.960 0.960 0.960 0.960

DBN

DoS 0.981 0.982 0.982 0.982 0.996

Probe 0.978 0.976 0.977 0.977 0.995

U2R 0.969 0.968 0.969 0.969 0.992

R2L 0.974 0.972 0.973 0.973 0.993

Normal 0.969 0.968 0.969 0.969 0.992

LSTM

DoS 0.983 0.984 0.984 0.984 0.996

Probe 0.980 0.978 0.979 0.979 0.995

U2R 0.971 0.970 0.971 0.971 0.993

R2L 0.976 0.974 0.975 0.975 0.994

Normal 0.990 0.988 0.989 0.989 0.998

NDAE

DoS 0.990 0.960 0.970 0.970 0.980

Probe 0.710 0.800 0.750 0.760 0.880

U2R 0.220 0.290 0.250 0.250 0.640

R2L 0.540 0.570 0.550 0.550 0.770

Normal 0.930 0.970 0.950 0.950 0.980

tKNN

DoS 0.999 0.999 0.999 0.999 0.999

Probe 0.998 0.998 0.998 0.998 0.998

U2R 0.987 0.987 0.987 0.987 0.987

R2L 0.996 0.996 0.996 0.996 0.996

Normal 0.998 0.998 0.998 0.998 0.998

The algorithm 
in this study

DoS 0.985 0.986 0.986 0.986 0.997

Probe 0.982 0.978 0.980 0.980 0.996

U2R 0.971 0.970 0.971 0.971 0.993

R2L 0.976 0.974 0.975 0.975 0.994

Normal 0.992 0.988 0.990 0.990 0.999
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Figure 7. Confusion matrices of different models across five attack types.
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When compared with other state-of-the-art 
techniques, the superiority of the proposed 
algorithm is also evident. The proposed algo-
rithm performs better in handling small sam-
ple categories (e.g., U2R) and effectively pro-
cesses heterogeneous data, making it suitable 
for federated learning scenarios. In contrast, 
FL-SEResNet performs well in Normal and 
DoS categories but has weaker capabilities in 
handling heterogeneous data. TL-NID shows 
stable performance in most attack categories but 
struggles with complex attack patterns like R2L 
and U2R. DBN performs well in multi-class at-
tack detection, especially in DoS and Probe cat-
egories, but has a long training time and poor 
adaptability to dynamically changing network 
attacks. LSTM excels in handling sequential 
data but has high computational complexity and 
long training times. NDAE performs adequate-
ly in Normal and DoS categories but poorly in 
Probe, U2R, and R2L categories, with a high 
false positive rate. KNN performs well across 
nearly all categories but has high computational 
complexity, resulting in long training and pre-
diction times, especially with large datasets.
In practical network intrusion detection appli-
cations, the proposed algorithm has significant 
practical implications. Firstly, the federated 
learning framework enables training across mul-
tiple distributed nodes, adapting to large-scale 
distributed network environments, effectively 
addressing data privacy concerns, and enhanc-
ing system scalability. Secondly, by combining 
the strengths of CNN and RNN, the model ex-
cels in handling diverse and complex network 
attacks. Multimodal feature fusion and efficient 
optimization strategies allow it to maintain high 
precision and recall rates across various attack 
types. Additionally, the application of regular-
ization techniques and optimization strategies 
further strengthens the model's robustness, re-
ducing the risk of overfitting. Lastly, the algo-
rithm demonstrates strong adaptability to evolv-
ing network threats. Through federated learning 
and multimodal feature fusion, the model can 
learn from heterogeneous data from different 
nodes, effectively capturing new attack patterns 
and adapting to dynamically changing network 
environments.
The proposed framework also shows potential 
for widespread applications in various fields 
such as IoT, cloud computing, and industrial 

control systems. For IoT, traditional central-
ized intrusion detection methods struggle to 
meet the needs of vast and widely distributed 
devices. The federated learning framework can 
train models in a distributed manner across IoT 
nodes, protecting data privacy while improv-
ing detection efficiency and accuracy. In cloud 
computing environments, centralized data stor-
age and processing face significant security 
risks. The proposed algorithm can train and 
update models across multiple cloud nodes, en-
hancing the adaptability and robustness of the 
detection system. In industrial control systems, 
highly sensitive data and operational environ-
ments require extremely high security. The 
proposed algorithm, through federated learning 
and multimodal feature fusion, can effectively 
perform intrusion detection in distributed in-
dustrial control systems, ensuring system secu-
rity. The high accuracy and recall rates further 
enhance the protective capabilities of industrial 
control systems.

5. Conclusion

In this paper, we proposed a novel network 
intrusion detection framework that combines 
convolutional recurrent neural networks and 
random forest models within a federated learn-
ing setting. The proposed approach effectively 
addresses the challenges of data privacy, com-
putational efficiency, and model generalization 
in traditional network intrusion detection meth-
ods. By leveraging the strengths of CRNN and 
RF, the framework achieves high accuracy and 
robustness in detecting various types of net-
work attacks.
The extensive experimental results on bench-
mark datasets demonstrate the superiority of the 
proposed method compared to state-of-the-art 
techniques, consistently outperforming them in 
terms of accuracy, precision, recall, F1 score, 
and AUC. The integration of federated learning 
enables collaborative model training while pre-
serving data privacy, making the proposed ap-
proach suitable for real-world deployment.
The proposed framework has significant impli-
cations for the field of cybersecurity, offering a 
promising solution for secure and efficient net-
work intrusion detection. It can be applied to 
various domains, such as IoT, cloud computing, 
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and industrial control systems, to enhance their 
security posture and protect against evolving 
threats. However, there are still challenges and 
opportunities for future research. Further inves-
tigations can focus on improving the adaptabil-
ity and scalability of the proposed method, ad-
dressing the dynamic nature of network traffic 
and the heterogeneity of participating clients. 
The incorporation of advanced techniques, 
such as attention mechanisms, adaptive learn-
ing rates, and differential privacy, could further 
enhance the performance and security of the 
framework.
In conclusion, the proposed network intrusion 
detection framework based on CRNN, RF, and 
federated learning represents a significant step 
forward in the field of cybersecurity. It offers 
a powerful and flexible solution for detecting 
and mitigating network attacks while preserv-
ing data privacy. The insights gained from this 
research can guide future efforts in developing 
more robust and efficient intrusion detection 
systems, ultimately contributing to a safer and 
more secure cyberspace.
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