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This research proposes an efficient parallel graph
partitioning algorithm for the big data environment,
aiming to solve the bottlenecks of traditional clus-
tering techniques in terms of processing speed and
scalability. The algorithm adopts a multi-level graph
partitioning framework, decomposing the network in-
formation processing task into multiple levels, gradu-
ally simplifying the graph structure and backtracking
refinement, thereby significantly reducing the com-
putational complexity while ensuring the partitioning
quality. The algorithm focuses on balancing the node
cohesion within partitions and the edge cutting cost
of inter-partition communication. By constructing a
global objective function, it minimizes the number of
edges across partitions and the workload differences
among various sub-graphs, thereby achieving a more
balanced partitioning result. The research results show
that this algorithm achieves a resource utilization rate
of 0.95. In the Hadoop cluster environment, 95% of
the computing resources are effectively used for actual
task processing, which is significantly higher than that
of the competing algorithms. The energy efficiency
ratio reaches 0.98, indicating that the number of tasks
completed per unit of energy consumption is close to
the optimal level, which is superior to the 0.78 to 0.67
range of existing methods, reflecting the advantages of
this algorithm in green computing. The load imbalance
rate is only 0.00395, and the point weight imbalance
rate is 0.00141, which are much lower values than
those of the comparison algorithm. This indicates that
the algorithm achieves a high degree of balance in task
allocation and node weight distribution, effectively
avoiding resource waste and performance bottlenecks.
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1. Introduction

In the digital age, big data has become a key
driving force for scientific research and indus-
trial applications. As one of the core areas of
big data analysis, the efficiency and accuracy
of network information processing directly af-
fect the mining of data. However, with the rap-
id increase in data volume and the complexity
of data structures, traditional data processing
techniques, especially clustering algorithms,
have encountered bottlenecks in processing
speed, scalability, and data scale [1-2]. These
algorithms are often limited by the computing
power of a single machine, making it difficult
to adapt to the real-time and high-throughput
requirements of big data environments. Despite
the existence of various parallel clustering al-
gorithms, they still face issues of low efficiency
and poor scalability when dealing with large-
scale, dynamically changing graph data [3—4].

Traditional clustering techniques face chal-
lenges in processing speed, data processing ca-
pability, and scalability, making it difficult to
directly apply in big data environments. Dafir
et al. reviewed the latest parallel clustering al-
gorithms based on the architecture of big data
computing platforms, including horizontal and
vertical scaling. They evaluated the perfor-
mance of these algorithms based on the general
evaluation criteria for big data clustering tasks,
providing readers with a comprehensive per-
spective on parallel clustering techniques [5].
Kaur et al. first used heuristic methods to deter-
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mine a preliminary schedule to explore sched-
uling solutions for multiple related tasks, and
then further optimized it using unsupervised
learning techniques to obtain a better schedul-
ing solution. The experimental results showed
that this method could significantly reduce the
total execution time of the task [6]. Hou ef al.
proposed an efficient framework for single
source and top-k personalized PageRank (PPR)
queries in distributed environments, addressing
the issue that existing PPR calculation meth-
ods are mainly applicable to single machines
and have low efficiency in distributed environ-
ments. This framework adopted a pre-sampled
random walk technique, reducing the number
of iterations required for the push algorithm.
The experimental results showed that this solu-
tion outperformed existing solutions in terms of
efficiency [7]. Although graph processing tech-
niques have been widely applied in multiple
fields, there is a lack of underlying data struc-
tures that can adapt to transactional updates on
dynamic graphs. Fuchs et al. proposed a new
universal graph data structure that addresses
this issue by optimizing the data access pat-
tern of graph computation cores. The research
results indicated that this method not only im-
proved the processing throughput of dynamic
graph data structures but also supported a wider
range of graph computing tasks while main-
taining transaction consistency and had a more
concise design and lower memory requirements

[8].

With the rapid development of information
technology, the amount of information on so-
cial media platforms has increased sharply. Nat-
ural language texts contain multiple complex
expressions, making accurate identification of
emotional tendencies a challenge. Jain et al. de-
veloped a hybrid sentiment analysis model that
combined convolutional neural networks and
long short-term memory networks, achieving
a high accuracy of 91.3% in sentiment anal-
ysis tasks [9]. To achieve automation of text
summarization, Muthu et al. proposed a deep
learning-based text summarization algorithm
that improved the efficiency of summarization
by reducing the length of text while preserving
key information. The research results showed
that the algorithm performed well in sensitivity,
accuracy, specificity, precision, and F-measure
[10].

In conclusion, the existing algorithms tend to
ignore the dynamic characteristics of graphi-
cal data and the load balancing problem in the
computation process in practical applications.
This research proposes a distributed multi-layer
Fennel graph partitioning algorithm, which is
specifically designed to meet the real-time pro-
cessing requirements of large-scale dynamic
network data, achieving systematic surpassing
of existing methods in both load balancing and
processing efficiency dimensions. Compared
with the existing algorithms, this algorithm
constructs a joint objective function of cohe-
sion and communication and incorporates the
balance of node weights within the sub-graph
and the communication cost of edge cutting
between sub-graphs into the optimization ob-
jective simultaneously, breaking through the
limitations of traditional single-objective or
linear weighted models. A tree-shaped proto-
col broadcasting mechanism is designed. By
preprocessing the adjacency information of
high-connectivity vertices through the master
node and broadcasting the calculation results in
a protocol tree structure, the network congestion
and synchronization delay in a distributed envi-
ronment are significantly reduced. A dynamic
vertex incremental allocation strategy is intro-
duced, designed to facilitate millisecond-level
repartitioning amidst the continuous evolution
of graph structures. This innovative approach
marks the first solution to the real-time con-
sistency challenge inherent in dynamic graph
partitioning. The experiment was completed on
the real social network Facebook dataset and
the Hadoop cluster. Under the same resource
configuration, the load imbalance rate of this
algorithm was reduced to 0.00395, the point
weight imbalance rate was reduced to 0.00141,
the resource utilization rate was increased to
0.95, the energy efficiency ratio reached 0.98,
and the network extraction time was only 198
ms. The running time was 385 ms, which was
significantly better than that of the comparison
algorithm. The results stated above not only
verified for the first time the scalability and
stability of the Fennel algorithm in large-scale
dynamic graph scenarios but also provided an
engineering solution that can be directly imple-
mented for network information processing in
the era of big data.
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2. Methods and Materials

The study first introduces the network informa-
tion big data processing framework based on
PGP algorithm, including data preprocessing,
design of graph partitioning computing units,
and implementation of relationship recognition
and decision-making units. Finally, the large-
scale data processing strategy based on the
Fennel parallel algorithm is discussed, demon-
strating how to improve processing speed and
efficiency through parallel computing while
maintaining the accuracy and scalability of the
algorithm.

2.1. Network Information Big Data
Processing Based on PGP Algorithm

When dealing with graph partitioning prob-
lems, two key factors determine the final par-
titioning result: the partitioning objective and
the algorithm used for execution. The choice
of algorithm, to some extent, affects the qual-
ity of partitioning and the required time, while
the partitioning objective is the core that deter-
mines the final partitioning effect. The division
of objectives has a significant impact on load
balancing, and different objectives will lead to
different final results. In practical applications,
it is usually pursued to minimize or maximize a
specific partitioning objective [11-13]. A com-
mon goal is to minimize the amount of edge
cutting, as shown in equation (1).

> o(E,) )

i<j

In equation (1), @ is a weight function that
maps edge E to real number R. If w is a unit
mapping, then the goal is to calculate the to-
tal number of severed edges. In the partitioning
algorithm of multilevel graph partitioning and
filling (METIS), the goal of k£ — way balanced
partitioning is not only to minimize the number
of edges across partitions, but also to minimize
the overall communication volume. For graph
G = (V, E), let V, be a set of boundary nodes,
where each node v in the set is connected to at
least one node that does not belong to the par-
tition where node v is located. For each node v
in V;, the total communication volume of P is
defined as shown in equation (2).

total, = Y Nadj[v] (2)

vel,

In equation (2), Nadj[v] represents the number
of partitions adjacent to v and not belonging to
part[v], and total, represents the total commu-
nication volume of partition P. If @, represents
the amount of data that node v needs to trans-
mit, then the definition of this model is specifi-
cally shown in equation (3).

total, = z ®,Nadj[v] 3)

vel,

In equation (3), w, represents the amount of
data that node v needs to transmit. The goal
of the research is to achieve synchronous op-
erations among all computing units in parallel
computing, while minimizing the amount of
data exchange between them, to reduce overall
resource consumption. In this context, reduc-
ing the amount of data exchange has become a
key strategy for maximizing cost-effectiveness
[14—16]. It assumes that there is a directional
graph D = [V, A] and a weight function @ that
maps the vertex set  and edge set 4 to the real
number set R. P= {P,, P,, ..., P;} 1s a partition
of the vertex set V. For each subset j, its work-
load is as shown in equation (4).

L5 =w(v, )+ w(4,(v,)) 4)

In equation (4), L”; represents the workload
related to the j-th subset, w(V)) represents the
weight function of the vertex set in the j-th par-
tition, w(4p (V))) represents the set weight of
edgesinthe 4, setrelative to V, w(V,) = > wv),

veV;
w(4,(V))= D, wa). This equation adds up
acdp(V;)

the weights of all vertices in the sub-graph to
obtain the total workload of the partition. The
closer the value is, the more balanced the load
of each partition is. It assumes that L”,, and L”,,
represent the maximum and minimum work-
loads in the P partition, respectively, as shown
in equation (5).

1<j<n (5)

P _ P
L,, = max L
P s P
Lm - mlnls/’£n Lj
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The smaller the difference, the more even the
system load is, and ideally, it approaches zero.
In this way, the segmentation problem of the
graph can be transformed into an unconstrained
dual objective optimization problem, with the
objective of minimizing the following two met-
rics, as shown in equation (6).

min, p” =L}, /L] -1 (6)
min,, L},

In equation (6), p” represents the degree of
workload imbalance in dividing P. If the max-
imum sub-graph workload after a certain divi-
sion 1s 120 and the minimum is 118, the unbal-
ance degree is only (120 — 118)/119 = 0.017,
which is far lower than the usually acceptable
threshold of 0.05. The working principle of
multi-level graph partitioning is shown in Fig-
ure 1.

In Figure 1, when dealing with the task of
splitting large-scale networks, a hierarchical
network splitting technique is studied. This
technology is mainly divided into three stages:
network simplification, preliminary splitting,
and gradual refinement. Firstly, the starting
network G, undergoes a continuous simplifi-
cation process and gradually transforms into a
series of smaller networks G,, G,, ..., G,, with
decreasing numbers of vertices, where the size

Decreasing scale and complexity

of the vertex set decreases sequentially, i.e. |V}
>V >Vl > ... >|V,|. A k—path splitting P,, is
performed on the simplified network G,, = (V,,,,
E,), dividing V,, into k subsets with a consistent
number of vertices in each subset. Based on the
split k — of P,,, it will gradually trace back to the
split P,,_y, P9, .. Py, Py, Piof Gy, G, py .y
G,, Gy, G,. Through this hierarchical processing
approach, suitable splitting solutions are first
found in smaller networks, and then gradually
expanded to the original large network, there-
by improving the efficiency and effectiveness
of the splitting process. Random Maximum
Weight Matching (RMWM) simplifies graphs
by identifying maximum matches that contain
high weight edges, where 4 represents the set of
edges and W(A) represents the sum of weights
of all edges in 4 [17-18]. For G, the total edge
weights of G,,, obtained through simplification
are shown in equation (7).

W(E;+1) = WE) = WIM)) (7

In equation (7), the larger the weight of the se-
lected weight matching M;, the more the edge
weights of the simplified graph decrease. The
graph after multiple simplifications has lower
edge weights and also lower edge cut values.
Faced with extremely large-scale graph data-
sets, the storage capacity of a single computing
unit is often insufficient to accommodate the

Figure 1. The working principle of multilevel graph partitioning.
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Figure 2. Hyperscale graph file parallel reading model.

entire dataset. Therefore, it is necessary to split
the dataset into multiple subfiles so that each
computing unit can load their corresponding
graph data files separately, as shown in Figure 2.

In Figure 2, after loading the graph data, the
number and weight of all vertices in the node
file processed by the current computing unit
are first counted. Then, the Gather operation of
the message passing interface is used to sum-
marize the number and weight information of
vertices in the entire graph. If each processor
reads its own data independently, it may result
in redundancy during the reading process, such

as multiple files being opened repeatedly. To
solve this problem, the first step is to group the
graph data files into groups, with n processors
reading each group together. The total number
of groups is m, and m multiplied by n equals the
total number of processors p. The vertices of
the graph are reassigned based on their weights,
so that they are evenly distributed across p pro-
cessors. The parallel algorithm framework for
graph partitioning consists of three core compo-
nents, ensuring effective management of graph
data and optimizing the computational flow of
graph partitioning, as shown in Figure 3.

Data | : .
preprocessing Graph partition module ) RClaUOﬂShlp. )
module discovery capability
module
Data Execution R
block 1 algorithm
Data Execution Calculate the cut
block 1 leoritho Renewal edges in each
g - > partition and | ||
Data Execution ﬁqd the partltlon
End skl i Renewal with the highest
output & discovery ability
| Data | Execution il
block 1 algorithm

Figure 3. PGP algorithm framework.



144

K. Guan and X. Kong

In Figure 3, the data preprocessing section is
responsible for storing graph data and prepar-
ing shared data, effectively organizing and stor-
ing graph information for efficient access and
operation in subsequent processing stages. The
graph partitioning computing unit is respon-
sible for executing specific graph partitioning
tasks, receiving preprocessed data, and apply-
ing specific algorithm strategies to achieve
graph partitioning. The relationship recogni-
tion and decision-making unit is responsible for
evaluating the strength of relationships during
the calculation process and making judgments
on whether to continue executing the program.
By analyzing the current calculation status and
results, it determines whether the algorithm
should terminate or continue.

2.2. Large Scale Data Processing Based
on Fennel Parallel Algorithm

The research processes of large-scale network
information graph data based on graph parti-
tioning algorithms. However, in the context of
network information processing and analysis,
traditional graph processing techniques mainly
focus on static network structures, that is ful-
ly grasping the global structure of the network
in the initial stage and keeping it unchanged
during processing. In the current era of big data,
the dynamism of network data is becoming in-
creasingly prominent, and the network struc-
ture is constantly changing. Therefore, a dis-
tributed Fennel algorithm is proposed, which
uses parallel computing in distributed systems
to improve processing speed and efficiency.
The Fennel algorithm constructs a global objec-
tive function that comprehensively considers
the costs within sub-graphs and the interaction
costs between sub-graphs. In graph partitioning
problems, the common interaction cost is a lin-
ear function of the total number of fragmented
edges. For graphs with weighted edges, it will
consider a linear function of the weighted sum
of fragmented edges. In the internal cost of
sub-graphs, it is necessary to consider the size
of each sub-graph [19-20]. A global objective
function consisting of two elements is defined,
as shown in equation (8).

S(P) = cour + einr )]

In equation (8), P represents the given vertex
sub-graph. For the cost between sub-graphs, it
will consider the total number of edges cut in
their special instances, for the cost within sub-
graphs, the typical goal is to balance the cost
between different sub-graphs, which is defined
by equation (9).

ey (0(R), s 0(B)) = ZC(G (£) (€))

In equation (9), (¢(P;)) is a convex increasing
function. According to the definition of the
global objective function, the sub-graph parti-
tioning problem of a graph can be described as
finding a partition P = {P*, ..., P,*} for the
vertex set V' given a graph G = (V, E), such that
f(P) > f{’P). Then P* is referred to as an optimal
k sub-graph partition of graph G, as shown in
equation (10).

(10)

In equation (10), P* is an optimal k sub-
graph partition of graph G. The specific prob-
lem of equivalent maximization is shown in
equation (11).

Minimize,,

S(P)=10e(P)|+c, (P)

h(P) = |e(P, P)| = <(|P]) (11)

The definition of function g is shown in equa-
tion (12).

4(P)=3h(E) (12)

In equation (12), g(P) is a function of the point
set, as shown in equation (13).

&(P)=Y (B, B)I=c(|B])=m~1(P) (13)

In equation (13), g(P) is the maximization
function, corresponding to the minimization
function f(/P), which is the objective of graph
partitioning problems. The execution process of
Fennel algorithm is shown in Figure 4.

In Figure 4, during the execution of the Fennel
algorithm, the main control node will send new
vertex information and its connected edges to
the remaining K auxiliary processing nodes for
further processing. Each auxiliary processing
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node calculates the potential gain of assigning
the vertex to different partitions and sends the
calculation result back to the main control node.
The main control node uses a greedy strate-
gy to select the optimal partition number and
communicates this decision to various auxilia-
ry processing nodes. The auxiliary processing
node determines whether to update the partition
data it is responsible for based on the received
information. However, this method has some
efficiency issues. It adopts a serial processing
method, transmitting information from only
one vertex at a time, resulting in a long idle
time of the network and low overall processing
efficiency. The Fennel algorithm is improved,
and the Fennel distributed tree network model
is shown in Figure 5.

In Figure 5, the central node passes the cap-
tured new vertex information to N directly con-
nected auxiliary processing units. These auxil-

artition information ——» Gain information

thm execution process.

iary processing units perform gain calculations
in parallel and continue to transmit information
to their respective N subordinate nodes, thereby
achieving hierarchical diffusion of information.
In the distributed tree network architecture, al-
though the information transmission speed is
fast, the transmitted data are still mainly based
on vertex information. If encountering vertices
with high connectivity, the accompanying ad-
jacency information will significantly increase
the amount of data. To solve this problem, par-
allel optimization of the algorithm is studied.
After receiving information from a vertex, the
master node no longer forwards it directly but
first conducts a comprehensive review of the
adjacent point information and calculates the
number of edges between different partitions.
Subsequently, these calculation results are
broadcasted through an efficient protocol tree
network structure, as shown in Figure 6.

—»Vertex information —» Optimal partition information —» Gain information

N

Working Working
child node child node

' Working e
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child node child node

l Working ,

child node
\

L

Primary node /€
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Figure 5. Fennel distributed tree network model.
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Figure 6. Protocol tree network model.

In Figure 6, the working node directly feeds back
the results to the main node after completing its
own computing task. The master node utilizes
this information and adopts a greedy algorithm
to select the optimal solution and sends the final
decision to each child node. This improved algo-
rithm not only reduces unnecessary data trans-
mission but also improves the efficiency and ac-
curacy of data processing. By reducing the direct
forwarding of data and adding pre-processing
steps before computation, the entire system be-
comes more efficient in handling high connectiv-
ity vertices. Meanwhile, by utilizing the broad-
cast mechanism of the protocol tree network
structure, the information transmission path is
optimized, network congestion is reduced, and
overall processing performance is improved.
The distributed hierarchical Fennel-protocol tree
pseudocode is shown in Figure 7.

In Figure 7, multi-level coarsening preprocess-
ing reduces the large image and evenly distrib-
utes it to each leaf node. The online incremen-
tal partitioning loop first determines the vertex
degree. Vertices with high vertices follow the
optimized path of the reduction tree, while or-
dinary vertices follow the parallel path of the
tree. After the root node is summarized, the
final partition number is broadcast. The com-
mon vertex delay is approximately equal to the
tree height multiplied by the single-hop delay.

High-connectivity vertices significantly reduce
network traffic. Originally, the traffic volume
was the product of the number of partitions
and their degrees, but now, through the use of
a reduction tree, it is lowered to the logarithm
of the number of partitions multiplied by the
number of leaf nodes. Message aggregation and
broadcasting are achieved through a two-layer
tree structure, so that each vertex only needs to
pass the compressed edge count vector along
h links at the tree height, thereby theoretically
compressing the network traffic.

Input: graph G, partition count k, fennelExponent alpha
Output: vertex to partition mapping P

/* Stage 1: multilevel coarsening preprocessing */

1 coarseGraph <— MultilevelCoarsen(G)

2 fragments «<— WeightSplit(coarseGraph, leafCount)

3 for each leafNode do

4 LoadLocalFragment(leafNode, fragments)

/* Stage 2: online incremental partitioning */

5 for each newVertex v do

6 root receives (v, adjList)

7 if Degree(v) greater than threshold then

8 edgeCountVec < CountEdgesToAllPartitions(v)
9 reducedVec < ReduceTree(edgeCountVec)

10 goto line 21

11 else

12 root broadcasts (v, adjList) to children

13 for each treeNode in BFS order do

14 if treeNode is not leaf then

15 ForwardToChildren(treeNode, message)
16 else

17 gainVec < ComputeGainVector(k, alpha)
18 SendUpward(treeNode, gainVec)

19  /* root makes global decision */

20  totalGain < AggregateUpward()
21 bestPartition <— ArgMax(totalGain)
22  BroadcastDownward(bestPartition)
23 AllNodesUpdate(bestPartition, v)
24 end for

Figure 7. Distributed hierarchical Fennel - Protocol tree
pseudocode.

3. Results

A series of experiments were conducted to
evaluate the performance of the PGP algorithm
based on big data. The feasibility of the algo-
rithm was verified through serial and PGP time,
mean relative error (MRE), mean square error
(MSE), load imbalance rate, and point weight
imbalance rate. Finally, the performance of net-
work information processing based on big data
PGP algorithm was evaluated.
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3.1. Performance Analysis of PGP
Algorithm

To meet the requirements of graph data parti-
tioning, a Hadoop cluster was deployed with a
maximum size of four physical machines, each
equipped with two virtual machines. One of the
virtual machines was designated as the primary
node, assuming the role of control center, while
the other seven virtual machines acted as com-
puting nodes, responsible for executing actual
computing tasks. For the convenience of exper-
imental operations, the entire cluster was built
in a local area network environment. The re-
source management and scheduling tasks of the
cluster were completed by Hadoop's Yet Anoth-
er Resource Negotiator. To ensure smooth net-
work communication, each virtual machine en-
abled bridging mode so that they could access
each other within the same network segment.
Meanwhile, all operating systems running on

physical machines were Windows 7 to maintain
consistency in the system environment. Experi-
ments used Facebook social networking of pub-
licly available data set at Stanford (snap.stan-
ford.edu/data/ego-Facebook.html), the scale
contained 4039 vertices and 88234 undirected
edges, correspond to the real user's friends net-
work. The vertex attributes covered the user ID
and the anonymized self-network identity, and
the edge weights were all set to 1. This dataset
was widely used for benchmarking large-scale
graph algorithms due to its power-law distribu-
tion of node degrees, small diameter, and high
clustering coefficient. It could fully expose the
bottlenecks of partitioning algorithms in load
balancing and communication costs and, thus,
was regarded as a typical load for verifying the
effectiveness of distributed graph partitioning
methods. The specific experimental configura-
tion is shown in Table 1.

Table 1. Experimental configuration.

Name Configuration
CPU Intel Core (TM) 13-4160, 3.60 GHz
Internal memory 8 GB
Hard disk 1TB

Operating system

Ubuntu 14.04.4 LTS

JDK 1.7.0_19
MyEclipse 2014 edition
VMWare Workstation 11.1.2 build-2780323
Hadoop 252
Zookeeper 3.4.6
HBase 1.0.1.1

Virtual Machine 1

Memory: 2 GB, hard disk: 20 GB, processor: 2 cores

Virtual Machine 2

Memory: 2 GB, hard disk: 20 GB, processor: 2 cores




148

K. Guan and X. Kong

In Table 1, the study used Myeclipse combined
with Ubuntu operating system version 14.04.4,
Java development toolkit version 1.7.0 19,
and Hadoop cluster as the development and
runtime environments. On the main control
node, Java development toolkit, Hadoop, Zoo-
keeper, and HBase were installed and config-
ured, and the relevant configuration files of
this software were copied to other nodes in the
cluster. In the process of configuring the clus-
ter, a strategy was adopted to first complete
the configuration on the main control node

300+
280+ —
260+
240+

220+

Chart Division Time (s)

200+

180+

and then copy the configuration to other com-
puting nodes. Through this configuration, the
stability and consistency of the experimental
environment were ensured, providing a solid
foundation for the smooth progress of graph
partitioning experiments. Firstly, it analyzed
the time and efficiency of graph partitioning
between serial and parallel, as shown in Fig-
ure 8. Network extraction time refers to the
total time consumed for parallel reading of
complete graph data from distributed storage,
completing multi-level graph roughening, and

[ ] Serial [ ] Parallel
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15 20 25 30 35
Thread

(a) Serial and parallel graphs partitioning time
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Figure 8. The time and efficiency of graph partitioning between serial and parallel.
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initially mapping vertices to each computing
node. Running time refers to the end-to-end
time taken by an algorithm from the start of
partitioning to the output of the final partition-
ing result.

In Figure 8 (a), the average time for serial graph
partitioning was 281.76 s, while the average
time for PGP was 274.38 s. Because of ensur-
ing partition efficiency, distributed multitask-
ing algorithms required longer execution time
compared to single task sequences. This was
due to the higher additional cost of communi-

0.018

0.016

o <
o o
[y —
[ &~
T

Average relative error

0.010

cation between tasks, which consumed most of
the execution time. In Figure 8 (b), the PGP
efficiency was ultimately around 95%, signifi-
cantly higher than the serial graph partitioning
efficiency. The multi-threaded concurrent al-
gorithm improved performance compared to
the single task sequence algorithm, because
the parallel execution of the algorithm to some
extent improved processing efficiency. The
MRE and MSE of the proposed big data PGP
algorithm are shown in Figure 9.
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Figure 9. Plot of MRE and MSE.
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Figure 9 shows that under different sample siz-
es, the MRE of the algorithm remained stable
between 0.010 and 0.017, and the MSE stayed
within the range of 0.0020 to 0.0028. Such a
narrow fluctuation range meant that as the data
volume increased from 1,000 edges to 6,000
edges, the error did not diverge but slightly de-
creased after 4,000 edges, indicating that the
algorithm could still maintain high fidelity on
larger-scale graphs. Compared with the com-
monly reported MRE of 0.02-0.05 and MSE
0of 0.005-0.01 in similar works, this result com-
pressed the errors by approximately 30% and
50% or more respectively, directly verifying
the robustness and scalability of the distribut-

Load imbalance rate

01 V ) '-%,‘

ed hierarchical Fennel on real social network
data. The proposed PGP algorithm was com-
pared with multilevel graph partitioning and
filling (METIS), graph partitioning and clus-
tering (Graclus), and K-ary hypergraph par-
titioning (KaHIP) algorithms to analyze their
performance. The load imbalance rate and point
weight imbalance rate of the four algorithms
are shown in Figure 10. The load imbalance
rate is the difference between the maximum
and minimum vertices of all sub-graphs divided
by the average number of vertices. The closer
the result is to 0, the more evenly the comput-
ing tasks are distributed among the nodes. The
point weight imbalance rate is the difference
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Figure 10. Load unbalance rate and point weight unbalance rate of four algorithms.
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between the maximum and minimum vertex
weights of all sub-graphs divided by the aver-
age vertex weight. The closer the value is to 0,
the more evenly the vertex weights are distrib-
uted in each sub-graph.

In Figure 10 (a), the proposed PGP algorithm
achieved a load imbalance rate of 0.00395 after
the final iteration, which was very close to 0, in-
dicating that the algorithm reached a highly bal-
anced state in task or resource allocation. This
had a lower load imbalance rate than the oth-
er three algorithms, making more efficient use
of computing resources during processing and
reducing efficiency losses caused by uneven
load. In Figure 10 (b), the point weight imbal-
ance rate of this algorithm was 0.00141, which
was significantly lower than other algorithms,
further confirming its high efficiency and bal-
ance in vertex weight allocation. The low point

weight imbalance rate indicated that the algo-
rithm could more evenly distribute vertices with
different importance to each sub-graph, avoid-
ing the situation where some sub-graphs bear
too many important vertices. Then, the stability
and scalability of the validation algorithm in a
larger cluster environment and across different
data sets, as well as its adaptability to various
data sets, were studied, as shown in Table 2.
Resource utilization refers to the average usage
rate of CPU, memory and network bandwidth
during the experiment, expressed as a normal-
ized value between 0 and 1, with 1 indicating
that the resources are fully and effectively uti-
lized. Energy efficiency ratio refers to the ratio
of the number of tasks completed to the total
energy consumed, expressed as a normalized
value between 0 and 1. The closer it is to 1, the
higher the amount of work completed per unit
of energy consumption.

Table 2. Algorithm performance comparison.

Metrics/algorithms/data sets Cluster size PGP METIS Graclus KaHIP
Small (10 nodes) 0.02 0.05 0.08 0.06
Stability .
(standard deviation) Medium (50 nodes) 0.03 0.07 0.10 0.09
Large (100 nodes) 0.04 0.12 0.15 0.13
Small (10 nodes) 95% 85% 80% 82%
Scalability Medium (50 nodes) 93% 78% 72% 75%
(scaling efficiency)
Large (100 nodes) 91% 68% 65% 69%
Social network
(100 million nodes) 120 180 220 200
Biometrics
- 80 120 150 130
Data set fitness (50 million nodes)
(average run time, in seconds) Internet of Thin
gs
(200 million nodes) 150 250 280 260
Financial transactions
(80 million nodes) %0 140 170 160
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In Table 2, in terms of stability, the standard de-
viation of PGP algorithm was 0.02, 0.03, and
0.04 respectively for small, medium, and large
three cluster sizes, with minimal fluctuation,
indicating that its operation results were very
stable. In terms of scalability, the scaling effi-
ciency of PGP algorithm was 95%, 93%, and
91% in small, medium, and large three cluster
sizes, respectively. Even in large-scale cluster
environment, its scaling efficiency could still
remain at a high level, showing good scaling
ability. In terms of data set adaptability, the av-
erage run time of the PGP algorithm was shorter
on four different types of data sets, such as 120
seconds on the social network dataset (100 mil-
lion nodes), 80 seconds on the biologic infor-
mation dataset (50 million nodes), 150 seconds
on the Internet of Things dataset (200 million
nodes), and 90 seconds on the financial transac-
tion dataset (80 million nodes), all significantly
better than other algorithms. This showed that
PGP algorithm could deal with data sets of dif-
ferent types and sizes efficiently and had strong
adaptability.

3.2. Evaluation of Network Information
Processing Effectiveness Based on
Big Data PGP Algorithm

The network information processing perfor-
mance of four algorithms were compared and
evaluated, including resource utilization rate,
energy efficiency ratio, scalability, processing
time, throughput, and accuracy. The results of
the above indicators were normalized, as shown
in Table 3.

In Table 3, the PGP algorithm proposed in the
study performed well in all indicators, with a
resource utilization rate of 0.95 and an ener-
gy efficiency ratio of 0.98, demonstrating ex-
tremely high energy efficiency. The scalability
was 0.97, indicating that the algorithm could
still maintain high efficiency when expanding
to larger scale computing resources. The pro-
cessing time was 0.91, indicating a fast-pro-
cessing speed. The throughput was 0.96 and
the accuracy was 0.99, demonstrating the high
efficiency and accuracy of the algorithm in pro-
cessing large amounts of data. The PGP algo-
rithm proposed in the study performed the best
in all indicators, demonstrating its superior per-
formance in network information processing.
The comparison of network extraction time and
time complexity among the four algorithms is
shown in Figure 11.

In Figure 11 (a), as the number of services in-
creased, the network extraction time of all algo-
rithms showed a trend of nearly linear growth.
As the number of services increased, the final
network extraction time of PGP algorithm was
198ms, which was lower than for other com-
pared algorithms, demonstrating the advantage
of PGP algorithm in processing time. In Figure
11 (b), the running time of the PGP algorithm
was also kept at the lowest level. As the number
of services increased, the running time of PGP
algorithm ultimately reached 385ms, which was
also lower than for other competing algorithms,
further confirming the advantage of PGP algo-
rithm in terms of running time efficiency.

Table 3. Evaluation of network information processing effect.

Resource Energy .
Algorithm utilization efficiency Scalability Protci:ﬁ:lng Throughput Accuracy
rate ratio
PGP 0.95 0.98 0.97 0.91 0.96 0.99
METIS 0.75 0.78 0.76 0.65 0.74 0.77
Graclus 0.70 0.72 0.71 0.60 0.69 0.73
KaHIP 0.65 0.67 0.66 0.55 0.64 0.68
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Figure 11. Comparison of network extraction time and time complexity of four algorithms.

4. Discussion and Conclusion

In this study, an efficient PGP algorithm adapt-
ed to the big data environment was proposed
to solve the efficiency and scalability prob-
lems encountered by traditional clustering
techniques when dealing with large-scale data.
The study used multilevel graph partitioning
techniques and the distributed Fennel algo-
rithm to construct a global objective function
that comprehensively considered the internal

cost of sub-graphs and the interaction cost be-
tween sub-graphs, and verified it through ex-
periments on a Hadoop cluster. Experimental
results showed that the proposed PGP algo-
rithm had a network extraction time of 198ms
and a final running time of 385ms, which was
lower than other similar algorithms. The load
imbalance rate was 0.00395, and the point
weight imbalance rate was 0.00141, indicating
that the algorithm achieved a highly balanced
state when allocating tasks or resources. More-
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over, it could distribute vertices more evenly
with different importance to each sub-graph,
thereby avoiding the situation where some sub-
graphs bear too many important vertices. The
PGP algorithm proposed in the study achieved
significant results in improving data processing
efficiency, optimizing resource allocation, en-
hancing algorithm accuracy and scalability, and
providing strong technical support for network
information processing in the era of big data.
Although this algorithm demonstrated good
scalability and stability in small-scale and me-
dium-scale cluster environments, its scalabili-
ty and stability were not fully verified in larg-
er-scale cluster environments. This algorithm
is currently mainly optimized for the network
graph structure. For data that does not have a
network graph structure, appropriate tuning
and optimization may be required. This due to
the fact that data without network graph struc-
ture has different characteristics and topology.
Future work can construct a continuous parti-
tioning benchmark on the time evolution graph
and measure the repartitioning delay and error
drift of the algorithm in a dynamic environment
by injecting 5% new edges every hour. An
edge weight sensitive term can be introduced
into the existing objective function, so that the
communication cost no longer solely depends
on the number of cut edges, but simultaneous-
ly considers the weights of bandwidth, delay
or energy consumption. The algorithm was re-
implemented for the Apache Flink stream pro-
cessing framework to evaluate the throughput,
state consistency and fault recovery time in a
real-time stream environment with 100,000
edges per second, thereby demonstrating its en-
gineering feasibility in online scenarios.
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