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This research proposes an efficient parallel graph 
partitioning algorithm for the big data environment, 
aiming to solve the bottlenecks of traditional clus-
tering techniques in terms of processing speed and 
scalability. The algorithm adopts a multi-level graph 
partitioning framework, decomposing the network in-
formation processing task into multiple levels, gradu-
ally simplifying the graph structure and backtracking 
refinement, thereby significantly reducing the com-
putational complexity while ensuring the partitioning 
quality. The algorithm focuses on balancing the node 
cohesion within partitions and the edge cutting cost 
of inter-partition communication. By constructing a 
global objective function, it minimizes the number of 
edges across partitions and the workload differences 
among various sub-graphs, thereby achieving a more 
balanced partitioning result. The research results show 
that this algorithm achieves a resource utilization rate 
of 0.95. In the Hadoop cluster environment, 95% of 
the computing resources are effectively used for actual 
task processing, which is significantly higher than that 
of the competing algorithms. The energy efficiency 
ratio reaches 0.98, indicating that the number of tasks 
completed per unit of energy consumption is close to 
the optimal level, which is superior to the 0.78 to 0.67 
range of existing methods, reflecting the advantages of 
this algorithm in green computing. The load imbalance 
rate is only 0.00395, and the point weight imbalance 
rate is 0.00141, which are much lower values than 
those of the comparison algorithm. This indicates that 
the algorithm achieves a high degree of balance in task 
allocation and node weight distribution, effectively 
avoiding resource waste and performance bottlenecks.
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1.	Introduction

In the digital age, big data has become a key 
driving force for scientific research and indus-
trial applications. As one of the core areas of 
big data analysis, the efficiency and accuracy 
of network information processing directly af-
fect the mining of data. However, with the rap-
id increase in data volume and the complexity 
of data structures, traditional data processing 
techniques, especially clustering algorithms, 
have encountered bottlenecks in processing 
speed, scalability, and data scale [1-2]. These 
algorithms are often limited by the computing 
power of a single machine, making it difficult 
to adapt to the real-time and high-throughput 
requirements of big data environments. Despite 
the existence of various parallel clustering al-
gorithms, they still face issues of low efficiency 
and poor scalability when dealing with large-
scale, dynamically changing graph data [3-4].
Traditional clustering techniques face chal-
lenges in processing speed, data processing ca-
pability, and scalability, making it difficult to 
directly apply in big data environments. Dafir 
et al. reviewed the latest parallel clustering al-
gorithms based on the architecture of big data 
computing platforms, including horizontal and 
vertical scaling. They evaluated the perfor-
mance of these algorithms based on the general 
evaluation criteria for big data clustering tasks, 
providing readers with a comprehensive per-
spective on parallel clustering techniques [5]. 
Kaur et al. first used heuristic methods to deter-
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mine a preliminary schedule to explore sched-
uling solutions for multiple related tasks, and 
then further optimized it using unsupervised 
learning techniques to obtain a better schedul-
ing solution. The experimental results showed 
that this method could significantly reduce the 
total execution time of the task [6]. Hou et al. 
proposed an efficient framework for single 
source and top-k personalized PageRank (PPR) 
queries in distributed environments, addressing 
the issue that existing PPR calculation meth-
ods are mainly applicable to single machines 
and have low efficiency in distributed environ-
ments. This framework adopted a pre-sampled 
random walk technique, reducing the number 
of iterations required for the push algorithm. 
The experimental results showed that this solu-
tion outperformed existing solutions in terms of 
efficiency [7]. Although graph processing tech-
niques have been widely applied in multiple 
fields, there is a lack of underlying data struc-
tures that can adapt to transactional updates on 
dynamic graphs. Fuchs et al. proposed a new 
universal graph data structure that addresses 
this issue by optimizing the data access pat-
tern of graph computation cores. The research 
results indicated that this method not only im-
proved the processing throughput of dynamic 
graph data structures but also supported a wider 
range of graph computing tasks while main-
taining transaction consistency and had a more 
concise design and lower memory requirements 
[8].
With the rapid development of information 
technology, the amount of information on so-
cial media platforms has increased sharply. Nat-
ural language texts contain multiple complex 
expressions, making accurate identification of 
emotional tendencies a challenge. Jain et al. de-
veloped a hybrid sentiment analysis model that 
combined convolutional neural networks and 
long short-term memory networks, achieving 
a high accuracy of 91.3% in sentiment anal-
ysis tasks [9]. To achieve automation of text 
summarization, Muthu et al. proposed a deep 
learning-based text summarization algorithm 
that improved the efficiency of summarization 
by reducing the length of text while preserving 
key information. The research results showed 
that the algorithm performed well in sensitivity, 
accuracy, specificity, precision, and F-measure 
[10].

In conclusion, the existing algorithms tend to 
ignore the dynamic characteristics of graphi-
cal data and the load balancing problem in the 
computation process in practical applications. 
This research proposes a distributed multi-layer 
Fennel graph partitioning algorithm, which is 
specifically designed to meet the real-time pro-
cessing requirements of large-scale dynamic 
network data, achieving systematic surpassing 
of existing methods in both load balancing and 
processing efficiency dimensions. Compared 
with the existing algorithms, this algorithm 
constructs a joint objective function of cohe-
sion and communication and incorporates the 
balance of node weights within the sub-graph 
and the communication cost of edge cutting 
between sub-graphs into the optimization ob-
jective simultaneously, breaking through the 
limitations of traditional single-objective or 
linear weighted models. A tree-shaped proto-
col broadcasting mechanism is designed. By 
preprocessing the adjacency information of 
high-connectivity vertices through the master 
node and broadcasting the calculation results in 
a protocol tree structure, the network congestion 
and synchronization delay in a distributed envi-
ronment are significantly reduced. A dynamic 
vertex incremental allocation strategy is intro-
duced, designed to facilitate millisecond-level 
repartitioning amidst the continuous evolution 
of graph structures. This innovative approach 
marks the first solution to the real-time con-
sistency challenge inherent in dynamic graph 
partitioning. The experiment was completed on 
the real social network Facebook dataset and 
the Hadoop cluster. Under the same resource 
configuration, the load imbalance rate of this 
algorithm was reduced to 0.00395, the point 
weight imbalance rate was reduced to 0.00141, 
the resource utilization rate was increased to 
0.95, the energy efficiency ratio reached 0.98, 
and the network extraction time was only 198 
ms. The running time was 385 ms, which was 
significantly better than that of the comparison 
algorithm. The results stated above not only 
verified for the first time the scalability and 
stability of the Fennel algorithm in large-scale 
dynamic graph scenarios but also provided an 
engineering solution that can be directly imple-
mented for network information processing in 
the era of big data.



141Network Information Processing Analysis Based on Big Data Parallel Graph Partitioning Algorithm

[ ]
b

v
v V

total Nadj v
∈

= ∑
                  

(2)

In equation (2), Nadj[v] represents the number 
of partitions adjacent to v and not belonging to  
part[v], and totalv represents the total commu-
nication volume of partition P. If ωv represents 
the amount of data that node v needs to trans-
mit, then the definition of this model is specifi-
cally shown in equation (3).
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In equation (3), ωv represents the amount of 
data that node v needs to transmit. The goal 
of the research is to achieve synchronous op-
erations among all computing units in parallel 
computing, while minimizing the amount of 
data exchange between them, to reduce overall 
resource consumption. In this context, reduc-
ing the amount of data exchange has become a 
key strategy for maximizing cost-effectiveness 
[14-16]. It assumes that there is a directional 
graph D = [V, A] and a weight function ω that 
maps the vertex set V and edge set A to the real 
number set R.  = {P1, P2, ..., Pk} is a partition 
of the vertex set V. For each subset j, its work-
load is as shown in equation (4).
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In equation (4), Lj represents the workload 
related to the j-th subset, w(Vj) represents the 
weight function of the vertex set in the j-th par-
tition, w(AD
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edges in the AD
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the weights of all vertices in the sub-graph to 
obtain the total workload of the partition. The 
closer the value is, the more balanced the load 
of each partition is. It assumes that LP

M and LP
m 

represent the maximum and minimum work-
loads in the P partition, respectively, as shown 
in equation (5).
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2.	Methods and Materials

The study first introduces the network informa-
tion big data processing framework based on 
PGP algorithm, including data preprocessing, 
design of graph partitioning computing units, 
and implementation of relationship recognition 
and decision-making units. Finally, the large-
scale data processing strategy based on the 
Fennel parallel algorithm is discussed, demon-
strating how to improve processing speed and 
efficiency through parallel computing while 
maintaining the accuracy and scalability of the 
algorithm.

2.1.	Network Information Big Data 
Processing Based on PGP Algorithm

When dealing with graph partitioning prob-
lems, two key factors determine the final par-
titioning result: the partitioning objective and 
the algorithm used for execution. The choice 
of algorithm, to some extent, affects the qual-
ity of partitioning and the required time, while 
the partitioning objective is the core that deter-
mines the final partitioning effect. The division 
of objectives has a significant impact on load 
balancing, and different objectives will lead to 
different final results. In practical applications, 
it is usually pursued to minimize or maximize a 
specific partitioning objective [11-13]. A com-
mon goal is to minimize the amount of edge 
cutting, as shown in equation (1).
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In equation (1), ω is a weight function that 
maps edge E to real number R. If ω is a unit 
mapping, then the goal is to calculate the to-
tal number of severed edges. In the partitioning 
algorithm of multilevel graph partitioning and 
filling (METIS), the goal of k - way balanced 
partitioning is not only to minimize the number 
of edges across partitions, but also to minimize 
the overall communication volume. For graph  
G = (V, E), let Vb be a set of boundary nodes, 
where each node v in the set is connected to at 
least one node that does not belong to the par-
tition where node v is located. For each node v 
in Vb, the total communication volume of P is 
defined as shown in equation (2).
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The smaller the difference, the more even the 
system load is, and ideally, it approaches zero. 
In this way, the segmentation problem of the 
graph can be transformed into an unconstrained 
dual objective optimization problem, with the 
objective of minimizing the following two met-
rics, as shown in equation (6).
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In equation (6), ρ represents the degree of 
workload imbalance in dividing P. If the max-
imum sub-graph workload after a certain divi-
sion is 120 and the minimum is 118, the unbal-
ance degree is only (120 - 118)/119 ≈ 0.017, 
which is far lower than the usually acceptable 
threshold of 0.05. The working principle of 
multi-level graph partitioning is shown in Fig-
ure 1.
In Figure 1, when dealing with the task of 
splitting large-scale networks, a hierarchical 
network splitting technique is studied. This 
technology is mainly divided into three stages: 
network simplification, preliminary splitting, 
and gradual refinement. Firstly, the starting 
network G0 undergoes a continuous simplifi-
cation process and gradually transforms into a 
series of smaller networks G1, G2, ..., Gm with 
decreasing numbers of vertices, where the size 

of the vertex set decreases sequentially, i.e. |V0| 
> |V1| > |V2| > ... > |Vm|. A k - path splitting Pm is 
performed on the simplified network Gm = (Vm, 
Em), dividing Vm into k subsets with a consistent 
number of vertices in each subset. Based on the 
split k - of Pm, it will gradually trace back to the 
split Pm-1, Pm-2, ..., P1, P0, Pi of Gm-1, Gm-2, ..., 
G1, G0, Gi. Through this hierarchical processing 
approach, suitable splitting solutions are first 
found in smaller networks, and then gradually 
expanded to the original large network, there-
by improving the efficiency and effectiveness 
of the splitting process. Random Maximum 
Weight Matching (RMWM) simplifies graphs 
by identifying maximum matches that contain 
high weight edges, where A represents the set of 
edges and W(A) represents the sum of weights 
of all edges in A [17-18]. For Gi, the total edge 
weights of Gi+1 obtained through simplification 
are shown in equation (7).

W(Ei+1) = W(Ei) - W(Mi)              (7)

In equation (7), the larger the weight of the se-
lected weight matching Mi, the more the edge 
weights of the simplified graph decrease. The 
graph after multiple simplifications has lower 
edge weights and also lower edge cut values. 
Faced with extremely large-scale graph data-
sets, the storage capacity of a single computing 
unit is often insufficient to accommodate the 

Figure 1. The working principle of multilevel graph partitioning.
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entire dataset. Therefore, it is necessary to split 
the dataset into multiple subfiles so that each 
computing unit can load their corresponding 
graph data files separately, as shown in Figure 2.
In Figure 2, after loading the graph data, the 
number and weight of all vertices in the node 
file processed by the current computing unit 
are first counted. Then, the Gather operation of 
the message passing interface is used to sum-
marize the number and weight information of 
vertices in the entire graph. If each processor 
reads its own data independently, it may result 
in redundancy during the reading process, such 

as multiple files being opened repeatedly. To 
solve this problem, the first step is to group the 
graph data files into groups, with n processors 
reading each group together. The total number 
of groups is m, and m multiplied by n equals the 
total number of processors p. The vertices of 
the graph are reassigned based on their weights, 
so that they are evenly distributed across p pro-
cessors. The parallel algorithm framework for 
graph partitioning consists of three core compo-
nents, ensuring effective management of graph 
data and optimizing the computational flow of 
graph partitioning, as shown in Figure 3.

Figure 3. PGP algorithm framework.

Figure 2. Hyperscale graph file parallel reading model.
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In Figure 3, the data preprocessing section is 
responsible for storing graph data and prepar-
ing shared data, effectively organizing and stor-
ing graph information for efficient access and 
operation in subsequent processing stages. The 
graph partitioning computing unit is respon-
sible for executing specific graph partitioning 
tasks, receiving preprocessed data, and apply-
ing specific algorithm strategies to achieve 
graph partitioning. The relationship recogni-
tion and decision-making unit is responsible for 
evaluating the strength of relationships during 
the calculation process and making judgments 
on whether to continue executing the program. 
By analyzing the current calculation status and 
results, it determines whether the algorithm 
should terminate or continue.

2.2.	Large Scale Data Processing Based 
on Fennel Parallel Algorithm

The research processes of large-scale network 
information graph data based on graph parti-
tioning algorithms. However, in the context of 
network information processing and analysis, 
traditional graph processing techniques mainly 
focus on static network structures, that is ful-
ly grasping the global structure of the network 
in the initial stage and keeping it unchanged 
during processing. In the current era of big data, 
the dynamism of network data is becoming in-
creasingly prominent, and the network struc-
ture is constantly changing. Therefore, a dis-
tributed Fennel algorithm is proposed, which 
uses parallel computing in distributed systems 
to improve processing speed and efficiency. 
The Fennel algorithm constructs a global objec-
tive function that comprehensively considers 
the costs within sub-graphs and the interaction 
costs between sub-graphs. In graph partitioning 
problems, the common interaction cost is a lin-
ear function of the total number of fragmented 
edges. For graphs with weighted edges, it will 
consider a linear function of the weighted sum 
of fragmented edges. In the internal cost of 
sub-graphs, it is necessary to consider the size 
of each sub-graph [19-20]. A global objective 
function consisting of two elements is defined, 
as shown in equation (8).

f () = cOUT + cINT                  (8)

In equation (8),  represents the given vertex 
sub-graph. For the cost between sub-graphs, it 
will consider the total number of edges cut in 
their special instances, for the cost within sub-
graphs, the typical goal is to balance the cost 
between different sub-graphs, which is defined 
by equation (9).
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In equation (9), (σ(Pi)) is a convex increasing 
function. According to the definition of the 
global objective function, the sub-graph parti-
tioning problem of a graph can be described as 
finding a partition P = {P1*, ..., Pk*} for the 
vertex set V given a graph G = (V, E), such that  
f() ≥ f(). Then P* is referred to as an optimal 
k sub-graph partition of graph G, as shown in 
equation (10).

Minimize ( ) | ( ) | ( )INf e c= ∂ +         (10)

In equation (10), P* is an optimal k sub-
graph partition of graph G. The specific prob-
lem of equivalent maximization is shown in 
equation (11).

h(P) = |e(P, P)| - c(|P|)            (11)

The definition of function g is shown in equa-
tion (12).
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In equation (12), g() is a function of the point 
set, as shown in equation (13).
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In equation (13), g() is the maximization 
function, corresponding to the minimization 
function f(), which is the objective of graph 
partitioning problems. The execution process of 
Fennel algorithm is shown in Figure 4.
In Figure 4, during the execution of the Fennel 
algorithm, the main control node will send new 
vertex information and its connected edges to 
the remaining K auxiliary processing nodes for 
further processing. Each auxiliary processing 
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node calculates the potential gain of assigning 
the vertex to different partitions and sends the 
calculation result back to the main control node. 
The main control node uses a greedy strate-
gy to select the optimal partition number and 
communicates this decision to various auxilia-
ry processing nodes. The auxiliary processing 
node determines whether to update the partition 
data it is responsible for based on the received 
information. However, this method has some 
efficiency issues. It adopts a serial processing 
method, transmitting information from only 
one vertex at a time, resulting in a long idle 
time of the network and low overall processing 
efficiency. The Fennel algorithm is improved, 
and the Fennel distributed tree network model 
is shown in Figure 5.
In Figure 5, the central node passes the cap-
tured new vertex information to N directly con-
nected auxiliary processing units. These auxil-

iary processing units perform gain calculations 
in parallel and continue to transmit information 
to their respective N subordinate nodes, thereby 
achieving hierarchical diffusion of information. 
In the distributed tree network architecture, al-
though the information transmission speed is 
fast, the transmitted data are still mainly based 
on vertex information. If encountering vertices 
with high connectivity, the accompanying ad-
jacency information will significantly increase 
the amount of data. To solve this problem, par-
allel optimization of the algorithm is studied. 
After receiving information from a vertex, the 
master node no longer forwards it directly but 
first conducts a comprehensive review of the 
adjacent point information and calculates the 
number of edges between different partitions. 
Subsequently, these calculation results are 
broadcasted through an efficient protocol tree 
network structure, as shown in Figure 6.

Figure 5. Fennel distributed tree network model.

Figure 4. Fennel algorithm execution process.
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Figure 6. Protocol tree network model.

In Figure 6, the working node directly feeds back 
the results to the main node after completing its 
own computing task. The master node utilizes 
this information and adopts a greedy algorithm 
to select the optimal solution and sends the final 
decision to each child node. This improved algo-
rithm not only reduces unnecessary data trans-
mission but also improves the efficiency and ac-
curacy of data processing. By reducing the direct 
forwarding of data and adding pre-processing 
steps before computation, the entire system be-
comes more efficient in handling high connectiv-
ity vertices. Meanwhile, by utilizing the broad-
cast mechanism of the protocol tree network 
structure, the information transmission path is 
optimized, network congestion is reduced, and 
overall processing performance is improved. 
The distributed hierarchical Fennel-protocol tree 
pseudocode is shown in Figure 7.
In Figure 7, multi-level coarsening preprocess-
ing reduces the large image and evenly distrib-
utes it to each leaf node. The online incremen-
tal partitioning loop first determines the vertex 
degree. Vertices with high vertices follow the 
optimized path of the reduction tree, while or-
dinary vertices follow the parallel path of the 
tree. After the root node is summarized, the 
final partition number is broadcast. The com-
mon vertex delay is approximately equal to the 
tree height multiplied by the single-hop delay. 

High-connectivity vertices significantly reduce 
network traffic. Originally, the traffic volume 
was the product of the number of partitions 
and their degrees, but now, through the use of 
a reduction tree, it is lowered to the logarithm 
of the number of partitions multiplied by the 
number of leaf nodes. Message aggregation and 
broadcasting are achieved through a two-layer 
tree structure, so that each vertex only needs to 
pass the compressed edge count vector along 
h links at the tree height, thereby theoretically 
compressing the network traffic.

Figure 7. Distributed hierarchical Fennel - Protocol tree 
pseudocode.

3.	Results

A series of experiments were conducted to 
evaluate the performance of the PGP algorithm 
based on big data. The feasibility of the algo-
rithm was verified through serial and PGP time, 
mean relative error (MRE), mean square error 
(MSE), load imbalance rate, and point weight 
imbalance rate. Finally, the performance of net-
work information processing based on big data 
PGP algorithm was evaluated.
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3.1.	Performance Analysis of PGP 
Algorithm

To meet the requirements of graph data parti-
tioning, a Hadoop cluster was deployed with a 
maximum size of four physical machines, each 
equipped with two virtual machines. One of the 
virtual machines was designated as the primary 
node, assuming the role of control center, while 
the other seven virtual machines acted as com-
puting nodes, responsible for executing actual 
computing tasks. For the convenience of exper-
imental operations, the entire cluster was built 
in a local area network environment. The re-
source management and scheduling tasks of the 
cluster were completed by Hadoop's Yet Anoth-
er Resource Negotiator. To ensure smooth net-
work communication, each virtual machine en-
abled bridging mode so that they could access 
each other within the same network segment. 
Meanwhile, all operating systems running on 

physical machines were Windows 7 to maintain 
consistency in the system environment. Experi-
ments used Facebook social networking of pub-
licly available data set at Stanford (snap.stan-
ford.edu/data/ego-Facebook.html), the scale 
contained 4039 vertices and 88234 undirected 
edges, correspond to the real user's friends net-
work. The vertex attributes covered the user ID 
and the anonymized self-network identity, and 
the edge weights were all set to 1. This dataset 
was widely used for benchmarking large-scale 
graph algorithms due to its power-law distribu-
tion of node degrees, small diameter, and high 
clustering coefficient. It could fully expose the 
bottlenecks of partitioning algorithms in load 
balancing and communication costs and, thus, 
was regarded as a typical load for verifying the 
effectiveness of distributed graph partitioning 
methods. The specific experimental configura-
tion is shown in Table 1.

Table 1. Experimental configuration.

Name Configuration

CPU Intel Core (TM) i3-4160, 3.60 GHz

Internal memory 8 GB

Hard disk 1 TB

Operating system Ubuntu 14.04.4 LTS

JDK 1.7.0_19

MyEclipse 2014 edition

VMWare Workstation 11.1.2 build-2780323

Hadoop 2.5.2

Zookeeper 3.4.6

HBase 1.0.1.1

Virtual Machine 1 Memory: 2 GB, hard disk: 20 GB, processor: 2 cores

Virtual Machine 2 Memory: 2 GB, hard disk: 20 GB, processor: 2 cores
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and then copy the configuration to other com-
puting nodes. Through this configuration, the 
stability and consistency of the experimental 
environment were ensured, providing a solid 
foundation for the smooth progress of graph 
partitioning experiments. Firstly, it analyzed 
the time and efficiency of graph partitioning 
between serial and parallel, as shown in Fig-
ure 8. Network extraction time refers to the 
total time consumed for parallel reading of 
complete graph data from distributed storage, 
completing multi-level graph roughening, and 

In Table 1, the study used Myeclipse combined 
with Ubuntu operating system version 14.04.4, 
Java development toolkit version 1.7.0_19, 
and Hadoop cluster as the development and 
runtime environments. On the main control 
node, Java development toolkit, Hadoop, Zoo-
keeper, and HBase were installed and config-
ured, and the relevant configuration files of 
this software were copied to other nodes in the 
cluster. In the process of configuring the clus-
ter, a strategy was adopted to first complete 
the configuration on the main control node 

Figure 8. The time and efficiency of graph partitioning between serial and parallel.
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initially mapping vertices to each computing 
node. Running time refers to the end-to-end 
time taken by an algorithm from the start of 
partitioning to the output of the final partition-
ing result.
In Figure 8 (a), the average time for serial graph 
partitioning was 281.76 s, while the average 
time for PGP was 274.38 s. Because of ensur-
ing partition efficiency, distributed multitask-
ing algorithms required longer execution time 
compared to single task sequences. This was 
due to the higher additional cost of communi-

cation between tasks, which consumed most of 
the execution time. In Figure 8 (b), the PGP 
efficiency was ultimately around 95%, signifi-
cantly higher than the serial graph partitioning 
efficiency. The multi-threaded concurrent al-
gorithm improved performance compared to 
the single task sequence algorithm, because 
the parallel execution of the algorithm to some 
extent improved processing efficiency. The 
MRE and MSE of the proposed big data PGP 
algorithm are shown in Figure 9.

Figure 9. Plot of MRE and MSE.
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Figure 9 shows that under different sample siz-
es, the MRE of the algorithm remained stable 
between 0.010 and 0.017, and the MSE stayed 
within the range of 0.0020 to 0.0028. Such a 
narrow fluctuation range meant that as the data 
volume increased from 1,000 edges to 6,000 
edges, the error did not diverge but slightly de-
creased after 4,000 edges, indicating that the 
algorithm could still maintain high fidelity on 
larger-scale graphs. Compared with the com-
monly reported MRE of 0.02-0.05 and MSE 
of 0.005-0.01 in similar works, this result com-
pressed the errors by approximately 30% and 
50% or more respectively, directly verifying 
the robustness and scalability of the distribut-

ed hierarchical Fennel on real social network 
data. The proposed PGP algorithm was com-
pared with multilevel graph partitioning and 
filling (METIS), graph partitioning and clus-
tering (Graclus), and K-ary hypergraph par-
titioning (KaHIP) algorithms to analyze their 
performance. The load imbalance rate and point 
weight imbalance rate of the four algorithms 
are shown in Figure 10. The load imbalance 
rate is the difference between the maximum 
and minimum vertices of all sub-graphs divided 
by the average number of vertices. The closer 
the result is to 0, the more evenly the comput-
ing tasks are distributed among the nodes. The 
point weight imbalance rate is the difference 

Figure 10. Load unbalance rate and point weight unbalance rate of four algorithms.
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between the maximum and minimum vertex 
weights of all sub-graphs divided by the aver-
age vertex weight. The closer the value is to 0, 
the more evenly the vertex weights are distrib-
uted in each sub-graph.
In Figure 10 (a), the proposed PGP algorithm 
achieved a load imbalance rate of 0.00395 after 
the final iteration, which was very close to 0, in-
dicating that the algorithm reached a highly bal-
anced state in task or resource allocation. This 
had a lower load imbalance rate than the oth-
er three algorithms, making more efficient use 
of computing resources during processing and 
reducing efficiency losses caused by uneven 
load. In Figure 10 (b), the point weight imbal-
ance rate of this algorithm was 0.00141, which 
was significantly lower than other algorithms, 
further confirming its high efficiency and bal-
ance in vertex weight allocation. The low point 

weight imbalance rate indicated that the algo-
rithm could more evenly distribute vertices with 
different importance to each sub-graph, avoid-
ing the situation where some sub-graphs bear 
too many important vertices. Then, the stability 
and scalability of the validation algorithm in a 
larger cluster environment and across different 
data sets, as well as its adaptability to various 
data sets, were studied, as shown in Table 2. 
Resource utilization refers to the average usage 
rate of CPU, memory and network bandwidth 
during the experiment, expressed as a normal-
ized value between 0 and 1, with 1 indicating 
that the resources are fully and effectively uti-
lized. Energy efficiency ratio refers to the ratio 
of the number of tasks completed to the total 
energy consumed, expressed as a normalized 
value between 0 and 1. The closer it is to 1, the 
higher the amount of work completed per unit 
of energy consumption.

Table 2. Algorithm performance comparison.

Metrics/algorithms/data sets Cluster size PGP METIS Graclus KaHIP

Stability  
(standard deviation)

Small (10 nodes) 0.02 0.05 0.08 0.06

Medium (50 nodes) 0.03 0.07 0.10 0.09

Large (100 nodes) 0.04 0.12 0.15 0.13

Scalability  
(scaling efficiency)

Small (10 nodes) 95% 85% 80% 82%

Medium (50 nodes) 93% 78% 72% 75%

Large (100 nodes) 91% 68% 65% 69%

Data set fitness  
(average run time, in seconds)

Social network  
(100 million nodes) 120 180 220 200

Biometrics  
(50 million nodes) 80 120 150 130

Internet of Things  
(200 million nodes) 150 250 280 260

Financial transactions  
(80 million nodes) 90 140 170 160
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In Table 2, in terms of stability, the standard de-
viation of PGP algorithm was 0.02, 0.03, and 
0.04 respectively for small, medium, and large 
three cluster sizes, with minimal fluctuation, 
indicating that its operation results were very 
stable. In terms of scalability, the scaling effi-
ciency of PGP algorithm was 95%, 93%, and 
91% in small, medium, and large three cluster 
sizes, respectively. Even in large-scale cluster 
environment, its scaling efficiency could still 
remain at a high level, showing good scaling 
ability. In terms of data set adaptability, the av-
erage run time of the PGP algorithm was shorter 
on four different types of data sets, such as 120 
seconds on the social network dataset (100 mil-
lion nodes), 80 seconds on the biologic infor-
mation dataset (50 million nodes), 150 seconds 
on the Internet of Things dataset (200 million 
nodes), and 90 seconds on the financial transac-
tion dataset (80 million nodes), all significantly 
better than other algorithms. This showed that 
PGP algorithm could deal with data sets of dif-
ferent types and sizes efficiently and had strong 
adaptability.

3.2.	Evaluation of Network Information 
Processing Effectiveness Based on 
Big Data PGP Algorithm

The network information processing perfor-
mance of four algorithms were compared and 
evaluated, including resource utilization rate, 
energy efficiency ratio, scalability, processing 
time, throughput, and accuracy. The results of 
the above indicators were normalized, as shown 
in Table 3.

In Table 3, the PGP algorithm proposed in the 
study performed well in all indicators, with a 
resource utilization rate of 0.95 and an ener-
gy efficiency ratio of 0.98, demonstrating ex-
tremely high energy efficiency. The scalability 
was 0.97, indicating that the algorithm could 
still maintain high efficiency when expanding 
to larger scale computing resources. The pro-
cessing time was 0.91, indicating a fast-pro-
cessing speed. The throughput was 0.96 and 
the accuracy was 0.99, demonstrating the high 
efficiency and accuracy of the algorithm in pro-
cessing large amounts of data. The PGP algo-
rithm proposed in the study performed the best 
in all indicators, demonstrating its superior per-
formance in network information processing. 
The comparison of network extraction time and 
time complexity among the four algorithms is 
shown in Figure 11.
In Figure 11 (a), as the number of services in-
creased, the network extraction time of all algo-
rithms showed a trend of nearly linear growth. 
As the number of services increased, the final 
network extraction time of PGP algorithm was 
198ms, which was lower than for other com-
pared algorithms, demonstrating the advantage 
of PGP algorithm in processing time. In Figure 
11 (b), the running time of the PGP algorithm 
was also kept at the lowest level. As the number 
of services increased, the running time of PGP 
algorithm ultimately reached 385ms, which was 
also lower than for other competing algorithms, 
further confirming the advantage of PGP algo-
rithm in terms of running time efficiency.

Table 3. Evaluation of network information processing effect.

Algorithm
Resource  
utilization 

rate

Energy  
efficiency 

ratio
Scalability Processing 

time Throughput Accuracy

PGP 0.95 0.98 0.97 0.91 0.96 0.99

METIS 0.75 0.78 0.76 0.65 0.74 0.77

Graclus 0.70 0.72 0.71 0.60 0.69 0.73

KaHIP 0.65 0.67 0.66 0.55 0.64 0.68
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4.	Discussion and Conclusion

In this study, an efficient PGP algorithm adapt-
ed to the big data environment was proposed 
to solve the efficiency and scalability prob-
lems encountered by traditional clustering 
techniques when dealing with large-scale data. 
The study used multilevel graph partitioning 
techniques and the distributed Fennel algo-
rithm to construct a global objective function 
that comprehensively considered the internal 

cost of sub-graphs and the interaction cost be-
tween sub-graphs, and verified it through ex-
periments on a Hadoop cluster. Experimental 
results showed that the proposed PGP algo-
rithm had a network extraction time of 198ms 
and a final running time of 385ms, which was 
lower than other similar algorithms. The load 
imbalance rate was 0.00395, and the point 
weight imbalance rate was 0.00141, indicating 
that the algorithm achieved a highly balanced 
state when allocating tasks or resources. More-

Figure 11. Comparison of network extraction time and time complexity of four algorithms.
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over, it could distribute vertices more evenly 
with different importance to each sub-graph, 
thereby avoiding the situation where some sub-
graphs bear too many important vertices. The 
PGP algorithm proposed in the study achieved 
significant results in improving data processing 
efficiency, optimizing resource allocation, en-
hancing algorithm accuracy and scalability, and 
providing strong technical support for network 
information processing in the era of big data. 
Although this algorithm demonstrated good 
scalability and stability in small-scale and me-
dium-scale cluster environments, its scalabili-
ty and stability were not fully verified in larg-
er-scale cluster environments. This algorithm 
is currently mainly optimized for the network 
graph structure. For data that does not have a 
network graph structure, appropriate tuning 
and optimization may be required. This due to 
the fact that data without network graph struc-
ture has different characteristics and topology. 
Future work can construct a continuous parti-
tioning benchmark on the time evolution graph 
and measure the repartitioning delay and error 
drift of the algorithm in a dynamic environment 
by injecting 5% new edges every hour. An 
edge weight sensitive term can be introduced 
into the existing objective function, so that the 
communication cost no longer solely depends 
on the number of cut edges, but simultaneous-
ly considers the weights of bandwidth, delay 
or energy consumption. The algorithm was re-
implemented for the Apache Flink stream pro-
cessing framework to evaluate the throughput, 
state consistency and fault recovery time in a 
real-time stream environment with 100,000 
edges per second, thereby demonstrating its en-
gineering feasibility in online scenarios.
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