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Facial 3D modeling technology is widely used and 
has become an important research direction in the 
fields of artificial intelligence and computer vision. 
However, the modeling accuracy and robustness of 
existing technologies in dealing with weak texture 
areas and complex lighting conditions are insuf-
ficient, which limits their practical application in 
production. Therefore, a facial 3D modeling meth-
od based on multi-scale feature fusion and lighting 
robustness optimization was proposed, and a multi-
scale dense feature network and lighting robustness 
feature fusion network were constructed. The experi-
mental outcomes indicated that the method exhibited 
excellent performance on the dataset. Among them, 
structural similarity reached 0.954, and the average 
absolute error was the lowest at 0.63 mm. Under dy-
namic lighting conditions, the feature consistency 
reached 0.941, and the point cloud error was reduced 
to 0.85 mm. In addition, tests in security and virtual 
reality scenarios showed that after using this method, 
the accuracy increased to 92.8%, the peak signal-to-
noise ratio reached 33.0 dB, and the model running 
efficiency improved to 36 frames per second, verify-
ing the practicality and reliability of the method. The 
research provides new ideas for developing stable, 
efficient, and practical facial 3D modeling methods, 
which is expected to promote the widespread appli-
cation of related technologies in complex environ-
ments.
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ologies → Computer graphics → Shape modeling → 
Shape analysis
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1. Introduction

With the acceleration of human society towards 
digitization and intelligence, facial 3D mod-
eling technology has become one of the core 
technologies that has attracted much attention 
due to its wide application in security monitor-
ing, medical diagnosis, virtual reality and other 
fields [1-2]. Facial 3D modeling restores the 
3D form of objects from 2D images, providing 
richer and more accurate biometric informa-
tion for various production practices, and can 
enhance the technological level of various in-
dustries [3]. For example, in security, 3D facial 
modeling can significantly improve the accu-
racy and robustness of identity authentication 
systems under complex lighting conditions and 
exhibits stronger anti-interference ability com-
pared to traditional 2D recognition [4]. In the 
medical industry, 3D modeling technology pro-
vides precise and intuitive auxiliary support for 
simulation design and postoperative evaluation 
of plastic surgery [5]. In the fields of virtual real-
ity and entertainment, high-precision 3D facial 
models have laid the technological foundation 
for creating virtual images and providing users 
with immersive experiences [6]. However, cur-
rent technology still faces challenges such as 
low recognition accuracy in weak texture areas, 
multiple lighting conditions, and difficulty in 
recognition in dynamic scenes. Previous stud-
ies have utilized binocular stereo vision and 
deep learning techniques to optimize the 3D 
modeling of faces, but the matching accuracy 
is insufficient under smooth areas and lighting 
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conditions, making it difficult to meet practi-
cal production needs [7]. Meanwhile, although 
some deep learning algorithms can achieve 
matching under single frame conditions, their 
performance in handling multi-scale features 
and enhancing lighting robustness is limited 
[8]. In addition, many studies focus on the de-
sign of theoretical algorithms, with limited val-
idation of their adaptation in actual production, 
which hinders the widespread application of 
technology in complex environments. In view 
of this, a facial 3D modeling method combining 
multi-scale feature fusion and lighting robust-
ness optimization is proposed. It adopts Multi-
scale Dense Feature Network (MSDF-Net) and 
Illumination-Robust Feature Fusion Network 
(IRFF-Net), and improves modeling accuracy 
and adaptability to complex lighting conditions 
by introducing multi-scale feature pooling and 
group correlation matching strategies. The aim 
of this research is to create a reliable, efficient, 
and practical facial 3D modeling method that 
meets the diverse application needs of medical, 
security, and entertainment fields.

2. Literature Review

Facial 3D modeling, as a key technology that 
can provide rich biometric information, is of 
great significance in supporting identity verifi-
cation, expression analysis, and interactive ap-
plications. As a result, numerous scholars have 
undertaken extensive studies on facial 3D mod-
eling, constantly exploring more efficient and 
accurate algorithms and technologies. D'Ettorre 
et al. proposed a method of using a smartphone 
application that supports TrueDepth system for 
facial scanning, which addresses the issues of 
large size, high price, and complex operation 
of 3D facial scanning devices. This approach 
reduced device costs, improved portability, and 
enhanced operational flexibility [9]. Mehta  et 
al. proposed a method based on a 3D dense 
connected self-attention neural network to ac-
curately evaluate the participation of students 
in online education. This method identified the 
emotional state and participation of students by 
analyzing their facial expressions through 3D fa-
cial modeling, thereby achieving efficient mon-
itoring and evaluation of their learning status 
[10]. Florkow et al. proposed techniques such 
as short echo time acquisition and post-process-

ing to generate synthetic computed tomography 
scans to address the problem of low hard tissue 
signals, thereby optimizing high contrast imag-
ing and 3D modeling of hard tissues, providing 
support for improving the modeling accuracy 
of facial bone structures [11]. Luo et al. pro-
posed a multimodal perception analysis method 
to address the issue of real-time assessment of 
students' learning interests. By using head pose 
estimation, facial expression recognition, and 
interactive data fusion, a 3D learning interest 
model was constructed to optimize interest as-
sessment capabilities, providing support for the 
application of 3D facial modeling in education-
al settings [12].
In addition, Chen et al. raised an end-to-end 
reconstruction method that combines cross 
domain face synthesis conditional generative 
adversarial networks and grid transformers to 
address the problem of limited performance in 
single image face 3D reconstruction due to the 
lack of 3D annotated data. This optimized the 
ability to construct face 3D models based on 
real, artificial synthesis, and field image train-
ing [13]. Sun et al. proposed a network based 
on 3D facial feature reconstruction and learn-
ing to address the issue of facial expression 
recognition being affected by posture, lighting, 
and occlusion in outdoor environments. By re-
constructing 2D frontal facial data and 3D fa-
cial geometric features, the network integrated 
appearance path and geometric path features, 
thereby improving the accuracy and robustness 
of facial expression recognition in complex 
scenes [14]. Munir et al. proposed a method 
combining convolutional neural networks and 
deep learning frameworks to optimize the ac-
curacy and robustness of 3D modeling of faces 
and facial hair in complex scenes, addressing 
the difficulty of 3D modeling and reconstruc-
tion of facial details caused by interference 
factors in a single image. This provided strong 
support for achieving high-quality 3D model-
ing of faces [15]. Zhou et al. proposed a net-
work based on attention and data augmenta-
tion to tackle the issue of insufficient feature 
recognition in unconstrained environments for 
facial 3D modeling in single view images. By 
adaptively recalibrating attention weights to 
improve feature recognition, the accuracy and 
generalization ability of facial 3D modeling 
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sion, improving the modeling accuracy of weak 
texture regions. The adaptability of the IRFF-
Net optimization model to complex lighting 
conditions further enhances the robustness and 
accuracy of the modeling.

3.1. MSDF-Net Based on Multi-scale 
Feature Extraction and Fusion

In the research of facial 3D modeling, com-
plex lighting conditions and weak texture areas 
have always been the main challenges affecting 
modeling accuracy. These issues not only limit 
the accurate restoration of facial details by the 
model but also reduce its applicability in prac-
tical scenarios [17-18]. Therefore, to address 
the shortcomings of traditional methods in fea-
ture extraction and lighting adaptability, a facial 
3D modeling method combining multi-scale 
feature fusion and lighting robustness optimi-
zation has been proposed, based on two core 
networks, MSDF-Net and IRFF-Net. The core 
goal of MSDF-Net is to enhance the feature 
extraction capability for weak texture regions 
through multi-scale feature fusion, thereby im-
proving the overall accuracy of face modeling. 
The workflow of MSDF-Net based on multi-
scale feature extraction and fusion is shown in 
Figure 1.

were optimized, providing an effective solution 
for 3D modeling in complex scenes [16].
In summary, existing research has achieved 
notable advancements in the area of facial 3D 
modeling. However, current research still has 
shortcomings in dealing with complex lighting 
conditions and weak texture areas, thus they 
cannot fully meet the requirements of facial 3D 
modeling in regard to accuracy, robustness, and 
real-time performance. Therefore, the study 
proposes a facial 3D modeling method based 
on multi-scale feature fusion and lighting ro-
bustness. The novelty of the research consists 
in improving the feature extraction ability of 
weak texture regions through multi-scale fea-
ture pooling technology, and introducing group 
correlation matching strategy to enhance ro-
bustness under complex lighting conditions. In 
addition, the adaptability of the model in differ-
ent scenarios is optimized by combining data 
diversity expansion.

3. Research Methodology

This section provides a detailed explanation of 
the proposed facial 3D modeling method based 
on multi-scale feature fusion and lighting ro-
bustness. The research method is divided into 
two core networks, among which MSDF-Net 
achieves multi-scale feature extraction and fu-

Figure 1. Schematic diagram of the workflow for MSDF-Net.
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As shown in Figure 1, the entire workflow is 
divided into two parts: data acquisition and 
network training. During the data acquisition 
phase, left and right view images are obtained 
through real measurement systems and simula-
tion measurement systems. The real measure-
ment system utilizes cameras and projectors to 
capture high-quality input data, while the sim-
ulation measurement system generates diverse 
synthetic data through virtual simulation. It is 
combined with noise enhancement techniques 
to expand the adaptability and robustness of the 
dataset, ultimately constructing a high-quali-
ty training dataset that includes left and right 
views and ground truth values. In the network 
training phase, the left and right view data are 
input into the MSDF-Net network, and local and 
global information is captured through a multi-
scale feature extraction module. The dense 
connection mechanism is used to efficiently 
fuse features of different scales and optimize 
the construction of cost bodies. After generat-
ing the disparity map through the network, the 
high-precision 3D model of the target is further 
output through the 3D reconstruction module to 
improve the performance of facial 3D modeling 
in weak texture areas and complex lighting con-
ditions. The specific details of data acquisition 
are shown in Figure 2.

As shown in Figure 2, the data acquisition pro-
cess includes four steps: hardware setup, pat-
tern projection, image acquisition, and prelim-
inary data processing. Firstly, in the hardware 
setup phase, the fixed angles, focal lengths, and 
projection ranges of the left and right cameras 
and projectors are adjusted to ensure complete 
coverage of the projection pattern and seamless 
connection of the field of view. In the pattern 
projection stage, the projector sequentially proj-
ects high-precision generated speckle and stripe 
patterns onto the surface of the target object, en-
hancing the feature expression of weak texture 
areas, and capturing the geometric structure of 
the object through stripe phase changes [19]. In 
the image acquisition stage, the left and right 
cameras work synchronously with the projec-
tor to record the reflection images of the target 
surface at a high frame rate, generating the orig-
inal image sequence of the left and right views 
[20]. Finally, in the preliminary data process-
ing stage, the left and right views are denoised, 
aligned, and cropped to extract speckle and 
stripe details from the projected patterns, pro-
viding support for constructing high-precision 
ground truth values. The MSDF-Net network 
structure is shown in Figure 3.

Figure 2. Detailed process of data acquisition.
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In Figure 3, the MSDF-Net network consists 
of a multi-scale feature encoding module, a 
cost optimization module, and a three-dimen-
sional convolution module. MSDF-Net first 
generates multi-scale feature representations 
through a multi-scale feature encoding module, 
integrating local details and global contextual 
information. Subsequently, in the cost optimi-
zation module, the left and right view features 
are matched, and the feature representation is 
further optimized by concatenating cost bodies 
and weight cost bodies. Finally, MSDF-Net uti-
lizes 3D convolution modules to refine the cost 
volume and generate high-precision disparity 
maps for subsequent 3D point cloud recon-
struction. For left and right input images IL(x, y) 
and IR(x, y), features are extracted layer by layer 
through dense blocks, and each layer's feature 
map is represented as equation (1).
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In equation (1), Fi
L and F Li-1 respectively repre-

sent the left view features of layer i and layer 
i-1, with the formula for extracting right view 
features being similar. Wi and bi respectively 
represent the weight matrix and bias of the i-th 
layer convolution, gij represents the feature re-
use weight in dense connections, used to con-
trol the contribution of the previous j layer fea-
tures to the current layer, and n represents the 
total number of layers in the dense block [21]. 
The extracted multi-scale features are upsam-
pled and fused, as shown in equation (2).
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In equation (2), FL
~  and FR

~
 respectively repre-

sent the fused left and right view features, and 
FL

s and FR
s respectively represent the features 

of the left and right views at the s-th scale, S 
represents the number of multi-scale features,   

Figure 3. Schematic diagram of MSDF-Net network structure.
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us represents the weight of each scale, and 
Upsample represents the upsampling operation. 
The left and right view features are matched 
through a cost optimization module. The calcu-
lation of the initial matching cost body is shown 
in equation (3).
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In equation (3), Craw(x, y, d ) represents the pre-
liminary matching cost volume, which is the 
similarity of the left and right view features 
under disparity d. To further optimize the cost 
body, the study introduces a concatenated cost 
body Vconcat (x, y, d ), as shown in equation (4).

 ( )
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In equation (4), Wcat and bcat are respectively the 
weights and bias terms of the concatenated con-
volution. The weight cost body Vweight(x, y, d ) is 
used to dynamically adjust the matching result 
of the cost body, as shown in equation (5).
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In equation (5), Sigmoid is used to restrict   
within the range of [0, 1]. Ww and bw represent 
convolution kernels and biases, respectively. 
The final cost body Vfinal(x, y, d) is represented 
as shown in equation (6).

Vfinal(x, y, d ) = Craw(x, y, d ) ∙ Vweight(x, y, d )   (6)

Furthermore, Vfinal(x, y, d ) is input into the 3D 
convolution module and the cost volume will 
be optimized through the Hourglass network. 
After three-dimensional convolution and de-
convolution, multi-stage disparity prediction 
results are generated, as shown in equation (7).

 ( , ) arg min ( , , ), 1, 2, ...,k k
d

D x y C x y d k K= =
   

(7)

In equation (7),  ( , )kD x y  and  ( , , )kC x y d  respec-
tively represent the disparity prediction and 
cost volume output of the k-th stage, and K in-
dicates the total number of stages. The final dis-
parity map D(x, y) is generated through weight-

ed fusion of multi-stage outputs, as shown in 
equation (8).
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In equation (8), αk represents the weighting co-
efficient of the k-th stage.

3.2. IRFF-Net for Light Robustness 
Optimization

MSDF-Net can improve the accuracy of 3D fa-
cial modeling, but under complex lighting con-
ditions, due to changes in light source intensity, 
orientation, and distribution, the features of the 
left and right views may exhibit inconsistency, 
such as local overexposure, loss of information 
in shaded areas, etc., which increases the diffi-
culty of feature matching [22-23]. Therefore, 
further research is needed to design IRFF-Net 
to enhance the adaptability of facial 3D mod-
eling to complex lighting conditions. IRFF-Net 
optimizes the feature matching process through 
group correlation matching and multi-level 
block feature fusion strategies, and improves 
the robustness of the cost volume, thereby 
achieving more accurate facial 3D modeling in 
dynamic lighting scenes. The network structure 
of IRFF-Net is shown in Figure 4.
As shown in Figure 4, the difference between 
the network structure of IRFF-Net and MSDF-
Net lies in the group correlation matching mod-
ule and the multi-level block feature fusion 
module. Specifically, IRFF-Net still includes a 
multi-scale feature encoding module for cap-
turing local details and global contextual in-
formation. On this basis, the group correlation 
matching module groups the extracted left and 
right view features, enhances the robustness of 
feature matching through intra group correla-
tion calculation, and reduces the interference of 
lighting changes on the matching results. Sub-
sequently, the multi-level block feature fusion 
module divides the features into blocks of dif-
ferent scales, optimizes the matching results by 
combining the concatenation cost body and the 
weight cost body, and fuses the feature represen-
tations of multi-level blocks through a weighted 
strategy. Finally, the optimized cost volume is 
input into the 3D convolution module to gen-
erate high-precision disparity maps, providing 
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stronger robustness and adaptability for 3D fa-
cial modeling under complex lighting condi-
tions.
In the group correlation matching module, to 
raise the robustness of left and right view feature 
matching under complex lighting conditions, a 
method of grouping processing and correlation 
calculation is studied. The multi-scale feature 
maps extracted from the left and right views are 
divided into channels to form several groups. 
Each group of features is aligned according to 
disparity, and matching proxy values are gener-
ated through intra group correlation calculation 
[24]. The goal of correlation calculation is to 
measure the degree of matching between left 
and right views under different disparities, and 
to reduce the interference of lighting changes 
on the matching outcomes. The schematic di-
agram of intra group correlation calculation is 
shown in Figure 5.
From Figure 5, the multi-channel feature maps 
of the left and right views are represented as  
FL(x, y) and FR(x, y), respectively. The dimen-
sion of each feature map is C × H × W, where    
C is the number of channels. H and W are the 
height and width of the feature map. During the 
feature alignment process, the right view fea-
ture map is offset in the width direction based 
on disparity D = d to form an aligned feature 

map. Subsequently, the correlation within each 
group g of the left and right feature maps is cal-
culated under a specific disparity, as shown in 
equation (9).
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In equation (9), Cgroup(x, y, g, d) represents 
the correlation value of the group g under a 
specific disparity d, FLk(x, y) and FRk(x - d, 
y) are the feature values of the left and right 
view channels, respectively. The denomina-
tor of equation (9) is normalized to eliminate 
the scale influence of the feature values. After 
the group related matching module generated 
the preliminary group related cost body, the 
study further optimized the cost body using a 
multi-level block feature fusion module. The 
study introduces multi-level dilated convolu-
tion technology into the multi-level block fea-
ture fusion module, dynamically expanding the 
receptive field range by adjusting the expansion 
rate of the convolution kernel, thus balancing 
local details and overall contextual information 
in lighting changing scenes. Multi-level dilated 
convolution is shown in Figure 6.

Figure 4. Schematic diagram of IRFF-Net network structure.



98 H. Zhu

As shown in Figure 6, the multi-level dilated 
convolution consists of three convolution op-
erations with different dilation rates, including 
the basic convolution with dilation rate 1, the 
medium dilation convolution with dilation rate 
2, and the large dilation convolution with dila-
tion rate 3. The features extracted by each con-

volution operation can be represented as shown 
in equation (10).

Fi
( p)(x, y) = σ(Wi

( p) * Finput(x, y) + bi
( p)), 

p = {1, 2, 3}                   (10)

In equation (10), Finput(x, y) represents the fea-
ture map of the input block, Fi

( p)(x, y) represents 

Figure 5. Correlation calculation diagram.

Figure 6. Schematic diagram of multi-level cavity convolution.
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the features extracted by the dilated convolu-
tion with an expansion rate of p, Wi

( p) and bi
( 

p) represent the corresponding convolution ker-
nel weights and biases, respectively. Hollow 
convolutions with different dilation rates can 
capture feature information of different scales 
within a block [25-26]. After fusing the fea-
tures extracted from various levels of dilated 
convolutions, it is possible to generate multi-
scale feature representations within the block. 
Therefore, through the normalization process-
ing of the group correlation matching module 
and the multi-scale dilated convolution of the 
multi-level block feature fusion module, IRFF-
Net can effectively reduce the interference of 
lighting changes on the matching of left and 
right view features, achieving more stable and 
accurate facial 3D modeling in dynamic light-
ing scenes.

4. Results and Discussion

To verify the effectiveness and superiority of 
the proposed facial 3D modeling method, a 
large number of experiments were conducted 
using the BU3D-FE dataset and 3DFAW data-
set as data sources. Among them, the BU3D-FE 
dataset can provide high-quality 3D facial 
scanning data containing different expression 
changes, which helps evaluate the performance 
of the method in modeling expression and weak 
texture areas. The 3DFAW dataset can provide 
rich real-world facial images and 3D annotation 
information, including samples with complex 
lighting conditions and dynamic pose changes, 
to verify the lighting robustness and adaptabili-
ty of the method in practical scenarios. The spe-
cific configuration and parameter design for the 
experiment are shown in Table 1.

Table 1. Experimental environment configuration and network parameter design.

/ Category Configuration / Category Parameter

Hardware  
configuration

CPU Intel Core  
i9-12900K

Network  
parameters

Learning rate 0.001

GPU NVIDIA RTX 
3090 Optimizer Adam

Memory 128 GB DDR4 Batch size 32

Storage 2 TB SSD Training Epochs 100

Software  
configuration

Operating 
system Ubuntu 20.04 Weight  

initialization
Xavier  

Initialization

Deep learning 
Framework PyTorch 1.13

Number of  
Multi-scale  

features
4

Programming 
language Python 3.9

Dilation rates  
for atrous  

convolution
[1, 2, 3]

Other libraries
NumPy, 

OpenCV, Mat-
plotlib

Weighted cost 
volume fusion 

weights

Dynamic  
adjustment
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As shown in Figure 7 (a), in the comparison of 
Structural Similarity Index Measure (SSIM), 
MSDF-Net consistently scored higher than oth-
er comparison methods. In the high visual dif-
ference range of 80-128 pixels, SSIM reached 
0.949 to 0.954, which was better than SGM's 
0.861 to 0.870 and PSMNet's 0.902 to 0.911. 
As shown in Figure 7 (b), in the Mean Absolute 
Error (MAE) metric, MSDF-Net exhibited the 
lowest reconstruction error across all dispar-
ity ranges. Within the high disparity range of 
80-128 pixels, MAE decreased from 0.72 mm 
to 0.63 mm, demonstrating stronger modeling 
accuracy and error convergence ability. Other 
methods such as PSMNet and RRNet had er-
rors of 0.86 mm and 0.73 mm, respectively, 
within the disparity range of 112-128 pixels. 
Therefore, MSDF-Net's multi-scale feature 
extraction and fusion strategy could better cap-
ture the structural information of weak texture 
regions. Furthermore, robustness testing was 
conducted under varying lighting conditions, 
and the Photometric Stereo Reconstruction 
(PSR) method was selected as a supplementary 
approach for comparison with IRFF-Net. The 
results are shown in Figure 8.
According to Figure 8 (a), in strong light 
scenes, the average point cloud error of IRFF-
Net was the lowest, being only 0.85 mm, which 

As can be seen from Table 1, the Adam opti-
mizer and Xavier initialization were used to op-
timize the model. The learning rate was initially 
set at 0.001, and the cosine annealing strategy 
was used for dynamic adjustment. In the train-
ing process, PSNR and feature consistency are 
used as the model selection criteria, and the 
model with the best performance on the veri-
fication set is selected for testing. In addition, 
the cavity convolution expansion rate is set to 
[1, 2, 3], which is determined by preliminary 
experiments, aiming at balancing local details 
with global receptive field. The number of 
multi-scale features is set to 4, and the model-
ing accuracy is improved by dynamic weight-
ed fusion of each scale feature. The cost-body 
fusion module introduces an adaptive weight 
mechanism to enhance the matching robustness 
under different parallax levels. The optimi-
zation strategy not only ensures the modeling 
accuracy, but also effectively controls the mod-
el complexity and training cost.
On the basis of Table 1, the study first verified 
the performance of MSDF-Net. Semi-Global 
Matching (SGM), Pyramid Stereo Matching 
Network (PSMNet), and Residual Regression 
Network (RRNet) were selected as compari-
son methods, and the experiment outcomes are 
shown in Figure 7.

Figure 7. Performance verification results of MSDF-Net.
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was 13% lower than the suboptimal method 
RRNet's 0.98 mm. The feature consistency of 
IRFF-Net reached 0.941, which performed the 
best among all methods. As shown in Figure 8 
(b), the performance of various methods gen-
erally decreased in low light scenes, but IRFF-
Net still had the best performance with an error 
of only 0.92 mm and a feature consistency of 
0.924. As shown in Figure 8 (c), in the shad-
ow changing scene, the error of IRFF-Net was 
1.01mm, which was still lower than all com-

parison methods, and the feature consistency 
was 0.908, which was higher than other meth-
ods. From this, IRFF-Net consistently exhib-
ited the lowest MSE and the highest feature 
consistency in three lighting scenarios, demon-
strating the advantages of its group correlation 
matching and multi-level block feature fusion 
strategies in dealing with complex lighting 
conditions. On this basis, ablation experiments 
were conducted, and the results are shown in 
Table 2.

Figure 8. Robustness test under illumination variation.
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According to Table 2, the complete network 
MSDF-Net+IRFF-Net performed the best in 
terms of Peak Signal to Noise Ratio (PSNR), 
MSE, and feature consistency, with a PSNR of 
32.1 dB and a minimum MSE of 0.72 mm. The 
feature consistency and weak texture region 
feature extraction accuracy in the complete 
network reached 0.941 and 91.3%, respective-
ly. In contrast, after removing modules from 
MSDF-Net or IRFF-Net, PSNR and feature 
consistency both decreased, while MSE sig-
nificantly increased, indicating the crucial role 
that these modules played in feature extraction 
and matching. Although the complete network 
slightly increased runtime, its performance im-
provement fully demonstrated the irreplace-
ability of each module. Overall, the synergis-
tic effect of each module and strategy was the 
key to achieving high-precision, low error, and 
strong robustness in 3D modeling. Further-
more, a comprehensive performance compar-
ison of end-to-end networks was conducted, 

and PSMNet based on binocular vision and 3D 
Morphable Model (3DMM) based on monoc-
ular reconstruction were selected as the com-
parison methods among the current mainstream 
3D modeling methods. The results are shown 
in Figure 9.
According to Figure 9 (a), the overall memory 
usage of PSMNet fluctuated between 30% and 
40% throughout the entire 60-second running 
process. At 20-30 ms, the memory usage soared 
to 78%. The memory usage of 3DMM exceed-
ed 50% within 20-40 ms. The memory usage 
of the complete network MSDF-Net+IRFF-
Net proposed in the study remained between 
15% and 35%. According to Figure 9 (b), the 
PSNR of PSMNet and 3DMM during operation 
ultimately reached 25.8 and 28.3, respectively, 
while the PSNR of the proposed complete net-
work MSDF-Net+IRFF-Net reached 32.1. From 
this, the proposed multi-scale feature fusion 
and lighting robustness optimization strategy 
demonstrated superiority in improving model-

Table 2. Results of ablation experiment.

Configuration PSNR (dB) MSE(mm) Runtime (ms) Feature  
Consistency 

Feature  
extraction 

accuracy in 
weak-texture 
regions (%)

Complete network 
(MSDF-Net + IRFF-Net) 32.1 0.72 85 0.941 91.3

Only MSDF-Net 30.4 0.91 78 0.885 89.7

Only IRFF-Net 30.9 0.87 82 0.903 85.2

Without cost  
Optimization module  

(MSDF-Net only)
29.6 0.95 72 0.862 81.8

Without group-wise  
correlation module 
(IRFF-Net only)

30.2 0.90 78 0.879 84.7

Without multi-level 
patch feature  

fusion module  
(IRFF-Net only)

30.1 0.92 79 0.881 83.6
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ing performance and resource efficiency. Then, 
the applicability of the proposed method in two 
practical scenarios, security monitoring and vir-
tual reality face modeling, was verified through 
research. The results are shown in Figure 10.
According to Figure 10 (a), in security mon-
itoring, from the first day to the tenth day of 
the experiment, the accuracy steadily increased 
from 88.5% to 92.8%, the error rate decreased 
from 6.8% to 4.4%, and the frame loss rate un-
der dynamic lighting decreased from 10.2% to 

7.6%. This verified the adaptive optimization 
ability and stability and reliability of the meth-
od in longterm use. According to Figure 10 (b), 
in the virtual reality scene, the PSNR increased 
from 29.5 dB on day 1 to 33.0 dB on day 10, 
the model robustness increased from 85.0% to 
92.5%, and the operating efficiency increased 
from 28FPS to 36FPS. This indicated that the 
method could adaptively adjust network param-
eters and handle dynamic changes in complex 
scenes, providing reliable technical support for 
virtual reality applications.

Figure 9. Overall performance comparison of the end-to-end network.

Figure 10. Comparison of applicability in real-world scenarios.
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Finally, in order to further verify the perfor-
mance of the proposed method in practical ap-
plications, two typical scenarios are designed 
again, namely, medical-assisted modeling and 
virtual reality dynamic interaction. Among 
them, the medical-assisted modeling simulates 
the 3D facial reconstruction before plastic sur-
gery in medical treatment, and there are many 
smooth areas and shadow occlusion in the 
scene. Virtual reality dynamic interactive sim-
ulation of real-time face driving and expression 
capture in VR. Stereo Transformer (STTR), a 
new stereo matching method based on Trans-
former architecture is selected for comparison. 
The experimental results are shown in Table 3.
As can be seen from Table 3, the proposed 
method shows excellent comprehensive perfor-
mance in both medically assisted modeling and 
virtual reality interaction scenarios. In the med-
ical scenario, the proposed method achieved 
the minimum modeling error of 0.68 mm, a 

peak signal-to-noise ratio of 32.7 dB in image 
quality, a frame rate of 33 frames per second, 
134G FLOPs, and 27% memory consumption, 
which ensured high modeling accuracy and 
strong operating efficiency. In the virtual real-
ity interactive scene, the method in this paper 
also maintains the lead. The modeling error is 
0.72 mm, the PSNR reaches 33.0 dB, the frame 
rate is increased to 36 frames per second, and 
the memory consumption is further reduced to 
24%. In contrast, although STTR is based on 
Transformer structure, due to high computa-
tional complexity, its accuracy and real-time 
performance in the two scenarios are not as 
good as the proposed method. PSMNet and 
3DMM are also weak in terms of accuracy, 
speed, and resource consumption. In general, 
the proposed method achieves a good balance 
between precision, real-time and resource effi-
ciency, and shows strong practicability and ap-
plication potential.

Table 3. Performance Comparison of Different Methods in Real-World Scenarios.

Scenario Method MAE (mm) PSNR (dB) FPS FLOPs (G) Parameters 
(M)

Memory 
Usage (%)

Medical  
Reconstruction

Proposed 0.68 32.7 33 134 28.4 27

STTR 0.81 30.3 22 176 41.2 26

PSMNet 0.89 29.4 25 162 35.7 40

3DMM 1.15 28.2 29 98 15.9 51

VR Interaction

Proposed 0.72 33.0 36 134 28.6 24

STTR 0.86 30.9 20 176 41.2 38

PSMNet 0.94 29.5 27 162 35.7 42

3DMM 1.21 28.0 30 98 15.9 49
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5. Conclusion

A method based on multi-scale feature fusion 
and lighting robustness optimization was pro-
posed to address the problem of insufficient 
feature extraction ability in weak texture areas 
and poor robustness under complex lighting 
conditions in facial 3D modeling. The study 
utilized MSDF-Net to achieve multi-scale fea-
ture extraction and fusion, enhancing the mod-
eling capability of weak texture regions. By op-
timizing lighting robustness through IRFF-Net 
and introducing group correlation matching and 
multi-level block feature fusion strategies, the 
accuracy of feature matching under complex 
lighting conditions was improved. The experi-
mental results showed that the SSIM of MSDF-
Net was as high as 0.954, and the MAE was 
as low as 0.63mm, which was superior to the 
comparative methods. In the robustness test of 
lighting changes, IRFF-Net showed the lowest 
MSE and highest feature consistency in strong 
light, weak light, and shadow changing scenes, 
reaching 0.85mm and 0.941, respectively. In 
the ablation experiment, the complete network 
MSDF-Net+IRFF-Net performed the best in 
terms of PSNR, MSE, and feature consisten-
cy, with a PSNR of 32.1dB and a minimum 
MSE of 0.72mm. The end-to-end comprehen-
sive performance comparison showed that the 
complete network was superior to mainstream 
methods in terms of PSNR, resource efficiency, 
and memory usage. Finally, in actual scenario 
testing, the accuracy of security monitoring in-
creased from 88.5% to 92.8%, and the PSNR 
of virtual reality scenes increased from 29.5 dB 
to 33.0 dB, fully verifying the adaptive optimi-
zation capability and applicability and stability 
of the proposed method in complex dynamic 
environments.
However, there is still room for improvement 
in the operational efficiency of complete net-
works, especially in dynamic application sce-
narios with high real-time requirements. Future 
research can focus on the lightweight design of 
network structure to further reduce computa-
tional overhead and improve modeling speed. 
At the same time, in order to adapt to the di-
versified device deployment requirements, it is 
necessary to systematically evaluate the model 
performance on different hardware platforms 
(such as mobile terminals, edge computing de-

vices, etc.), and explore more efficient hardware 
optimization schemes and model compression 
strategies. In addition, although the perfor-
mance of this study is stable under common 
light changes, there may still be insufficient 
feature extraction under extreme light condi-
tions (such as strong backlight, local saturation 
or dark regions), and a reconstruction mecha-
nism based on illumination invariance coding 
or generative adversarial network (GAN) will 
be considered in the future to further enhance 
robustness. At the same time, considering that 
practical applications may face challenges 
such as occlusion, multi-pose, large expression 
changes, and environmental noise, the research 
will further introduce self-supervised learning, 
cross-domain adaptation and multi-modal per-
ception technologies to improve the general-
ization ability and adaptability of the model in 
uncontrolled scenarios, and provide more reli-
able technical support for complex applications 
such as security monitoring, virtual reality, and 
medical modeling.
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