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The Internet of Medical Things (IoMT) consists of in-
terconnected devices and applications that enable re-
al-time collection, transmission, and analysis of medi-
cal data for healthcare applications. This study utilizes 
medical data from the publicly available BCICIV2a 
dataset rather than data collected directly from indi-
viduals or medical institutions. With advancements 
in neuroinformatics and intelligent computing, the 
classification of electroencephalography (EEG) sig-
nals has become increasingly important, particularly 
for detecting and predicting epilepsy. However, exist-
ing EEG classification methods often suffer from low 
accuracy, high computational complexity, and slow 
processing. To address these challenges, this study 
proposes an EEG classification approach utilizing a 
Backpropagation Neural Network (BPNN) enhanced 
with Bayesian optimization. This method enhances 
the identification and prediction of epileptic seizures 
by utilizing IoT-enabled EEG data. Performance eval-
uation on the BCICIV2a dataset demonstrates that 
the proposed model achieves an accuracy of 93.21%, 
outperforming conventional techniques. The results 
indicate that this approach enhances efficiency and 
accuracy in EEG signal processing, contributing to re-
al-time medical diagnostics. The integration of IoMT 
with advanced neural networks represents a significant 
advancement in medical informatics and telemedicine, 
providing promising directions for future research and 
clinical applications.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial intelligence → Machine learning  
→ Machine learning approaches → Neural networks
Computer systems organization → Embedded and cy-
ber-physical systems → Embedded systems → Inter-
net of Things.
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1. Introduction

The Internet of Medical Things (IoMT) refers 
to devices and applications connected through a 
network for gathering and exchanging real-time 
medical data needed for different medical pur-
poses. Core applications of IoMT are: 

a) real-time patient monitoring; 

b) self-administered rehabilitation; 

c) tracking medication effects; 

d) medical supply and inventory tracking. 

The advantages of IoMT include improved ac-
cessibility, better treatment because of timely 
health interventions, and potential reductions 
in both cost and the need for in-person clinical 
visits [1].
Recent advances in artificial intelligence, bi-
onics, and brain science has made EEG-based 
information processing and control emerge as 
a promising industrial application domain that 
has significant potential to improve the life 
quality of the elderly and people with disabil-
ities. EEG signals, created by electrical brain 
activity, can be acquired through wearable cra-
nial sensors. Such signals are used to monitor 
individual mental health, as well as for diag-
nosing neuropsychological illnesses. Elderly 
and disabled people could use particular de-
vices that gather EEG data for creating control 
signals via motor imagination, therefore, they 



110 R. R. S. Alnaily

could handle household appliances and other 
devices remotely using their thoughts. Current 
studies show that EEG signals have various 
features in various states that could be recog-
nized and classified using machine learning 
(ML) techniques [2].
ML techniques are suitable for analysis of com-
plex EEG data, playing an important role in 
signal processing, feature extraction, and clas-
sification. First, machine learning approaches 
such as adaptive filters are employed to reduce 
noise and improve signal quality [3]. Then, 
temporal, frequency, and spatial information 
are extracted using techniques like principal 
component analysis (PCA) and wavelet trans-
form. Next, algorithms like Support Vector 
Machine (SVM) and deep neural networks 
(CNN and LSTM) are used to classify or dis-
cover patterns, such as epilepsy diagnosis or 
brain state prediction. This combination of 
machine learning with EEG in applications 
such as BCI, neurological disease detection, 
and rehabilitation is critical for improving di-
agnosis and quality of life [2].
It is assumed that a specific wearable EEG de-
vice, for example, Emotiv Insight, is used to 
collect the EEG data of one user through mo-
tor imagination in an IoT application scenar-
io. These devices capture EEG signals during 
tasks such as motor imagery, where users 
imagine specific movements. The collected 
data is then transmitted to IoT-enabled appli-
cations for real-time processing and analysis 
[4].
The gathered data is transferred to the related 
terminal for classification and identification. 
After that, an appropriate action is performed 
based on the outcome of identification, like 
handling TV program switching and setting 
air conditioner temperature, etc. If a hospital 
wishes to use the patient's EEG data to predict 
the risk of epilepsy, this task may be delegated 
to the prediction service provider (such as a 
cloud service). So, such a process might show 
information based on the patient. Accurate 
prediction in such cases requires appropriate 
machine learning algorithms [5].
Advancements in science and technology have 
expanded the application of EEG signal anal-
ysis across various domains, including intelli-
gent information systems, rehabilitation med-

icine, and other interdisciplinary fields. The 
inherent complexity of EEG signals presents 
various obstacles and conflicts for EEG data 
analysis methods. These obstacles include a 
low signal-to-noise ratio, which makes it dif-
ficult to identify relevant brain activity from 
background noise. Furthermore, the high di-
mensionality of EEG data might cause com-
putational inefficiencies, as processing huge 
amounts of data necessitates substantial CPU 
resources. Finally, the existence of untidy or 
irregular noise complicates the filtering pro-
cess, as typical noise removal approaches may 
not be efficient in dealing with the different 
and unpredictable types of noise seen in EEG 
recordings. These difficulties make it diffi-
cult to accurately analyze and interpret EEG 
data using standard identification and analysis 
techniques
To address these limitations, this research pro-
poses the use of Bayesian Optimization Algo-
rithm (BOA) to enhance the performance of 
neural networks trained via backpropagation 
(BP) [7]. While BP remains a foundational 
method for training neural networks, it often 
suffers from slow convergence and suscepti-
bility to local minimum. In recent years, many 
researchers have studied how to avoid falling 
into local minimum, how to set optimal initial 
weights, optimal learning rates [6], and mo-
mentum, how to find optimal NN architectures 
using pruning and construction techniques, so-
phisticated optimization techniques, and adap-
tive activation functions. 
In this study, we apply BOA to improve neural 
network training  by effectively tuning hyper-
parameters, as an alternative to relying sole-
ly on traditional backpropagation (BP). The 
BOA offers substantial improvements over the 
traditional BP approach. BOA a probabilis-
tic framework to explore the parameter space 
more efficiently, allowing it to avoid problems 
like becoming stuck in local minima. This 
technique also uses less data to discover the 
best parameters and is faster than BP, which 
involves more iterations and fine-tuning of the 
learning rate. Furthermore, BOA is better suit-
ed for more complicated models and deep neu-
ral networks, with lower sensitivity to initial 
parameter choices. As a result, BOA surpasses 
BP as the best alternative for difficult machine 
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2. Related Work

This section discusses comprehensive and ex-
tensive state-of-the-art on IoMT frameworks 
and medical data analysis with standard and ad-
vanced ML/DL models. Outlined papers focus 
on ML/DL techniques for interpreting monitor-
ing data generated from wearable/medical sen-
sors.
Li et al. [8] use wavelet transform integrated 
with four functions and an adaptive technique 
of threshold method for carrying out the ECG 
filtering and feature extraction. These two tech-
niques, the wavelet transform and the thresh-
olding method, are especially effective for 
processing EEG signals in Internet of Medi-
cal Things (IoMT) systems because they can 
analyze complicated signals more efficiently 
and isolate significant features from noise and 
interferences. After that, use the mechanism 
of BPNN for classifying and analyzing ECG. 
BPNN could apply various techniques of op-
timization. One of the most common issues in 
the design of machine learning models, partic-
ularly neural networks, is the presence of mis-
takes caused by poor design or parameter val-
ues. These errors typically result in a decline 
in model accuracy and efficiency due to poor 
parameter selection, such as the learning rate, 
number of layers, or other network character-
istics. PSO can automatically optimize these 
parameters and eliminate unsuitable selections, 
lowering the likelihood of a poor design. For 
contemplating the defects, the optimization 
mechanism of PSO used is broad, also expect-
ed to increase the precision of the prediction 
outcome, decrease the errors incurred in test-
ing because of flawed model design, and hin-
der the last ECG allocation. The experiments 
show that the PSO-optimized BPNN intelligent 
model has higher accuracy and classification 
outcomes than the conventional BPNN model.
Alqahtani et al. [9] propose applying binary 
classification for automatic epilepsy detection. 
Binary classification is often employed for epi-
lepsy diagnosis since the primary purpose is to 
distinguish between two conditions: the pres-
ence or absence of an epileptic seizure. In such 
systems, the model is separated into two major 
categories. EEG signals of patients are pre-pro-
cessed after being recorded. Based on the re-

learning tasks, particularly in models with a 
large number of nonlinear features.
The proposed BO-optimized neural network 
(BOA-BPNN) offers several advantages: 

1. it mitigates the risk of premature conver-
gence; 

2. it expands the global search capacity for 
better solutions; 

3. it consistently outperforms conventional 
tuning methods, as demonstrated in Sec-
tion 4.

The primary purpose of this study is to exam-
ine and optimize the classification of electro-
encephalogram (EEG) signals using the error 
backpropagation (BP) neural network on the 
Internet of Medical Things (IoMT) platform. 
This work aims to give a more efficient way 
to diagnose and anticipate disorders like epi-
lepsy by utilizing EEG readings via wearable 
and IoT devices. The research gap in this sub-
ject encompasses the issues that existing EEG 
classification algorithms face, such as slow 
processing speeds, limited accuracy, and signif-
icant data complexity. The purpose of this study 
is to increase the accuracy of diagnosing and 
predicting diseases in real-world situations, as 
well as to provide methods for optimizing the 
processing of EEG signals in medical systems 
based on the Internet of Things.
The implications of this study could include 
reducing diagnosis time, improving the quality 
of medical services, and helping to make fast-
er and more accurate decisions in medical care. 
This study can also contribute to scientific ad-
vances in the field of biological signal analysis 
and the development of new technologies in 
digital health.
The remainder of the paper is organized as fol-
lows.  Section 2 describes the proposed meth-
odology. Section 3 outlines the implementation 
of the BOA-BPNN framework. Section 4 pres-
ents the experimental setup and results. Section 
5 concludes with a discussion of the findings 
and their implications.
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sults of the feature extraction technique, the top 
features are selected for further analysis using a 
structured genetic algorithm. 
Genetic algorithms are an evolutionary optimi-
zation technique commonly employed in fea-
ture extraction. These algorithms are modeled 
after the natural processes of selection, muta-
tion, and reproduction in living organisms and 
can be used to address difficult optimization 
issues such as feature selection and extraction 
in machine learning and data processing. The 
EEG data are analyzed and classified as sei-
zure-free or epileptic seizure-related using the 
support vector classifier, under the assumption 
of feature optimization. As a result, classify-
ing EEG data is an excellent application for 
the proposed method. For shared calculation 
accelerating implementation aim, CEHOC 
(Chaotic Elephant Herding Optimization based 
Classification) is applied for grouping a broad 
dataset field. 
One of the most important uses of CEHOC 
in classification is feature optimization. This 
method can extract relevant and crucial fea-
tures from big, complicated data sets while 
removing irrelevant or harmful elements. This 
approach reduces the dimensionality of the 
data while improving the classification accu-
racy.
Ahmad et al. [10] provided a novel architec-
ture that contains four schemes, like detec-
tion, feature fusion, and engineering, as well 
as a user IoT module for real-life early seizure 
prediction. In feature engineering, handicraft 
linear and nonlinear features were manually 
retrieved and passed through, while deep fea-
tures were acquired via a residual module. The 
multi-feature fusion (handicraft + deep feature) 
was then combined in the feature fusion mod-
ule to better characterize EEG signal fluctua-
tion. Furthermore, an attention mechanism was 
included, allowing the model to concentrate on 
the most important channels or regions. The 
authors used BiLSTM for temporal attributes. 
Zhao et al. [11] presented HybMED, which 
refers to the new neural signal processor that 
supports on-chip training of a hybrid neural 
network applying a composite direct feedback 
alignment-based paradigm. It is a neural net-
work design and training approach that is par-
ticularly useful when developing hybrid neural 

networks. This paradigm in HybMED is es-
pecially effective for neural signal processing 
since it can train and adapt models in real time 
with greater accuracy. HybMED is appropriate 
for general-purpose health controlling systems 
of AIoMT. That develops usage of source as 
well as efficiency of the region by reconfigu-
rable homogeneous core with heterogeneous 
data stream, also increases energy efficiency 
by exploiting sparsity at various granularities. 
Kapoor et al. [12] presented an epileptic seizure 
prediction scheme with electroencephalogram 
(EEG) signal data collected via IoT. IoT data is 
gathered and pre-processed to remove artefacts 
from the input signal. Frequency signal bands 
like alpha, delta, gamma, theta, beta waves are 
created, from what attributes are required for 
classification, like statistical, spectral, features, 
wavelet, entropy-based attributes, logarithmic 
band power, and CPR are extracted. The ex-
tracted features are concatenated and used 
to pick the electrode, which is then executed 
using the suggested hybrid cuckoo finch op-
timization. Using random search tactics and 
evolutionary steps, this algorithm can quickly 
identify excellent parts of the search space and 
perform optimization at a high speed. At last, 
signals would be normalized and transferred to 
a deep CNN classifier that is optimally tuned 
with hybrid cuckoo finch optimization aid 
for grouping epilepsy seizures with improved 
performance. Hybrid cuckoo finch optimiza-
tion combines local and global search, which 
improves classification model accuracy. This 
technique can find key elements in EEG data 
that would otherwise be lost in a broad search 
space, hence boosting seizure grouping accu-
racy.
Mary et al. [13] presented an ECG controlling 
system based on IoT, which applies a sensor of 
heart rate for collecting data and a smart hybrid 
classification mechanism for grouping data. 
ECG control became a broadly applied tech-
nique to diagnose cardiac issues. The present 
article provides WISE (wearable IoT cloud-
based health controlling device), the single 
real-time individual health controlling device. 
For proposing real-time health control, WISE 
applies the implementation of BASN (sensor 
network of the body region). BASN Data are 
quickly sent to the WISE cloud, light wearable 
LCD might be integrated for presenting quick 
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accessibility to real-life data. Such a hybrid 
scheme could control the ECG dataset class 
imbalance issue that would help IoT-based 
intelligent and suitable healthcare system im-
provement.
Nandy et al. [14] improved the novel archi-
tecture of IoMT for real-life EEG signal con-
trolling and analyzing, applying the explain-
able AI (XAI) method known as, Intelligent 
Agent-based Bag-of-Neural Networks (IBo-
NN) scheme. The presented XAI method ben-
efits over the present schemes of ML/DL is 
letting end-users know the whole logic about 
controlling signals analysis to decide nontrans-
parently. The present model of IBoNN works 
given the sensor-related brain signal in the ar-
chitecture of IoMT. Such sensors tend to get 
brain impulses. In gathering data, the human 
subject is stimulated with various signs/ voic-
es. The scheme of IBoNN grouped controlling 
brain signals applying bag-of-neural networks 
and assigned an accurate solution from pa-
tients' EEG signals.
Wang et al. [15] integrates BP NNA with online 
measurement device given the IoT. This inte-
gration is critical due to its benefits in real-time 
data processing and predictive accuracy. The 
device can handle complex EEG data fast and 
reliably, allowing for more precise diagnosis 
of medical issues such as seizures. In compari-
son to a traditional online measurement device, 
a device combined with an AI mechanism is 
smart and flexible in processing and gathering 
data. The IOT device of MP online measure-
ment related to BP NNA completes the set of 
parameters, analyzing, and showing via a lay-
er of network transmission, an app, as well as 
perception. Main point refers to a layer of sys-
tem app which adds BP NNA for optimizing 
real-life parameters of achievement, doing a 
process for parameter measurement time re-
duction.
Borhade and Nagmode [16] presented an ef-
ficient mechanism of optimization known as 
Modified Atom Search Optimization-based 
DNN for carrying out suitable seizure predic-
tion with less time of calculation. Now, the 
classifier of DNN carries out seizure prediction 
by applying different hidden layers related to 
the hierarchy layer, given the optimally chosen 
attributes. The presented mechanism of Modi-

fied Atom Search Optimization is schemed by 
applying ASO as well as the Squirrel Search 
Algorithm. That should be noted that the pre-
sented MASO-based DNN was carried out 
soon and is suitable for seizure prediction, ap-
plying electroencephalogram signals.

Wang et al. [17] proposed a feature-level graph 
embedding method and combines the meth-
od with EEGNet; this new network is called 
EEG_GENet. The purpose of combining the 
EEGNet graph embedding method in the anal-
ysis of EEG signals is to improve the feature 
extraction capability and prediction accura-
cy. Specifically, time-domain features are ob-
tained by convolving raw EEG signals for each 
electrode. Then, the adjacent matrix, concep-
tualized as a graph filter, performs graph con-
volution and uses the time-domain features to 
embed the topology information. This process 
can also perform multi-order graph embed-
dings. In addition, the adjacency matrix in this 
paper can adapt to different brain network con-
nectivity for different subjects.

Various approaches for analyzing EEG and 
ECG signals have been offered in various re-
search, each with its own set of advantages 
and drawbacks. For example, while wavelet 
transform and PSO optimization improve ECG 
analysis accuracy, they may not perform well 
with complicated EEG data. Furthermore, the 
employment of genetic algorithms and BiL-
STM in epilepsy diagnosis improves accuracy; 
nonetheless, model complexities and real-time 
processing issues may impede wider adoption. 
This study aims to increase the accuracy and 
efficiency of EEG signal processing for seizure 
prediction by filling gaps in existing approach-
es and optimizing and integrating the models.

3. Proposed Method 

In this paper, we present the multi-scheme 
BOA-BPNN for improving the precision of 
EEG diagnosis. The flowchart for the proposed 
method is illustrated in Figure 1.
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3.1. Preprocessing of Data

Cross-validation [18] is a widely used tech-
nique for evaluating model generalization and 
mitigating overfitting during training. In this 
study, we applied 5-fold cross-validation to 
assess the performance of the proposed neural 
network model. The dataset was partitioned 
into five equal subsets; in each iteration, four 
subsets (80%) were used for training, while the 
remaining subset (20%) served as the test set. 
This process was repeated five times, and the 
average performance across all folds was re-
ported to ensure a robust evaluation of the mod-
el's predictive capability. 

3.2. Feature Extraction 

Adaptive Auto-regressive (AAR): The charac-
teristics of a signal are represented by the AAR 
parameters or estimators. There is no trend in 

the signal that it models. AAR is frequently 
used in conjunction with an EEG signal to fore-
cast or filter brain activity. That is, AAR param-
eters can be used to build models that describe 
the short-term and long-term properties of an 
EEG signal. Autoregressive models extract the 
signal's characteristics from past values and ac-
curately predict its future state.

Yt = a1,t * Yt-1 + a2,t * Yt-2 + ... + ap,t * Yt-p + Et

(1)

The a1,t, ..., ap,t are AAR estimators in Equation 
(1). The auto-regressive model's order is rep-
resented by p. Et is the random or white noise. 
It is otherwise called the expectation mistake. 
With a more modest mistake estimate, the EEG 
signal is depicted more precisely by the AAR 
model. EEG signals are dynamic and temporal, 
which means that their features change with 
time. AR and AAR models use estimators (mod-

Figure 1. Flowchart of the Proposed System.
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el coefficients) to account for temporal changes 
and instantaneous dependencies between sig-
nal values throughout time. In this study, the 
RLS (Recursive Least Squares) adaptation of 
AR models has been utilized for highlight ex-
traction [19].

3.3. Neural Network of BP

Rumelhart and McClell introduced the BP neu-
ral network in 1986. It is one of the most ex-
tensively used and successful neural networks. 
Training the network mainly consists of two 
steps, which are negative signal error as well 
as positive signal transmission. As the positive 
signal broadens, data arrives at the input layer 
and is propagated through hidden layers, layer 
by layer, and finally transferred to output layer.
When actual output layer outcome varies from 
desired outcome, it changes to reversal error 
transferring step, error reversal transferring is 
exchanged layer by layer to the layer of out-
come using several path kinds, every layer 
function error provides entire parts, so getting 
every part error signal layer, such signal of er-
ror like the stable amount based on every part 
right base.
Network of BP includes an input layer as well 
as one or more hidden layers plus ad output lay-
er. Network learning progress contains 2 units, 

1 unit refers to transferring info of input on the 
straight side, also the other refers to transfer-
ring error on the opposite side. In a straight 
function, info of the input is transferred to the 
hidden layers from layer of input layer to the 
output layer. When the output layer outcome 
varies greatly outcome of output, the error of 
the output would be computed, error would be 
sent to the opposite side. The weights among 
each layer would be changed to minimize the 
error. Then the network is said to be rehearsed 
for the given data or application. The 3-layer 
form, as illustrated in Figure 2, is the typical 
BP neural network form.
BPNN progress is basically shared in 2 steps 
for the scheme of NN, along with just 1 hidden 
layer. The first step is signal forward propaga-
tion that goes via the hidden layer from layer 
of input layer to the output layer. The second 
step refers to the BP of error, from output layer 
to the hidden layer, and finally to the input lay-
er,. Set the hidden layer weights and bias to the 
layer of output layer, weights, and input lay-
er bias to the hidden one. The learning mech-
anism of BP sets the weight with a negative 
gradient, which is a side where the operation 
quickly decreases. BPNN learning progress is 
illustrated in Figure 1. The amount of weight is 
modified using Equation (2).

xk+1 = xk - ak gk                     (2)

Figure 2. Structure of Back Propagation.
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That xk is a matrix of threshold and weight, gk 
is the operation gradient, and ak is the rate of 
learning. Analyzing derivation process is ana-
lyzed in the following. Describe xi as a vector 
of the input layer, yj as a vector of the hidden 
layer, zl as a vector of the output layer, ωji as a 
vector of weights between the hidden and input 
layer, and νlj as a vector of weights between 
the output and hidden layer. While the vector of 
prospect output is t1, the hidden and output lay-
er outcome vector is as in Equations (3) and (4):

yi = f (Σi wji xi - θj) = f (net j), 
net j = Σi wji xi - θj                  

(3)

zl = f (Σi vlj yj - θl) = f (net l ), 
net l = Σj vlj yi - θl                  

(4)

After that, error among certain as well as de-
sired output amounts is presented as Equation 
(5):

1 2
2 l lj ji i j

l j j
E t f v f w x lθ θ

   
= − − −        
∑ ∑ ∑

   

(5)

BPNN designing progress is as follows:

1. Pre-process data.

2. Assign network layers number, aim errors, 
BPNN learning speeds, and training times. 

3. Train BPNN on training data.

4. Applying data of test kind for testing the 
scheme of the NN model, then finally take 
the predicted amount. 

5. Compare and analyze the actual and pre-
dicted amounts achieved in the last stage.

Bayesian optimization refers to the iterative 
mechanism that is broadly applied in issues of 
hyperparameter optimization. Bayesian opti-
mization is an appropriate alternative for op-
timization issues where the objective function 
is nonlinear, expensive, or time-consuming. 
Unlike classic hyperparameter optimization 
approaches such as grid or random search, 
which typically require several evaluations of 
the objective function, Bayesian optimization 
employs probabilistic models to forecast and 
reduce the number of evaluations needed. This 
strategy effectively manages uncertainty in pre-

dictions and updates the model based on avail-
able facts. Instead of searching in the hyper-
parameter space at random or systematically, 
Bayesian optimization can be steered to the tar-
get areas with the least amount of assessment. 
As a result, in issues that demand expensive 
assessments, such as building complicated ma-
chine learning models, Bayesian optimization 
is more efficient than classic hyperparameter 
optimization methods.
That contains two main units, the surrogate 
model and the acquisition task. The surrogate 
model aims is set whole presently monitored 
points in the objective task. After that surro-
gate model prediction share is achieved, and 
the task of acquisition is used for assigning the 
next point for being assessed, which could de-
crease iterations number as well as the assess-
ment price. Bayesian optimization sometimes 
confirms Gaussian process (GP) as a surrogate 
model for objective function design because of 
the GP model's tractability as well as flexibili-
ty. GP refers to the multidimensional Gaussian 
process development on the immortal stochas-
tic process in dimension, which is specialized 
in tasks of covariance as well as mean. Typical 
BO tasks of achievement contain confidence 
limit, desired, and probability development. 
Like the hyperparameter-tuning method based 
on the model, the mechanism of BO designs 
validation collection performance conditional 
abilities while hyperparameters are chosen by 
applying surrogate tasks. Against random/ grid 
looks, the mechanism of BO follows the whole 
historical assessments. So, prevent computa-
tions' wasting for assessing the worst hyperpa-
rameters. Furthermore, the task of achievement 
finds the most satisfactory hyperparameter for 
evaluation in the next iteration. The presented 
scheme uses the approaches of the BO mecha-
nism for finding optimum BPNN hyperparame-
ters. The mechanism of BO obtains greater effi-
ciency of tuning in a shorter time of assessment. 

3.4. Basic BPNN Weights and Thresholds 
Optimization

We used the BOA method with defined agents 
to optimize important BPNN parameters such 
as initial weight sets, threshold changes, and 
overall framework optimization. This strategy 



117EEG Signal Classification Using Bayesian-Optimized Neural Networks in IoMT Systems

improved BPNN's performance by speeding up 
convergence, enhancing parameter adjustment, 
and increasing the model's precision. Therefore, 
the optimized scheme of BPNN would possess 
two global BOA mechanism optimization capa-
bilities as well as local BP mechanism search 
capability.
The proposed method uses BOA to fine-tune 
the BPNN's initial weight sets and bias thresh-
olds. The search space for the initial weights 
was set to 1.0, 1.0-1.0, 1.0-1.0, 1.0, and for 
the biases as -0.5, 0.5-0.5, 0.5-0.5. The opti-
mization technique sought to reduce the mean 
squared error (MSE) on the training data. BOA 
was constructed with a population size of 30 
and 50 iterations. The Expected Improvement 
(EI) acquisition function drove the selection of 
new candidate solutions. This design allowed 
for fast exploration of the parameter space and 
convergence to optimal initialization settings.

4. Experimental Setup and  
Development 

4.1. Classification Models 

Optimization module given the BO-mechanism 
straightly related to precision as well as rate of 
convergence. Although, embedded scheme is 
better than present schemes like [10], [17] due 
to its ability to smoothly integrate the optimiza-
tion process into the system architecture. This 
integration takes advantage of the Bayesian Op-
timization mechanism's characteristics to im-
prove precision and speed of convergence. The 
mentioned schemes are assigned as schemes 
of benchmark schemes because of structural 
resemblances with the evolved scheme. The 
structural resemblances between the bench-
mark schemes and the developed scheme are 
most likely due to common underlying frame-
works, techniques, or approaches. These resem-
blances can be used to compare and benchmark 
products.

4.2. Dataset 

The BCI Competition IV 2a dataset (BCICIV2a 
dataset [20]) is used to assess the suggested 
network. For motor imagery decoding, the BCI 

Competition IV 2a Dataset is widely utilized in 
the literature. This dataset is frequently used to 
examine how well various decoder models for 
motor imagery EEG signals function. The EEG 
signals were captured by twenty-two electrodes 
at a sampling rate of 250 Hz. The waveforms 
had a frequency range of 0.5 Hz to 100 Hz. 
There are nine individuals in the dataset. Two 
sessions were recorded for every subject, with 
288 four-second trials of four motor imagery 
(left hand, right hand, both feet, and tongue) in 
each session. Based on the competition's pub-
lished results, five of the nine subjects (sub-
jects A01, A03, A07, A08, and A09) with the 
best data quality are chosen from the dataset. 
The training and testing sets are 2592 trials 
x ∈ R22×1125, with testing occurring in the sec-
ond session following training in the first [21].
In this paper, we choose subjects A01, A03, 
A07, A08, and A09 from the BCI Competition 
IV-2a dataset. These patients were chosen for 
their generally excellent data quality, low lev-
els of artifacts, and consistent trial designs. 
Furthermore, these specific subjects have been 
extensively studied in earlier studies, allowing 
for more credible benchmarking and fair com-
parison with existing methodologies.

4.3. Performance Evaluation 

The efficiency of the classifier can be measured 
using the rate of true positives (TP), false pos-
itives (FP), and accuracy (AC), which are de-
termined using Equations (6), (7), and (8), re-
spectively.

TP = TP/(TP + FN)                  (6)

FP = FP/(FP + TN)                  (7)

AC = (TP + TN)/(TP + FN + FP + TN)    (8)

TP: This metric calculates the proportion of 
correctly detected positive instances among 
all real positive cases. It indicates the classifi-
er's capacity to discover relevant occurrences, 
which directly affects its sensitivity or recall.
FP: This statistic computes the percentage of 
wrongly detected positive instances among all 
genuine negative instances. It emphasizes the 
classifier's susceptibility to false alarms while 
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properly detected by the model among all actu-
al positive cases.

Recall = TP/(FN + TP)             (10)
The F1-score is the harmonic mean of precision 
and recall, resulting in a single statistic that bal-
ances both.

Precision RecallF1 Score 2
Precision Recall

⋅
− = ⋅

+         
(11)

4.4. Result Analysis 

First, every classifier mentioned previously is 
applied to confirm training feature subsets inde-
pendently. Classifiers apply 5-fold cross-valida-
tion to assess performance. Table 1 shows the 
classifiers' classification outcomes for Fs. The 
receiver operator curve (ROC) that is defined 
later here is applied in quantifying the outcome 
of the classifier. The ROC curve is crucial be-
cause it provides a full evaluation of a classifi-
er's performance by displaying the trade-off be-
tween the true positive rate (sensitivity) and the 
false positive rate (1-specificity) at various clas-
sification thresholds. ROC shows that instances 
were organized to raise the sequence given the 
desired performance of the learner. All instances 
will be sequentially tagged and processed, and 
the current instance, along with the previously 

demonstrating its accuracy in discriminating 
between positive and negative cases.
AC: This statistic measures the proportion of 
correctly classified occurrences (both positive 
and negative) out of the total number of instanc-
es. It provides a generic measure of the classifi-
er's performance, however, it may be less useful 
in imbalanced datasets.
True positive shows aim specimens fetched 
collection as aim units, False-negative does not 
show any specimen fetched to non-aim speci-
mens, False positive shows non-aim compo-
nents fetched to aim components, lastly, true 
negative shows non-aim specimens.
In addition to accuracy, we use Precision, Re-
call, and F1-Score as performance metrics to 
fully evaluate the proposed model's classifi-
cation performance. These measures are com-
monly employed in classification tasks, espe-
cially when dealing with imbalanced datasets.
Precision measures the fraction of accurate pos-
itive predictions among all positive predictions 
made by the model. It reflects the model's accu-
racy in predicting a sample as positive.

Precision = TP/(FP + TP)             (9)

Recall (also known as sensitivity or true pos-
itive rate) is the proportion of true positives 

Figure 3. ROC curve area for proposed method.
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marked instances, will be used to estimate the 
remaining untagged instances. Amounts of Tr 
and Fr are calculated and shown in vertical and 
horizontal dimensions, relatively Figure 3.
The ROC curve results in Figure 3 show that 
the suggested model has good discriminative 
performance. The AUC values for classes 0 
through 2 are 0.98, 1.00, and 0.97, respectively. 
These numbers demonstrate the model's excep-
tional ability to distinguish across classes, with 
an AUC of 1.00 indicating perfect classifica-
tion for class 1. The model's near-perfect AUC 
scores indicate that it strikes a compromise be-
tween sensitivity and specificity, making it ex-
tremely dependable for classification in EEG-
based motor imagery tasks.
Figure 4 shows the confusion matrix of the pro-
posed method. We can see that the proposed 
method has a high rate of FP and FN. The con-
fusion matrix demonstrates that the suggest-
ed technique has high false-positive (FP) and 
false-negative (FN) error rates in several class-
es. Specifically, 140 samples from class ''0'' are 
correctly classified, with no samples from other 
classes misdiagnosed as this class (FP=0), but 

three samples from class ''0'' are misclassified 
into other classes. (FN). For class ''1'', the mod-
el's performance has been significantly im-
proved, with 145 examples predicted correctly 
and only three samples categorized incorrect-
ly. The performance in class ''2'' is poorer; al-
though 113 samples were correctly recognized, 
20 samples were mislabeled as other classes 
(FN), and three samples from other classes 
were also mislabeled as class ''2.'' These find-
ings demonstrate that the model is particularly 
weak in recognizing class ''2''. The confusion 
matrix (Table 1) demonstrates that class ''2'' has 
a greater misclassification rate, with 20 false 
negatives and 3 false positives. This is main-
ly due to data imbalance, as class ''2'' has few-
er training samples compared to other classes. 
Additionally, feature overlap between class ''2'' 
and other classes adds to the categorization dif-
ficulty. To boost performance, future research 
could use data augmentation and enhanced fea-
ture selection to better differentiate this class. 
Table 1 displays the comparative accuracy of 
the proposed method versus various benchmark 
methodologies.

Figure 4. Confusion matrix for proposed method.
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According to Table 1's results, the suggested 
approach performs better than the methods that 
were examined in terms of accuracy. The results 
demonstrate how well the BP neural network's 
optimization settings worked, as seen by the 
13.64% increase in detection accuracy and oth-
er performance metrics over the other models.
The BP neural network's detection accuracy 
and overall performance improved by 13.64% 
after its settings were optimized. This optimi-
zation involved fine-tuning hyperparameters 
such as learning rate, number of hidden layers, 
and number of neurons in each layer, which as-
sisted the network in better identifying hidden 
patterns in the data. Furthermore, improved 
training approaches like as adaptive learning 
rate and tuning methods (e.g., L2 or Dropout) 
have helped to prevent overfitting and improve 
generalizability. Selecting useful features and 
eliminating noise from input data have also 
contributed significantly to network efficiency.
To achieve a fair and comprehensive compar-
ison, we re-implemented and evaluated the 
baseline models proposed by Ahmad et al. [10] 
and Wang et al. [17] using the same dataset as 
our proposed method. The results in Table 1 
show that our proposed strategy outperforms 
both baseline methods in all major metrics. Our 
model attained an accuracy of 93.21%, which 
outperformed Ahmad et al.'s 91.39% and Wang 
et al.'s 79.57%. In terms of precision, our tech-
nique achieved 99.1%, which is much greater 
than Ahmad et al.'s 90.8% and Wang et al.'s 

78.2%, showing a far reduced false positive 
rate. Similarly, our model's recall was 93.6%, 
outperforming Ahmad et al.'s 91.0% and Wang 
et al.'s 76.5%, which reflects better identifi-
cation of true positive samples. Finally, our 
model's F1 score of 96.2% demonstrates an 
excellent balance between precision and recall, 
outperforming Ahmad et al.'s 90.9% and Wang 
et al.'s 77.3%. These findings suggest that the 
re-implemented baseline models, which were 
tested under identical settings, demonstrated 
the higher performance and resilience of our 
proposed method.
To determine the statistical significance of the 
observed improvements, independent two-
tailed t-tests were performed comparing the 
proposed method to the baseline models (Ah-
mad et al. [10] and Wang et al. [17]) based on 
accuracy and F1-score. The obtained p-values 
were less than 0.05, showing that the perfor-
mance improvements are statistically signifi-
cant and not attributable to random variation.

5. Conclusion 

In summary, this study presents a neural net-
work-based approach for EEG signal classifi-
cation based on BPNN and BOA. The proposed 
architecture utilized the BOA mechanism to 
fine-tune the hyperparameters of BPNN, result-
ing in enhanced precision and improved per-
formance. The proposed integration improves 

Table 1. Comparative accuracy of the proposed method.

Techniques Accuracy Precision Recall F1 Score

Ahmad et al. [10] 91.39% 90.8% 91.0% 90.9%

Wang et al. [17] 79.57% 78.2% 76.5% 77.3%

Proposed method 93.21% 99.1% 93.6% 96.2%
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the accuracy, stability, and convergence of the 
current technique, all at the same time. The 
proposed BOA-BPNN achieved a high predic-
tion accuracy of 93.21%, with consistent per-
formance across different K-fold values. The 
benefits of the presented technique include 
faster convergence, easier implementation, 
robustness, high speed, and low complexity. 
Convergence speed refers to the speed at which 
the proposed technique achieves its optimal 
solution or intended accuracy throughout the 
training or optimization phase. In the context 
of optimization algorithms or machine learning 
models, it refers to how quickly the algorithm 
converges to the lowest loss or best parameters 
as compared to alternative methods. The BCI-
CIV2a dataset, a benchmark dataset for EEG 
signal analysis, has been used to evaluate the 
performance of the proposed method. The pro-
posed method outperformed the comparative 
methods in terms of accuracy, as demonstrat-
ed by a 5-fold cross-validation experiment. 
The proposed method improves accuracy and 
overcomes fundamental issues in EEG-based 
seizure prediction, such as detecting subtle 
patterns in brain activity and lowering false 
alarms. This development has the potential to 
dramatically improve the reliability of automat-
ed seizure prediction systems, hence increasing 
patient care and management in clinical appli-
cations.
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