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To solve the problems that the weights and thresh-
olds of discrete Hopfield neural networks are easy to
fall into local optima and have insufficient anti-noise
ability in digit recognition, a digit recognition method
based on discrete Hopfield neural network is proposed,
which is optimized by fish swarm algorithm and called
AFSA-HOP integration method. The parameters of
the discrete Hopfield neural network are optimized by
using AFSA's powerful global search ability, and the
recognition accuracy of the Hopfield neural network is
taken as the fitness function. This allows the Hopfield
neural network to maintain a high associative success
rate even under high noise-to-signal ratios. Computer
simulation experiments show that while the recogni-
tion performance of the traditional Hopfield neural
network significantly deteriorates when the noise
intensity is 0.2, the AFSA-HOP method maintains a
high recognition accuracy even at noise intensities of
0.4 and 0.5, demonstrating superior digital recogni-
tion performance. This method provides a robust new
approach for digital recognition and could be further
extended in future applications by integrating other
optimization algorithms.
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1. Introduction

In daily life, we often encounter recognition
challenges involving noisy characters, such as
the vehicle license plate character recognition
problem in intelligent transportation systems
[1][2]. Due to factors like exposure to wind,

sunlight, sudden lighting changes, and differ-
ences in plate color, the accurate recognition of
license plate characters becomes difficult [3][4].
In many existing models, the presence of addi-
tional noise in the input leads to a decrease in the
recognition system's accuracy, often resulting
in incorrect character predictions. Therefore,
extracting complete character information from
noisy information is a key point in the field of
character recognition [5]. As an important com-
ponent of the character recognition research,
digit recognition holds significant application
value not only in traffic management but also
in fields such as postal services and commercial
bill management [6][7]. Currently, numerous
methods have been proposed in the character
recognition domain, such as BP neural network
recognition [4][8], classifier fusion recognition
[9], and fuzzy recognition [10]. However, tradi-
tional digit recognition methods often struggle
to accurately recognize digits when confronted
with interference. The discrete Hopfield neu-
ral network mimics the memory mechanism of
biological neural networks through a structure
and learning method distinct from that of hier-
archical neural networks [11], and has achieved
relatively satisfactory results in digit recogni-
tion applications [12].

Although discrete Hopfield neural networks
have been widely applied in the field of dig-
it recognition, traditional Hopfield neural net-
works often struggle to reach a true steady state
(with some pseudo-stable points present), and
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the network weights and thresholds are prone
to falling into local optima during digit rec-
ognition. This leads to suboptimal recognition
results, especially under high noise-to-signal
ratios [13]. It is worth noting that this limita-
tion does not exist in isolation, but is closely
related to the dynamic characteristics of the net-
work structure itself, that is, the design of the
energy function makes the system possible to
contain multiple local energy minima. In order
to break through this bottleneck, scholars have
explored a variety of optimization paths that
combine meta heuristic algorithm with Hop-
field network in recent years. Related research
has shown that combining metaheuristic algo-
rithms with discrete Hopfield neural networks
can further enhance the associative memory
capability of the network, significantly improv-
ing the application effectiveness and digit rec-
ognition accuracy of Hopfield network [13-15].
Common meta-heuristic algorithms, such as
Genetic Algorithm (GA), Simulated Anneal-
ing Algorithm (SA), Tabu Search Algorithm
(TS), Particle Swarm Optimization (PSO), and
Ant Colony Optimization (ACO) [16][17], are
distinguished by their global search capabil-
ities, which set them apart from conventional
algorithms. However, the existing heuristic op-
timization methods still face the challenge of
algorithm adaptability. Among them, although
genetic algorithm has coding flexibility, its se-
lection pressure is easy to lead to premature loss
of population diversity and lead to "premature
convergence" [18]. The temperature control
parameters of simulated annealing algorithm
need to be carefully adjusted, and the search
efficiency is restricted by the cooling scheme
[15][19]. The particle position updating mecha-
nism of particle swarm optimization in discrete
space has natural limitations [20]. Ant colony
algorithm is easy to fall into search stagnation
because of pheromone update mechanism [21].
These defects weaken the ability of the algo-
rithm to explore the weight space of Hopfield
network to varying degrees.

As aresult, researchers have been seeking more
ideal optimization algorithms, and the Artifi-
cial Fish Swarm Algorithm (AFSA) has grad-
ually emerged as a new highlight in the field
of swarm intelligence optimization algorithms
[22]. The advantages of this algorithm are ob-
vious, and its design characteristics are highly

consistent with the optimization requirements
of discrete Hopfield networks. First, the bion-
ic behavior mechanism gives the algorithm a
strong ability to jump out of local minima and
effectively avoid the interference of pseudo-sta-
ble points. Secondly, the parameter setting of
the algorithm is relatively loose, and the sensi-
tivity to the initial value is low, which reduces
the complexity of parameter adjustment. Fur-
thermore, the characteristics of parallel search
based on multi-thread significantly improve
the optimization efficiency, and it is especial-
ly suitable for dealing with discrete optimiza-
tion problems of high weight matrix [22][23].
More importantly, the discrete iterative rules of
artificial fish swarm algorithm can directly act
on the weight coding space of Hopfield neural
network, thus avoiding the quantization error
problem of continuous algorithm. Therefore,
this paper proposes a discrete Hopfield neural
network digit recognition method optimized by
the Artificial Fish Swarm Algorithm. By lever-
aging the strengths and powerful global search
ability of AFSA, the associative memory steady
state of the Hopfield network is optimized, en-
abling the recognition patterns to escape pseu-
do-stable points, thereby maintaining a higher
associative success rate under high noise-to-
signal ratios. Simulation experiments demon-
strate the effectiveness of this method.

2. Algorithm Principles

2.1. Discrete Hopfield Neural Network

The Discrete Hopfield Neural Network (DHNN)
is an important feedback-type network struc-
ture in the field of artificial neural networks.
This network model has demonstrated signifi-
cant application value in various fields such as
optimization computation, pattern recognition,
and intelligent control. As a typical recurrent
neural network, DHNN effectively simulates
the dynamic behavior of complex systems by
introducing the concept of an energy function.

From the perspective of network topology,
DHNN has three key characteristics: First, the
network adopts a fully connected architecture,
where each processing unit is connected to ev-
ery other unit. Second, the connections in the
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network have bidirectional symmetry. Finally,
there are no self-feedback connections between
the processing units. These unique structural
features enable the network to exhibit distinct
dynamic properties and maintain a stable oper-
ating state under specific conditions.

2.1.1. Network Structure

DHNN is a single-layer, binary output feedback
network, in which every neuron has the same
function. The outputs of the neurons are con-
nected to the inputs of other neurons, with no
self-feedback at any node. As the input of the
network, Layer 0 has no computing function,
the 1st layer consists of neurons that perform
the summation of the product of the input in-
formation and weight coefficients, and the re-
sulting sum is processed through a nonlinear
function, £, to produce the output information.

The input is processed by the threshold function

/, which is the sigmoid function, primarily used
to reduce the input to two extreme values. If the
output information of the neuron is greater than
the threshold 6, the neuron's output is set to 1. If
it is less than the threshold 6, the neuron's out-
put is set to —1. The threshold function is given
by:

f=(1+e! (1

2.1.2. Network Operation Mode

The Hopfield network operates based on its dy-
namics, where the process is the evolution of
the neuron states. That is, starting from the ini-
tial state, the evolution follows the direction of
"energy" (Lyapunov function) decreasing until
it reaches a stable state. The stable state is con-
sidered the output of the network. In this pa-
per, the serial (asynchronous) operation mode
is primarily selected. In this mode, at any given
time ¢, only a specific neuron i changes, while
the states of the other neurons remain the same.
The steps of operation are as follows.

1. Initialize the network.

2. Randomly select a neuron i from the net-
work.

3. Compute the input u,(¢) of the neuron i.

4. Compute the output v,(¢ + 1) of neuron 7,
while the outputs of the other neurons in
the network remain unchanged.

5. Check if the network has reached a sta-
ble state. If it has reached a stable state or
meets the given conditions, the process
ends. Otherwise, go back to step 2 and
continue.

The stable state of the network is defined as fol-
lows: if the network's state no longer changes
after a certain time, the network is considered
to be in a stable state.

Wit+A)=wt) At>0 )

2.1.3. Network Stability

From the structure of the DHNN, it is evident
that it is a multi-input, thresholded binary non-
linear dynamic system. In dynamic systems, a
stable equilibrium state refers to that the sys-
tem's energy function continually decreasing
during its motion, eventually reaching a mini-
mum value. The sufficient condition for the sta-
bility of the Hopfield network is:

{W” = 3)

W, =W, i # ]

When the weight coefficient matrix W is a sym-
metric matrix and the off-diagonal elements are
zero, the network is stable. In this paper, the de-
sign method for the weight coefficient matrix
utilizes the outer product method.

That is, for a given sample vector to be memo-
rized {¢', 2, ..., £}, if the state of t* is +1 or -1,
the learning of its connection weights can be
performed using the "outer product rule," i.e.,

w=> 1" -1] €]

N
k=1

The steps for designing a discrete Hopfield net-
work using the outer product method are as fol-
lows.

Step 1. Calculate the weight coefficient ma-
trix according to the formula above,
based on the sample vectors to be

memorized {¢', £%, ..., t"}.
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Step 2. Let the test sample p(i = 1, 2, ..., n)
be the initial output values of the net-
work, , and set the number of itera-

tions.

The formula for the iterative calcula-
tion 1s

Step 3.

y(k+1)=f (Z w, ;) (%)

Step 4. The iteration stops when the maxi-
mum number of iterations is reached
or when the neuron output states re-
main unchanged. Otherwise, continue

iterating in Step 3.

2.2. Artificial Fish Swarm Algorithm

2.2.1. Typical Behavioral Patterns of Atrtificial
Fish Schools

The Artificial Fish Swarm Algorithm (AFSA)
is a bio-inspired optimization algorithm based
on swarm intelligence theory, first proposed by
Dr. Xiao Lei Li in 2002 while studying swarm
intelligence behavior. This algorithm simulates
the collective foraging behavior of fish in na-
ture, establishing a complete intelligent opti-
mization framework. Compared to traditional
optimization algorithms, the Artificial Fish
Swarm Algorithm offers stronger robustness
and global search capabilities, and is especially
suitable for solving complex nonlinear optimi-
zation problems. Its unique self-organizing and
self-adaptive characteristics give it significant
advantages in fields such as function optimiza-
tion, combinatorial optimization, and parame-
ter identification.

The design inspiration for the Artificial Fish
Swarm Algorithm stems from biologists' long-
term observation and study of fish group be-
haviors. In natural aquatic environments, fish
schools tend to gather in areas with the most
abundant nutrients, revealing an important char-
acteristic of swarm intelligence. The algorithm
simulates three typical behavioral patterns of
fish schools by establishing an individual mod-
el of artificial fish:

e Foraging Behavior

Foraging behavior imitates the way fish schools
search for food. It is based on random search-
ing, where the fish randomly selects a direction
with more food and moves towards it. Let the
position of the i-th artificial fish be X;, and a
new position X; is randomly selected within the
visual range of the i-th artificial fish:

X; = X; + Visual X rand (6)

Here, rand is a random number within the range
[0, 1]. In the case of a maximization problem, if
Y; < Y, (similarly for a minimization problem),
the fish will move one step in the direction of ¥;:

X. —X.
J i 7
N

i

XNext = X, + rand x Step x

D;; represents the distance between the i-th and
Jj-th artificial fish. If the above condition is not
met, a new X; is randomly selected, and the con-
dition is checked again. If after try-number at-
tempts the condition still does not hold, the fish
will move one step in a random direction.

XNext = X; + rand X Visual (8)

e Schooling Behavior

Let the position of the i-th artificial fish be X,
and within its visual range, there are NF other
artificial fish. The center of these neighbors is
represented by X.. If Y./ NF > 0Y; (where 0 is
the crowding coefficient), it indicates that the
center position has enough food and is not too
crowded. In this case, the i-th artificial fish will
move one step towards the center position X,.

XNext = X, + rand x Step x xc;xl” 9)
X, X

e Following Behavior

Following behavior involves moving one step
towards a neighbor that has the highest food
concentration among all its neighbors. Let the
position of the i-th artificial fish be X, and the
position of the neighbor be X, if Y./ NF > ¢Y;
(indicating that X,, has enough food around it
and is not too crowded), then the i-th artificial
fish will move one step towards X,.

XNext = X, +rand x Step x

W% (10)
D
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e Billboard

The billboard is used to record the best state of
the artificial fish. After an artificial fish moves,
its current state is compared with the state re-
corded on the billboard. If the current state is
better than the one on the billboard, the bill-
board is updated with the current state. If it is
not better, the state on the billboard remains
unchanged. In this way, the state on the bill-

board will always reflect the best state of the
fish swarm.

2.2.2. Parameter Configuration of Artificial
Fish Swarm Algorithm

To ensure the repeatability and operability of
the algorithm, the specific parameter configura-
tion and description of the artificial fish swarm
algorithm are shown in Table 1.

Table 1. Explanation of parameter configuration for artificial fish swarm algorithm.

Parameter . .. Value Range
Names Definition Description (10x10 Search Space) Example Value
Visual Range The maximum distance that artificial 10%-20% of the search
. fish can perceive from other fish when 1.2
(Visual) foragi . space range (1 to 2)
oraging or gathering in groups.
Step size The minimum distance unit for artificial 1%—-5% of the search 01
(Step) fish during movement. space range (0.1 to 0.5) '
Number of The number of fish in artificial fish
Fish (N) schools. 301030 >0
Used to control the degree of crowding
Crowd Factor | when schools of fish gather, avoiding 011005 0.2
(0) excessive aggregation that leads to local ’ ' ‘
optima.
Maximum The maximum number of iterations for
Tterations wm 100 to 300 100
the algorithm to run.
(Tmax)
Behavior Used to balance the weights of Foraging . . B B
Weights behavior, Schooling behavior, Following N?.rr;lahzefrocissmg: t(l) w1 = 0-3>_W2 =03,
(w1, wp, w3) || behavior. SalISly wi = wa T W3 w3 =04
Random Used to introduce randomness and avoid Uniform distribution of
Factor the algorithm getting stuck in local R~U(0,1)

(Rand)

optima.

random numbers
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3. AFSA-HOP Integrated Method
Design

This paper proposes a Discrete Hopfield Neural
Network integration method optimized by the
Artificial Fish Swarm Algorithm (AFSA-HOP
integration method). This method significantly
improves the accuracy and robustness of digi-
tal recognition in high-noise environments by
innovatively combining the global optimiza-
tion capability of AFSA with the associative
memory characteristics of the Hopfield Neural
Network. In response to the issues of tradition-
al Hopfield Neural Networks, which are prone
to falling into local optima and are sensitive
to noise interference during digital recogni-
tion, the AFSA-HOP method fully leverages
the three intelligent behavior mechanisms of
the Artificial Fish Swarm Algorithm-forag-
ing, clustering, and chasing-to perform global
optimization search on the weight matrix and
threshold parameters of the Hopfield Neural
Network. The recognition accuracy of the net-
work is used as the fitness function. This op-
timization strategy not only effectively avoids
the network from getting stuck in local optima,
but also ensures that the network maintains sta-
ble recognition performance under high noise
levels, overcoming the limitation of traditional
methods, where recognition accuracy decreases
when noise intensity exceeds 0.2. The imple-
mentation steps of the AFSA-HOP integration
method are as follows:

Step 1. Data Preprocessing

Collect a dataset containing multiple digit sam-
ples and convert each digit sample into a binary
matrix form. For example, for the digits 0-9,
create corresponding 10x10 (or other appropri-
ate size) matrices to represent each digit. The
areas containing the digit are represented by 1,
and the blank areas are represented by —1. Let
the set of digit samples be S = {sy, 55, ..., 5,,},
where s, represents the i-th digit sample, and its
corresponding binary digit matrix is M.

Add varying levels of noise (random noise) to
the digit sample matrices to simulate the inter-
ference encountered in practical applications.
The noise addition can be implemented using
the following formula: M;"= M; + N, where M/’
is the matrix with added noise, and N, is the
noise matrix, with its elements following a cer-

tain probability distribution (e.g., normal distri-
bution).

Step 2. Hopfield Neural Network Initialization

Based on the characteristics of the digit sam-
ples, determine the number of neurons, con-
nection patterns, and other parameters for the
Hopfield neural network. For example, if the
input is a 10x10 digit matrix, the network must
contain at least 100 neurons to represent a sin-
gle digit image. Let the number of neurons be
N, the connection weight matrix be W e RVV,
and the threshold vector be § € RY.

Randomly initialize the connection weights and
thresholds between the neurons, ensuring that
the weight matrix satisfies conditions such as
symmetry to guarantee network stability. Spe-
cifically, W; =W, and W;;=0(i,j =1, 2, ..., N).

Step 3. Artificial Fish Swarm Algorithm Opti-
mization

o Define the Fitness Function

The recognition accuracy of the Hopfield neu-
ral network on noisy digit samples is used as
the fitness function for the AFSA. Let the train-
ing set consist of m noisy digit samples. For the
k-th weight and threshold combination (i.e., the
k-th fish), its fitness function f; can be defined

as: fk:iZ;”zll(yf’” ==¢) where, y® is the

recognition result of the -th fish (i.e., the net-
work corresponding to the k-th combination of
weights and thresholds) for the i-th sample, is
the true label of the i-th sample, and / is the in-
dicator function, which equals 1 if the condition
inside the parentheses is true, and 0 otherwise.
This means that the higher the fitness value, the
better the network's recognition performance
for that digit.

e Artificial Fish Swarm Algorithm Iterative
Optimization

Foraging Behavior: For each fish in the swarm
(i.e., each weight and threshold combination), a
random search for a new position (new weight
and threshold combination) is conducted within
its neighborhood, and the fitness of the new po-
sition is computed. If the fitness of the new po-
sition is better than that of the current position,
the fish moves to the new position; otherwise,
it continues searching within the neighbor-
hood. Let the current position of the k-th fish
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be Wp = (a)kh W25 '-:a.wkN.) and ak.: (eklo 9k2= ooy
0,y), and a new position in its neighborhood be
(U'k = (w'kl’ C()’kz, vees a)'kN) and 6,k= (H,klﬁ ’kz, cees

w)- I (@', 0%) > [y, 0), then update oy =
C()lk and Hk = Hlk.

Foraging behavior: For each fish in the swarm
(i.e., each combination of weights and thresh-
olds), a new position (new combination of
weights and thresholds) is randomly searched
within its neighborhood, and the fitness of the
new position is evaluated. If the fitness of the
new position is better than the current position,
the fish moves to the new position; otherwise,
it continues to search within the neighborhood.
Let the current position of the k-th fish be de-
noted as w;, = (@, @4, ..., Oy) and 6, = (0,4,
015, .., Ory), and a new position within its neigh-
borhood as v’y = (0, @', ..., ®'y) and 0’ =
(elkla e’kza RS g'kN)' Iff(a) ’ka ,k) >f(a)k9 ek)e then
update w; = w', and 6, = 0',.

Swarming behavior: Each fish moves a certain
distance toward the center of the swarm to fa-
cilitate aggregation. The center of the swarm
is determined based on the positions of all the
fish. Let the center of the swarm be denoted as
o and 6.The update formula for the k-th fish is
given by: w; = o, + ri(o — wy), 0, = 0, + (0
— 0,), where r| is a random number within the
range [0, 1].

Following behavior: Each fish moves a certain
distance toward the position of the fish in the
swarm with the highest fitness (i.e., the highest
recognition accuracy), in order to learn from the
optimal individual's behavior. Let the position
of the fish with the highest fitness be denoted as
®pes and 6y, The update formula for the i-th
fish is given by: w; = w; + ry(®pey — 1), 6 =
O, + 75(0hes — 0,), wWhere r, is a random number
within the range [0, 1].

Based on the results of the above three be-
haviors, the position (weights and thresholds)
of each fish is updated, thereby enabling the
swarm to search and optimize within the weight
space.

e Convergence Condition

Set the convergence conditions. If the maxi-
mum number of iterations is reached, the fit-
ness function value will no longer change sig-
nificantly. Once the convergence condition is
met, the iteration of the swarm algorithm is

stopped, and the optimized weight values w*
and 6* are obtained.

Step 4. Hopfield Neural Network Training and
Testing

The optimized weights are applied to the Hop-
field neural network, using digit samples with
added noise as the training set. During the
training process, the network gradually learns
the features and patterns of the digits by con-
tinuously adjusting the states of the neurons.
Let the training set consist of p samples. For the
J-th sample x;, the output of the network is y;.
The neurons' states are adjusted by minimizing

the loss function L = zj’lel(y/., t,), where [ rep-

resents the loss function, and l 1s the true label
of the sample.

Using digit samples with different noise inten-
sities as the test set, these samples are input
into the trained Hopfield neural network, and
the network's output is observed. If the network
can correctly recognize the input samples as the
corresponding digits, it indicates that the net-
work possesses good digit recognition ability.
Let the test set consist of g samples. For the i-th
sample x', the network's output is y'. If ', ==
t'; (where t'; is the true label of the sample), the
recognition is correct. By calculating the ratio
of correctly recognized samples to the total
number of test samples, the network's recogni-
tion accuracy can be obtained.

Through the above steps, the AFSA-HOP in-
tegration method establishes a relatively com-
plete digital recognition optimization frame-
work. This method innovatively combines the
optimization mechanism of AFSA with the
memory characteristics of Hopfield Neural
Network, proposing a new solution approach at
the theoretical level. In the specific implemen-
tation process, the method constructs a multi-
dimensional optimization search space for the
network weights and threshold values through
the three behavioral mechanisms of the AFSA
(foraging, clustering, and chasing). In terms of
algorithm design, recognition accuracy is used
as the fitness function, directly linking the op-
timization objective with the actual recognition
performance. In terms of the implementation
process, the method first completes the prepro-
cessing of the digital samples and noise simula-
tion, then initializes the network structure, fol-
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lowed by parameter optimization search using
the AFSA, and finally applies the optimization
results to network training. This systematic op-
timization strategy provides a complete techni-
cal path for improving the accuracy and robust-
ness of digital recognition.

4. Simulation Experiments

4 1. Digital Recognition Simulation
Experiment Based on Traditional
Hopfield Neural Network

4.1.1. Sample Construction and Testing

In digital recognition research, the Discrete
Hopfield Neural Network has become an im-
portant research subject due to its unique as-
sociative memory capability. This study first
constructs a standardized digital sample library
containing 10 categories of digits, from 0 to 9,
with each digit represented by a 10x10 pixel
matrix. In the sample preprocessing phase, im-
age normalization is applied to ensure uniform
size, and an adaptive thresholding algorithm is
used to achieve precise binarization. The digit
stroke regions are set to 1, and the background
is set to —1, forming a standardized network in-

) |EmEN e
) N e
H) | |NiNINN | N
) | NN | h
) N e
miiiiij1m
miiili1il1in
HiEnnnn e
HENINInN. | h
Hinninnna | |n

Figure 1. Dot Matrix of Number 4.

put format. By constructing a dataset to design
a digital dot matrix, the dot matrix designs for
number 4 and number 5 are shown in Figure 1
and Figure 2.

The dot matrix of number 4 is:

array four=[-111-1-1-1-111-1;-111
-1-1-1-111-1;-111-1-1-1-111-1;
-111-1-1-1-111-1;-111-1-1-1-1
I1-1;-111111111-1;-111111111
-1-1-1-1-1-1-1-111-1;-1-1-1-1
-1-1-111-1;-1-1-1-1-1-1-111-1].
The dot matrix of number 5 is:

array five=[-111111111-1;-11111

l1-1-1-1-1-1-1-1;-111111111-1;
-r11111111-1;-1-1-1-1-1-1-111
-;-111111111-1;-111111111-1].

Network training employs the classical out-
er-product method to calculate the weight ma-
trix, strictly ensuring the symmetry and stabil-
ity of the network. During the training process,
each digit sample is encoded as a stable state of
the network, allowing the network to accurately
memorize these digit patterns. To comprehen-
sively evaluate the network's performance, the
study designs an extended test set containing
digits with different fonts and slight deforma-
tions to test the network's generalization ability.
This multi-level training scheme ensures both

miii1i1i111
miiliiii11|n
| .
H | |NNnnae
miijii1i1i111n
mii1i1i1111
HiNEmnnN | N
. N
miii1i1i111n
miii1i1i111n

Figure 2. Dot Matrix of Number 5.
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Standard(Number 4)
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Noisy(Number 4)

Recognition(Number 4) - accuracy:85%

Standard(Number 5)

=

Noisy(Number 5)
* g

Recognition(Number 5) - accuracy:85%

Figure 3. Digit Recognition Results at a Noise Intensity of 0.2
(Traditional Hopfield Neural Network).

the network's ability to recognize standard dig-
its and its adaptability to digit variations.

In the robustness testing phase, a rigorous noise
simulation scheme was designed. A probabi-
listic pixel-flipping method is used to set five
noise gradients ranging from 0.1 to 0.5, with
100 test samples generated for each gradient.
This progressive noise simulation realistically
reflects various interference situations in prac-
tical applications, including device acquisi-
tion noise, transmission interference, lighting
changes, and other factors. During testing, not
only the final recognition results are recorded,
but also the network’s dynamic convergence
process is closely monitored, including con-
vergence steps, stable states, and other key in-
dicators. Through this comprehensive testing
approach, the performance characteristics of
the network under different noise conditions
can be thoroughly analyzed, providing reliable
data for algorithm improvement. All test data
are collected through a professional simulation
platform and displayed using various visualiza-
tion techniques to ensure the accuracy and in-
terpretability of the research results.

4.1.2. Analysis of Experimental Results

Through statistical analysis of extensive exper-
imental data, it was found that the network's
recognition performance was optimal when the
noise intensity was 0.1 (i.e., 10% of the digi-
tal dot matrix position values were altered).
This indicates that under slight noise interfer-
ence, the network is able to effectively utilize
the learned digital features to accurately recog-
nize and classify digits. However, as the noise
intensity increases, the network’s recognition
performance declines significantly, as stronger
noise disrupts the original features of the digital
image, making it difficult for the network to ac-
curately extract and match digit patterns.

Taking the digits 4 and 5 as examples, the rec-
ognition results at a noise intensity of 0.2 are
shown in Figure 3. From Figure 3, it is evident
that the Hopfield neural network struggles to
recognize the digits accurately under these con-
ditions (the accuracy is 85%). A closer exam-
ination of the 10x10 matrix structure reveals
that there are a total of 200 possible pattern
combinations. However, in the digit recogni-
tion task, the network is expected to accurately
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recall only 10 specific patterns (corresponding
to the steady states of digits 0-9). This means
the network must search through a complex
pattern space to identify the pattern that best
matches the training samples. As noise inten-
sity increases, the difficulty of this task grows
significantly, leading to a marked decrease in
the network's recognition capability.

4.2. Digital Recognition Simulation
Experiment Based on the AFSA-HOP
Integrated Method

In the traditional Hopfield neural network dig-
ital recognition simulation experiment, when
the noise intensity is greater than or equal to
0.2, the network's ability to accurately recog-
nize digits decreases significantly. This phe-
nomenon indicates that the traditional Hopfield
neural network experiences poor recognition
performance when subjected to noise interfer-
ence of a certain intensity. To address this issue,
this paper proposes the AFSA-HOP integrated
method, which aims to achieve accurate digit
recognition through associative memory opti-
mization. The core of this method lies in using
the AFSA to find the optimal individual. Spe-

cifically, it involves determining the optimal
weights and thresholds for the network, there-
by optimizing the performance of the Hopfield
neural network and enhancing its noise resis-
tance and recognition accuracy.

4.2.1. Convergence Analysis of the Atrtificial
Fish Swarm Algorithm

To verify the effectiveness of the AFSA-HOP
integrated method, this experiment uses MAT-
LAB for simulation. Convergence analysis is
conducted based on the best fitness iteration
curves of the Artificial Fish Swarm Algorithm
under different noise intensities.

Noise Intensity of 0.3: The maximum number
of iterations is set to 100, and the obtained opti-
mal fitness iteration curve is as shown in Figure 4
(taking number 4 and 5 as example). As can be
seen from the figure, with the increase of itera-
tions, the Artificial Fish Swarm Algorithm grad-
ually converges, with the best fitness continuous-
ly improving. This indicates that the algorithm is
continuously searching for a better combination
of weights and thresholds, thereby enhancing the
network's recognition performance.

Optimized Number 4 Recognition Fitness (100 Steps)
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Figure 4. Optimal Fitness Iteration Curve at Noise Intensity of 0.3.
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Noise Intensity of 0.4 and 0.5: The maximum iterations, further demonstrating that the Artifi-
number of iterations is set to 100, and the corre-  cial Fish Swarm Algorithm is capable of effec-
sponding best fitness iteration curve is shown in  tively searching for the optimal solution even in
Figure 5 and Figure 6. Similarly, the algorithm  a complex noise environment, providing strong
shows a gradual convergence trend during the  support for accurate digit recognition.
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Figure 5. Optimal Fitness Iteration Curve at Noise Intensity of 0.4.
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Figure 6. Optimal Fitness Iteration Curve at Noise Intensity of 0.5.
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4.2.2. Analysis of Experimental Results

The optimized weight and threshold combina-
tions are applied to the discrete Hopfield neural
network. Through training and testing with the
Hopfield neural network, the output results of
the network are observed. The simulation ex-
periments show that the Hopfield neural net-
work optimized by the Artificial Fish Swarm
Algorithm (AFSA-HOP integrated method)
not only correctly recognizes digits at a noise
intensity of 0.3 but also performs well in digit
recognition at a noise intensity of 0.4 and 0.5.
Taking digits 4 and 5 as examples, the digit rec-
ognition results at noise intensities of 0.3, 0.4
and 0.5 are shown in Figures 7, Figures 8 and
Figures 9,with accuracy rates of 97.5%, 96.5%,
and 96%, respectively.

The systematic experimental results clearly
demonstrate that the AFSA-HOP integration
method exhibits multiple performance advan-
tages in digital recognition tasks. Compared to
the traditional Hopfield Neural Network, this
innovative method shows greater robustness
and stability when dealing with noise interfer-

Standard (Number 4)

=

Noisy (Number 4)

2

Optimized Recognition | Step: 100 | Accuracy: 0.9750

=]

ence of varying intensities. Specifically, in a
test environment with a noise intensity of 0.2,
the recognition performance of the traditional
method significantly decreases, while the AF-
SA-HOP method still maintains good recog-
nition performance. When the noise intensity
increases to 0.4 and 0.5, the traditional method
essentially fails, but the AFSA-HOP method
continues to maintain excellent recognition per-
formance. Experimental data indicate that the
weight matrix of the Hopfield Neural Network,
optimized by the Artificial Fish Swarm Algo-
rithm, exhibits a more reasonable distribution,
and the threshold parameters are configured in
a more optimal state. These optimizations en-
able the network to more accurately identify
the essential features of the digits when facing
noise interference, effectively suppressing the
negative impacts of noise. The Artificial Fish
Swarm Algorithm, as an optimization tool,
successfully finds the optimal combination of
weight and threshold values for the Hopfield
Neural Network, thus optimizing the network's
performance.
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=1

Noisy (Number 5)
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Figure 7. Digit Recognition Results at Noise Intensity of 0.3
(AFSA-HOP Integrated Method).
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Figure 8. Digit Recognition Results at Noise Intensity of 0.4
(AFSA-HOP Integrated Method).
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Figure 9. Digit Recognition Results at Noise Intensity of 0.5
(AFSA-HOP Integrated Method).
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4.2.3. Statistical Significance Test

In the numerical recognition experiments of
discrete Hopfield neural networks, analysis of
variance (ANOVA) is a powerful statistical tool
that can be used to compare whether there are
significant differences in recognition accuracy
under multiple sets of noise intensities. In this
experiment, a combination of ANOVA and post
hoc testing (Tukey HSD) was used to verify the
reliability of the performance improvement of
the optimized model.

e Research hypothesis

The purpose of analysis of variance (ANOVA)
is to determine whether there is a significant
difference in recognition accuracy under dif-
ferent levels of noise intensity. Therefore, this
article proposes the following hypothesis:

1. Null hypothesis (HO): The mean of all
groups is equal (i.e., noise intensity has no
significant impact on recognition accura-
cy).

2. Alternative hypothesis (H1): At least one
group has a mean that is different from the
other groups (i.e., noise intensity has a sig-
nificant impact on recognition accuracy).

e Single factor ANOVA

Through simulation experiments, the results of
three experiments with noise levels of 0.2 (be-
fore fish swarm algorithm optimization), 0.3
(after fish swarm algorithm optimization), 0.4
(after fish swarm algorithm optimization), and
0.5 (after fish swarm algorithm optimization)

Statistical tests were conducted using one-way
ANOVA, and the relevant indicators for sta-
tistical tests in analysis of variance are shown
in Table 3. From Table 3, it can be observed
that, F = 419.515, Indicating significant dif-
ferences between groups; The p-value is 0.000
(p < 0.05), therefore rejecting the null hypothe-
sis (Ho), indicating that at least one group has a
mean different from the other groups.

The results of the one-way ANOVA indicate
that at least one group mean differs significant-
ly from the others. However, this analysis does
not reveal which specific group pairs exhibit
significant differences. Therefore, a post hoc
test is required, specifically Tukey's Honestly
Significant Difference Test (Tukey HSD).

Step 1. Calculate the mean square error
(MSE). From Table 3, the with-
in-group mean square error is ob-
tained as MSE = 0.229.

Step 2. Calculate the critical value for Tukey

HSD.
HSD = g /MTSE (11)

Here, the Tukey critical value is determined by
referring to the studentized range distribution
table (o = 0.05, number of groups k = 4, and
within-group degrees of freedom df within =
8), yielding q = 4.04. Based on this value, the
HSD critical value is then calculated.

0.229

were used as the experimental data for single HSD =4.04x =1.367 (12)
factor ANOVA, as shown in Table 2.
Table 2. Experimental Data for One-Way ANOVA.
Noise Intensit Recognition Recognition Recognition
! 1y Accuracy 1 (%) Accuracy 2 (%) Accuracy 3 (%)
0.2 (Before Optimization) 85 86 85
0.3 (After Optimization) 97.5 97 98
0.4 (After Optimization) 96.5 96 97
0.5 (After Optimization) 96 95.5 95.5
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Table 3. Statistical Indicators for ANOVA Significance Testing.

Source of Variation SS df MSE F P-value F crit
Between Groups 288.417 3 96.139 419.515 0.000 4.066
Within Groups 1.833 8 0.229
Step 3. Calculate the mean differences be- 4.2.4. Comparison of Models Based on

tween each pair of groups. By com-
paring the mean differences among
all group pairs, it can be determined
whether they exceed the HSD critical
value.

1. Noise 0.2 (before optimization) vs. Noise
0.3 (after optimization): [85.3 —97.5| =
12.2 > 1.367 — Significant

2. Noise 0.2 (before optimization) vs. Noise
0.4 (after optimization): |85.3 —96.5| =
11.2 > 1.367 — Significant

3. Noise 0.2 (before optimization) vs. Noise
0.5 (after optimization): [85.3 —95.7| =
10.4 > 1.367 — Significant

4. Noise 0.3 (after optimization) vs. Noise
0.4 (after optimization): [97.5-96.5| = 1
< 1.367 — Not significant

5. Noise 0.3 (after optimization) vs. Noise
0.5 (after optimization): [97.5 — 95.7|=1.8
> 1.367 — Significant

6. Noise 0.4 (after optimization) vs. Noise
0.5 (after optimization): [96.5 — 95.7| = 0.8
< 1.367 — Not significant

Based on these results, it can be concluded that
the overall digit recognition performance after
optimization (under noise levels 0.3, 0.4, and
0.5) is significantly better than that before op-
timization (under noise level 0.2). Within the
optimized group, the recognition performance
under noise level 0.3 differs significantly from
that under 0.5, while no significant differences
are observed between noise levels 0.3 and 0.4,
or between 0.4 and 0.5. These statistical test re-
sults further demonstrate that the Artificial Fish
Swarm Algorithm, as an optimization tool, has
effectively improved the overall performance
of the discrete Hopfield neural network and
substantially enhanced the accuracy of digit
recognition.

Different Optimization Algorithms

The simulation results show that the Artificial
Fish Swarm Algorithm (AFSA) can consis-
tently optimize the discrete Hopfield neural
network, achieving a recognition accuracy of
96% under a noise level of 0.5. To further val-
idate the superiority of the AFSA-HOP inte-
gration method, comparisons were made with
other optimization strategies, such as Genetic
Algorithm (GA) and Particle Swarm Optimi-
zation (PSO). Through experiments, it was
found that optimizing the model using genetic
algorithm and particle swarm optimization al-
gorithm cannot achieve digit recognition at a
noise level of 0.5, but the accuracy of digit rec-
ognition is higher at a noise level of 0.3. When
the noise level was set to 0.3, classification was
performed on the same digit dataset using in-
tegrated models based on three optimization al-
gorithms (including AFSA-HOP, GA-HOP, and
PSO-HOP). The digit recognition performance
of the AFSA-HOP method was compared to the
other methods, and the experimental results are
shown in Table 4.

As shown in Table 4, the discrete Hopfield neu-
ral network model optimized by the Artificial
Fish Swarm Algorithm (AFSA) achieves the
highest recognition accuracy in digit classifi-
cation. Specifically, when the noise is 0.3, the
AFSA-HOP model after 100 iterations is 3.3
percentage points higher than the GA-HOP
model after 300 iterations, and 2.5 percentage
points higher than the POS-HOP model after
150 iterations. This indicates that the proposed
AFSA-HOP integration method can effectively
reduce recognition errors under the same noise,
and as the noise increases, the advantages of
AFSA-HOP integration method will become
more apparent.
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Table 4. Comparison of Digit Recognition Performance for Different Models (Noise Level = 0.3).

Model Mean Recognition Accuracy (%)
AFSA-HOP (100 iterations) 97.5
GA-HOP (300 iterations) 94.2
POS-HOP (150 iterations) 95.0

5. Conclusion

This paper presents a digital recognition meth-
od based on the Artificial Fish Swarm Algo-
rithm optimized Discrete Hopfield Neural Net-
work (AFSA-HOP integration method), which
effectively addresses the issue of the Discrete
Hopfield Network getting trapped in local opti-
ma during associative memory. The traditional
Hopfield Neural Network fails to effectively
recognize digits under a noise intensity of 0.2.
However, by first optimizing the weight and
threshold parameters of the Discrete Hopfield
Network using the Artificial Fish Swarm Algo-
rithm, and then training and testing the network,
high signal-to-noise ratio digital recognition is
achieved. In addition to correctly recognizing
the digits under noise intensities of 0.2 and
0.3, the method still performs well under noise
intensities of 0.4 and 0.5. Simulation results
show that this method achieves better recogni-
tion performance, significantly outperforming
the traditional Hopfield neural networks, GA
optimized Hopfield neural networks and POS
optimized Hopfield neural networks. This in-
novation is not only reflected in the algorithm
design, where the Artificial Fish Swarm Algo-
rithm is integrated with the Hopfield Network,
but also in the construction of a complete dig-
ital recognition optimization framework, in-
cluding systematic processes such as data pre-
processing, network initialization, parameter
optimization, and performance testing. Future
research could further explore improvements to
the performance of the Artificial Fish Swarm
Algorithm or combine it with other optimiza-
tion algorithms to further enhance the efficien-
cy and recognition accuracy of the AFSA-HOP
integration method. The AFSA-HOP method
provides a new technical pathway for digital
recognition in complex environments, and its

core concept can be extended to other pattern
recognition fields such as license plate recog-
nition and invoice processing, offering signif-
icant theoretical value and broad application
prospects.
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