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To solve the problems that the weights and thresh-
olds of discrete Hopfield neural networks are easy to 
fall into local optima and have insufficient anti-noise 
ability in digit recognition, a digit recognition method 
based on discrete Hopfield neural network is proposed, 
which is optimized by fish swarm algorithm and called 
AFSA-HOP integration method. The parameters of 
the discrete Hopfield neural network are optimized by 
using AFSA's powerful global search ability, and the 
recognition accuracy of the Hopfield neural network is 
taken as the fitness function. This allows the Hopfield 
neural network to maintain a high associative success 
rate even under high noise-to-signal ratios. Computer 
simulation experiments show that while the recogni-
tion performance of the traditional Hopfield neural 
network significantly deteriorates when the noise 
intensity is 0.2, the AFSA-HOP method maintains a 
high recognition accuracy even at noise intensities of 
0.4 and 0.5, demonstrating superior digital recogni-
tion performance. This method provides a robust new 
approach for digital recognition and could be further 
extended in future applications by integrating other 
optimization algorithms.

ACM CCS (2012) Classification: Computing meth-
odologies → Machine learning → Machine learning 
approaches → Neural networks

Keywords: digit recognition, artificial fish swarm al-
gorithm, Hopfield neural network

1.	Introduction

In daily life, we often encounter recognition 
challenges involving noisy characters, such as 
the vehicle license plate character recognition 
problem in intelligent transportation systems 
[1][2]. Due to factors like exposure to wind, 

sunlight, sudden lighting changes, and differ-
ences in plate color, the accurate recognition of 
license plate characters becomes difficult [3][4]. 
In many existing models, the presence of addi-
tional noise in the input leads to a decrease in the 
recognition system's accuracy, often resulting 
in incorrect character predictions. Therefore, 
extracting complete character information from 
noisy information is a key point in the field of 
character recognition [5]. As an important com-
ponent of the character recognition research, 
digit recognition holds significant application 
value not only in traffic management but also 
in fields such as postal services and commercial 
bill management [6][7]. Currently, numerous 
methods have been proposed in the character 
recognition domain, such as BP neural network 
recognition [4][8], classifier fusion recognition 
[9], and fuzzy recognition [10]. However, tradi-
tional digit recognition methods often struggle 
to accurately recognize digits when confronted 
with interference. The discrete Hopfield neu-
ral network mimics the memory mechanism of 
biological neural networks through a structure 
and learning method distinct from that of hier-
archical neural networks [11], and has achieved 
relatively satisfactory results in digit recogni-
tion applications [12].
Although discrete Hopfield neural networks 
have been widely applied in the field of dig-
it recognition, traditional Hopfield neural net-
works often struggle to reach a true steady state 
(with some pseudo-stable points present), and 
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the network weights and thresholds are prone 
to falling into local optima during digit rec-
ognition. This leads to suboptimal recognition 
results, especially under high noise-to-signal 
ratios [13]. It is worth noting that this limita-
tion does not exist in isolation, but is closely 
related to the dynamic characteristics of the net-
work structure itself, that is, the design of the 
energy function makes the system possible to 
contain multiple local energy minima. In order 
to break through this bottleneck, scholars have 
explored a variety of optimization paths that 
combine meta heuristic algorithm with Hop-
field network in recent years. Related research 
has shown that combining metaheuristic algo-
rithms with discrete Hopfield neural networks 
can further enhance the associative memory 
capability of the network, significantly improv-
ing the application effectiveness and digit rec-
ognition accuracy of Hopfield network [13-15]. 
Common meta-heuristic algorithms, such as 
Genetic Algorithm (GA), Simulated Anneal-
ing Algorithm (SA), Tabu Search Algorithm 
(TS), Particle Swarm Optimization (PSO), and 
Ant Colony Optimization (ACO) [16][17], are 
distinguished by their global search capabil-
ities, which set them apart from conventional 
algorithms. However, the existing heuristic op-
timization methods still face the challenge of 
algorithm adaptability. Among them, although 
genetic algorithm has coding flexibility, its se-
lection pressure is easy to lead to premature loss 
of population diversity and lead to "premature 
convergence" [18]. The temperature control 
parameters of simulated annealing algorithm 
need to be carefully adjusted, and the search 
efficiency is restricted by the cooling scheme 
[15][19]. The particle position updating mecha-
nism of particle swarm optimization in discrete 
space has natural limitations [20]. Ant colony 
algorithm is easy to fall into search stagnation 
because of pheromone update mechanism [21]. 
These defects weaken the ability of the algo-
rithm to explore the weight space of Hopfield 
network to varying degrees.
As a result, researchers have been seeking more 
ideal optimization algorithms, and the Artifi-
cial Fish Swarm Algorithm (AFSA) has grad-
ually emerged as a new highlight in the field 
of swarm intelligence optimization algorithms 
[22]. The advantages of this algorithm are ob-
vious, and its design characteristics are highly 

consistent with the optimization requirements 
of discrete Hopfield networks. First, the bion-
ic behavior mechanism gives the algorithm a 
strong ability to jump out of local minima and 
effectively avoid the interference of pseudo-sta-
ble points. Secondly, the parameter setting of 
the algorithm is relatively loose, and the sensi-
tivity to the initial value is low, which reduces 
the complexity of parameter adjustment. Fur-
thermore, the characteristics of parallel search 
based on multi-thread significantly improve 
the optimization efficiency, and it is especial-
ly suitable for dealing with discrete optimiza-
tion problems of high weight matrix [22][23]. 
More importantly, the discrete iterative rules of 
artificial fish swarm algorithm can directly act 
on the weight coding space of Hopfield neural 
network, thus avoiding the quantization error 
problem of continuous algorithm. Therefore, 
this paper proposes a discrete Hopfield neural 
network digit recognition method optimized by 
the Artificial Fish Swarm Algorithm. By lever-
aging the strengths and powerful global search 
ability of AFSA, the associative memory steady 
state of the Hopfield network is optimized, en-
abling the recognition patterns to escape pseu-
do-stable points, thereby maintaining a higher 
associative success rate under high noise-to-
signal ratios. Simulation experiments demon-
strate the effectiveness of this method.

2.	Algorithm Principles

2.1.	Discrete Hopfield Neural Network

The Discrete Hopfield Neural Network (DHNN) 
is an important feedback-type network struc-
ture in the field of artificial neural networks. 
This network model has demonstrated signifi-
cant application value in various fields such as 
optimization computation, pattern recognition, 
and intelligent control. As a typical recurrent 
neural network, DHNN effectively simulates 
the dynamic behavior of complex systems by 
introducing the concept of an energy function.
From the perspective of network topology, 
DHNN has three key characteristics: First, the 
network adopts a fully connected architecture, 
where each processing unit is connected to ev-
ery other unit. Second, the connections in the 
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4.	 Compute the output vi(t + 1) of neuron i, 
while the outputs of the other neurons in 
the network remain unchanged.

5.	 Check if the network has reached a sta-
ble state. If it has reached a stable state or 
meets the given conditions, the process 
ends. Otherwise, go back to step 2 and 
continue.

The stable state of the network is defined as fol-
lows: if the network's state no longer changes 
after a certain time, the network is considered 
to be in a stable state.

v(t + ∆t) = v(t)     ∆t > 0               (2)

2.1.3.	 Network Stability

From the structure of the DHNN, it is evident 
that it is a multi-input, thresholded binary non-
linear dynamic system. In dynamic systems, a 
stable equilibrium state refers to that the sys-
tem's energy function continually decreasing 
during its motion, eventually reaching a mini-
mum value. The sufficient condition for the sta-
bility of the Hopfield network is: 
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,
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ij ji

w i j
w w i j
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When the weight coefficient matrix W is a sym-
metric matrix and the off-diagonal elements are 
zero, the network is stable. In this paper, the de-
sign method for the weight coefficient matrix 
utilizes the outer product method.
That is, for a given sample vector to be memo-
rized {t1, t 

2, ..., t 
N}, if the state of t 

k is +1 or -1, 
the learning of its connection weights can be 
performed using the "outer product rule," i.e.,

1
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=
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(4)

The steps for designing a discrete Hopfield net-
work using the outer product method are as fol-
lows.
Step 1.	 Calculate the weight coefficient ma-

trix according to the formula above, 
based on the sample vectors to be 
memorized {t1, t 

2, ..., t 
N}.

network have bidirectional symmetry. Finally, 
there are no self-feedback connections between 
the processing units. These unique structural 
features enable the network to exhibit distinct 
dynamic properties and maintain a stable oper-
ating state under specific conditions.

2.1.1.	 Network Structure

DHNN is a single-layer, binary output feedback 
network, in which every neuron has the same 
function. The outputs of the neurons are con-
nected to the inputs of other neurons, with no 
self-feedback at any node. As the input of the 
network, Layer 0 has no computing function, 
the 1st layer consists of neurons that perform 
the summation of the product of the input in-
formation and weight coefficients, and the re-
sulting sum is processed through a nonlinear 
function, f, to produce the output information.
The input is processed by the threshold function 
f, which is the sigmoid function, primarily used 
to reduce the input to two extreme values. If the 
output information of the neuron is greater than 
the threshold θ, the neuron's output is set to 1. If 
it is less than the threshold θ, the neuron's out-
put is set to -1. The threshold function is given 
by:

f (t) = (1 + e-t)-1                  (1)

2.1.2.	 Network Operation Mode

The Hopfield network operates based on its dy-
namics, where the process is the evolution of 
the neuron states. That is, starting from the ini-
tial state, the evolution follows the direction of 
"energy" (Lyapunov function) decreasing until 
it reaches a stable state. The stable state is con-
sidered the output of the network. In this pa-
per, the serial (asynchronous) operation mode 
is primarily selected. In this mode, at any given 
time t, only a specific neuron i changes, while 
the states of the other neurons remain the same. 
The steps of operation are as follows.
1.	 Initialize the network.
2.	 Randomly select a neuron i from the net-

work.
3.	 Compute the input ui(t) of the neuron i.
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Step 2.	 Let the test sample pi(i = 1, 2, ..., n) 
be the initial output values of the net-
work, , and set the number of itera-
tions.

Step 3.	 The formula for the iterative calcula-
tion is

1
( 1) ( )

N

i ij j
j

y k f w y
=

+ = ∑
          

(5)

Step 4.	 The iteration stops when the maxi-
mum number of iterations is reached 
or when the neuron output states re-
main unchanged. Otherwise, continue 
iterating in Step 3.

2.2.	Artificial Fish Swarm Algorithm

2.2.1.	Typical Behavioral Patterns of Artificial 
Fish Schools

The Artificial Fish Swarm Algorithm (AFSA) 
is a bio-inspired optimization algorithm based 
on swarm intelligence theory, first proposed by 
Dr. Xiao Lei Li in 2002 while studying swarm 
intelligence behavior. This algorithm simulates 
the collective foraging behavior of fish in na-
ture, establishing a complete intelligent opti-
mization framework. Compared to traditional 
optimization algorithms, the Artificial Fish 
Swarm Algorithm offers stronger robustness 
and global search capabilities, and is especially 
suitable for solving complex nonlinear optimi-
zation problems. Its unique self-organizing and 
self-adaptive characteristics give it significant 
advantages in fields such as function optimiza-
tion, combinatorial optimization, and parame-
ter identification.
The design inspiration for the Artificial Fish 
Swarm Algorithm stems from biologists' long-
term observation and study of fish group be-
haviors. In natural aquatic environments, fish 
schools tend to gather in areas with the most 
abundant nutrients, revealing an important char-
acteristic of swarm intelligence. The algorithm 
simulates three typical behavioral patterns of 
fish schools by establishing an individual mod-
el of artificial fish:

	● Foraging Behavior
Foraging behavior imitates the way fish schools 
search for food. It is based on random search-
ing, where the fish randomly selects a direction 
with more food and moves towards it. Let the 
position of the i-th artificial fish be Xi, and a 
new position Xj is randomly selected within the 
visual range of the i-th artificial fish:

Xj = Xi + Visual × rand             (6)

Here, rand is a random number within the range 
[0, 1]. In the case of a maximization problem, if 
Yi < Yj (similarly for a minimization problem), 
the fish will move one step in the direction of Yj:

ext j i
i

ij

x x
XN X rand Step

D
−

= + × ×
        

(7)

Dij represents the distance between the i-th and 
j-th artificial fish. If the above condition is not 
met, a new Xj is randomly selected, and the con-
dition is checked again. If after try-number at-
tempts the condition still does not hold, the fish 
will move one step in a random direction.

XNext = Xi + rand × Visual            (8)

	● Schooling Behavior
Let the position of the i-th artificial fish be Xi, 
and within its visual range, there are NF other 
artificial fish. The center of these neighbors is 
represented by Xc. If Yc / NF > δYi (where δ is 
the crowding coefficient), it indicates that the 
center position has enough food and is not too 
crowded. In this case, the i-th artificial fish will 
move one step towards the center position Xc.

ext c i
i

c i

x xXN X rand Step
x x
−

= + × ×
−         

(9)

	● Following Behavior
Following behavior involves moving one step 
towards a neighbor that has the highest food 
concentration among all its neighbors. Let the 
position of the i-th artificial fish be Xi, and the 
position of the neighbor be Xm, if Yc / NF > δYi 
(indicating that Xm has enough food around it 
and is not too crowded), then the i-th artificial 
fish will move one step towards Xm.

ext m i
i

ij

x xXN X rand Step
D
−

= + × ×
      

(10)
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	● Billboard

The billboard is used to record the best state of 
the artificial fish. After an artificial fish moves, 
its current state is compared with the state re-
corded on the billboard. If the current state is 
better than the one on the billboard, the bill-
board is updated with the current state. If it is 
not better, the state on the billboard remains 
unchanged. In this way, the state on the bill-

board will always reflect the best state of the 
fish swarm.

2.2.2.	Parameter Configuration of Artificial 
Fish Swarm Algorithm

To ensure the repeatability and operability of 
the algorithm, the specific parameter configura-
tion and description of the artificial fish swarm 
algorithm are shown in Table 1.

Table 1. Explanation of parameter configuration for artificial fish swarm algorithm.

Parameter 
Names Definition Description Value Range 

(10×10 Search Space) Example Value

Visual Range 
(Visual)

The maximum distance that artificial 
fish can perceive from other fish when 
foraging or gathering in groups.

10%-20% of the search 
space range (1 to 2) 1.2

Step size 
(Step)

The minimum distance unit for artificial 
fish during movement.

1%-5% of the search 
space range (0.1 to 0.5) 0.1 

Number of 
Fish (N)

The number of fish in artificial fish 
schools. 30 to 50 50

Crowd Factor 
(δ)

Used to control the degree of crowding 
when schools of fish gather, avoiding 
excessive aggregation that leads to local 
optima.

0.1 to 0.5 0.2

Maximum 
Iterations 
(Tmax)

The maximum number of iterations for 
the algorithm to run. 100 to 300 100

Behavior 
Weights  

(w1, w2, w3)

Used to balance the weights of Foraging 
behavior, Schooling behavior, Following 
behavior.

Normalize processing to 
satisfy w1 + w2 + w3 = 1

w1 = 0.3, w2 = 0.3,  
w3 = 0.4

Random 
Factor 
(Rand)

Used to introduce randomness and avoid 
the algorithm getting stuck in local 
optima.

Uniform distribution of 
random numbers R~U(0,1)
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3.	AFSA-HOP Integrated Method  
Design

This paper proposes a Discrete Hopfield Neural 
Network integration method optimized by the 
Artificial Fish Swarm Algorithm (AFSA-HOP 
integration method). This method significantly 
improves the accuracy and robustness of digi-
tal recognition in high-noise environments by 
innovatively combining the global optimiza-
tion capability of AFSA with the associative 
memory characteristics of the Hopfield Neural 
Network. In response to the issues of tradition-
al Hopfield Neural Networks, which are prone 
to falling into local optima and are sensitive 
to noise interference during digital recogni-
tion, the AFSA-HOP method fully leverages 
the three intelligent behavior mechanisms of 
the Artificial Fish Swarm Algorithm-forag-
ing, clustering, and chasing-to perform global 
optimization search on the weight matrix and 
threshold parameters of the Hopfield Neural 
Network. The recognition accuracy of the net-
work is used as the fitness function. This op-
timization strategy not only effectively avoids 
the network from getting stuck in local optima, 
but also ensures that the network maintains sta-
ble recognition performance under high noise 
levels, overcoming the limitation of traditional 
methods, where recognition accuracy decreases 
when noise intensity exceeds 0.2. The imple-
mentation steps of the AFSA-HOP integration 
method are as follows:
Step 1. Data Preprocessing
Collect a dataset containing multiple digit sam-
ples and convert each digit sample into a binary 
matrix form. For example, for the digits 0-9, 
create corresponding 10×10 (or other appropri-
ate size) matrices to represent each digit. The 
areas containing the digit are represented by 1, 
and the blank areas are represented by -1. Let 
the set of digit samples be S = {s1, s2, ..., sn}, 
where si represents the i-th digit sample, and its 
corresponding binary digit matrix is Mi.
Add varying levels of noise (random noise) to 
the digit sample matrices to simulate the inter-
ference encountered in practical applications. 
The noise addition can be implemented using 
the following formula: Mi' = Mi + Ni where Mi' 
is the matrix with added noise, and Ni is the 
noise matrix, with its elements following a cer-

tain probability distribution (e.g., normal distri-
bution).
Step 2. Hopfield Neural Network Initialization
Based on the characteristics of the digit sam-
ples, determine the number of neurons, con-
nection patterns, and other parameters for the 
Hopfield neural network. For example, if the 
input is a 10×10 digit matrix, the network must 
contain at least 100 neurons to represent a sin-
gle digit image. Let the number of neurons be 
N, the connection weight matrix be W ∈ N×N, 
and the threshold vector be θ ∈ N.
Randomly initialize the connection weights and 
thresholds between the neurons, ensuring that 
the weight matrix satisfies conditions such as 
symmetry to guarantee network stability. Spe-
cifically, Wij = Wji, and Wii = 0(i, j = 1, 2, ..., N).
Step 3. Artificial Fish Swarm Algorithm Opti-
mization

	● Define the Fitness Function
The recognition accuracy of the Hopfield neu-
ral network on noisy digit samples is used as 
the fitness function for the AFSA. Let the train-
ing set consist of m noisy digit samples. For the 
k-th weight and threshold combination (i.e., the 
k-th fish), its fitness function fk can be defined
as: ( )

1

1 ( )m k
k i ii

f I y t
m =

= ==∑  where, yi
(k) is the

recognition result of the k-th fish (i.e., the net-
work corresponding to the k-th combination of 
weights and thresholds) for the i-th sample, is 
the true label of the i-th sample, and I is the in-
dicator function, which equals 1 if the condition 
inside the parentheses is true, and 0 otherwise. 
This means that the higher the fitness value, the 
better the network's recognition performance 
for that digit.

	● Artificial Fish Swarm Algorithm Iterative 
Optimization

Foraging Behavior: For each fish in the swarm 
(i.e., each weight and threshold combination), a 
random search for a new position (new weight 
and threshold combination) is conducted within 
its neighborhood, and the fitness of the new po-
sition is computed. If the fitness of the new po-
sition is better than that of the current position, 
the fish moves to the new position; otherwise, 
it continues searching within the neighbor-
hood. Let the current position of the k-th fish 
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be ωk = (ωk1, ωk2, ..., ωkN) and θk = (θk1, θk2, ..., 
θkN), and a new position in its neighborhood be 
ω'k = (ω'k1, ω'k2, ..., ω'kN) and θ'k = (θ'k1, θ'k2, ..., 
θ'kN). If f (ω'k, θ'k) > f (ωk, θk), then update ωk = 
ω'k and θk = θ'k.
Foraging behavior: For each fish in the swarm 
(i.e., each combination of weights and thresh-
olds), a new position (new combination of 
weights and thresholds) is randomly searched 
within its neighborhood, and the fitness of the 
new position is evaluated. If the fitness of the 
new position is better than the current position, 
the fish moves to the new position; otherwise, 
it continues to search within the neighborhood. 
Let the current position of the k-th fish be de-
noted as ωk = (ωk1, ωk2, ..., ωkN) and θk = (θk1, 
θk2, ..., θkN), and a new position within its neigh-
borhood as ω'k = (ω'k1, ω'k2, ..., ω'kN) and θ'k = 
(θ'k1, θ'k2, ..., θ'kN). If f (ω'k, θ'k) > f (ωk, θk), then 
update ωk = ω'k and θk = θ'k.
Swarming behavior: Each fish moves a certain 
distance toward the center of the swarm to fa-
cilitate aggregation. The center of the swarm 
is determined based on the positions of all the 
fish. Let the center of the swarm be denoted as   
ω and θ.The update formula for the k-th fish is 
given by: ωk = ωk + r1(ω - ωk), θk = θk + r1(θ 
- θk), where r1 is a random number within the 
range [0, 1].
Following behavior: Each fish moves a certain 
distance toward the position of the fish in the 
swarm with the highest fitness (i.e., the highest 
recognition accuracy), in order to learn from the 
optimal individual's behavior. Let the position 
of the fish with the highest fitness be denoted as 
ωbest and θbest. The update formula for the k-th 
fish is given by: ωk = ωk + r2(ωbest - ωk), θk = 
θk + r2(θbest - θk), where r2 is a random number 
within the range [0, 1].
Based on the results of the above three be-
haviors, the position (weights and thresholds) 
of each fish is updated, thereby enabling the 
swarm to search and optimize within the weight 
space.

	● Convergence Condition
Set the convergence conditions. If the maxi-
mum number of iterations is reached, the fit-
ness function value will no longer change sig-
nificantly. Once the convergence condition is 
met, the iteration of the swarm algorithm is 

stopped, and the optimized weight values ω* 
and θ* are obtained.
Step 4. Hopfield Neural Network Training and 
Testing
The optimized weights are applied to the Hop-
field neural network, using digit samples with 
added noise as the training set. During the 
training process, the network gradually learns 
the features and patterns of the digits by con-
tinuously adjusting the states of the neurons. 
Let the training set consist of p samples. For the 
j-th sample xj, the output of the network is yi. 
The neurons' states are adjusted by minimizing
the loss function ,

1
( )p

j jj
L l y t

=
= ∑ , where l rep-

resents the loss function, and tj is the true label 
of the sample.
Using digit samples with different noise inten-
sities as the test set, these samples are input 
into the trained Hopfield neural network, and 
the network's output is observed. If the network 
can correctly recognize the input samples as the 
corresponding digits, it indicates that the net-
work possesses good digit recognition ability. 
Let the test set consist of q samples. For the i-th 
sample x'i, the network's output is y'i. If y'i == 
t'i (where t'i is the true label of the sample), the 
recognition is correct. By calculating the ratio 
of correctly recognized samples to the total 
number of test samples, the network's recogni-
tion accuracy can be obtained.
Through the above steps, the AFSA-HOP in-
tegration method establishes a relatively com-
plete digital recognition optimization frame-
work. This method innovatively combines the 
optimization mechanism of AFSA with the 
memory characteristics of Hopfield Neural 
Network, proposing a new solution approach at 
the theoretical level. In the specific implemen-
tation process, the method constructs a multi-
dimensional optimization search space for the 
network weights and threshold values through 
the three behavioral mechanisms of the AFSA 
(foraging, clustering, and chasing). In terms of 
algorithm design, recognition accuracy is used 
as the fitness function, directly linking the op-
timization objective with the actual recognition 
performance. In terms of the implementation 
process, the method first completes the prepro-
cessing of the digital samples and noise simula-
tion, then initializes the network structure, fol-
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lowed by parameter optimization search using 
the AFSA, and finally applies the optimization 
results to network training. This systematic op-
timization strategy provides a complete techni-
cal path for improving the accuracy and robust-
ness of digital recognition.

4.	Simulation Experiments

4.1.	Digital Recognition Simulation 
Experiment Based on Traditional 
Hopfield Neural Network

4.1.1.	Sample Construction and Testing

In digital recognition research, the Discrete 
Hopfield Neural Network has become an im-
portant research subject due to its unique as-
sociative memory capability. This study first 
constructs a standardized digital sample library 
containing 10 categories of digits, from 0 to 9, 
with each digit represented by a 10×10 pixel 
matrix. In the sample preprocessing phase, im-
age normalization is applied to ensure uniform 
size, and an adaptive thresholding algorithm is 
used to achieve precise binarization. The digit 
stroke regions are set to 1, and the background 
is set to -1, forming a standardized network in-

put format. By constructing a dataset to design 
a digital dot matrix, the dot matrix designs for 
number 4 and number 5 are shown in Figure 1 
and Figure 2.
The dot matrix of number 4 is: 
array_four = [-1 1 1 -1 -1 -1 -1 1 1 -1; -1 1 1 
-1 -1 -1 -1 1 1 -1; -1 1 1 -1 -1 -1 -1 1 1 -1; 
-1 1 1 -1 -1 -1 -1 1 1 -1; -1 1 1 -1 -1 -1 -1 
1 1 -1;-1 1 1 1 1 1 1 1 1 -1; -1 1 1 1 1 1 1 1 1 
-1;-1 -1 -1 -1 -1 -1 -1 1 1 -1; -1 -1 -1 -1 
-1 -1 -1 1 1 -1; -1 -1 -1 -1 -1 -1 -1 1 1 -1].
The dot matrix of number 5 is: 
array_five = [-1 1 1 1 1 1 1 1 1 -1; -1 1 1 1 1 
1 1 1 1 -1; -1 1 1 -1 -1 -1 -1 -1 -1 -1; -1 1 
1 -1 -1 -1 -1 -1 -1 -1; -1 1 1 1 1 1 1 1 1 -1; 
-1 1 1 1 1 1 1 1 1 -1; -1 -1 -1 -1 -1 -1 -1 1 1 
-1; -1 1 1 1 1 1 1 1 1 -1; -1 1 1 1 1 1 1 1 1 -1].
Network training employs the classical out-
er-product method to calculate the weight ma-
trix, strictly ensuring the symmetry and stabil-
ity of the network. During the training process, 
each digit sample is encoded as a stable state of 
the network, allowing the network to accurately 
memorize these digit patterns. To comprehen-
sively evaluate the network's performance, the 
study designs an extended test set containing 
digits with different fonts and slight deforma-
tions to test the network's generalization ability. 
This multi-level training scheme ensures both 

Figure 1. Dot Matrix of Number 4. Figure 2. Dot Matrix of Number 5.
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the network's ability to recognize standard dig-
its and its adaptability to digit variations.
In the robustness testing phase, a rigorous noise 
simulation scheme was designed. A probabi-
listic pixel-flipping method is used to set five 
noise gradients ranging from 0.1 to 0.5, with 
100 test samples generated for each gradient. 
This progressive noise simulation realistically 
reflects various interference situations in prac-
tical applications, including device acquisi-
tion noise, transmission interference, lighting 
changes, and other factors. During testing, not 
only the final recognition results are recorded, 
but also the network’s dynamic convergence 
process is closely monitored, including con-
vergence steps, stable states, and other key in-
dicators. Through this comprehensive testing 
approach, the performance characteristics of 
the network under different noise conditions 
can be thoroughly analyzed, providing reliable 
data for algorithm improvement. All test data 
are collected through a professional simulation 
platform and displayed using various visualiza-
tion techniques to ensure the accuracy and in-
terpretability of the research results.

4.1.2.	 Analysis of Experimental Results

Through statistical analysis of extensive exper-
imental data, it was found that the network's 
recognition performance was optimal when the 
noise intensity was 0.1 (i.e., 10% of the digi-
tal dot matrix position values were altered). 
This indicates that under slight noise interfer-
ence, the network is able to effectively utilize 
the learned digital features to accurately recog-
nize and classify digits. However, as the noise 
intensity increases, the network’s recognition 
performance declines significantly, as stronger 
noise disrupts the original features of the digital 
image, making it difficult for the network to ac-
curately extract and match digit patterns.
Taking the digits 4 and 5 as examples, the rec-
ognition results at a noise intensity of 0.2 are 
shown in Figure 3. From Figure 3, it is evident 
that the Hopfield neural network struggles to 
recognize the digits accurately under these con-
ditions (the accuracy is 85%). A closer exam-
ination of the 10×10 matrix structure reveals 
that there are a total of 200 possible pattern 
combinations. However, in the digit recogni-
tion task, the network is expected to accurately 

Figure 3. Digit Recognition Results at a Noise Intensity of 0.2  
(Traditional Hopfield Neural Network).
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cifically, it involves determining the optimal 
weights and thresholds for the network, there-
by optimizing the performance of the Hopfield 
neural network and enhancing its noise resis-
tance and recognition accuracy.

4.2.1.	Convergence Analysis of the Artificial 
Fish Swarm Algorithm

To verify the effectiveness of the AFSA-HOP 
integrated method, this experiment uses MAT-
LAB for simulation. Convergence analysis is 
conducted based on the best fitness iteration 
curves of the Artificial Fish Swarm Algorithm 
under different noise intensities.
Noise Intensity of 0.3: The maximum number 
of iterations is set to 100, and the obtained opti-
mal fitness iteration curve is as shown in Figure 4 
(taking number 4 and 5 as example). As can be 
seen from the figure, with the increase of itera-
tions, the Artificial Fish Swarm Algorithm grad-
ually converges, with the best fitness continuous-
ly improving. This indicates that the algorithm is 
continuously searching for a better combination 
of weights and thresholds, thereby enhancing the 
network's recognition performance.

recall only 10 specific patterns (corresponding 
to the steady states of digits 0-9). This means 
the network must search through a complex 
pattern space to identify the pattern that best 
matches the training samples. As noise inten-
sity increases, the difficulty of this task grows 
significantly, leading to a marked decrease in 
the network's recognition capability.

4.2.	Digital Recognition Simulation 
Experiment Based on the AFSA-HOP 
Integrated Method

In the traditional Hopfield neural network dig-
ital recognition simulation experiment, when 
the noise intensity is greater than or equal to 
0.2, the network's ability to accurately recog-
nize digits decreases significantly. This phe-
nomenon indicates that the traditional Hopfield 
neural network experiences poor recognition 
performance when subjected to noise interfer-
ence of a certain intensity. To address this issue, 
this paper proposes the AFSA-HOP integrated 
method, which aims to achieve accurate digit 
recognition through associative memory opti-
mization. The core of this method lies in using 
the AFSA to find the optimal individual. Spe-

Figure 4. Optimal Fitness Iteration Curve at Noise Intensity of 0.3.
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Noise Intensity of 0.4 and 0.5: The maximum 
number of iterations is set to 100, and the corre-
sponding best fitness iteration curve is shown in 
Figure 5 and Figure 6. Similarly, the algorithm 
shows a gradual convergence trend during the 

iterations, further demonstrating that the Artifi-
cial Fish Swarm Algorithm is capable of effec-
tively searching for the optimal solution even in 
a complex noise environment, providing strong 
support for accurate digit recognition.

Figure 5. Optimal Fitness Iteration Curve at Noise Intensity of 0.4.

Figure 6. Optimal Fitness Iteration Curve at Noise Intensity of 0.5.
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4.2.2.	 Analysis of Experimental Results

The optimized weight and threshold combina-
tions are applied to the discrete Hopfield neural 
network. Through training and testing with the 
Hopfield neural network, the output results of 
the network are observed. The simulation ex-
periments show that the Hopfield neural net-
work optimized by the Artificial Fish Swarm 
Algorithm (AFSA-HOP integrated method) 
not only correctly recognizes digits at a noise 
intensity of 0.3 but also performs well in digit 
recognition at a noise intensity of 0.4 and 0.5. 
Taking digits 4 and 5 as examples, the digit rec-
ognition results at noise intensities of 0.3, 0.4 
and 0.5 are shown in Figures 7, Figures 8 and 
Figures 9,with accuracy rates of 97.5%, 96.5%, 
and 96%, respectively.
The systematic experimental results clearly 
demonstrate that the AFSA-HOP integration 
method exhibits multiple performance advan-
tages in digital recognition tasks. Compared to 
the traditional Hopfield Neural Network, this 
innovative method shows greater robustness 
and stability when dealing with noise interfer-

ence of varying intensities. Specifically, in a 
test environment with a noise intensity of 0.2, 
the recognition performance of the traditional 
method significantly decreases, while the AF-
SA-HOP method still maintains good recog-
nition performance. When the noise intensity 
increases to 0.4 and 0.5, the traditional method 
essentially fails, but the AFSA-HOP method 
continues to maintain excellent recognition per-
formance. Experimental data indicate that the 
weight matrix of the Hopfield Neural Network, 
optimized by the Artificial Fish Swarm Algo-
rithm, exhibits a more reasonable distribution, 
and the threshold parameters are configured in 
a more optimal state. These optimizations en-
able the network to more accurately identify 
the essential features of the digits when facing 
noise interference, effectively suppressing the 
negative impacts of noise. The Artificial Fish 
Swarm Algorithm, as an optimization tool, 
successfully finds the optimal combination of 
weight and threshold values for the Hopfield 
Neural Network, thus optimizing the network's 
performance.

Figure 7. Digit Recognition Results at Noise Intensity of 0.3  
(AFSA-HOP Integrated Method).
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Figure 8. Digit Recognition Results at Noise Intensity of 0.4  
(AFSA-HOP Integrated Method).

Figure 9. Digit Recognition Results at Noise Intensity of 0.5  
(AFSA-HOP Integrated Method).
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4.2.3.	 Statistical Significance Test

In the numerical recognition experiments of 
discrete Hopfield neural networks, analysis of 
variance (ANOVA) is a powerful statistical tool 
that can be used to compare whether there are 
significant differences in recognition accuracy 
under multiple sets of noise intensities. In this 
experiment, a combination of ANOVA and post 
hoc testing (Tukey HSD) was used to verify the 
reliability of the performance improvement of 
the optimized model.

	● Research hypothesis
The purpose of analysis of variance (ANOVA) 
is to determine whether there is a significant 
difference in recognition accuracy under dif-
ferent levels of noise intensity. Therefore, this 
article proposes the following hypothesis:
1.	 Null hypothesis (H0): The mean of all 

groups is equal (i.e., noise intensity has no 
significant impact on recognition accura-
cy).

2.	 Alternative hypothesis (H1): At least one 
group has a mean that is different from the 
other groups (i.e., noise intensity has a sig-
nificant impact on recognition accuracy).

	● Single factor ANOVA
Through simulation experiments, the results of 
three experiments with noise levels of 0.2 (be-
fore fish swarm algorithm optimization), 0.3 
(after fish swarm algorithm optimization), 0.4 
(after fish swarm algorithm optimization), and 
0.5 (after fish swarm algorithm optimization) 
were used as the experimental data for single 
factor ANOVA, as shown in Table 2.

Statistical tests were conducted using one-way 
ANOVA, and the relevant indicators for sta-
tistical tests in analysis of variance are shown 
in Table 3. From Table 3, it can be observed 
that, F = 419.515, Indicating significant dif-
ferences between groups; The p-value is 0.000 
(p < 0.05), therefore rejecting the null hypothe-
sis (H₀), indicating that at least one group has a 
mean different from the other groups.
The results of the one-way ANOVA indicate 
that at least one group mean differs significant-
ly from the others. However, this analysis does 
not reveal which specific group pairs exhibit 
significant differences. Therefore, a post hoc 
test is required, specifically Tukey's Honestly 
Significant Difference Test (Tukey HSD).
Step 1.	 Calculate the mean square error 

(MSE). From Table 3, the with-
in-group mean square error is ob-
tained as MSE = 0.229.

Step 2.	 Calculate the critical value for Tukey 
HSD.

2
MSEHSD q= ×

              
(11)

Here, the Tukey critical value is determined by 
referring to the studentized range distribution 
table (α = 0.05, number of groups k = 4, and 
within-group degrees of freedom df_within = 
8), yielding q ≈ 4.04. Based on this value, the 
HSD critical value is then calculated.

0.2294.04 1.367
2

HSD = × =
           

(12)

Table 2. Experimental Data for One-Way ANOVA.

Noise Intensity Recognition  
Accuracy 1 (%)

Recognition  
Accuracy 2 (%)

Recognition  
Accuracy 3 (%)

0.2 (Before Optimization) 85 86 85

0.3 (After Optimization) 97.5 97 98

0.4 (After Optimization) 96.5 96 97

0.5 (After Optimization) 96 95.5 95.5
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Step 3.	 Calculate the mean differences be-
tween each pair of groups. By com-
paring the mean differences among 
all group pairs, it can be determined 
whether they exceed the HSD critical 
value.

1.	 Noise 0.2 (before optimization) vs. Noise 
0.3 (after optimization): |85.3 - 97.5| = 
12.2 > 1.367 → Significant

2.	 Noise 0.2 (before optimization) vs. Noise 
0.4 (after optimization): |85.3 - 96.5| = 
11.2 > 1.367 → Significant

3.	 Noise 0.2 (before optimization) vs. Noise 
0.5 (after optimization): |85.3 - 95.7| = 
10.4 > 1.367 → Significant

4.	 Noise 0.3 (after optimization) vs. Noise 
0.4 (after optimization): |97.5 - 96.5| = 1 
< 1.367 → Not significant

5.	 Noise 0.3 (after optimization) vs. Noise 
0.5 (after optimization): |97.5 - 95.7| = 1.8 
> 1.367 → Significant

6.	 Noise 0.4 (after optimization) vs. Noise 
0.5 (after optimization): |96.5 - 95.7| = 0.8 
< 1.367 → Not significant

Based on these results, it can be concluded that 
the overall digit recognition performance after 
optimization (under noise levels 0.3, 0.4, and 
0.5) is significantly better than that before op-
timization (under noise level 0.2). Within the 
optimized group, the recognition performance 
under noise level 0.3 differs significantly from 
that under 0.5, while no significant differences 
are observed between noise levels 0.3 and 0.4, 
or between 0.4 and 0.5. These statistical test re-
sults further demonstrate that the Artificial Fish 
Swarm Algorithm, as an optimization tool, has 
effectively improved the overall performance 
of the discrete Hopfield neural network and 
substantially enhanced the accuracy of digit 
recognition.

4.2.4.	Comparison of Models Based on 
Different Optimization Algorithms

The simulation results show that the Artificial 
Fish Swarm Algorithm (AFSA) can consis-
tently optimize the discrete Hopfield neural 
network, achieving a recognition accuracy of 
96% under a noise level of 0.5. To further val-
idate the superiority of the AFSA-HOP inte-
gration method, comparisons were made with 
other optimization strategies, such as Genetic 
Algorithm (GA) and Particle Swarm Optimi-
zation (PSO). Through experiments, it was 
found that optimizing the model using genetic 
algorithm and particle swarm optimization al-
gorithm cannot achieve digit recognition at a 
noise level of 0.5, but the accuracy of digit rec-
ognition is higher at a noise level of 0.3. When 
the noise level was set to 0.3, classification was 
performed on the same digit dataset using in-
tegrated models based on three optimization al-
gorithms (including AFSA-HOP, GA-HOP, and 
PSO-HOP). The digit recognition performance 
of the AFSA-HOP method was compared to the 
other methods, and the experimental results are 
shown in Table 4.
As shown in Table 4, the discrete Hopfield neu-
ral network model optimized by the Artificial 
Fish Swarm Algorithm (AFSA) achieves the 
highest recognition accuracy in digit classifi-
cation. Specifically, when the noise is 0.3, the 
AFSA-HOP model after 100 iterations is 3.3 
percentage points higher than the GA-HOP 
model after 300 iterations, and 2.5 percentage 
points higher than the POS-HOP model after 
150 iterations. This indicates that the proposed 
AFSA-HOP integration method can effectively 
reduce recognition errors under the same noise, 
and as the noise increases, the advantages of 
AFSA-HOP integration method will become 
more apparent.

Table 3. Statistical Indicators for ANOVA Significance Testing.

Source of Variation SS df MSE F P-value F crit

Between Groups 288.417 3 96.139 419.515 0.000 4.066

Within Groups 1.833 8 0.229
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5.	Conclusion
This paper presents a digital recognition meth-
od based on the Artificial Fish Swarm Algo-
rithm optimized Discrete Hopfield Neural Net-
work (AFSA-HOP integration method), which 
effectively addresses the issue of the Discrete 
Hopfield Network getting trapped in local opti-
ma during associative memory. The traditional 
Hopfield Neural Network fails to effectively 
recognize digits under a noise intensity of 0.2. 
However, by first optimizing the weight and 
threshold parameters of the Discrete Hopfield 
Network using the Artificial Fish Swarm Algo-
rithm, and then training and testing the network, 
high signal-to-noise ratio digital recognition is 
achieved. In addition to correctly recognizing 
the digits under noise intensities of 0.2 and 
0.3, the method still performs well under noise 
intensities of 0.4 and 0.5. Simulation results 
show that this method achieves better recogni-
tion performance, significantly outperforming 
the traditional Hopfield neural networks, GA 
optimized Hopfield neural networks and POS 
optimized Hopfield neural networks. This in-
novation is not only reflected in the algorithm 
design, where the Artificial Fish Swarm Algo-
rithm is integrated with the Hopfield Network, 
but also in the construction of a complete dig-
ital recognition optimization framework, in-
cluding systematic processes such as data pre-
processing, network initialization, parameter 
optimization, and performance testing. Future 
research could further explore improvements to 
the performance of the Artificial Fish Swarm 
Algorithm or combine it with other optimiza-
tion algorithms to further enhance the efficien-
cy and recognition accuracy of the AFSA-HOP 
integration method. The AFSA-HOP method 
provides a new technical pathway for digital 
recognition in complex environments, and its 

Table 4. Comparison of Digit Recognition Performance for Different Models (Noise Level = 0.3).

Model Mean Recognition Accuracy (%)

AFSA-HOP (100 iterations) 97.5

GA-HOP (300 iterations) 94.2

POS-HOP (150 iterations) 95.0

core concept can be extended to other pattern 
recognition fields such as license plate recog-
nition and invoice processing, offering signif-
icant theoretical value and broad application 
prospects.
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