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Accurate prediction of product lifecycle stages is
crucial for enhancing inventory turnover and strate-
gic planning in the tobacco industry. This paper pro-
poses an intelligent prediction model that integrates
Convolutional Neural Networks (CNN) and Gated
Recurrent Units (GRU), further optimized by an Im-
proved Grey Wolf Optimizer (IGWO). The model
fuses multi-source enterprise data—including sales
trends, IoT logistics information, environmental
conditions, and inventory records—to dynamically
forecast lifecycle stages and remaining durations.
The dataset comprises 180,000 labeled samples col-
lected from real-world tobacco enterprise operations,
encompassing multi-source variables such as sales
volume, inventory changes, logistics routes, and
environmental feedback. Experimental evaluations
based on this dataset demonstrate that the proposed
IGWO-CNN-GRU model achieves a Mean Squared
Error (MSE) of 2.13, a Mean Absolute Error (MAE)
of 1.17, and an R? of 0.932, significantly outper-
forming baseline models. In practical deployment
simulations, the prediction deviation is limited to +5
days, improving allocation efficiency and reducing
inventory risks. The approach provides a robust and
adaptable solution for full-lifecycle management in
tobacco supply chains, offering practical value for
intelligent production and market deployment strat-
egies.
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1. Introduction

With the accelerated layout of the tobacco in-
dustry within the framework of the "industrial
Internet plus+" and digital transformation strat-
egy, full life cycle management has gradually
become the key means for enterprises to im-
prove production efficiency, reduce inventory
risk, and develop precision marketing strate-
gies [1, 2]. In the context of increasingly di-
verse product types and personalized consum-
er behavior, achieving dynamic identification
and trend prediction of tobacco products from
the introduction stage, growth stage, maturity
stage, to decline stage is of great significance
for enterprise intelligent supply chain regu-
lation and market decision-making [3, 4]. At
present, some tobacco companies have made
attempts to build time series forecasting sys-
tems. These systems are based on sales and
inventory data. However, these methods come
with several limitations. Firstly, they often rely
on one-dimensional data. Secondly, they lack
the ability to handle complex local fluctuations
and long-term dependencies. Moreover, in ac-
tual operations, the market data has multiple
sources, is heterogeneous, and has inconsistent
schedules. As a result, these methods find it
difficult to adapt to market changes. Especial-
ly after the deployment of IoT sensing devices
covering warehousing, transportation, sales,
and other links in enterprises, the large amount
of real-time information collected has not been
effectively integrated into the prediction model,
which restricts its comprehensive characteriza-
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tion and accurate prediction of lifecycle laws
[5, 6]. For instance, traditional models such
as Autoregressive Integrated Moving Average
(ARIMA) and rule-based inventory prediction
systems are widely used. Similarly, classical
Long Short-Term Memory (LSTM) based fore-
casting frameworks, while capable of handling
sequential data, are generally designed around
single-variable inputs such as sales history and
fail to account for heterogeneous signals from
logistics delays or warehouse conditions. These
models also struggle to align asynchronous
inputs — such as real-time IoT feedback with
static product metadata, leading to inaccurate
predictions during abrupt lifecycle transitions.

Based on this, in this work, a Hybrid Neural
Network (HNN) is developed to improve the
predictive ability of tobacco product lifecycle.
This model integrates Convolutional Neural
Networks and Gated Recurrent Units (CNN-
GRU) to form a multidimensional prediction
structure of "local trends + long-term memory".
Meanwhile, the Improved Grey Wolf Optimiz-
er (IGWO) algorithm is introduced to achieve
global adaptive tuning of hyperparameters in
the CNN-GRU. Finally, a CNN-GRU optimi-
zation based on IGWO (IGWO-CNN-GRU) is
proposed. The innovation of the research lies
in systematically introducing multi-source het-
erogeneous information collected by enterprise
IoT into lifecycle modeling, breaking through
the traditional method's reliance on a single
sales sequence. Additionally, a lifecycle stage
label construction method based on Dynamic
Time Warping (DTW) is designed to achieve
stage alignment and asynchronous evolution-
ary modeling in supervised learning. In addi-
tion, the study introduces IGWO for dynamic
hyper-parameter optimization of CNN-GRU
structure, integrating adaptive weights and
elite retention mechanism, which helps to im-
prove the stability and global search ability of
the model. The research findings provide a sol-
id theoretical foundation and a set of well-de-
fined algorithmic tools for the tobacco indus-
try. These resources are particularly applicable
in key business contexts, including intelligent
production, precision delivery, and inventory
optimization. Given their systematic design
and empirical validation, the findings exhibit
significant potential for widespread application
and dissemination within the industry.

2. Literature Review

In recent years, HNN models have become
an important direction in product lifecycle
prediction research due to their advantages in
complex time series modeling and high-di-
mensional feature fusion. Wen et al. proposed
a multi-feature fusion model that combines
LSTM with an improved artificial bee colony
algorithm, successfully improving the general-
ization ability of text classification tasks. This
study demonstrated the feasibility of collabora-
tive design between neural networks and intel-
ligent optimization algorithms in multi-source
data modeling [7]. Similarly, Liu et al. built a
hybrid structure based on CNN and LSTM for
financial crisis prediction tasks, and the results
showed that the model exhibited superiority in
extracting local features and temporal depen-
dencies [8]. Liu ef al. introduced an intelligent
scheduling optimization method based on deep
learning for production scheduling optimiza-
tion problems, which utilized deep networks to
learn dynamic laws in the production process
and improve resource utilization efficiency
[9]. Raska et al. proposed a hybrid modeling
scheme for manufacturing process optimiza-
tion by combining adaptive neural networks
with discrete event simulation, which demon-
strated good adaptability and optimization
potential in practical industrial cases [10]. In
addition to the study of neural network struc-
tures, data acquisition and processing strate-
gies in lifecycle prediction are also receiving
increasing attention. Gligor et al. constructed
a co-simulation model for an enhanced smart
grid system, integrating physical and infor-
mation system data, effectively enhancing the
system's responsiveness to multi-source infor-
mation. This approach provided a technical ret-
erence for studying the introduction of IoT data
for lifecycle modeling [11].

The application of optimization algorithms in
deep models has also been a research hotspot
in recent years. Li et al. designed an ultra-short
term load forecasting model that integrated ex-
treme gradient boosting algorithm and bidirec-
tional GRU, and achieved accurate fitting of
complex time-series data through combinatorial
optimization [12]. Meanwhile, Montoya et al.
proposed a mathematical optimization strategy
for energy constrained IoT smart city scenarios
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to coordinate priority services and resource al-
location, which reflected the optimization mod-
eling capability for practical needs [13]. Within
the domain of recommendation systems, Yu et
al. introduced a news recommendation model
for multimedia online education scenarios by
combining graph neural networks and bat op-
timization algorithms. The performance im-
provement effect of the fusion optimization al-
gorithm on the model was verified in complex
multi-modal environments [14].

However, while these hybrid neural network
frameworks demonstrate potential in gener-
al sequence modeling or classification tasks,
they face several limitations when applied to
complex lifecycle prediction scenarios. For ex-
ample, Wen et al. [7] designed a multi-feature
fusion model using LSTM and an improved ar-
tificial bee colony algorithm, which performed
well in text classification. However, their ap-
proach mainly targets static text features and
lacks temporal sensitivity to evolving business
rhythms, making it unsuitable for real-time life-
cycle monitoring in fast-moving supply chains.
Similarly, Liu et al. [8] proposed a CNN-LSTM
hybrid for financial crisis prediction. Although
effective in fusing spatial and temporal pat-
terns, their model relied heavily on pre-struc-
tured financial indicators and did not consider
multi-source data dynamics like IoT logistics
or inventory feedback. Neither study account-
ed for the asynchronous and non-stationary na-
ture of product lifecycle signals in the tobacco
industry, where external disruptions (e.g., pol-
icy shifts, regional weather, or channel delays)
often lead to irregular and nonlinear transitions
between lifecycle stages.

In summary, existing research provides a rich
theoretical foundation and technical path in the
construction of HNN structures, multi-source
information fusion, optimization algorithm
design, and application practice. However, in
the task of modeling the product lifecycle in
the tobacco industry, how to integrate [oT data
to build robust and business adaptable deep
learning models is still an urgent direction for
further exploration. To this end, a CNN-GRU
HNN model based on IGWO optimization was
developed, which integrates multi-source life-
cycle feature information to improve the pre-
diction accuracy of product lifecycle stages
and remaining time.

3. Research Methodology

3.1. Life Cycle Feature Extraction
and Modeling Based on Tobacco
Enterprise 10T Operation Data

A multidimensional feature extraction frame-
work based on IoT operational data has been
developed to address the issues of complex
data sources and significant temporal features
in product lifecycle prediction in the tobacco
industry [15, 16]. Based on the perception de-
vices deployed by enterprises in warehousing,
transportation, sales and other links, multi-
source information including sales sequences,
inventory changes, logistics paths, environ-
mental parameters and consumer feedback is
collected, and data preprocessing is completed
through timestamp alignment, format conver-
sion and noise removal [17-19]. The over-
all framework diagram of feature extraction
and lifecycle label construction is shown in
Figure 1.

Figure 1 shows the lifecycle feature extraction
and label construction process based on tobac-
co enterprise [oT operation data. This process
covers the production, circulation, and con-
sumption stages, collecting key data such as
sales sequences, inventory changes, logistics
paths, environmental parameters, and consum-
er feedback. After preprocessing, five core in-
dicators are extracted, namely sales volatility,
inventory turnover rate, lifecycle similarity
score, environmental interference factor, and
circulation path complexity. Finally, they cor-
respond to the lifecycle labeling system and
construct supervised learning samples. To fur-
ther reveal the core feature extraction logic, the
intermediate "feature engineering" step was
structured and refined, as shown in Figure 2.

Figure 2 shows the construction path of five
core features in lifecycle modeling. Sales vol-
atility reflects the magnitude of sales chang-
es of a product within a sliding window and
is used to identify market activity and stage
turning signals. Inventory turnover frequency
measures the number of inventory changes per
unit time and evaluates the efficiency of chan-
nel sales. The similarity of lifecycle stages is
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calculated using the DTW algorithm to deter-
mine the degree of matching between the ac-
tual sales sequence and the standard template,
which is used to identify the position of lifecy-
cle stages [20, 21]. Environmental interference
factors are integrated with temperature and
humidity fluctuations, transportation duration,
and regional characteristics to characterize the
impact of external conditions on the rhythm of
the lifecycle. The complexity of logistics paths
is based on extracting node hierarchy and tran-
sit frequency from the distribution network
graph to measure the stability of channel struc-
ture. The above features are normalized and
put into a deep model, which is trained with
lifecycle labels to augment the model's capa-
bility to identify stage features and transition
trends. DTW is a sequence alignment method
that can effectively handle nonlinear offset
problems [22, 23]. Assuming the actual sales
sequence is 4 = {a,, a,, ..., a,} and the standard
lifecycle template sequence is B = {b,, b,, ...,
b,}, a distance matrix is constructed as shown
in equation (1).

D(i,j)=a; - bj2 (1)

In equation (1), || || represents the Euclidean dis-
tance, which is used to measure the sales differ-
ence between two time points. D is the distance
matrix for n X m. Based on this, a cumulative
distance matrix y(i, j) is defined, and its recur-
sive relationship is shown in equation (2).

7(1_15])
y(@,j =1 (2)
7(1_1’]_1)

y(i, j) = D(, j) + min

The final distance of DTW is shown in equation

(3).
DTW (A, B) =[y(n,m) 3)

To further visualize the construction process
of similarity scores for lifecycle stages, this
study takes historical sales data of typical to-
bacco products as an example to draw the dy-
namic alignment process between actual sales
sequences and standard lifecycle templates, as
shown in Figure 3.

IoT operational data
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v
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Figure 1. Flow chart of feature extraction and label construction based on IoT data in lifecycle modeling.
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Figure 2. Structure diagram of feature engineering strategy in lifecycle modeling (Source from:
https://www.svgrepo.com).

Figure 3 shows the dynamic alignment process
between the lifecycle template and the actual
sales sequence. The blue curve in the figure rep-
resents the standard lifecycle template, which
reflects the sales evolution process of a typical
product from the introduction period, growth
period, maturity period to decline period. The
red curve represents the sales time series of a
certain tobacco product in the actual market,
with obvious nonlinear fluctuation characteris-
tics. The gray line between the two curves rep-
resents the optimal alignment path calculated
by DTW, which is the shortest cumulative path
selected from the two-dimensional distance
matrix. This alignment path offers a potential
solution to the inconsistency between sales se-
quences and lifecycle templates concerning cy-
cle length and stage rhythm, as it enables local
stretching or compression along the timeline.
DTW distance needs to be repeatedly calculated
on a large number of samples and standardized

to the [0, 1] interval for training supervised la-
bels, which improves the model's capability to
identify critical points in the lifecycle.

Standard
Lifecycle

Template - £ |

Sales

Time Period

Figure 3. Schematic diagram of dynamic alignment
between lifecycle template and actual sales curve.
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3.2. Construction of CNN-GRU for Life
Cycle Prediction

The multi-source feature extraction system con-
structed above can effectively reflect the sales
characteristics and environmental status of to-
bacco products at different stages of their life-
cycle. However, due to the strong local pattern
changes and long-term temporal dependencies
in the original data, traditional time series re-
gression models are difficult to balance feature
space expression ability and temporal modeling
depth, resulting in limited predictive perfor-
mance [24-26]. Based on this, an HNN mod-
el integrating CNN and GRU is designed for
product lifecycle state recognition and remain-
ing time prediction. The structure diagram of
the proposed CNN-GRU is shown in Figure 4.

Figure 4 shows the structure of the CNN-GRU
architecture. The input is a feature sequence
with multiple time steps, each step contain-
ing heterogeneous information from multiple
sources such as sales, inventory, logistics, and
environment. The convolution and pooling
module extracts temporal variation patterns
in local windows, identifies trends and abrupt
changes in lifecycle evolution, and uses pooling
operations for dimensionality reduction and ro-
bustness enhancement. The extracted local fea-
tures are fed into a multi-layer GRU structure to
model long-term dependencies, and the remain-
ing lifecycle time or stage classification results
are output through a fully connected layer [27,
28]. To further improve the predictive perfor-
mance of the model, IGWO is introduced for
hyperparameter tuning. Global search capabili-
ty is enhanced by introducing dynamic weights
and adaptive update strategies. Compared to

GWO's linear descent method, IGWO adopts
a nonlinear descent mechanism that balances
exploratory optimization in the early stages
with convergence stability in the later stages.
GWO is a global optimization method based
on swarm intelligence, which simulates track-
ing, encirclement, and attack behavior of grey
wolves during hunting. Compared to traditional
GWO algorithms, IGWO introduces nonlinear
convergence factors, adaptive inertia weights,
and fitness weighting mechanisms. This al-
gorithm can achieve a better balance between
global search and local convergence, which
helps to improve the efficiency and stability of
parameter tuning in high-dimensional complex
problems. The IGWO algorithm is suitable for
search tasks in deep neural networks with mul-
tiple parameters and non-convex loss functions
and can avoid getting stuck in local optima [29].
The formula for updating the dynamic conver-
gence factor is shown in equation (4).

a(0) =2-[1—[§n @)

In equation (4), a(¢) represents the convergence
control factor of the generation, ¢ represents the
max iteration count, and 7 represents the cur-
rent iteration count. IGWO introduces inertia
weights to update individual positions, as pre-
sented in equation (5).

X(t+D)=w-X()+

1 Q)

5(5(“ —A-D,+X ;= 4, -Dy+ Xy = 4,-D;)

In equation (5), X(f) represents the current posi-
tion of the gray wolf individual, X,, Xz, and X;
represent the three best fitness solutions in the
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Figure 4. Structure diagram of the CNN-GRU architecture.
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population, and w represents the inertia weight.
A, and C; are the behavior regulation vectors,
and the calculation is shown in equation (6).

A =2-a)-n, —a(t)
{Ck=2‘r2k,k:1,2,3 ©)

In equation (6), 7, and r,; are two independent,
uniformly distributed, random numbers. To
highlight the influence of outstanding individu-
als, IGWO introduces a fitness based weighting
mechanism to replace the traditional average
update method. The adaptive weight coefficient
fusion mechanism is presented in equation (7).

Xt+) =0 -X, +0,- X, +0,- X (7

In equation (7), w; is the weight adaptively al-
located based on the current individual fitness.
X', X's, and X'; are the guidance positions af-
ter weighted fusion. To maintain the global op-
timal solution from being covered by random
disturbances and ensure convergence stability,
IGWO uses an elite preservation mechanism to
prevent the loss of optimal solutions, as shown
in equation (8).

X*(t+1)=

X (t +1), Fitness(X (¢ +1)) < Fitness(X *(¢)) (8)
X *(¢), Fitness(X (¢ +1)) > Fitness(X * (¢))

In equation (8), X*(f) represents the optimal
solution of the current record, and X*(z + 1) rep-
resents the updated new position of the current
iteration individual. The IGWO optimization
process diagram is shown in Figure 5.

Figure 5 shows the complete process of IGWO
for hyper-parameter optimization of CNN-

Initialize population

v

GRU. Firstly, the algorithm initializes the pop-
ulation, with each individual corresponding to
a set of CNN-GRU configurations. It evaluates
the predictive performance of each individu-
al through the fitness function and selects the
three best solutions currently available. The
algorithm adjusts the search coefficients based
on adaptive strategies and integrates informa-
tion from three optimal solutions to update the
population position. It trains and evaluates the
model corresponding to the new location again
and updates the current global optimal solu-
tion. The algorithm proceeds through iterative
steps until the specified termination criterion
is satisfied and finally outputs the optimal hy-
per-parameter combination. Based on the above
theory, an IGWO-CNN-GRU prediction mod-
el is constructed, and the overall framework is
shown in Figure 6.

Figure 6 indicates the overall process frame-
work of the IGWO-CNN-GRU, which includes
four modules: feature extraction and label con-
struction, CNN-GRU, IGWO optimization,
and result output. The model relies on sensor
networks to collect key data in real-time from
storage, transportation, sales, and other links,
and generates lifecycle labels using the DTW
algorithm. The convolutional layer extracts
local temporal features, the GRU layer mod-
els long-term dependencies, and the fully con-
nected layer outputs prediction results. The
IGWO module optimizes model hyper-param-
eters through dynamic convergence factors
and adaptive weighting mechanisms. The final
output includes the prediction of remaining life
cycle time and stage classification, which are
used for precise production and strategy formu-
lation, respectively.
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Figure 5. IGWO optimization process diagram.
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Figure 6. Framework diagram of IGWO-CNN-GRU prediction model.

4. Results and Discussion

4 1. Performance Evaluation of Models in
Predicting the Life Cycle of Typical
Tobacco Products

To confirm the validity of the proposed IGWO-
CNN-GRU in product lifecycle prediction, com-
parative experiments and ablation experiments
were designed, covering both model accuracy
and business adaptability. The experimental
hardware configuration included: Intel Core 19-
13900K, NVIDIA RTX 4090, 128 GB memory,
and 2 TB SSD. The software environment was
Ubuntu 22.04 and the programming language
was Python 3.10. The dataset was sourced from
the operational data of tobacco companies from
2020 to 2024, covering a total of 180000 sam-

ples of 12 types of products, including key vari-
ables such as sales volume, inventory, logistics
routes, and environmental feedback. Table 1
summarizes the dataset used for training and
validation of the proposed model.

Table 1 includes 180,000 labeled samples from
five major product groups collected between
January 2020 and December 2024. Fine cig-
arettes and mid-to-high-end brands exhibit
smoother and stable sales trajectories, whereas
economy products show high variability, of-
fering a rich testbed for temporal fluctuation
modeling. Regional custom series and experi-
mental batches introduce heterogeneity in vol-
ume, distribution channels, and environmental
exposure. This diversity ensures that the model
is evaluated under a wide range of lifecycle be-
haviors and business scenarios.
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Table 1. Dataset overview and distribution.

Product Category Number of Samples Time Span Avg. Monthly Records
Fine Cigarettes 48 200 2020.01-2024.12 960
Mid-to-High-End Brands 44 300 2020.03-2024.12 910
Economy Products 55500 2020.06-2024.12 1150
Regional Custom Series 19 700 2021.01-2024.10 410
Experimental Batches 12 300 2022.05-2024.12 /
Total 180 000 2020.01-2024.12 /

Table 2. Performance evaluation of different models in typical tobacco product lifecycle prediction.

Model MSE MAE R?
IGWO-CNN-GRU 2.13 1.17 0.932
CNN-BiLSTM 2.76 1.45 0.884
GRU 2.88 1.39 0.875
LSTM 3.01 1.51 0.861
TCN 2.95 1.42 0.868
LightGBM 3.34 1.63 0.839

Data preprocessing included time alignment,
missing padding, and minimum maximum
normalization, and data augmentation was
achieved through sliding windows, noise injec-
tion, and trend perturbations. The comparative
models included: LSTM, Convolutional Bi-di-
rectional LSTM (CNN-BiLSTM), GRU, Light
Gradient Boosting Machine (LightGBM), and
Temporal Convolutional Network (TCN). The
evaluation indicators included Mean Squared
Error (MSE), Mean Absolute Error (MAE),
Coefficient of Determination (R2), lifecycle
stage classification accuracy, and boundary
recognition bias. The model adopted Adam
optimizer for training, with an initial learning

rate of 0.001, batch size of 32, and 100 training
rounds. The performance evaluation of various
models in predicting the lifecycle of typical to-
bacco products is presented in Table 2.

According to Table 2, the IGWO-CNN-GRU
performed the best in the remaining life cycle
prediction task, with an MSE of 2.13, MAE
of 1.17, and R? of 0.932. All three indicators
were superior to other comparison models. In
contrast, the MSE and MAE of CNN-BiLSTM
were 2.76 and 1.45, respectively, with an R?
of 0.884. The MSE of LSTM and GRU were
3.01 and 2.88, respectively, indicating a rela-
tively high overall error. In addition, compared
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to the suboptimal model CNN-BiLSTM, IG-
WO-CNN-GRU showed a decrease of 18.6%
in MSE and 21.4% in MAE, while R? improved
by nearly 4.8 percentage points, verifying its
advantages in lifecycle modeling tasks. Exper-
imental data showed that traditional models
such as LSTM and GRU, although capable of
time series modeling, had limitations in multi-
source heterogeneous feature expression and
stage transition capture, resulting in limited
fitting performance. TCN and LightGBM had
poor stability in multi-stage data, with R? values
of only 0.868 and 0.839, respectively. IGWO-
CNN-GRU extracted local temporal features
through the CNN module, modeled long-term
dependencies through the GRU module, and in-
troduced the IGWO algorithm to achieve global
optimization of hyper-parameters, achieving a
balance between modeling accuracy and gen-
eralization ability, which was superior to other
mainstream methods. The comparison of model
performance before and after IGWO optimiza-

tion is shown in Figure 7. All comparative and
ablation experiments were conducted using a
5-fold cross validation design to ensure consis-
tent distribution of training and testing samples
and reduce the impact of random fluctuations
on the results. For each comparison, test sam-
ples were randomly selected but the product
type distribution was kept consistent to control
the variance of the sample structure. The mean
and variance of the error shown in Figure 7 were
plotted based on the average results of five ex-
periments, and the stability and improvement of
the model performance before and after optimi-
zation were verified through standard deviation
analysis.

According to Figure 7 (a), the average MSE of
the IGWO-CNN-GRU in 5 experiments was
2.16. The MSEs of the original CNN-GRU were
2.62, 2.70, 2.55, 2.68, and 2.60, respectively,
with higher overall values and an average of
2.63. After IGWO optimization, the MSE of the
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Figure 7. Comparison of model performance before and after IGWO optimization.
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Figure 8. The life cycle prediction performance of IGWO-CNN-GRU on various product types.

model decreased by about 17.9%, showing bet-
ter fitting accuracy for the remaining life cycle
time. From Figure 7 (b), in terms of MAE, the
error values of the IGWO-CNN-GRU were all
below 1.3, with an average of 1.19. In contrast,
the average MAE value of the CNN-GRU was
1.49, with an overall decrease of about 20.1%,
indicating that the optimized model general-
ly had smaller absolute errors under different
samples, and was more stable and practical. As
shown in Figure 7 (c), in terms of R?, the R?
value of the IGWO-CNN-GRU consistently
remained above 0.92, with an average of 0.93,
indicating that the model had strong explanato-
ry power for lifecycle trends. The average R>
value of the CNN-GRU was 0.89, which was
about 4.7% lower than the optimized model.
Experimental data showed that IGWO optimi-
zation effectively enhanced the model's capa-
bility to fit lifecycle evolution. Lifecycle pre-
diction performance of the IGWO-CNN-GRU
on various product types is shown in Figure 8.

As shown in Figure 8 (a), with the increase of
sample size, the overall average prediction de-
viation decreased. Among them, the prediction
deviation of "fine cigarettes" dropped to 3.2
days at 150 batches, which was better than the
4.7 days of "economy cigarettes", indicating
that the model fitted the product lifecycle with
obvious features more accurately. As shown
in Figure 8 (b), the accuracy of lifecycle stage
classification significantly improved with the
increase of sample size. The accuracy of "fine
cigarettes" and "mid to high end cigarettes"
reached 96.2% and 94.8%, respectively, at 150
batches, which was significantly higher than
the 88.1% of "economy cigarettes", verifying
that the model had stronger recognition ability
on high-end products. From Figure 8 (c), the
deviation in identifying lifecycle boundaries
showed a stable downward trend, with the low-
est error for fine cigarette boundaries at 3 days,
reflecting the robustness of the model in locat-
ing lifecycle nodes. Based on the differences in
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predictive performance among different prod-
uct types, the experimental results showed that
the accuracy of IGWO CNN-GRU in predict-
ing the lifecycle of high-end fine cigarettes was
higher than that of economical products. This
difference was mainly due to the clearer sales
rhythm and lower volatility of high-end prod-
ucts in the market, as well as more patterned
lifecycle characteristics, which facilitated mod-
el learning and extraction. In addition, high-
end products were usually accompanied by
more complete logistics tracking and channel
feedback data, providing richer input features
for the model. Meanwhile, economic products
were more susceptible to short-term behavioral
interference such as promotions and regional
advertising, leading to increased volatility in
model predictions. The overall results indicated
that the IGWO-CNN-GRU had high accuracy
and strong generalization ability in product life-
cycle prediction and could effectively support
intelligent decision-making for multiple types
of products.

To verify the statistical significance of model
performance differences, paired sample t-test

and confidence interval analysis were intro-
duced in the comparative experiments of vari-
ous models. The differences in MSE and MAE
between IGWO CNN-GRU and CNN-BiL-
STM in 5 repeated experiments were tested for
significance at the 0.01 level (p-values were all
less than 0.005), indicating that the proposed
model had statistical significance in improv-
ing life cycle })rediction error. Additionally, the
increase in R” was also within the 95% confi-
dence interval, verifying the stability of the dif-
ferences in model fitting ability. The impact of
environmental fluctuations and hyperparameter
sensitivity on lifecycle prediction is shown in
Table 3.

According to Table 3, when the temperature ex-
ceeds 28 °C and the humidity fluctuation am-
plitude exceeds + 10%, the prediction error sig-
nificantly increases (MAE increases from 1.12
days to 1.53 days), and the DTW score decreas-
es by up to 13.5%, indicating that environmen-
tal instability can lead to misalignment of life
cycle stages and should be used as a key feature
for modeling. At the same time, hyperparame-
ter sensitivity analysis shows that learning rate,

Table 3. Effects of environmental fluctuations and hyperparameter sensitivity on lifecycle prediction.

1D Condition MAE (Days) DTW Deviation (%) Note

1 22.3°C, 5% Humidity (Stable) 1.12 / Baseline group

2 28.7°C, £12% Humidity 1.48 Decreased by 11.3 Sales declined early

3 25.0°C, +18% Humidity 1.53 Decreased by 13.5 | Lifecycle stage confusion
4 LR = 0'001’((]};2;;1;5’ Kernel =3 1.29 / Baseline config

5 LR =0.0001, GRU =2, Kernel =5 1.47 Decreased by 7.6 Convergence too slow
6 LR= (()O(;(illrilgl:fb; ;lél\%gn)el =7 1.17 Increase by 3.2 Best result via IGWO
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GRU layers, and convolution kernel size have
the most significant impact on model perfor-
mance. The parameter combination optimized
by IGWO (LR=0.001, GRU=4 layers, convo-
lution kernel=7) reduced MAE to 1.17 days
and improved DTW score by 3.2%, verifying
the rationality of the selected parameters and
the effectiveness of the intelligent optimization
strategy.

4.2. Application Analysis of Models in
Tobacco Industry's Deployment
Strategy and Inventory Optimization

To verify the actual value of the lifecycle pre-
diction model in regulating the pace of deploy-
ment and inventory allocation, experiments
were conducted to compare the performance
of CNN-GRU, IGWO-CNN-GRU, and LSTM
models from three dimensions: inventory al-
location response time, inventory utilization
rate, and inventory prediction accuracy. The
system evaluated their actual effectiveness in
supporting enterprise intelligent supply chain
management. The comparative experimental
results of inventory and allocation strategies in
the tobacco industry are shown in Figure 9.

From Figure 9 (a), in terms of inventory trans-
fer response time, the average response time of
IGWO-CNN-GRU was 7.4 hours, which was
significantly shorter compared to CNN-GRU
and LSTM, and the efficiency of transfer de-
cision-making was higher. From Figure 9 (b),
in terms of inventory utilization, the IGWO-
CNN-GRU had an average of 92.8%, which
was higher than CNN-GRU's 88.4% and
LSTM's 86.5%, indicating that its predictive
driven inventory turnover ability was stron-
ger. From Figure 9 (c), in terms of predicting
inventory accuracy, the IGWO-CNN-GRU
had an average accuracy of 93.2% of the four
samples, which was better than CNN-GRU
and LSTM, demonstrating stronger inventory
trend prediction ability. Figure 9 illustrates the
superior responsiveness and accuracy of 1G-
WO-CNN-GRU in inventory transfer and uti-
lization scenarios. The performance gain can
be largely attributed to the inclusion of logis-
tics path complexity and environmental factors

in the feature space. For example, in products
distributed through multi-node regional net-
works, the incorporation of transit frequency
and route stability allowed the model to better
anticipate supply delays, reducing transfer re-
sponse time by over 15% compared to CNN-
GRU. Traditional LSTM-based models, lack-
ing this multidimensional feature awareness,
responded with higher delay and underutili-
zation. Furthermore, hyperparameter optimi-
zation via IGWO improved learning rate and
depth configuration, enabling the model to
generalize across regions with different chan-
nel structures, which is critical in tobacco lo-
gistics characterized by seasonal demand shifts
and administrative constraints. The compari-
son results of inventory fluctuation indicators
are shown in Figure 10.

From Figure 10 (a), in terms of monthly in-
ventory volatility, the volatility of IGWO-
CNN-GRU was 9.6%, which was lower than
CNN-GRU's 15.8% and CNN-BiLSTM's
13.8%. According to Figure 10 (b), in terms
of inventory backlog days, CNN-GRU was
11.5 days and CNN-BiLSTM was 9.2 days.
IGWO-CNN-GRU had a backlog of 6.8 days,
which was significantly reduced compared to
the comparison model. According to Figure 10
(¢), in terms of out-of-stock rate, the out-of-
stock rate using IGWO-CNN-GRU was 2.6%,
while the out-of-stock rate using CNN-GRU
was 4.9%, and the out-of-stock rate using
CNN-BIiLSTM was 3.8%. Experimental data
revealed that the IGWO-CNN-GRU outper-
formed traditional CNN-GRU and CNN-BiL-
STM models in inventory fluctuation control.
Its lower fluctuation performance and fre-
quency of change represented higher supply
chain stability and inventory control efficien-
cy, suitable for scenarios with multi-category
and cyclical sales characteristics in the tobac-
co industry. IGWO CNN-GRU combines the
ability of CNN to detect sudden sales changes
with GRU's sequence memory to identify early
signs of product transition to the decline stage,
enabling proactive inventory adjustments. Due
to weak stage boundary recognition, the com-
parative model was unable to respond with
similar accuracy. For example, CNN BiLSTM
tends to exceed its maturity period, resulting
in excess inventory. Feature analysis revealed
that excluding inventory turnover and lifecy-
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cle similarity scores led to a 17.3% increase in
stockout events, emphasizing the importance
of these features in stabilizing supply and
demand consistency. The IGWO adjustment
process can also prevent overfitting of domi-
nant product types, ensuring consistent perfor-
mance in large quantities and niche markets.
The comparison results of optimization indi-
cators for advertising strategies are presented
in Table 4.

According to Table 4, the model exhibited
good strategic adaptability and predictive per-
formance in five typical advertising scenari-
os. In terms of average advertising error, the
core commercial districts of first tier cities and
the concentrated areas of universities had the
smallest errors, at 3.5 days and 3.6 days re-
spectively, indicating that the model had high-

er time prediction accuracy in high-frequen-
cy consumption and fast-paced scenarios. In
terms of channel coverage, the coverage rate
of transportation hubs in third tier cities was
the highest, at 93.1%, indicating that the model
had a stronger ability to regulate complex cir-
culation paths than other regions. The matching
degree of sales rhythm was higher than 85% in
all regions, with transportation hubs and uni-
versity areas exceeding 88%, indicating that
the model could effectively coordinate market
rhythm to adjust the delivery rhythm. In terms
of the decrease in unsold rates, transportation
hubs in third-tier cities also performed the best,
with a decrease of 24.3%. The overall results
confirmed the model's dual optimization abili-
ty for advertising efficiency and unsold risk in
dynamic markets.
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Figure 9. Experimental results of inventory and allocation strategies comparison in the tobacco industry.
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Figure 10. Comparison results of inventory fluctuation indicators.

Table 4. Comparison results of optimization indicators for advertising strategies.

Average Channel Sales rhythm D .
. . - . ecrease in
Placement scenario advertising error advertising matching degree unsold rate (%)
(days) coverage rate (%) (%) °
Core busm.eSS d.1§trlcts in 35 912 ”7.4 21
first tier cities

Remdelzntlal conc@ntra.tl.on 49 285 85.9 198
areas in second tier cities

Transport.atlor.l hub in third 38 93.1 292 243

tier cities
Remote county market 4.0 89.7 86.7 20.5
Concentrated areas of 3.6 90.6 88.1 217
universities
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5. Conclusion

In the context of promoting intelligent manage-
ment in the tobacco industry, accurately pre-
dicting the product lifecycle has become the
key to improving inventory turnover efficiency
and formulating refined deployment strategies.
Aiming at the shortcomings of existing methods
in multi-source heterogeneous data fusion and
time series modeling, an HNN model integrating
CNN and GRU was proposed, and IGWO was
introduced for hyperparameter optimization.

The experiment outcomes revealed that the mod-
el possessed notable superiority in predicting the
remaining time of the lifecycle. IGWO improved
the fitting ability and stability of the CNN-GRU,
with an average MSE reduction of 17.9% and a
MAE reduction of 20.1% in multiple rounds of
experiments. In tests of different product types,
the accuracy of classifying the lifecycle of "fine
cigarettes" was 96.2%, and the error in identi-
fying lifecycle boundaries was controlled within
3 days, verifying the high recognition ability of
the model for lifecycle turning points.

In terms of application experiments, the IGWO-
CNN-GRU outperformed the comparison model
in regard to inventory allocation response time
of 7.4 hours, inventory utilization rate of 92.8%,
and predicted inventory accuracy of 93.2%. The
experiment outcomes revealed that the IGWO-
CNN-GRU performed excellently in predicting
the remaining time of the lifecycle. Compared
with mainstream models such as GRU, LSTM,
and CNN-BIiLSTM, the IGWO-CNN-GRU
showed significant improvements in prediction
error and fitting degree, indicating that the mod-
el could more accurately reflect the evolutionary
trend of tobacco products at various stages of the
lifecycle.

However, current research still has certain lim-
itations. The construction of lifecycle labels
depended on the alignment of sales rhythm and
stage templates, which introduced temporal con-
sistency fluctuations—particularly for products
with strong seasonality, sporadic sales spikes, or
abrupt marketing interventions. In such cases,
lifecycle label deviation may occur, leading to
potential misclassification. For instance, limit-
ed-edition promotional products released during
festivals often show short-lived sales bursts that
differ significantly from standard stage curves.
Additionally, the model was trained on tobacco

industry-specific datasets, and its generalization
capability to cross-industry or highly diversified
inventory structures has not been systematically
validated. A broader evaluation is needed across
various enterprise profiles and supply chain con-
ditions. Another key limitation arises in cold-
start scenarios, where newly launched products
lack historical data. In these cases, the model's
performance deteriorates due to insufficient pat-
tern references.

Future work will explore metadata-driven ini-
tialization, semi-supervised learning using
product embeddings, and adaptive clustering
to mitigate early-stage prediction gaps. More-
over, the research will further introduce graph
neural networks to capture structural correla-
tions among products, distribution channels,
and region-based consumption behaviors. This
approach may improve lifecycle inference un-
der sparse or noisy input conditions. In terms
of practical implementation, several challenges
must also be addressed. Real-time deployment
within tobacco enterprise systems may be af-
fected by data latency, particularly in IoT inte-
gration across fragmented platforms or under
low-bandwidth logistics infrastructure. Sensor
data loss, asynchronous updates, or irregular
reporting from warehousing and transportation
nodes could lead to partial feature drop-out, un-
dermining model accuracy. Additionally, despite
the model's lightweight neural structure, com-
putational limitations at edge nodes, such as in
production-line controllers or warehouse gate-
ways, may restrict inference speed or parallel
deployment. Future work will consider model
compression, quantization, and edge-device op-
timization, ensuring efficient inference with lim-
ited hardware resources.
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