Development of a Speaker Diarization System for Speaker Tracking in Audio Broadcast News: a Case Study
Abstract
A system for speaker tracking in broadcast-news audio data is presented and the impacts of the main components of the system to the overall speaker-tracking performance are evaluated. The process of speaker tracking in continuous audio streams involves several processing tasks and is therefore treated as a multistage process. The main building blocks of such system include the components for audio segmentation, speech detection, speaker clustering and speaker identification. The aim of the first three processes is to find homogeneous regions in continuous audio streams that belong to one speaker and to join each region of the same speaker together. The task of organizing the audio data in this way is known as speaker diarization and plays an important role in various speech-processing applications. In our case the impact of speaker diarization was assessed in a speaker-tracking system by performing a comparative study of how each of the component influenced the overall speaker-detection results. The evaluation experiments were performed on broadcast-news audio data with a speaker-tracking system, which was capable of detecting 41 target speakers. We implemented several different approaches in each component of the system and compared their performances by inspecting the final speaker-tracking results. The evaluation results indicate the importance of the audio-segmentation and speech-detection components, while no significant improvement of the overall results was achieved by additionally including a speaker-clustering component to the speaker-tracking system.
Full Text:
PDFDOI: https://doi.org/10.2498/cit.1001067
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.